JPWO2016132473A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2016132473A1
JPWO2016132473A1 JP2017500189A JP2017500189A JPWO2016132473A1 JP WO2016132473 A1 JPWO2016132473 A1 JP WO2016132473A1 JP 2017500189 A JP2017500189 A JP 2017500189A JP 2017500189 A JP2017500189 A JP 2017500189A JP WO2016132473 A1 JPWO2016132473 A1 JP WO2016132473A1
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
compressor
fan
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017500189A
Other languages
Japanese (ja)
Other versions
JP6338762B2 (en
Inventor
悟 梁池
悟 梁池
加藤 央平
央平 加藤
浩平 葛西
浩平 葛西
進一 内野
進一 内野
博和 南迫
博和 南迫
美藤 尚文
尚文 美藤
翼 丹田
翼 丹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016132473A1 publication Critical patent/JPWO2016132473A1/en
Application granted granted Critical
Publication of JP6338762B2 publication Critical patent/JP6338762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

従来よりも効率良く除霜運転を行うことができる空気調和装置を提供することを目的とする。圧縮機(1)と、室外熱交換器(3)と、室内熱交換器(5)と、室外熱交換器(3)よりも圧縮機(1)の吐出側で且つ室内熱交換器(5)よりも圧縮機(1)の吐出側に設けられる四方弁(2)と、が接続されて構成される空気調和装置(100)であって、室外熱交換器(3)に送風するファン(31)と、ファン(31)に電力を供給する電源装置と、ファン(31)に供給される電力に関連する物理量を検出するファン入力検出手段と、室外熱交換器(3)を蒸発器として機能させる第1運転と、室外熱交換器(3)を凝縮器として機能させる第2運転と、を切り替えるように四方弁(2)を制御する制御手段(80)と、を備え、ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、制御手段(80)は、室外熱交換器(3)を流れる冷媒温度が高い場合における前記基準量が室外熱交換器(3)を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する。It aims at providing the air conditioning apparatus which can perform a defrost operation more efficiently than before. The compressor (1), the outdoor heat exchanger (3), the indoor heat exchanger (5), and the outdoor heat exchanger (3) on the discharge side of the compressor (1) and the indoor heat exchanger (5 ) Is a four-way valve (2) provided on the discharge side of the compressor (1), and an air conditioner (100) configured to be connected to the outdoor heat exchanger (3). 31), a power supply device for supplying power to the fan (31), fan input detection means for detecting a physical quantity related to the power supplied to the fan (31), and the outdoor heat exchanger (3) as an evaporator And a control means (80) for controlling the four-way valve (2) so as to switch between a first operation to function and a second operation in which the outdoor heat exchanger (3) functions as a condenser. When the physical quantity detected by the means is greater than or equal to the reference quantity, the first operation is changed to the second operation. The control means (80) is configured such that the reference amount when the refrigerant temperature flowing through the outdoor heat exchanger (3) is high is higher than the reference amount when the refrigerant temperature flowing through the outdoor heat exchanger (3) is low. The reference amount is adjusted to be small.

Description

本発明は、空気調和装置に関する。  The present invention relates to an air conditioner.

従来、暖房運転時において、室外ファンモータの電流値及び室外ファンの回転数を検出し、室外ファンモータの電流値が基準電流値以上になったり、室外ファンの回転数が所定回転数低下したことで、除霜運転の開始を判定するような空気調和装置があった(特許文献1参照)。  Conventionally, during heating operation, the current value of the outdoor fan motor and the rotational speed of the outdoor fan are detected, and the current value of the outdoor fan motor exceeds the reference current value, or the rotational speed of the outdoor fan has decreased by a predetermined rotational speed. Thus, there has been an air conditioner that determines the start of the defrosting operation (see Patent Document 1).

特開2009−58222号公報JP 2009-58222 A

しかしながら、特許文献1に記載の空気調和機においては、予め基準電流値を決定するため、室外ファンモータが経年劣化して室外ファンモータの効率が低下した場合には、ファン回転数の低下に伴うファン入力の減少の場合等を考慮して基準電流値を変更することができない。したがって、暖房運転時において適切なタイミングで除霜運転に移行することができないという課題があった。すなわち、除霜効率が悪いという課題があった。  However, in the air conditioner described in Patent Document 1, since the reference current value is determined in advance, when the outdoor fan motor deteriorates over time and the efficiency of the outdoor fan motor decreases, the fan rotational speed decreases. The reference current value cannot be changed in consideration of a decrease in fan input. Therefore, there has been a problem that the defrosting operation cannot be performed at an appropriate timing during the heating operation. That is, there was a problem that the defrosting efficiency was poor.

本発明は、上述のような課題を背景としてなされたものであり、従来よりも効率良く除霜運転を行うことができる空気調和装置を提供することを目的としている。  The present invention has been made against the background of the above-described problems, and an object thereof is to provide an air conditioner that can perform a defrosting operation more efficiently than in the past.

本発明の空気調和装置は、圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、前記室外熱交換器に送風するファンと、前記ファンに電力を供給する電源装置と、前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、前記制御手段は、前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整するものである。  The air conditioner of the present invention includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a discharge side of the compressor with respect to the outdoor heat exchanger, and the compressor of the compressor with respect to the indoor heat exchanger. An air conditioner configured to be connected to a switching unit provided on the discharge side, the fan for blowing air to the outdoor heat exchanger, a power supply device for supplying power to the fan, and the fan Switching between a fan input detection means for detecting a physical quantity related to the power to be output, a first operation in which the outdoor heat exchanger functions as an evaporator, and a second operation in which the outdoor heat exchanger functions as a condenser. Control means for controlling the switching means, and when the physical quantity detected by the fan input detection means is a reference amount or more, the first operation is switched to the second operation, and the control means, Outdoor heat exchange In which the reference quantity when the coolant temperature is high through the vessel to adjust the reference amount to be smaller than the reference amount when the coolant temperature is low flowing through the outdoor heat exchanger.

本発明の空気調和装置は、前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、前記制御手段は、前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する。このため、暖房運転を行っている場合に適切なタイミングで除霜運転を開始することができる。したがって、従来よりも効率良く除霜運転を行うことができる。  The air conditioner of the present invention controls the switching means to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser. Control means, and when the physical quantity detected by the fan input detection means is greater than or equal to a reference quantity, the first operation is switched to the second operation, and the control means flows through the outdoor heat exchanger. The reference amount is adjusted so that the reference amount when the refrigerant temperature is high is smaller than the reference amount when the temperature of the refrigerant flowing through the outdoor heat exchanger is low. For this reason, the defrosting operation can be started at an appropriate timing when the heating operation is performed. Therefore, the defrosting operation can be performed more efficiently than before.

