US20170363332A1 - Air-conditioning apparatus - Google Patents

Air-conditioning apparatus Download PDF

Info

Publication number
US20170363332A1
US20170363332A1 US15/543,289 US201515543289A US2017363332A1 US 20170363332 A1 US20170363332 A1 US 20170363332A1 US 201515543289 A US201515543289 A US 201515543289A US 2017363332 A1 US2017363332 A1 US 2017363332A1
Authority
US
United States
Prior art keywords
heat exchanger
outdoor heat
fan
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/543,289
Inventor
Satoru Yanachi
Yohei Kato
Kohei Kasai
Shinichi Uchino
Hirokazu Minamisako
Takafumi Mito
Tsubasa TANDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KASAI, KOHEI, MINAMISAKO, HIROKAZU, MITO, TAKAFUMI, UCHINO, SHINICHI, KATO, YOHEI, TANDA, Tsubasa, YANACHI, SATORU
Publication of US20170363332A1 publication Critical patent/US20170363332A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current

Definitions

  • the present invention relates to an air-conditioning apparatus.
  • a conventional air-conditioning apparatus detects, in a heating operation, the current value of an outdoor fan motor and the rotation speed of an outdoor fan, and determines whether to start a defrosting operation based on whether the current value of the outdoor fan motor becomes equal to or larger than a reference current value or the rotation speed of the outdoor fan decreases by a predetermined rotation speed (refer to Patent Literature 1).
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2009-58222
  • the reference current value is determined in advance and cannot be changed with taken into account decrease in a fan input due to decrease in the fan rotation speed when the efficiency of the outdoor fan motor degrades by aging.
  • This configuration prevents transition to the defrosting operation at appropriate timing in the heating operation. In other words, defrosting cannot be performed efficiently.
  • the present invention is intended to solve the above-described problem and provide an air-conditioning apparatus that performs a defrosting operation more efficiently than conventionally practiced.
  • An air-conditioning apparatus includes, by connecting, a compressor, an outdoor heat exchanger, an indoor heat exchanger, and a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger.
  • the air-conditioning apparatus includes a fan configured to deliver air toward the outdoor heat exchanger, a power unit configured to supply electric power to the fan, a fan input detector configured to detect a physical value related to the electric power supplied to the fan, and a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser.
  • the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
  • the controller adjusts the reference value so that the reference value when refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
  • the air-conditioning apparatus includes the controller configured to control the switching device to switch between the first operation in which the outdoor heat exchanger functions as an evaporator and the second operation in which the outdoor heat exchanger functions as a condenser.
  • the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than the reference value.
  • the controller adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant flowing through the outdoor heat exchanger has a low temperature.
  • FIG. 1 is a schematic view illustrating an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating change in a total electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view illustrating a state in which frost exists on an outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram illustrating a relation between a relative humidity ⁇ and a frost density ⁇ in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram illustrating a relation between a refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram illustrating change in the frequency of a compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic view illustrating the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air-conditioning apparatus 100 includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 , an expansion valve 4 , and an indoor heat exchanger 5 .
  • the compressor 1 , the four-way valve 2 , the outdoor heat exchanger 3 , the expansion valve 4 , and the indoor heat exchanger 5 are, for example, sequentially connected by pipes to form a refrigerant circuit 90 .
  • the compressor 1 is a variable capacity compressor configured to compress sucked refrigerant and discharge the refrigerant as high-temperature and high-pressure refrigerant.
  • the four-way valve 2 is a switching device that switches a direction in which the refrigerant discharged from the compressor 1 flows, in response to, for example, execution of a heating operation or a cooling operation.
  • the four-way valve 2 is provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 .
  • FIG. 1 illustrates an exemplary state in which the four-way valve 2 is switched to perform a cooling operation.
  • a solid line arrow indicates the flow of the refrigerant when the cooling operation is performed.
  • a dashed line arrow indicates the flow of the refrigerant when a heating operation is performed.
  • the outdoor heat exchanger 3 is a heat exchanger configured to function as a condenser at the cooling operation and function as an evaporator at the heating operation.
  • An outdoor side fan 31 is an air-sending unit configured to supply external air to the outdoor heat exchanger 3 and form airflow.
  • the outdoor side fan 31 is, for example, an axial-flow fan or a centrifugal fan.
  • the outdoor side fan 31 rotates when an outdoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the outdoor side fan 31 and the refrigerant flowing inside the outdoor heat exchanger 3 .
  • the outdoor side fan 31 is driven by a power unit (not illustrated) configured to supply electric power.
  • the expansion valve 4 is used to decompress and expand the refrigerant flowed out of the outdoor heat exchanger 3 at the cooling operation, and decompress and expand the refrigerant flowed out of the indoor heat exchanger 5 at the heating operation.
  • the indoor heat exchanger 5 is a heat exchanger configured to function as an evaporator at the cooling operation and function as a condenser at the heating operation.
  • An indoor side fan 51 is an air-sending unit configured to supply indoor air to the indoor heat exchanger 5 and form airflow.
  • the indoor side fan 51 is, for example, an axial-flow fan or a centrifugal fan.
  • the indoor side fan 51 rotates when an indoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the indoor side fan 51 and the refrigerant flowing inside the indoor heat exchanger 5 .
  • An outdoor side refrigerant temperature sensor 32 is a temperature detection unit configured to detect the temperature of the refrigerant flowing through the outdoor heat exchanger 3 .
  • An indoor side refrigerant temperature sensor 52 is a sensor configured to detect the temperature of the refrigerant flowing through the indoor heat exchanger 5 .
  • a “refrigerant temperature” refers to the temperature of the refrigerant flowing inside the outdoor heat exchanger 3 .
  • a controller 80 controls the outdoor side motor to control the rotation speed of the outdoor side fan 31 , and controls the indoor side motor to control the rotation speed of the indoor side fan 51 .
  • the controller 80 controls the outdoor side motor by changing voltage and current input to the outdoor side motor.