本発明の実施の形態1に係る空気調和装置100を示す概略図である。It is the schematic which shows the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電力値の変化を示す図である。It is a figure which shows the change of the amount of frost formation and the total electric power value with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電流値の変化を示す図である。It is a figure which shows the change of the amount of frost formation and the total electric current value with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う電力量の変化を示す図である。It is a figure which shows the change of the electric energy with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う総電力量の変化を示す図である。It is a figure which shows the change of the total electric energy with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の室外熱交換器3に霜が付着した状態を示す概略図である。It is the schematic which shows the state which the frost adhered to the outdoor heat exchanger 3 of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の相対湿度φと霜密度ρとの関係を示す図である。It is a figure which shows the relationship between relative humidity (phi) and frost density (rho) of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の冷媒温度と必要除霜熱量との関係を示す図である。It is a figure which shows the relationship between the refrigerant | coolant temperature of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention, and required defrost calorie | heat amount. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。It is a figure which shows the change of the frequency of the compressor 1 with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。It is a figure which shows the change of the frequency of the compressor 1 with the elapsed time of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention.

実施の形態1.
以下、本発明の空気調和装置100について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
Embodiment 1 FIG.
Hereinafter, the air conditioning apparatus 100 of the present invention will be described in detail with reference to the drawings. In the following drawings, the size relationship of each component may be different from the actual one. In the following drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.

図1は本発明の実施の形態1に係る空気調和装置100を示す概略図である。図1に示されるように、空気調和装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、を備える。圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、を例えば順次配管接続することで、冷媒回路90が構成される。  FIG. 1 is a schematic diagram showing an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning apparatus 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. The refrigerant circuit 90 is configured by sequentially connecting, for example, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchanger 5.

圧縮機1は、吸入された冷媒を圧縮して高温及び高圧の冷媒として吐出する、可変容量の圧縮機である。四方弁2は、例えば暖房運転や冷房運転が実行されることに応じて、圧縮機1から吐出される冷媒の流れる方向を切替可能な切替手段である。四方弁2は、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる。図1は、冷房運転を行うように四方弁2が切り替えられた状態を例に説明する。なお、図1の実線矢印は、冷房運転を行う場合における冷媒の流れを示している。また、図1の破線矢印は、暖房運転を行う場合における冷媒の流れを示している。  The compressor 1 is a variable capacity compressor that compresses sucked refrigerant and discharges it as high-temperature and high-pressure refrigerant. The four-way valve 2 is a switching unit capable of switching the flow direction of the refrigerant discharged from the compressor 1 according to, for example, a heating operation or a cooling operation being performed. The four-way valve 2 is provided on the discharge side of the compressor 1 with respect to the outdoor heat exchanger 3 and on the discharge side of the compressor 1 with respect to the indoor heat exchanger 5. FIG. 1 illustrates an example in which the four-way valve 2 is switched so as to perform a cooling operation. In addition, the solid line arrow of FIG. 1 has shown the flow of the refrigerant | coolant in the case of performing a cooling operation. Moreover, the broken line arrow of FIG. 1 has shown the flow of the refrigerant | coolant in the case of performing heating operation.

室外熱交換器3は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する熱交換器である。室外側ファン31は、室外熱交換器3に外気を供給し、空気流を形成する送風手段である。室外側ファン31は、例えば、軸流ファンや遠心ファンで構成される。室外側ファン31は、室外側モータ(図示省略)が駆動されることで回転する。室外側ファン31から供給される空気と室外熱交換器3の内部を流れる冷媒との間で熱交換が行われる。室外側ファン31は、電力を供給する電源装置(図示省略)によって駆動される。  The outdoor heat exchanger 3 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation. The outdoor fan 31 is a blowing unit that supplies outside air to the outdoor heat exchanger 3 to form an air flow. The outdoor fan 31 is composed of, for example, an axial fan or a centrifugal fan. The outdoor fan 31 rotates when an outdoor motor (not shown) is driven. Heat exchange is performed between the air supplied from the outdoor fan 31 and the refrigerant flowing in the outdoor heat exchanger 3. The outdoor fan 31 is driven by a power supply device (not shown) that supplies electric power.

膨張弁4は、冷房運転時において室外熱交換器3から流出した冷媒を減圧膨張し、暖房運転時において室内熱交換器5から流出した冷媒を減圧膨張するためのものである。  The expansion valve 4 is for decompressing and expanding the refrigerant flowing out of the outdoor heat exchanger 3 during the cooling operation and decompressing and expanding the refrigerant flowing out of the indoor heat exchanger 5 during the heating operation.

室内熱交換器5は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する熱交換器である。室内側ファン51は、室内熱交換器5に室内の空気を供給し、空気流を形成する送風手段である。室内側ファン51は、例えば、軸流ファンや遠心ファンで構成される。室内側ファン51は、室内側モータ(図示省略)が駆動されることで回転する。室内側ファン51から供給される空気と室内熱交換器5の内部を流れる冷媒との間で熱交換が行われる。  The indoor heat exchanger 5 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation. The indoor fan 51 is a blowing unit that supplies indoor air to the indoor heat exchanger 5 to form an air flow. The indoor fan 51 is composed of, for example, an axial fan or a centrifugal fan. The indoor fan 51 rotates when an indoor motor (not shown) is driven. Heat exchange is performed between the air supplied from the indoor fan 51 and the refrigerant flowing inside the indoor heat exchanger 5.

室外側冷媒温度センサ32は、室外熱交換器3を流れる冷媒の温度を検知する温度検出手段である。室内側冷媒温度センサ52は、室内熱交換器5を流れる冷媒の温度を検知するセンサである。なお、以後の説明において単に「冷媒温度」と説明する場合には、室外熱交換器3の内部を流れる冷媒の温度を指すものとする。  The outdoor refrigerant temperature sensor 32 is a temperature detection unit that detects the temperature of the refrigerant flowing through the outdoor heat exchanger 3. The indoor side refrigerant temperature sensor 52 is a sensor that detects the temperature of the refrigerant flowing through the indoor heat exchanger 5. In the following description, when simply referred to as “refrigerant temperature”, it refers to the temperature of the refrigerant flowing in the outdoor heat exchanger 3.

制御手段80は、室外側モータを制御して室外側ファン31の回転数を調整し、室内側モータを制御して室内側ファン51の回転数を調整する。制御手段80は、室外側モータに入力される電圧や電流を変化させて室外側モータを制御する。制御手段80が室外側ファン31の回転数を調整することで、室外熱交換器3を通過する風量を調整することができる。  The control means 80 controls the outdoor motor to adjust the rotational speed of the outdoor fan 31, and controls the indoor motor to adjust the rotational speed of the indoor fan 51. The control means 80 controls the outdoor motor by changing the voltage and current input to the outdoor motor. The control means 80 can adjust the amount of air passing through the outdoor heat exchanger 3 by adjusting the rotational speed of the outdoor fan 31.

室外側ファン31の現在の回転数は、室外側ファン31の回転数を検出する回転数検出手段を設けることで検出することもできる。また、室外側ファン31の現在の回転数は、室外側モータに印加される電流、室外側モータに印加される電圧の情報から推定することもできる。以後の説明において単に「ファン入力」と説明する場合には、室外側ファン31(室外側ファン31を回転させる室外側モータ)に供給される電力に関連する物理量を指すものとする。  The current rotational speed of the outdoor fan 31 can also be detected by providing a rotational speed detection means for detecting the rotational speed of the outdoor fan 31. The current rotational speed of the outdoor fan 31 can also be estimated from information on the current applied to the outdoor motor and the voltage applied to the outdoor motor. In the following description, when it is simply described as “fan input”, it refers to a physical quantity related to electric power supplied to the outdoor fan 31 (an outdoor motor that rotates the outdoor fan 31).

また、制御手段80は、例えば空気調和装置100の運転を開始すると、室外側ファン31が回転するように室内側モータを制御する。なお、制御手段80は、例えば、この機能を実現する回路デバイスなどのハードウェア、又はマイコン若しくはCPUなどの演算装置上で実行されるソフトウェアで構成される。  Further, for example, when the operation of the air conditioner 100 is started, the control means 80 controls the indoor motor so that the outdoor fan 31 rotates. Note that the control unit 80 includes, for example, hardware such as a circuit device that realizes this function, or software executed on an arithmetic device such as a microcomputer or a CPU.

制御手段80が四方弁2を冷房側に切り替えることで、冷房運転が実行される。制御手段80が四方弁2を暖房側に切り替えることで、暖房運転が実行される。なお、以下の説明において「除霜運転」とは、制御手段80が、四方弁2を冷房側に切り替えた場合で且つ室外側ファン31を停止した場合における運転を指している。暖房運転が本発明の「第1運転」に相当し、除霜運転が本発明の「第2運転」に相当する。  When the control means 80 switches the four-way valve 2 to the cooling side, the cooling operation is executed. The heating operation is performed by the control means 80 switching the four-way valve 2 to the heating side. In the following description, “defrosting operation” refers to an operation when the control unit 80 switches the four-way valve 2 to the cooling side and stops the outdoor fan 31. The heating operation corresponds to the “first operation” of the present invention, and the defrosting operation corresponds to the “second operation” of the present invention.

まず、図1を参照して、本発明の空気調和装置100が冷房運転を実行する場合における冷媒の流れについて説明する。圧縮機1から吐出された冷媒は、室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、室外側ファンが回転して室外熱交換器3に供給された空気と熱交換して室外熱交換器3から流出する。室外熱交換器3から流出した冷媒は、膨張弁4に流入して減圧された後で膨張弁4から流出し、室内熱交換器5に流入する。室内熱交換器5に流入した冷媒は、室内側ファンが回転して室内熱交換器5に供給された空気と熱交換して室内熱交換器5から流出する。室内熱交換器5から流出した冷媒は、圧縮機1に流入する。  First, the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention performs a cooling operation will be described with reference to FIG. The refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3. The refrigerant flowing into the outdoor heat exchanger 3 flows out of the outdoor heat exchanger 3 by exchanging heat with the air supplied to the outdoor heat exchanger 3 by rotation of the outdoor fan. The refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the expansion valve 4 and is decompressed, then flows out of the expansion valve 4 and flows into the indoor heat exchanger 5. The refrigerant flowing into the indoor heat exchanger 5 exchanges heat with the air supplied to the indoor heat exchanger 5 by the rotation of the indoor fan and flows out of the indoor heat exchanger 5. The refrigerant that has flowed out of the indoor heat exchanger 5 flows into the compressor 1.

次に、図1を参照して、本発明の空気調和装置100が暖房運転を実行する場合における冷媒の流れについて説明する。圧縮機1から吐出された冷媒は、室内熱交換器5に流入する。室内熱交換器5に流入した冷媒は、室内側ファンが回転して室内熱交換器5に供給された空気と熱交換して室内熱交換器5から流出する。室内熱交換器5から流出した冷媒は、膨張弁4に流入して減圧された後で膨張弁4から流出し、室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、室外側ファンが回転して室外熱交換器3に供給された空気と熱交換して室外熱交換器3から流出する。室外熱交換器3から流出した冷媒は、圧縮機1に流入する。  Next, with reference to FIG. 1, the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention performs the heating operation will be described. The refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5. The refrigerant flowing into the indoor heat exchanger 5 exchanges heat with the air supplied to the indoor heat exchanger 5 by the rotation of the indoor fan and flows out of the indoor heat exchanger 5. The refrigerant flowing out of the indoor heat exchanger 5 flows into the expansion valve 4 and is decompressed, then flows out of the expansion valve 4 and flows into the outdoor heat exchanger 3. The refrigerant flowing into the outdoor heat exchanger 3 flows out of the outdoor heat exchanger 3 by exchanging heat with the air supplied to the outdoor heat exchanger 3 by rotation of the outdoor fan. The refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the compressor 1.

図2は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電力値の変化を示す図である。図3は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電流値の変化を示す図である。  FIG. 2 is a diagram illustrating changes in the amount of frost formation and the total power value with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 3 is a diagram illustrating changes in the amount of frost formation and the total current value with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.

図2の横軸には経過時間[min]を規定し、図2の縦軸には着霜量[g]及び総電力量[W]を規定している。図2において、着霜量は実線で示しており、総電力値は破線で示している。図2に示されるように、時間経過に伴い着霜量は増加し、時間経過に伴い総電力値は増加する。  The elapsed time [min] is defined on the horizontal axis of FIG. 2, and the frost amount [g] and the total electric energy [W] are defined on the vertical axis of FIG. In FIG. 2, the amount of frost formation is indicated by a solid line, and the total power value is indicated by a broken line. As shown in FIG. 2, the amount of frost formation increases with the passage of time, and the total power value increases with the passage of time.

図3の横軸には経過時間[min]を規定し、図3の縦軸には着霜量[g]及び総電流量[A]を規定している。図3において、着霜量は実線で示しており、総電流値は破線で示している。図3に示されるように、時間経過に伴い着霜量は増加し、時間経過に伴い総電流値は増加する。  The elapsed time [min] is defined on the horizontal axis of FIG. 3, and the frost formation amount [g] and the total current amount [A] are defined on the vertical axis of FIG. In FIG. 3, the amount of frost formation is indicated by a solid line, and the total current value is indicated by a broken line. As shown in FIG. 3, the amount of frost formation increases with the passage of time, and the total current value increases with the passage of time.

図4は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う電力量の変化を示す図である。図5は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う総電力量の変化を示す図である。図4,図5においては、ファン入力として室外ファンモータに印加される電流値及び室外ファンモータに印加される電圧値の積である電力量を用いる場合について説明する。また、図4,図5における処理は、暖房運転時において行われる。  FIG. 4 is a diagram showing a change in electric energy with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 5 is a diagram showing a change in the total electric energy with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. 4 and 5, a case where an electric energy that is the product of a current value applied to the outdoor fan motor and a voltage value applied to the outdoor fan motor is used as the fan input will be described. 4 and 5 are performed during the heating operation.