  • the control of the rotation speed of the outdoor side fan 31 by the controller 80 allows control of the volume of air passing through the outdoor heat exchanger 3 .
  • a rotation speed detection unit configured to detect the rotation speed of the outdoor side fan 31 may be provided to detect the current rotation speed of the outdoor side fan 31 .
  • the current rotation speed of the outdoor side fan 31 may be estimated from information on current applied to the outdoor side motor and voltage applied to the outdoor side motor.
  • a “fan input” refers to a physical value related to electric power supplied to the outdoor side fan 31 (the outdoor side motor configured to rotate the outdoor side fan 31 ).
  • the controller 80 controls the indoor side motor so that the outdoor side fan 31 rotates, for example, when the air-conditioning apparatus 100 starts operating.
  • the controller 80 is, for example, hardware such as a circuit device or software executed on an arithmetic device such as a microcomputer or a CPU, which are configured to achieve this functionality.
  • the cooling operation is executed when the controller 80 switches the four-way valve 2 to cooling.
  • the heating operation is executed when the controller 80 switches the four-way valve 2 to heating.
  • a “defrosting operation” refers to an operation executed when the controller 80 switches the four-way valve 2 to cooling and stops the outdoor side fan 31 .
  • the heating operation corresponds to a “first operation” of the present invention
  • the defrosting operation corresponds to a “second operation” of the present invention.
  • the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 .
  • the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3 .
  • the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the indoor heat exchanger 5 .
  • the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5 . Having flowed out of the indoor heat exchanger 5 , the refrigerant flows into the compressor 1 .
  • the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5 .
  • the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5 .
  • the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the outdoor heat exchanger 3 .
  • the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3 . Having flowed out of the outdoor heat exchanger 3 , the refrigerant flows into the compressor 1 .
  • FIG. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis represents elapsed time [min]
  • the vertical axis represents the frosting amount [g] and a total electric power amount [W].
  • a solid line indicates the frosting amount
  • a dashed line indicates the total electric power.
  • the frosting amount increases as time elapses
  • the total electric power increases as time elapses.
  • the horizontal axis represents elapsed time [min]
  • the vertical axis represents the frosting amount [g] and a total current value [A].
  • a solid line indicates the frosting amount
  • a dashed line indicates the total current value.
  • the frosting amount increases as time elapses
  • the total current value increases as time elapses.
  • FIG. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating change in the total electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIGS. 4 and 5 illustrate a case in which the fan input is the electric power amount, which is the product of current value applied to an outdoor fan motor and voltage value applied to the outdoor fan motor. Processing illustrated in FIGS. 4 and 5 is performed at the heating operation.
  • the controller 80 detects the fan input and calculates the amount of change in the fan input at each elapse of a predetermined time. Specifically, for example, when the fan input at time (t ⁇ 1) is represented by W(t ⁇ 1) and the fan input at time t is represented by W(t), the controller 80 calculates ⁇ W(t) as the difference between the fan inputs through Expression (1.1) below.
  • the controller 80 calculates ⁇ Wtotal by summing ⁇ W(t) according to Expression (1.2) below.
  • the controller 80 determines whether ⁇ Wtotal is equal to or larger than a threshold ⁇ as in Expression (1.3) below.
  • the controller 80 controls the four-way valve 2 to start the defrosting operation.
  • the controller 80 continues the heating operation.
  • the threshold ⁇ varies with the refrigerant temperature. Specifically, for example, it is assumed that the density of frost on the outdoor heat exchanger 3 is larger at ⁇ higher refrigerant temperature, and thus the controller 80 decreases the value of a accordingly. When the value of ⁇ is decreased in this manner, ⁇ Wtotal becomes equal to or larger than ⁇ at earlier timing and the defrosting operation is started earlier. For example, it is assumed that the density of frost on the outdoor heat exchanger 3 is smaller at a lower refrigerant temperature, and thus the controller 80 increases the value of ⁇ accordingly. When the value of ⁇ is increased in this manner, ⁇ Wtotal becomes equal to or larger than ⁇ at later timing and start of the defrosting operation is delayed.
  • the fan input is the electric power, but the present invention is not limited thereto.
  • the fan input may be the current value applied to the outdoor fan motor or the voltage value applied to the outdoor fan motor.
  • FIG. 6 is a schematic view illustrating a state in which frost exists on the outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the frost on the outdoor heat exchanger 3 has a height Hf_total [mm], and adjacent fins 3 b are apart from each other by a distance Fp [mm]. It is assumed that wind blows from one end of each fin 3 b in the longitudinal direction thereof to the other end. Since frost exists on the outdoor heat exchanger 3 as illustrated in FIG. 6 , a wind speed ua decreases, and thus heat exchange at the outdoor heat exchanger 3 is hindered as compared to a case in which no frost exists on the outdoor heat exchanger 3 .
  • frost exists on a heat transfer tube 3 a and the fins 3 b included in the outdoor heat exchanger 3 .
  • the frost has a lower density as the heat transfer tube 3 a and the fins 3 b have lower temperatures. In other words, the frost density is smaller at a lower refrigerant temperature.
  • the defrosting operation needs different defrosting heat amounts for an identical blockage state of the outdoor heat exchanger 3 and an identical amount of increase in the fan input. Specifically, at a higher refrigerant temperature, a larger amount of heat is needed to melt frost on the outdoor heat exchanger 3 .
  • FIG. 7 is a diagram illustrating a relation between a relative humidity ⁇ and a frost density ⁇ in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis represents the relative humidity ⁇ [%]
  • the vertical axis represents the frost density ⁇ [kg/m 3 ].
  • FIG. 7 illustrates cases with the refrigerant temperature Ts [degrees C.] at ⁇ 30 degrees C. and ⁇ 20 degrees C.
  • the frost density ⁇ decreases as the relative humidity ⁇ increases.
  • the frost density ⁇ is larger when the refrigerant temperature Ts is ⁇ 20 degrees C. than when the refrigerant temperature Ts is ⁇ 30 degrees C. In other words, the frost density ⁇ increases as the refrigerant temperature Ts increases.
  • a defrosting duration increases as the frost density ⁇ increases, and a larger defrosting capacity is needed as the frost density ⁇ increases. Thus, the defrosting duration increases as the refrigerant temperature Ts increases.
  • FIG. 8 is a diagram illustrating a relation between the refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As illustrated in FIG. 8 , the necessary defrosting heat amount is proportional to the temperature of the refrigerant flowing through the refrigerant circuit 90 inside the outdoor heat exchanger 3 .
  • the defrosting duration increases as the refrigerant temperature Ts increases.
  • a minimum defrosting duration is one minute when an average refrigerant temperature is ⁇ 40 degrees C. to ⁇ 30 degrees C.
  • the minimum defrosting duration is three minutes when the average refrigerant temperature is ⁇ 10 degrees C. to ⁇ 5 degrees C.
  • the minimum defrosting duration is five minutes when the average refrigerant temperature is ⁇ 5 degrees C. to 0 degrees C.
  • FIG. 8 illustrates, for sake of simplicity of description, the proportional relation between the necessary defrosting heat amount and the refrigerant temperature Ts
  • the present invention is not limited to such a relation.
  • the amount of increase in the necessary defrosting heat amount for increase in the refrigerant temperature Ts does not need to be constant.
  • FIG. 9 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis represents elapsed time
  • the vertical axis represents the frequency of the compressor 1 .
  • a solid line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively high
  • a dashed line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively low.
  • the defrosting operation can be performed in a shorter time at a relatively low refrigerant temperature than at a relatively high refrigerant temperature.
  • efficient execution of the defrosting operation requires a time for melting frost on the outdoor heat exchanger 3 and a time for allowing melted frost to drop from the outdoor heat exchanger 3 .
  • melted frost potentially freezes again when the duration of the defrosting operation at a relatively low refrigerant temperature is shorter than the duration of the defrosting operation at a relatively high refrigerant temperature.
  • the operation is performed with identical defrosting durations at a relatively low refrigerant temperature and a relatively high refrigerant temperature and with a low frequency of the compressor 1 , which will be described below.
  • Interval (a) refers to an interval in which the heating operation is executed
  • Interval (b) refers to an interval in which the defrosting operation is executed
  • Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation.
  • the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency while the four-way valve 2 is switched to heating. After the compressor 1 is operated at the predetermined frequency for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency thereof. Then, when the frequency of the compressor 1 becomes zero (t 11 ), the controller 80 switches the four-way valve 2 to cooling and starts the defrosting operation.
  • the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1 . Then, when the frequency of the compressor 1 becomes zero (time t 14 ), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling.
  • the controller 80 controls the compressor 1 to decrease the frequency thereof so that the compressor 1 has a predetermined frequency f 1 .
  • the controller 80 operates the compressor 1 at the predetermined frequency f 1 for a predetermined time.
  • the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1 . Then, when the frequency of the compressor 1 becomes zero (time t 14 ), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • the controller 80 controls the compressor 1 so that the frequency thereof has a predetermined frequency while the four-way valve 2 is switched to heating.
  • Interval (a) refers to an interval in which the heating operation is executed
  • Interval (b) refers to an interval in which the defrosting operation is executed
  • Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation.
  • change in the frequency of the compressor 1 as time elapses in Interval (a) and Interval (c) is identical to that in FIG. 9 , and thus description thereof will be omitted.
  • the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1 . Then, when the frequency of the compressor 1 becomes zero (time t 24 ), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency f 2 while the four-way valve 2 is switched to cooling. After the compressor 1 acquires the predetermined frequency f 2 (time t 22 ) and has operated for a predetermined time (time t 23 ), the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1 . Then, when the frequency of the compressor 1 becomes zero (time t 24 ), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • the compressor 1 , the outdoor heat exchanger 3 , the indoor heat exchanger 5 , and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other.
  • the air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3 , the power unit configured to supply electric power to the fan 31 , a fan input detector configured to detect a physical value related to the electric power supplied to the fan 31 , and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
  • the controller 80 adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
  • the compressor 1 , the outdoor heat exchanger 3 , the indoor heat exchanger 5 , and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other.
  • the air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3 , the power unit configured to supply electric power to the fan 31 , the fan input detector configured to detect a physical value related to the electric power supplied to the fan 31 , and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
  • the controller 80 controls the frequency of the compressor 1 so that the frequency of the compressor 1 when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is higher than the frequency of the compressor 1 when the refrigerant has a low temperature.
  • Embodiment 2 unlike Embodiment 1, the timing of execution of the defrosting operation is determined based on a frosting amount Mf, and the frequency of the compressor 1 in the defrosting operation is determined based on the frosting amount Mf.
  • any characteristic is same as that of Embodiment 1 unless otherwise stated, and any identical function and configuration will be described by using identical reference signs.
  • the frosting amount mf(t) is given based on a surface area A 0 [m 2 ], the frost density ⁇ f [kg/m 3 ], and a frost height Hf(t) through Expression (2.1) below.
  • the surface area A 0 [m 2 ] is a heat exchange surface area of the outdoor heat exchanger 3 .
  • the frost density ⁇ f [kg/m 3 ] is the density of frost on the outdoor heat exchanger 3 , which is affected by a cooling surface temperature and a relative humidity.
  • the frost height Hf(t) is the height of frost on the outdoor heat exchanger 3 .
  • the frosting amount Mf is given based on the frosting amount mf(t) through Expression (2.2) below.
  • a defrosting heat amount Qf [kJ] is given based on the frosting amount Mf [kg] and a latent heat ⁇ H [kJ/kg] through Expression (2.3) below.
  • a defrosting duration Tf [sec] is given based on the defrosting heat amount Qf [kJ] and a defrosting capacity P [kW] through Expression (2.4) below.
  • the controller 80 of the air-conditioning apparatus 100 according to Embodiment 2 determines the defrosting duration in accordance with the frosting amount. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced.
  • the outdoor side fan 31 corresponds to a “fan” of the present invention.