まず、図4に示されるように、制御手段80は、所定時間毎にファン入力を検出してファン入力の変化量を算出する。具体的には、例えば、時刻(t−1)におけるファン入力がW(t−1)であり、時刻tにおけるファン入力であるW(t)であるとき、以下の式(1.1)のように、ファン入力の差であるΔW(t)を算出する。
ΔW(t)=W(t)−W(t−1)・・・式(1.1)
First, as shown in FIG. 4, the control unit 80 detects the fan input every predetermined time and calculates the change amount of the fan input. Specifically, for example, when the fan input at time (t−1) is W (t−1) and the fan input at time t is W (t), the following equation (1.1) As described above, ΔW (t), which is a difference in fan input, is calculated.
ΔW (t) = W (t) −W (t−1) Expression (1.1)

次に、図5に示されるように、制御手段80は、以下の式(1.2)に従い、ΔW(t)を積算していくことで、ΔWtotalを算出する。
ΔWtotal=ΣΔW(t)・・・式(1.2)
Next, as shown in FIG. 5, the control means 80 calculates ΔWtotal by accumulating ΔW (t) according to the following equation (1.2).
ΔWtotal = ΣΔW (t) Expression (1.2)

そして、制御手段80は、以下の式(1.3)のように、ΔWtotalが閾値α以上になったか否かを判定する。制御手段80は、ΔWtotalが閾値α以上であると判定した場合には、除霜運転を開始するように四方弁2を制御する。また、制御手段80は、ΔWtotalが閾値α未満であると判定した場合には、暖房運転を継続する。
ΔWtotal≧α・・・式(1.3)
And the control means 80 determines whether (DELTA) Wtotal became more than the threshold value (alpha) like the following formula | equation (1.3). When it is determined that ΔWtotal is equal to or greater than the threshold value α, the control unit 80 controls the four-way valve 2 to start the defrosting operation. Further, when it is determined that ΔWtotal is less than the threshold value α, the control unit 80 continues the heating operation.
ΔWtotal ≧ α Expression (1.3)

ここで、αは冷媒温度に応じて変動する。具体的には例えば、冷媒温度が高い程、室外熱交換器3に付着する霜の密度は大きいと想定されるため、制御手段80はαの値を小さくする。このようにαの値を小さくすることで、ΔWtotalがα以上になるタイミングが早くなり、除霜運転が早く開始される。また例えば、冷媒温度が低い程、室外熱交換器3に付着する霜の密度は小さいと想定されるため、制御手段80はαの値を大きくする。このようにαの値を大きくすることで、ΔWtotalがα以上になるタイミングが遅くなり、除霜運転が遅く開始される。なお、以上の説明においては、ファン入力として電力値を用いる例について説明したが、これに限定されない。例えば、ファン入力として、室外ファンモータに印加される電流値や室外ファンモータに印加される電圧値を用いてもよい。  Here, α varies depending on the refrigerant temperature. Specifically, for example, the higher the refrigerant temperature, the higher the density of frost that adheres to the outdoor heat exchanger 3, so the control means 80 decreases the value of α. Thus, by reducing the value of α, the timing at which ΔWtotal becomes equal to or greater than α is advanced, and the defrosting operation is started earlier. Further, for example, the lower the refrigerant temperature, the lower the density of frost that adheres to the outdoor heat exchanger 3, so the control means 80 increases the value of α. Thus, by increasing the value of α, the timing at which ΔWtotal becomes α or more is delayed, and the defrosting operation is started late. In addition, in the above description, although the example which uses an electric power value as a fan input was demonstrated, it is not limited to this. For example, a current value applied to the outdoor fan motor or a voltage value applied to the outdoor fan motor may be used as the fan input.

図6は本発明の実施の形態1に係る空気調和装置100の室外熱交換器3に霜が付着した状態を示す概略図である。図6に示されるように、室外熱交換器3に付着した霜の高さをHf_total[mm]とし、隣接するフィン3b間の距離をFp[mm]とする。そして、フィン3bの長手方向の一端側から他端側に向かって風が吹く場合を想定する。このとき、図6に示されるように、霜が室外熱交換器3に付着しているため、風速uaは減衰して室外熱交換器3における熱交換は、霜が室外熱交換器3に付着していない場合に比べて妨げられることになる。  FIG. 6 is a schematic diagram showing a state in which frost has adhered to the outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 6, the height of the frost attached to the outdoor heat exchanger 3 is Hf_total [mm], and the distance between adjacent fins 3b is Fp [mm]. And the case where a wind blows toward the other end side from the one end side of the longitudinal direction of the fin 3b is assumed. At this time, as shown in FIG. 6, since frost is attached to the outdoor heat exchanger 3, the wind speed ua is attenuated, and the heat exchange in the outdoor heat exchanger 3 is frost attached to the outdoor heat exchanger 3. It will be disturbed compared to the case of not doing.

暖房運転において、霜は、室外熱交換器3を構成する伝熱管3a及びフィン3bに付着し、霜の成長に伴って通風抵抗が増加し、室外側ファン31の入力は増加する。また、伝熱管3a及びフィン3bの温度が低いほど霜の密度は小さくなる。すなわち、冷媒温度が低いほど、霜密度は小さくなる。  In the heating operation, frost adheres to the heat transfer tubes 3a and the fins 3b constituting the outdoor heat exchanger 3, the ventilation resistance increases with the growth of frost, and the input to the outdoor fan 31 increases. Moreover, the density of frost becomes small, so that the temperature of the heat exchanger tube 3a and the fin 3b is low. That is, the lower the refrigerant temperature, the smaller the frost density.

このため、フィン3bが閉塞している状態において、霜密度が異なると室外熱交換器3に付着している霜の量は異なる。すなわち、室外熱交換器3の閉塞状態が同一であり、ファン入力の増加幅が同一であっても、除霜運転に際して必要な除霜熱量は異なる。具体的には、冷媒温度が高い程、室外熱交換器3に付着した霜を融解するために必要となる熱量は増加する。  For this reason, in the state which the fin 3b has obstruct | occluded, if the frost density differs, the quantity of the frost adhering to the outdoor heat exchanger 3 will differ. That is, even if the closed state of the outdoor heat exchanger 3 is the same and the increase width of the fan input is the same, the amount of defrosting heat necessary for the defrosting operation is different. Specifically, the higher the refrigerant temperature, the greater the amount of heat required to melt frost attached to the outdoor heat exchanger 3.

図7は本発明の実施の形態1に係る空気調和装置100の相対湿度φと霜密度ρとの関係を示す図である。なお、図7の横軸には相対湿度φ[%]を規定し、図7の縦軸には霜密度ρ[kg/m]を規定している。また、図7中には、冷媒温度Ts[℃]が、−30℃、−20℃を示している。FIG. 7 is a diagram showing the relationship between the relative humidity φ and the frost density ρ of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. The horizontal axis in FIG. 7 defines relative humidity φ [%], and the vertical axis in FIG. 7 defines frost density ρ [kg / m 3 ]. In FIG. 7, the refrigerant temperature Ts [° C.] indicates −30 ° C. and −20 ° C.