Abstract

An air-conditioning apparatus includes a fan configured to deliver air toward the outdoor heat exchanger, a power unit configured to supply electric power to the fan, a fan input detector configured to detect a physical value related to the electric power supplied to the fan, and a controller configured to control the four-way valve to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. The controller adjusts the reference value so that the reference value when refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant has a low temperature.

Description

    TECHNICAL FIELD
  • The present invention relates to an air-conditioning apparatus.
  • BACKGROUND ART
  • A conventional air-conditioning apparatus detects, in a heating operation, the current value of an outdoor fan motor and the rotation speed of an outdoor fan, and determines whether to start a defrosting operation based on whether the current value of the outdoor fan motor becomes equal to or larger than a reference current value or the rotation speed of the outdoor fan decreases by a predetermined rotation speed (refer to Patent Literature 1).
  • CITATION LIST Patent Literature
  • Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2009-58222
  • SUMMARY OF INVENTION Technical Problem
  • In the air-conditioning apparatus disclosed in Patent Literature 1, the reference current value is determined in advance and cannot be changed with taken into account decrease in a fan input due to decrease in the fan rotation speed when the efficiency of the outdoor fan motor degrades by aging. This configuration prevents transition to the defrosting operation at appropriate timing in the heating operation. In other words, defrosting cannot be performed efficiently.
  • The present invention is intended to solve the above-described problem and provide an air-conditioning apparatus that performs a defrosting operation more efficiently than conventionally practiced.
  • Solution to Problem
  • An air-conditioning apparatus according to an embodiment of the present invention includes, by connecting, a compressor, an outdoor heat exchanger, an indoor heat exchanger, and a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger. The air-conditioning apparatus includes a fan configured to deliver air toward the outdoor heat exchanger, a power unit configured to supply electric power to the fan, a fan input detector configured to detect a physical value related to the electric power supplied to the fan, and a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. The controller adjusts the reference value so that the reference value when refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
  • Advantageous Effects of Invention
  • The air-conditioning apparatus according to an embodiment of the present invention includes the controller configured to control the switching device to switch between the first operation in which the outdoor heat exchanger functions as an evaporator and the second operation in which the outdoor heat exchanger functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than the reference value. The controller adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant flowing through the outdoor heat exchanger has a low temperature. With this configuration, a defrosting operation can be started at an appropriate timing while a heating operation is being performed. Thus, the defrosting operation can be performed more efficiently than has been conventionally practiced.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic view illustrating an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating change in a total electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view illustrating a state in which frost exists on an outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram illustrating a relation between a relative humidity φ and a frost density ρ in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram illustrating a relation between a refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram illustrating change in the frequency of a compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • DESCRIPTION OF EMBODIMENTS Embodiment 1
  • An air-conditioning apparatus 100 of the present invention will be described in detail below with reference to the drawings. The sizes of components in the drawings are in a relation different from that of their actual sizes in some cases. In the drawings, any components denoted by an identical reference sign are identical or equivalent to each other. This notation applies through the entire specification. In addition, any configuration of the components described in the entire specification is merely exemplary, and thus the present invention is not limited by the description.
  • FIG. 1 is a schematic view illustrating the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As illustrated in FIG. 1, the air-conditioning apparatus 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchanger 5 are, for example, sequentially connected by pipes to form a refrigerant circuit 90.
  • The compressor 1 is a variable capacity compressor configured to compress sucked refrigerant and discharge the refrigerant as high-temperature and high-pressure refrigerant. The four-way valve 2 is a switching device that switches a direction in which the refrigerant discharged from the compressor 1 flows, in response to, for example, execution of a heating operation or a cooling operation. The four-way valve 2 is provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5. FIG. 1 illustrates an exemplary state in which the four-way valve 2 is switched to perform a cooling operation. In FIG. 1, a solid line arrow indicates the flow of the refrigerant when the cooling operation is performed. In FIG. 1, a dashed line arrow indicates the flow of the refrigerant when a heating operation is performed.
  • The outdoor heat exchanger 3 is a heat exchanger configured to function as a condenser at the cooling operation and function as an evaporator at the heating operation. An outdoor side fan 31 is an air-sending unit configured to supply external air to the outdoor heat exchanger 3 and form airflow. The outdoor side fan 31 is, for example, an axial-flow fan or a centrifugal fan. The outdoor side fan 31 rotates when an outdoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the outdoor side fan 31 and the refrigerant flowing inside the outdoor heat exchanger 3. The outdoor side fan 31 is driven by a power unit (not illustrated) configured to supply electric power.
  • The expansion valve 4 is used to decompress and expand the refrigerant flowed out of the outdoor heat exchanger 3 at the cooling operation, and decompress and expand the refrigerant flowed out of the indoor heat exchanger 5 at the heating operation.
  • The indoor heat exchanger 5 is a heat exchanger configured to function as an evaporator at the cooling operation and function as a condenser at the heating operation. An indoor side fan 51 is an air-sending unit configured to supply indoor air to the indoor heat exchanger 5 and form airflow. The indoor side fan 51 is, for example, an axial-flow fan or a centrifugal fan. The indoor side fan 51 rotates when an indoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the indoor side fan 51 and the refrigerant flowing inside the indoor heat exchanger 5.
  • An outdoor side refrigerant temperature sensor 32 is a temperature detection unit configured to detect the temperature of the refrigerant flowing through the outdoor heat exchanger 3. An indoor side refrigerant temperature sensor 52 is a sensor configured to detect the temperature of the refrigerant flowing through the indoor heat exchanger 5. In the following description, a “refrigerant temperature” refers to the temperature of the refrigerant flowing inside the outdoor heat exchanger 3.
  • A controller 80 controls the outdoor side motor to control the rotation speed of the outdoor side fan 31, and controls the indoor side motor to control the rotation speed of the indoor side fan 51. The controller 80 controls the outdoor side motor by changing voltage and current input to the outdoor side motor. The control of the rotation speed of the outdoor side fan 31 by the controller 80 allows control of the volume of air passing through the outdoor heat exchanger 3.
  • A rotation speed detection unit configured to detect the rotation speed of the outdoor side fan 31 may be provided to detect the current rotation speed of the outdoor side fan 31. Alternatively, the current rotation speed of the outdoor side fan 31 may be estimated from information on current applied to the outdoor side motor and voltage applied to the outdoor side motor. In the following description, a “fan input” refers to a physical value related to electric power supplied to the outdoor side fan 31 (the outdoor side motor configured to rotate the outdoor side fan 31).
  • The controller 80 controls the indoor side motor so that the outdoor side fan 31 rotates, for example, when the air-conditioning apparatus 100 starts operating. The controller 80 is, for example, hardware such as a circuit device or software executed on an arithmetic device such as a microcomputer or a CPU, which are configured to achieve this functionality.
  • The cooling operation is executed when the controller 80 switches the four-way valve 2 to cooling. The heating operation is executed when the controller 80 switches the four-way valve 2 to heating. In the following description, a “defrosting operation” refers to an operation executed when the controller 80 switches the four-way valve 2 to cooling and stops the outdoor side fan 31. The heating operation corresponds to a “first operation” of the present invention, and the defrosting operation corresponds to a “second operation” of the present invention.
  • The following first describes, with reference to FIG. 1, the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention executes the cooling operation. The refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3. Having flowed into the outdoor heat exchanger 3, the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3. Having flowed out of the outdoor heat exchanger 3, the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the indoor heat exchanger 5. Having flowed into the indoor heat exchanger 5, the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5. Having flowed out of the indoor heat exchanger 5, the refrigerant flows into the compressor 1.
  • The following describes, with reference to FIG. 1, the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention executes the heating operation. The refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5. Having flowed into the indoor heat exchanger 5, the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5. Having flowed out of the indoor heat exchanger 5, the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the outdoor heat exchanger 3. Having flowed into the outdoor heat exchanger 3, the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3. Having flowed out of the outdoor heat exchanger 3, the refrigerant flows into the compressor 1.
  • FIG. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • In FIG. 2, the horizontal axis represents elapsed time [min], and the vertical axis represents the frosting amount [g] and a total electric power amount [W]. In FIG. 2, a solid line indicates the frosting amount, and a dashed line indicates the total electric power. As illustrated in FIG. 2, the frosting amount increases as time elapses, and the total electric power increases as time elapses.
  • In FIG. 3, the horizontal axis represents elapsed time [min], and the vertical axis represents the frosting amount [g] and a total current value [A]. In FIG. 3, a solid line indicates the frosting amount, and a dashed line indicates the total current value. As illustrated in FIG. 3, the frosting amount increases as time elapses, and the total current value increases as time elapses.
  • FIG. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 5 is a diagram illustrating change in the total electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIGS. 4 and 5 illustrate a case in which the fan input is the electric power amount, which is the product of current value applied to an outdoor fan motor and voltage value applied to the outdoor fan motor. Processing illustrated in FIGS. 4 and 5 is performed at the heating operation.
  • First, as illustrated in FIG. 4, the controller 80 detects the fan input and calculates the amount of change in the fan input at each elapse of a predetermined time. Specifically, for example, when the fan input at time (t−1) is represented by W(t−1) and the fan input at time t is represented by W(t), the controller 80 calculates ΔW(t) as the difference between the fan inputs through Expression (1.1) below.

  • ΔW(t)=W(t)−W(t−1)  (1.1)
  • Subsequently, as illustrated in FIG. 5, the controller 80 calculates ΔWtotal by summing ΔW(t) according to Expression (1.2) below.

  • ΔWtotal=ΣΔW(t)  (1.2)
  • Then, the controller 80 determines whether ΔWtotal is equal to or larger than a threshold α as in Expression (1.3) below. When having determined that ΔWtotal is equal to or larger than the threshold α, the controller 80 controls the four-way valve 2 to start the defrosting operation. When having determined that ΔWtotal is smaller than the threshold α, the controller 80 continues the heating operation.