図7に示されるように、相対湿度φが高い程、霜密度ρが低くなっている。また、冷媒温度Tsが−20℃である場合には、冷媒温度Tsが−30℃である場合よりも、霜密度ρが大きくなっている。すなわち、冷媒温度Tsが高い程、霜密度ρは大きくなることが分かる。ここで、霜密度ρが大きくなると除霜時間は長くなり、霜密度ρが大きくなると除霜能力が多く必要となる。したがって、冷媒温度Tsが大きくなると除霜時間は長くなることが分かる。  As shown in FIG. 7, the higher the relative humidity φ, the lower the frost density ρ. Further, when the refrigerant temperature Ts is −20 ° C., the frost density ρ is larger than when the refrigerant temperature Ts is −30 ° C. That is, it is understood that the frost density ρ increases as the refrigerant temperature Ts increases. Here, when the frost density ρ increases, the defrosting time increases, and when the frost density ρ increases, a large amount of defrosting capacity is required. Therefore, it can be seen that the defrosting time increases as the refrigerant temperature Ts increases.

図8は本発明の実施の形態1に係る空気調和装置100の冷媒温度と必要除霜熱量との関係を示す図である。図8に示されるように、室外熱交換器3の内部の冷媒回路90を流れる冷媒温度と、必要除霜熱量と、の関係は比例関係にある。  FIG. 8 is a diagram showing a relationship between the refrigerant temperature and the necessary defrost heat amount of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 8, the relationship between the temperature of the refrigerant flowing through the refrigerant circuit 90 inside the outdoor heat exchanger 3 and the necessary amount of defrost heat is proportional.

図8に示されるように、冷媒温度Tsが大きくなると除霜時間は長くなることが分かる。具体的には例えば、平均冷媒温度が−40℃〜−30℃であるとき、最小除霜時間は1分となる。また例えば、平均冷媒温度が−10℃〜−5℃であるとき、最小除霜時間は3分となる。また例えば、平均冷媒温度が−5℃〜0℃であるとき、最小除霜時間は5分となる。  As shown in FIG. 8, it can be seen that the defrosting time becomes longer as the refrigerant temperature Ts increases. Specifically, for example, when the average refrigerant temperature is −40 ° C. to −30 ° C., the minimum defrosting time is 1 minute. For example, when the average refrigerant temperature is −10 ° C. to −5 ° C., the minimum defrosting time is 3 minutes. For example, when the average refrigerant temperature is −5 ° C. to 0 ° C., the minimum defrosting time is 5 minutes.

なお、図8においては、説明の都合上、冷媒温度Tsと、必要除霜熱量と、の関係が比例関係である例を示しているが、このような関係に限定されず、冷媒温度Tsの増加に対する必要除霜熱量の増加幅は一定でなくてもよい。  In FIG. 8, for convenience of explanation, an example in which the relationship between the refrigerant temperature Ts and the necessary defrost heat amount is a proportional relationship is shown. However, the relationship is not limited to this, and the refrigerant temperature Ts The increase width of the necessary defrosting heat amount with respect to the increase may not be constant.

図9は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。図10は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。  FIG. 9 is a diagram showing a change in the frequency of the compressor 1 with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 10 is a diagram showing a change in the frequency of the compressor 1 with the elapsed time of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.

図9,図10の横軸には経過時間を規定し、図9,図10の縦軸には圧縮機1の周波数を規定している。図9,図10においては、冷媒温度が相対的に高い場合における圧縮機1の周波数の変化を実線で示しており、冷媒温度が相対的に低い場合における圧縮機1の周波数の変化を破線で示している。  The elapsed time is defined on the horizontal axis in FIGS. 9 and 10, and the frequency of the compressor 1 is defined on the vertical axis in FIGS. 9 and 10. 9 and 10, the change in the frequency of the compressor 1 when the refrigerant temperature is relatively high is indicated by a solid line, and the change in the frequency of the compressor 1 when the refrigerant temperature is relatively low is indicated by a broken line. Show.

ここで、冷媒温度が相対的に低い場合には、冷媒温度が相対的に高い場合に比べて、除霜運転の運転時間を短くすることも考えられる。しかしながら、除霜運転を効率良く行うためには、室外熱交換器3に付着した霜を融解する時間及び融解した霜を室外熱交換器3から落下させるための時間が必要となる。このため、冷媒温度が相対的に低い場合における除霜運転の時間が、冷媒温度が相対的に高い場合における除霜運転の時間よりも短くなると、融解した霜が再度凍結する可能性がある。したがって、本実施の形態1においては、冷媒温度が相対的に低い場合においても、冷媒温度が相対的に高い場合と同一の除霜時間で運転を行い、圧縮機1の周波数を低くする例について説明する。  Here, when the refrigerant temperature is relatively low, it is conceivable to shorten the operation time of the defrosting operation as compared with the case where the refrigerant temperature is relatively high. However, in order to efficiently perform the defrosting operation, a time for melting the frost attached to the outdoor heat exchanger 3 and a time for dropping the melted frost from the outdoor heat exchanger 3 are required. For this reason, if the time for the defrosting operation when the refrigerant temperature is relatively low is shorter than the time for the defrosting operation when the refrigerant temperature is relatively high, the melted frost may freeze again. Therefore, in the first embodiment, even when the refrigerant temperature is relatively low, the operation is performed with the same defrosting time as when the refrigerant temperature is relatively high, and the frequency of the compressor 1 is lowered. explain.

以下に、図9を用いて、冷媒温度に基づいて除霜運転時における圧縮機1の周波数を変化させる例について説明する。図9中において、暖房運転を実行している区間を区間(a)、除霜運転を実行している区間を区間(b)、除霜運転後に暖房運転を実行している区間を区間(c)とする。  Below, the example which changes the frequency of the compressor 1 at the time of a defrost driving | operation based on refrigerant | coolant temperature is demonstrated using FIG. In FIG. 9, the section in which the heating operation is performed is the section (a), the section in which the defrosting operation is performed is the section (b), and the section in which the heating operation is performed after the defrosting operation is the section (c). ).

図9に示されるように、区間(a)においては、制御手段80は、四方弁2が暖房側に切り替えられた状態において、圧縮機1が所定周波数となるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数である状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(t11)、四方弁2を冷房側に切り替えて除霜運転を開始する。  As shown in FIG. 9, in the section (a), the control means 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency in a state where the four-way valve 2 is switched to the heating side. Next, the control means 80 controls the compressor 1 so as to reduce the frequency of the compressor 1 after operating for a predetermined time in a state where the compressor 1 is at the predetermined frequency. Then, when the frequency of the compressor 1 becomes 0 (t11), the control means 80 switches the four-way valve 2 to the cooling side and starts the defrosting operation.

図9に示されるように、区間(b)においては、冷媒温度が相対的に高い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t14)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。  As shown in FIG. 9, in the section (b), when the refrigerant temperature is relatively high, the control means 80 causes the compressor 1 to operate at the predetermined frequency fmax when the four-way valve 2 is switched to the cooling side. The compressor 1 is controlled as follows. Next, the control unit 80 controls the compressor 1 so as to reduce the frequency of the compressor 1 after the compressor 1 has been operated for a predetermined time while the compressor 1 is at the predetermined frequency fmax. And the control means 80 switches the four-way valve 2 to the heating side again, and starts heating operation, when the frequency of the compressor 1 becomes 0 (time t14).

図9に示されるように、区間(b)においては、冷媒温度が相対的に低い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後(時刻t12)、圧縮機1の周波数を低減させて圧縮機1が所定周波数f1となるように圧縮機1を制御する。制御手段80は、圧縮機1が所定周波数f1となった後(時刻t13)、圧縮機1が所定周波数f1である状態で所定時間運転する。制御手段80は、圧縮機1が所定周波数f1である状態で所定時間運転した後(時刻t13)、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t14)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。  As shown in FIG. 9, in the section (b), when the refrigerant temperature is relatively low, the control means 80 causes the compressor 1 to operate at the predetermined frequency fmax when the four-way valve 2 is switched to the cooling side. The compressor 1 is controlled as follows. Next, the control means 80 operates for a predetermined time with the compressor 1 at the predetermined frequency fmax (time t12), and then reduces the frequency of the compressor 1 so that the compressor 1 becomes the predetermined frequency f1. The machine 1 is controlled. After the compressor 1 reaches the predetermined frequency f1 (time t13), the control unit 80 operates for a predetermined time while the compressor 1 is at the predetermined frequency f1. The control means 80 controls the compressor 1 so as to reduce the frequency of the compressor 1 after operating for a predetermined time with the compressor 1 at the predetermined frequency f1 (time t13). And the control means 80 switches the four-way valve 2 to the heating side again, and starts heating operation, when the frequency of the compressor 1 becomes 0 (time t14).

図9に示されるように、区間(c)においては、制御手段80は、四方弁2が暖房側に切り替えられた状態において、圧縮機1の周波数が所定周波数になるように圧縮機1を制御する。  As shown in FIG. 9, in the section (c), the control means 80 controls the compressor 1 so that the frequency of the compressor 1 becomes a predetermined frequency in a state where the four-way valve 2 is switched to the heating side. To do.

以下に、図10を用いて、冷媒温度に基づいて除霜運転時における圧縮機1の周波数を変化させる例について説明する。図10中において、暖房運転を実行している区間を区間(a)、除霜運転を実行している区間を区間(b)、除霜運転後に暖房運転を実行している区間を区間(c)とする。なお、図10において、区間(a)及び区間(c)における時間経過に伴う圧縮機1の周波数の変化は、図9のものと同一であるために説明を省略する。  Below, the example which changes the frequency of the compressor 1 at the time of a defrost operation based on refrigerant | coolant temperature is demonstrated using FIG. In FIG. 10, the section in which the heating operation is performed is the section (a), the section in which the defrosting operation is performed is the section (b), and the section in which the heating operation is performed after the defrosting operation is the section (c). ). In FIG. 10, the change in the frequency of the compressor 1 over time in the section (a) and the section (c) is the same as that in FIG.

図10に示されるように、区間(b)においては、冷媒温度が相対的に高い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t24)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。  As shown in FIG. 10, in the section (b), when the refrigerant temperature is relatively high, the control unit 80 causes the compressor 1 to have a predetermined frequency fmax when the four-way valve 2 is switched to the cooling side. The compressor 1 is controlled as follows. Next, the control unit 80 controls the compressor 1 so as to reduce the frequency of the compressor 1 after the compressor 1 has been operated for a predetermined time while the compressor 1 is at the predetermined frequency fmax. And the control means 80 switches the four-way valve 2 to the heating side again, and starts heating operation, when the frequency of the compressor 1 becomes 0 (time t24).

図10に示されるように、区間(b)においては、冷媒温度が相対的に低い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数f2となるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数f2となった状態で(時刻t22)、所定時間運転した後(時刻t23)、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t24)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。  As shown in FIG. 10, in the section (b), when the refrigerant temperature is relatively low, the control means 80 causes the compressor 1 to operate at the predetermined frequency f2 in a state where the four-way valve 2 is switched to the cooling side. The compressor 1 is controlled as follows. Next, the control means 80 controls the compressor 1 so as to reduce the frequency of the compressor 1 after operating for a predetermined time (time t23) in a state where the compressor 1 has reached the predetermined frequency f2 (time t22). To do. And the control means 80 switches the four-way valve 2 to the heating side again, and starts heating operation, when the frequency of the compressor 1 becomes 0 (time t24).

以上のように、本実施の形態1に係る空気調和装置100は、圧縮機1と、室外熱交換器3と、室内熱交換器5と、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる四方弁2と、が接続されて構成される空気調和装置100であって、室外熱交換器3に送風するファン31と、ファン31に電力を供給する電源装置と、ファン31に供給される電力に関連する物理量を検出するファン入力検出手段と、室外熱交換器3を蒸発器として機能させる第1運転と、室外熱交換器3を凝縮器として機能させる第2運転と、を切り替えるように四方弁2を制御する制御手段80と、を備え、ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、制御手段80は、室外熱交換器3を流れる冷媒温度が高い場合における前記基準量が室外熱交換器3を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する。このため、暖房運転を行っている場合において、適切なタイミングで除霜運転を開始することができる。したがって、従来よりも効率良く除霜運転を行うことができる。  As described above, the air-conditioning apparatus 100 according to Embodiment 1 includes the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the discharge side of the compressor 1 relative to the outdoor heat exchanger 3. And the four-way valve 2 provided on the discharge side of the compressor 1 with respect to the indoor heat exchanger 5 is an air conditioner 100 configured to be connected to the fan 31 for blowing air to the outdoor heat exchanger 3; A power supply device that supplies power to the fan 31, fan input detection means that detects a physical quantity related to the power supplied to the fan 31, a first operation that causes the outdoor heat exchanger 3 to function as an evaporator, and outdoor heat exchange Control means 80 for controlling the four-way valve 2 so as to switch between the second operation for causing the condenser 3 to function as a condenser, and when the physical quantity detected by the fan input detection means is equal to or greater than a reference quantity, One operation is switched to the second operation The control means 80 adjusts the reference amount so that the reference amount when the temperature of the refrigerant flowing through the outdoor heat exchanger 3 is high is smaller than the reference amount when the temperature of the refrigerant flowing through the outdoor heat exchanger 3 is low. . For this reason, when the heating operation is performed, the defrosting operation can be started at an appropriate timing. Therefore, the defrosting operation can be performed more efficiently than before.

また、本実施の形態1に係る空気調和装置100は、圧縮機1と、室外熱交換器3と、室内熱交換器5と、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる四方弁2と、が接続されて構成される空気調和装置100であって、室外熱交換器3に送風するファン31と、ファン31に電力を供給する電源装置と、ファン31に供給される電力に関連する物理量を検出するファン入力検出手段と、室外熱交換器3を蒸発器として機能させる第1運転と、室外熱交換器3を凝縮器として機能させる第2運転と、を切り替えるように四方弁2を制御する制御手段80と、を備え、ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、制御手段80は、室外熱交換器3を流れる冷媒温度が高い場合における圧縮機1の周波数が室外熱交換器3を流れる冷媒温度が低い場合における圧縮機1の周波数よりも大きくなるように圧縮機1の周波数を制御する。このため、除霜運転を行っている場合において、従来よりも適切な着霜量に応じた除霜運転を行うことができる。したがって、従来よりも効率良く除霜運転を行うことができる。  In addition, the air conditioner 100 according to Embodiment 1 includes the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the outdoor heat exchanger 3 on the discharge side of the compressor 1 and indoors. The air conditioner 100 is configured by connecting a four-way valve 2 provided on the discharge side of the compressor 1 with respect to the heat exchanger 5, and includes a fan 31 that blows air to the outdoor heat exchanger 3, and a fan 31 A power supply device for supplying electric power, fan input detecting means for detecting a physical quantity related to electric power supplied to the fan 31, a first operation for causing the outdoor heat exchanger 3 to function as an evaporator, and an outdoor heat exchanger 3 A control unit 80 that controls the four-way valve 2 so as to switch between a second operation that functions as a condenser, and when the physical quantity detected by the fan input detection unit is equal to or greater than a reference amount, The control is switched to the second operation. 80, the frequency of the compressor 1 when the temperature of the refrigerant flowing through the outdoor heat exchanger 3 is high is higher than the frequency of the compressor 1 when the temperature of the refrigerant flowing through the outdoor heat exchanger 3 is low. Control the frequency. For this reason, when performing the defrost operation, the defrost operation according to the amount of frost formation more suitable than before can be performed. Therefore, the defrosting operation can be performed more efficiently than before.

実施の形態2.
本実施の形態2においては、実施の形態1とは異なり、着霜量Mfに基づいて除霜運転の実行タイミングを決定し、着霜量Mfに基づいて除霜運転における圧縮機1の周波数を決定するものである。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the second embodiment, unlike the first embodiment, the execution timing of the defrosting operation is determined based on the frosting amount Mf, and the frequency of the compressor 1 in the defrosting operation is determined based on the frosting amount Mf. To decide. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.

着霜量mf(t)は、表面積A0[m]、霜密度ρf[kg/m]、及び霜高さHf(t)に基づいて以下の式(2.1)のように示される。
mf(t)=A0×ρf(t)×Hf(t)・・・式(2.1)
The amount of frost formation mf (t) is represented by the following formula (2.1) based on the surface area A0 [m 2 ], the frost density ρf [kg / m 3 ], and the frost height Hf (t). .
mf (t) = A0 × ρf (t) × Hf (t) Expression (2.1)

なお、以下の式(2.1)は、霜が室外熱交換器3に対して均一に付着することを想定している。表面積はA0[m]は、室外熱交換器3の熱交換表面積である。また、霜密度ρf[kg/m]は室外熱交換器3に付着する霜の密度であり、冷却面温度や相対湿度の影響を受ける。また、霜高さHf(t)は、室外熱交換器3に付着する霜の高さである。In addition, the following formula | equation (2.1) assumes that frost adheres with respect to the outdoor heat exchanger 3 uniformly. The surface area A0 [m 2 ] is the heat exchange surface area of the outdoor heat exchanger 3. The frost density ρf [kg / m 3 ] is the density of frost adhering to the outdoor heat exchanger 3, and is affected by the cooling surface temperature and relative humidity. Further, the frost height Hf (t) is the height of frost attached to the outdoor heat exchanger 3.

着霜量Mfは、着霜量mf(t)に基づいて以下の式(2.2)のように示される。
Mf=Σm(t)・・・式(2.2)
The amount of frost formation Mf is represented by the following formula (2.2) based on the amount of frost formation mf (t).
Mf = Σm (t) Expression (2.2)

除霜熱量Qf[kJ]は、着霜量Mf[kg]及び潜熱ΔH[kJ/kg]に基づいて式(2.3)のように示される。
Qf=Mf×ΔH・・・式(2.3)
The amount of defrosting heat Qf [kJ] is expressed as in Expression (2.3) based on the amount of frosting Mf [kg] and the latent heat ΔH [kJ / kg].
Qf = Mf × ΔH (formula 2.3)

除霜時間Tf[sec]は、除霜熱量Qf[kJ]及び除霜能力P[kW]に基づいて以下の式(2.4)のように示される。
Tf=Qf/P・・・式(2.4)
The defrosting time Tf [sec] is represented by the following formula (2.4) based on the defrosting heat quantity Qf [kJ] and the defrosting capacity P [kW].
Tf = Qf / P (formula 2.4)

以上のように、本実施の形態2に係る空気調和装置100は、制御手段80が、着霜量に応じて除霜時間を決定する。このため、従来よりも効率良く除霜運転を行うことができる。  As described above, in the air-conditioning apparatus 100 according to Embodiment 2, the control unit 80 determines the defrosting time according to the amount of frost formation. For this reason, defrosting operation can be performed more efficiently than before.

なお、室外側ファン31が本発明の「ファン」に相当する。The outdoor fan 31 corresponds to the “fan” of the present invention.

1 圧縮機、2 四方弁、3 室外熱交換器、3a 伝熱管、3b フィン、4 膨張弁、5 室内熱交換器、31 室外側ファン、32 室外側冷媒温度センサ、51 室内側ファン、52 室内側冷媒温度センサ、80 制御手段、90 冷媒回路、100 空気調和装置、A0 表面積、f1,f2,fmax 所定周波数、Hf 霜高さ、Mf 着霜量、mf 着霜量、P 除霜能力、Qf 除霜熱量、t11,t12,t13,t14,t21,t22,t23,t24 時刻、Tf 除霜時間、Ts 表面温度、ua 風速、ΔH 潜熱、α 閾値、ρ 霜密度、ρf 霜密度、φ 相対湿度。  1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 3a heat transfer tube, 3b fin, 4 expansion valve, 5 indoor heat exchanger, 31 outdoor fan, 32 outdoor refrigerant temperature sensor, 51 indoor fan, 52 chamber Inner refrigerant temperature sensor, 80 control means, 90 refrigerant circuit, 100 air conditioner, A0 surface area, f1, f2, fmax predetermined frequency, Hf frost height, Mf frost formation amount, mf frost formation amount, P defrosting capacity, Qf Defrosting calorie, t11, t12, t13, t14, t21, t22, t23, t24 time, Tf defrosting time, Ts surface temperature, ua wind speed, ΔH latent heat, α threshold, ρ frost density, ρf frost density, φ Relative humidity .