  • ΔWtotal≧α  (1.3)
  • The threshold α varies with the refrigerant temperature. Specifically, for example, it is assumed that the density of frost on the outdoor heat exchanger 3 is larger at α higher refrigerant temperature, and thus the controller 80 decreases the value of a accordingly. When the value of α is decreased in this manner, ΔWtotal becomes equal to or larger than α at earlier timing and the defrosting operation is started earlier. For example, it is assumed that the density of frost on the outdoor heat exchanger 3 is smaller at a lower refrigerant temperature, and thus the controller 80 increases the value of α accordingly. When the value of α is increased in this manner, ΔWtotal becomes equal to or larger than α at later timing and start of the defrosting operation is delayed. In the above description, the fan input is the electric power, but the present invention is not limited thereto. For example, the fan input may be the current value applied to the outdoor fan motor or the voltage value applied to the outdoor fan motor.
  • FIG. 6 is a schematic view illustrating a state in which frost exists on the outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As illustrated in FIG. 6, the frost on the outdoor heat exchanger 3 has a height Hf_total [mm], and adjacent fins 3 b are apart from each other by a distance Fp [mm]. It is assumed that wind blows from one end of each fin 3 b in the longitudinal direction thereof to the other end. Since frost exists on the outdoor heat exchanger 3 as illustrated in FIG. 6, a wind speed ua decreases, and thus heat exchange at the outdoor heat exchanger 3 is hindered as compared to a case in which no frost exists on the outdoor heat exchanger 3.
  • In the heating operation, frost exists on a heat transfer tube 3 a and the fins 3 b included in the outdoor heat exchanger 3. As the frost grows, draft resistance increases and input of the outdoor side fan 31 increases. The frost has a lower density as the heat transfer tube 3 a and the fins 3 b have lower temperatures. In other words, the frost density is smaller at a lower refrigerant temperature.
  • Thus, when the fins 3 b is blocked, the amount of frost on the outdoor heat exchanger 3 differs for different frost densities. In other words, the defrosting operation needs different defrosting heat amounts for an identical blockage state of the outdoor heat exchanger 3 and an identical amount of increase in the fan input. Specifically, at a higher refrigerant temperature, a larger amount of heat is needed to melt frost on the outdoor heat exchanger 3.
  • FIG. 7 is a diagram illustrating a relation between a relative humidity φ and a frost density ρ in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. In FIG. 7, the horizontal axis represents the relative humidity φ [%], and the vertical axis represents the frost density ρ [kg/m3]. FIG. 7 illustrates cases with the refrigerant temperature Ts [degrees C.] at −30 degrees C. and −20 degrees C.
  • As illustrated in FIG. 7, the frost density ρ decreases as the relative humidity φ increases. The frost density ρ is larger when the refrigerant temperature Ts is −20 degrees C. than when the refrigerant temperature Ts is −30 degrees C. In other words, the frost density ρ increases as the refrigerant temperature Ts increases. A defrosting duration increases as the frost density ρ increases, and a larger defrosting capacity is needed as the frost density ρ increases. Thus, the defrosting duration increases as the refrigerant temperature Ts increases.
  • FIG. 8 is a diagram illustrating a relation between the refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As illustrated in FIG. 8, the necessary defrosting heat amount is proportional to the temperature of the refrigerant flowing through the refrigerant circuit 90 inside the outdoor heat exchanger 3.
  • As illustrated in FIG. 8, the defrosting duration increases as the refrigerant temperature Ts increases. Specifically, for example, a minimum defrosting duration is one minute when an average refrigerant temperature is −40 degrees C. to −30 degrees C. For example, the minimum defrosting duration is three minutes when the average refrigerant temperature is −10 degrees C. to −5 degrees C. For example, the minimum defrosting duration is five minutes when the average refrigerant temperature is −5 degrees C. to 0 degrees C.
  • Although FIG. 8 illustrates, for sake of simplicity of description, the proportional relation between the necessary defrosting heat amount and the refrigerant temperature Ts, the present invention is not limited to such a relation. The amount of increase in the necessary defrosting heat amount for increase in the refrigerant temperature Ts does not need to be constant.
  • FIG. 9 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 10 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • In FIGS. 9 and 10, the horizontal axis represents elapsed time, and the vertical axis represents the frequency of the compressor 1. In FIGS. 9 and 10, a solid line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively high, and a dashed line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively low.
  • The defrosting operation can be performed in a shorter time at a relatively low refrigerant temperature than at a relatively high refrigerant temperature. However, efficient execution of the defrosting operation requires a time for melting frost on the outdoor heat exchanger 3 and a time for allowing melted frost to drop from the outdoor heat exchanger 3. Thus, melted frost potentially freezes again when the duration of the defrosting operation at a relatively low refrigerant temperature is shorter than the duration of the defrosting operation at a relatively high refrigerant temperature. For this reason, in Embodiment 1, the operation is performed with identical defrosting durations at a relatively low refrigerant temperature and a relatively high refrigerant temperature and with a low frequency of the compressor 1, which will be described below.
  • The following describes, with reference to FIG. 9, an example in which the frequency of the compressor 1 is changed based on the refrigerant temperature in the defrosting operation. In FIG. 9, Interval (a) refers to an interval in which the heating operation is executed, Interval (b) refers to an interval in which the defrosting operation is executed, and Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation.
  • As illustrated in FIG. 9, in Interval (a), the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency while the four-way valve 2 is switched to heating. After the compressor 1 is operated at the predetermined frequency for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency thereof. Then, when the frequency of the compressor 1 becomes zero (t11), the controller 80 switches the four-way valve 2 to cooling and starts the defrosting operation.
  • As illustrated in FIG. 9, in Interval (b), when the refrigerant temperature is relatively high, the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t14), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • As illustrated in FIG. 9, in Interval (b), when the refrigerant temperature is relatively low, the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time (time t12), the controller 80 controls the compressor 1 to decrease the frequency thereof so that the compressor 1 has a predetermined frequency f1. After the frequency of the compressor 1 is decreased to the predetermined frequency f1 (time t13), the controller 80 operates the compressor 1 at the predetermined frequency f1 for a predetermined time. After the compressor 1 is operated at the predetermined frequency f1 for the predetermined time (time t13), the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t14), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • As illustrated in FIG. 9, in Interval (c), the controller 80 controls the compressor 1 so that the frequency thereof has a predetermined frequency while the four-way valve 2 is switched to heating.
  • The following describes, with reference to FIG. 10, an example in which the frequency of the compressor 1 is changed based on the refrigerant temperature in the defrosting operation. In FIG. 10, Interval (a) refers to an interval in which the heating operation is executed, Interval (b) refers to an interval in which the defrosting operation is executed, and Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation. In FIG. 10, change in the frequency of the compressor 1 as time elapses in Interval (a) and Interval (c) is identical to that in FIG. 9, and thus description thereof will be omitted.
  • As illustrated in FIG. 10, in Interval (b), when the refrigerant temperature is relatively high, the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t24), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • As illustrated in FIG. 10, in Interval (b), when the refrigerant temperature is relatively low, the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency f2 while the four-way valve 2 is switched to cooling. After the compressor 1 acquires the predetermined frequency f2 (time t22) and has operated for a predetermined time (time t23), the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t24), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
  • As described above, in the air-conditioning apparatus 100 according to Embodiment 1, the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other. The air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3, the power unit configured to supply electric power to the fan 31, a fan input detector configured to detect a physical value related to the electric power supplied to the fan 31, and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. The controller 80 adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is smaller than the reference value when the refrigerant has a low temperature. With this configuration, the defrosting operation can be started at appropriate timing when the heating operation is performed. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced.
  • In the air-conditioning apparatus 100 according to Embodiment 1, the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other. The air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3, the power unit configured to supply electric power to the fan 31, the fan input detector configured to detect a physical value related to the electric power supplied to the fan 31, and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. The controller 80 controls the frequency of the compressor 1 so that the frequency of the compressor 1 when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is higher than the frequency of the compressor 1 when the refrigerant has a low temperature. With this configuration, the defrosting operation can be performed in accordance with the frosting amount more appropriately than conventionally practiced. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced.
  • Embodiment 2
  • In Embodiment 2, unlike Embodiment 1, the timing of execution of the defrosting operation is determined based on a frosting amount Mf, and the frequency of the compressor 1 in the defrosting operation is determined based on the frosting amount Mf. In Embodiment 2, any characteristic is same as that of Embodiment 1 unless otherwise stated, and any identical function and configuration will be described by using identical reference signs.
  • The frosting amount mf(t) is given based on a surface area A0 [m2], the frost density ρf [kg/m3], and a frost height Hf(t) through Expression (2.1) below.

  • mf(t)=A0×ρf(tHf(t)  (2.1)
  • Expression (2.1) below assumes that frost uniformly exists on the outdoor heat exchanger 3. The surface area A0 [m2] is a heat exchange surface area of the outdoor heat exchanger 3. The frost density ρf [kg/m3] is the density of frost on the outdoor heat exchanger 3, which is affected by a cooling surface temperature and a relative humidity. The frost height Hf(t) is the height of frost on the outdoor heat exchanger 3.
  • The frosting amount Mf is given based on the frosting amount mf(t) through Expression (2.2) below.

  • Mf=Σm(t)  (2.2)
  • A defrosting heat amount Qf [kJ] is given based on the frosting amount Mf [kg] and a latent heat ΔH [kJ/kg] through Expression (2.3) below.

  • Qf=Mf×ΔH  (2.3)
  • A defrosting duration Tf [sec] is given based on the defrosting heat amount Qf [kJ] and a defrosting capacity P [kW] through Expression (2.4) below.

  • Tf=Qf/P  (2.4)
  • As described above, the controller 80 of the air-conditioning apparatus 100 according to Embodiment 2 determines the defrosting duration in accordance with the frosting amount. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced.
  • The outdoor side fan 31 corresponds to a “fan” of the present invention.
  • REFERENCE SIGNS LIST
  • 1 compressor 2 four-way valve 3 outdoor heat exchanger 3 a heat transfer tube 3 b fin 4 expansion valve 5 indoor heat exchanger 31 outdoor side fan 32 outdoor side refrigerant temperature sensor 51 indoor side fan 52 indoor side refrigerant temperature sensor 80 controller 90 refrigerant circuit 100 air-conditioning apparatus A0 surface area f1, f2, fmax predetermined frequency Hf frost height Mf frosting amount mf frosting amount P defrosting capacity Qf defrosting heat amount t11, t12, t13, t14, t21, t22, t23, t24 time Tf the defrosting duration Ts surface temperature ua wind speed ΔH latent heat α threshold ρ frost density ρf frost density φ relative humidity

Claims (4)