Claims (3)

圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、
前記室外熱交換器に送風するファンと、
前記ファンに電力を供給する電源装置と、
前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、
前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、
前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、
前記制御手段は、
前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する
空気調和装置。
A compressor, an outdoor heat exchanger, an indoor heat exchanger, and switching means provided on the discharge side of the compressor with respect to the outdoor heat exchanger and on the discharge side of the compressor with respect to the indoor heat exchanger; Is an air conditioner configured by being connected,
A fan for blowing air to the outdoor heat exchanger;
A power supply for supplying power to the fan;
Fan input detection means for detecting a physical quantity related to power supplied to the fan;
Control means for controlling the switching means so as to switch between a first operation for causing the outdoor heat exchanger to function as an evaporator and a second operation for causing the outdoor heat exchanger to function as a condenser;
When the physical quantity detected by the fan input detection means is greater than or equal to a reference quantity, the first operation is switched to the second operation,
The control means includes
An air conditioner that adjusts the reference amount so that the reference amount when the temperature of the refrigerant flowing through the outdoor heat exchanger is high is smaller than the reference amount when the temperature of the refrigerant flowing through the outdoor heat exchanger is low.
圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、
前記室外熱交換器に送風するファンと、
前記ファンに電力を供給する電源装置と、
前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、
前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、
前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、
前記制御手段は、
前記室外熱交換器を流れる冷媒温度が高い場合における前記圧縮機の周波数が前記室外熱交換器を流れる冷媒温度が低い場合における前記圧縮機の周波数よりも大きくなるように前記圧縮機を制御する
空気調和装置。
A compressor, an outdoor heat exchanger, an indoor heat exchanger, and switching means provided on the discharge side of the compressor with respect to the outdoor heat exchanger and on the discharge side of the compressor with respect to the indoor heat exchanger; Is an air conditioner configured by being connected,
A fan for blowing air to the outdoor heat exchanger;
A power supply for supplying power to the fan;
Fan input detection means for detecting a physical quantity related to power supplied to the fan;
Control means for controlling the switching means so as to switch between a first operation for causing the outdoor heat exchanger to function as an evaporator and a second operation for causing the outdoor heat exchanger to function as a condenser;
When the physical quantity detected by the fan input detection means is greater than or equal to a reference quantity, the first operation is switched to the second operation,
The control means includes
Air that controls the compressor so that the frequency of the compressor when the temperature of the refrigerant flowing through the outdoor heat exchanger is high is higher than the frequency of the compressor when the temperature of the refrigerant flowing through the outdoor heat exchanger is low Harmony device.
前記ファン入力検出手段は、
前記ファンを駆動する室外側モータに印加される電流値、電圧値又は該電流値及び該電圧値に基づく電力値を検出する
請求項1又は請求項2に記載の空気調和装置。
The fan input detection means includes
The air conditioning apparatus according to claim 1 or 2, wherein a current value, a voltage value, or a power value based on the current value and the voltage value applied to an outdoor motor that drives the fan is detected.
JP2017500189A 2015-02-18 2015-02-18 Air conditioner Active JP6338762B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054402 WO2016132473A1 (en) 2015-02-18 2015-02-18 Air conditioning device

Publications (2)

Publication Number Publication Date
JPWO2016132473A1 true JPWO2016132473A1 (en) 2017-09-07
JP6338762B2 JP6338762B2 (en) 2018-06-06

Family

ID=56689320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017500189A Active JP6338762B2 (en) 2015-02-18 2015-02-18 Air conditioner

Country Status (5)

Country Link
US (1) US20170363332A1 (en)
EP (1) EP3260790B1 (en)
JP (1) JP6338762B2 (en)
CN (1) CN107250679B (en)
WO (1) WO2016132473A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808812B2 (en) * 2017-03-24 2021-01-06 東芝キヤリア株式会社 Air conditioner
US10914503B2 (en) * 2018-02-01 2021-02-09 Johnson Controls Technology Company Coil heating systems for heat pump systems
CN114502895B (en) * 2019-10-23 2023-04-14 日立江森自控空调有限公司 Air conditioner, control method for air conditioner, and program
WO2023223444A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Refrigeration cycle state predicting device, refrigeration cycle control device, and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124660A (en) * 1981-01-27 1982-08-03 Mitsubishi Electric Corp Frost detector
JP2010032107A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010091118A (en) * 2008-10-03 2010-04-22 Panasonic Corp Air conditioner
JP2010210223A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (en) * 1987-10-21 1989-04-24 Toshiba Corp Air conditioner
JP2831838B2 (en) * 1990-11-06 1998-12-02 株式会社東芝 Air conditioner
JP3034781B2 (en) * 1995-06-07 2000-04-17 シャープ株式会社 refrigerator
KR100225640B1 (en) * 1997-06-27 1999-10-15 윤종용 Defrosting control method for air conditioner
CN1888671A (en) * 2005-06-30 2007-01-03 乐金电子(天津)电器有限公司 Air conditioner defrosting operation controlling device and operating method thereof
JP2009058222A (en) * 2006-03-31 2009-03-19 Daikin Ind Ltd Outdoor unit
AU2010253331B2 (en) * 2009-05-29 2013-04-11 Daikin Industries, Ltd. Air conditioner
JP4836212B2 (en) * 2009-07-22 2011-12-14 シャープ株式会社 Air conditioner
JP6071648B2 (en) * 2013-03-01 2017-02-01 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124660A (en) * 1981-01-27 1982-08-03 Mitsubishi Electric Corp Frost detector
JP2010032107A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010091118A (en) * 2008-10-03 2010-04-22 Panasonic Corp Air conditioner
JP2010210223A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Air conditioner

Also Published As

Publication number Publication date
EP3260790A4 (en) 2018-10-24
EP3260790B1 (en) 2020-03-25
EP3260790A1 (en) 2017-12-27
WO2016132473A1 (en) 2016-08-25
JP6338762B2 (en) 2018-06-06
CN107250679A (en) 2017-10-13
CN107250679B (en) 2019-11-26
US20170363332A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6071648B2 (en) Air conditioner
JP6768546B2 (en) Air conditioner
US10371407B2 (en) Air conditioning apparatus
JP6338762B2 (en) Air conditioner
JP2017044447A (en) Air conditioner
JP7148344B2 (en) air conditioner
JP2010223494A (en) Air conditioner
JPWO2018047238A1 (en) Refrigeration cycle equipment
JP6032330B2 (en) air conditioner
JP2011144960A (en) Air conditioner and method of defrosting operation of air conditioner
JP6084297B2 (en) Air conditioner
WO2019073514A1 (en) Refrigeration cycle device
JP2013200085A (en) Air conditioner
JP6425826B2 (en) Air conditioner
WO2014103620A1 (en) Refrigeration device
JP6350485B2 (en) Air conditioner
JP2013133977A (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
WO2019111405A1 (en) Air conditioner
JP6559332B2 (en) Refrigeration cycle equipment
JP6271011B2 (en) Refrigeration air conditioner
WO2016084796A1 (en) Air-conditioning machine
JPWO2019012628A1 (en) Air conditioner and control method of air conditioner
WO2019038804A1 (en) Air conditioning device
JP2015230153A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250