1. An air-conditioning apparatus comprising:
a compressor,
an outdoor heat exchanger;
an indoor heat exchanger;
a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger, the compressor, the outdoor heat exchanger, the indoor heat exchanger, and the switching device being connected one another;
a fan configured to deliver air toward the outdoor heat exchanger;
a power unit configured to supply electric power to the fan;
a fan input detector configured to detect a physical value correlated to the electric power supplied to the fan; and
a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger serves as an evaporator and a second operation in which the outdoor heat exchanger serves as a condenser,
wherein the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value, and
wherein the controller is configured to adjust the reference value such that the reference value when a refrigerant temperature flowing in the outdoor heat exchanger is high to be lower than the reference value when the refrigerant temperature flowing in the outdoor heat exchanger is low.
2. An air-conditioning apparatus comprising:
a compressor;
an outdoor heat exchanger;
an indoor heat exchanger;
a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger, the compressor, the outdoor heat exchanger, the indoor heat exchanger, and the switching device being connected one another;
a fan configured to deliver air toward the outdoor heat exchanger;
a power unit configured to supply electric power to the fan;
a fan input detector configured to detect a physical value correlated to the electric power supplied to the fan; and
a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger serves as an evaporator and a second operation in which the outdoor heat exchanger serves as a condenser,
wherein the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value, and
wherein the controller is configured to control the compressor such that frequency of the compressor when a refrigerant temperature flowing in the outdoor heat exchanger is high to be higher than the frequency of the compressor when the refrigerant temperature flowing in the outdoor heat exchanger is low.
3. The air-conditioning apparatus of claim 1, wherein the fan input detector detects a current value or a voltage value applied to an outdoor side motor configured to drive the fan, or electric power based on the current value and the voltage value.
4. The air-conditioning apparatus of claim 2, wherein fan input detector detects a current value or a voltage value applied to an outdoor side motor configured to drive the fan, or electric power based on the current value and the voltage value.
US15/543,289 2015-02-18 2015-02-18 Air-conditioning apparatus Abandoned US20170363332A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054402 WO2016132473A1 (en) 2015-02-18 2015-02-18 Air conditioning device

Publications (1)

Publication Number Publication Date
US20170363332A1 true US20170363332A1 (en) 2017-12-21

Family

ID=56689320

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/543,289 Abandoned US20170363332A1 (en) 2015-02-18 2015-02-18 Air-conditioning apparatus

Country Status (5)

Country Link
US (1) US20170363332A1 (en)
EP (1) EP3260790B1 (en)
JP (1) JP6338762B2 (en)
CN (1) CN107250679B (en)
WO (1) WO2016132473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190234676A1 (en) * 2018-02-01 2019-08-01 Johnson Controls Technology Company Coil heating systems for heat pump systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808812B2 (en) * 2017-03-24 2021-01-06 東芝キヤリア株式会社 Air conditioner
CN114502895B (en) * 2019-10-23 2023-04-14 日立江森自控空调有限公司 Air conditioner, control method for air conditioner, and program
JP7278496B1 (en) 2022-05-18 2023-05-19 三菱電機株式会社 Refrigeration cycle state prediction device, refrigeration cycle control device, and refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (en) * 1987-10-21 1989-04-24 Toshiba Corp Air conditioner
JPH08334285A (en) * 1995-06-07 1996-12-17 Sharp Corp Refrigerator
JP2014169802A (en) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp Air conditioning device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930980B2 (en) * 1981-01-27 1984-07-30 三菱電機株式会社 Frost detection device
JP2831838B2 (en) * 1990-11-06 1998-12-02 株式会社東芝 Air conditioner
KR100225640B1 (en) * 1997-06-27 1999-10-15 윤종용 Defrosting control method for air conditioner
CN1888671A (en) * 2005-06-30 2007-01-03 乐金电子(天津)电器有限公司 Air conditioner defrosting operation controlling device and operating method thereof
JP2009058222A (en) * 2006-03-31 2009-03-19 Daikin Ind Ltd Outdoor unit
JP2010032107A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010091118A (en) * 2008-10-03 2010-04-22 Panasonic Corp Air conditioner
JP2010210223A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Air conditioner
ES2672818T3 (en) * 2009-05-29 2018-06-18 Daikin Industries, Ltd. Air conditioning device
JP4836212B2 (en) * 2009-07-22 2011-12-14 シャープ株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (en) * 1987-10-21 1989-04-24 Toshiba Corp Air conditioner
JPH08334285A (en) * 1995-06-07 1996-12-17 Sharp Corp Refrigerator
JP2014169802A (en) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp Air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190234676A1 (en) * 2018-02-01 2019-08-01 Johnson Controls Technology Company Coil heating systems for heat pump systems
US10914503B2 (en) * 2018-02-01 2021-02-09 Johnson Controls Technology Company Coil heating systems for heat pump systems

Also Published As

Publication number Publication date
EP3260790A4 (en) 2018-10-24
CN107250679A (en) 2017-10-13
WO2016132473A1 (en) 2016-08-25
JPWO2016132473A1 (en) 2017-09-07
CN107250679B (en) 2019-11-26
EP3260790B1 (en) 2020-03-25
JP6338762B2 (en) 2018-06-06
EP3260790A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6071648B2 (en) Air conditioner
CN108139118B (en) Refrigeration cycle device
US10151505B2 (en) Air-conditioning apparatus
US10345022B2 (en) Air-conditioning apparatus
US10371407B2 (en) Air conditioning apparatus
US20170363332A1 (en) Air-conditioning apparatus
JP2010223494A (en) Air conditioner
JP6827540B2 (en) Air conditioner
JP2017044447A (en) Air conditioner
JP6135638B2 (en) Air conditioner
JP6425826B2 (en) Air conditioner
JP6022291B2 (en) Air conditioner
JP2013133977A (en) Air conditioner
EP3508795B1 (en) Air conditioning device
JP2006258381A (en) Air conditioner
US11913694B2 (en) Heat pump system
JP6559332B2 (en) Refrigeration cycle equipment
CN113551437B (en) Air conditioning system and control method
US20200318880A1 (en) Refrigeration cycle apparatus
JP2005069655A (en) Multi-type air conditioner
WO2019038804A1 (en) Air conditioning device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANACHI, SATORU;KATO, YOHEI;KASAI, KOHEI;AND OTHERS;SIGNING DATES FROM 20170622 TO 20170626;REEL/FRAME:042994/0690

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION