EP3260790A1 - Air conditioning device - Google Patents
Air conditioning device Download PDFInfo
- Publication number
- EP3260790A1 EP3260790A1 EP15882576.0A EP15882576A EP3260790A1 EP 3260790 A1 EP3260790 A1 EP 3260790A1 EP 15882576 A EP15882576 A EP 15882576A EP 3260790 A1 EP3260790 A1 EP 3260790A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- outdoor heat
- compressor
- fan
- outdoor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 44
- 239000003507 refrigerant Substances 0.000 claims abstract description 80
- 230000002596 correlated effect Effects 0.000 claims 2
- 238000010257 thawing Methods 0.000 description 52
- 238000010438 heat treatment Methods 0.000 description 30
- 238000001816 cooling Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/42—Defrosting; Preventing freezing of outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
- F24F11/67—Switching between heating and cooling modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/60—Energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0294—Control issues related to the outdoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0315—Temperature sensors near the outdoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0253—Compressor control by controlling speed with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/15—Power, e.g. by voltage or current
Definitions
- the present invention relates to an air-conditioning apparatus.
- a conventional air-conditioning apparatus detects, in a heating operation, the current value of an outdoor fan motor and the rotation speed of an outdoor fan, and determines whether to start a defrosting operation based on whether the current value of the outdoor fan motor becomes equal to or larger than a reference current value or the rotation speed of the outdoor fan decreases by a predetermined rotation speed (refer to Patent Literature 1).
- Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2009-58222
- the reference current value is determined in advance and cannot be changed with taken into account decrease in a fan input due to decrease in the fan rotation speed when the efficiency of the outdoor fan motor degrades by aging.
- This configuration prevents transition to the defrosting operation at appropriate timing in the heating operation. In other words, defrosting cannot be performed efficiently.
- the present invention is intended to solve the above-described problem and provide an air-conditioning apparatus that performs a defrosting operation more efficiently than conventionally practiced.
- An air-conditioning apparatus includes, by connecting, a compressor, an outdoor heat exchanger, an indoor heat exchanger, and a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger.
- the air-conditioning apparatus includes a fan configured to deliver air toward the outdoor heat exchanger, a power unit configured to supply electric power to the fan, a fan input detector configured to detect a physical value related to the electric power supplied to the fan, and a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser.
- the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
- the controller adjusts the reference value so that the reference value when refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
- the air-conditioning apparatus includes the controller configured to control the switching device to switch between the first operation in which the outdoor heat exchanger functions as an evaporator and the second operation in which the outdoor heat exchanger functions as a condenser.
- the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than the reference value.
- the controller adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant flowing through the outdoor heat exchanger has a low temperature.
- Fig. 1 is a schematic view illustrating the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the air-conditioning apparatus 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5.
- the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchanger 5 are, for example, sequentially connected by pipes to form a refrigerant circuit 90.
- the compressor 1 is a variable capacity compressor configured to compress sucked refrigerant and discharge the refrigerant as high-temperature and highpressure refrigerant.
- the four-way valve 2 is a switching device that switches a direction in which the refrigerant discharged from the compressor 1 flows, in response to, for example, execution of a heating operation or a cooling operation.
- the four-way valve 2 is provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5.
- Fig. 1 illustrates an exemplary state in which the four-way valve 2 is switched to perform a cooling operation.
- a solid line arrow indicates the flow of the refrigerant when the cooling operation is performed.
- a dashed line arrow indicates the flow of the refrigerant when a heating operation is performed.
- the outdoor heat exchanger 3 is a heat exchanger configured to function as a condenser at the cooling operation and function as an evaporator at the heating operation.
- An outdoor side fan 31 is an air-sending unit configured to supply external air to the outdoor heat exchanger 3 and form airflow.
- the outdoor side fan 31 is, for example, an axial-flow fan or a centrifugal fan.
- the outdoor side fan 31 rotates when an outdoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the outdoor side fan 31 and the refrigerant flowing inside the outdoor heat exchanger 3.
- the outdoor side fan 31 is driven by a power unit (not illustrated) configured to supply electric power.
- the expansion valve 4 is used to decompress and expand the refrigerant flowed out of the outdoor heat exchanger 3 at the cooling operation, and decompress and expand the refrigerant flowed out of the indoor heat exchanger 5 at the heating operation.
- the indoor heat exchanger 5 is a heat exchanger configured to function as an evaporator at the cooling operation and function as a condenser at the heating operation.
- An indoor side fan 51 is an air-sending unit configured to supply indoor air to the indoor heat exchanger 5 and form airflow.
- the indoor side fan 51 is, for example, an axial-flow fan or a centrifugal fan.
- the indoor side fan 51 rotates when an indoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from the indoor side fan 51 and the refrigerant flowing inside the indoor heat exchanger 5.
- An outdoor side refrigerant temperature sensor 32 is a temperature detection unit configured to detect the temperature of the refrigerant flowing through the outdoor heat exchanger 3.
- An indoor side refrigerant temperature sensor 52 is a sensor configured to detect the temperature of the refrigerant flowing through the indoor heat exchanger 5.
- a "refrigerant temperature” refers to the temperature of the refrigerant flowing inside the outdoor heat exchanger 3.
- a controller 80 controls the outdoor side motor to control the rotation speed of the outdoor side fan 31, and controls the indoor side motor to control the rotation speed of the indoor side fan 51.
- the controller 80 controls the outdoor side motor by changing voltage and current input to the outdoor side motor.
- the control of the rotation speed of the outdoor side fan 31 by the controller 80 allows control of the volume of air passing through the outdoor heat exchanger 3.
- a rotation speed detection unit configured to detect the rotation speed of the outdoor side fan 31 may be provided to detect the current rotation speed of the outdoor side fan 31.
- the current rotation speed of the outdoor side fan 31 may be estimated from information on current applied to the outdoor side motor and voltage applied to the outdoor side motor.
- a "fan input" refers to a physical value related to electric power supplied to the outdoor side fan 31 (the outdoor side motor configured to rotate the outdoor side fan 31).
- the controller 80 controls the indoor side motor so that the outdoor side fan 31 rotates, for example, when the air-conditioning apparatus 100 starts operating.
- the controller 80 is, for example, hardware such as a circuit device or software executed on an arithmetic device such as a microcomputer or a CPU, which are configured to achieve this functionality.
- the cooling operation is executed when the controller 80 switches the four-way valve 2 to cooling.
- the heating operation is executed when the controller 80 switches the four-way valve 2 to heating.
- a "defrosting operation” refers to an operation executed when the controller 80 switches the four-way valve 2 to cooling and stops the outdoor side fan 31.
- the heating operation corresponds to a "first operation” of the present invention
- the defrosting operation corresponds to a "second operation” of the present invention.
- the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3. Having flowed into the outdoor heat exchanger 3, the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3. Having flowed out of the outdoor heat exchanger 3, the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the indoor heat exchanger 5.
- the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5. Having flowed out of the indoor heat exchanger 5, the refrigerant flows into the compressor 1.
- the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 5. Having flowed into the indoor heat exchanger 5, the refrigerant exchanges heat with the air supplied to the indoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of the indoor heat exchanger 5. Having flowed out of the indoor heat exchanger 5, the refrigerant flows in the expansion valve 4 and is depressurized therein, and then flows out of the expansion valve 4 before flowing into the outdoor heat exchanger 3.
- the refrigerant exchanges heat with the air supplied to the outdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of the outdoor heat exchanger 3. Having flowed out of the outdoor heat exchanger 3, the refrigerant flows into the compressor 1.
- Fig. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- Fig. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the horizontal axis represents elapsed time [min]
- the vertical axis represents the frosting amount [g] and a total electric power amount [W].
- a solid line indicates the frosting amount
- a dashed line indicates the total electric power.
- the frosting amount increases as time elapses
- the total electric power increases as time elapses.
- the horizontal axis represents elapsed time [min]
- the vertical axis represents the frosting amount [g] and a total current value [A].
- a solid line indicates the frosting amount
- a dashed line indicates the total current value.
- the frosting amount increases as time elapses
- the total current value increases as time elapses.
- Fig. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- Fig. 5 is a diagram illustrating change in the total electric power amount with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- Figs. 4 and 5 illustrate a case in which the fan input is the electric power amount, which is the product of current value applied to an outdoor fan motor and voltage value applied to the outdoor fan motor. Processing illustrated in Figs. 4 and 5 is performed at the heating operation.
- the controller 80 calculates ⁇ Wtotal by summing ⁇ W(t) according to Expression (1.2) below.
- ⁇ Wtotal ⁇ ⁇ W t
- the controller 80 determines whether ⁇ Wtotal is equal to or larger than a threshold ⁇ as in Expression (1.3) below.
- the controller 80 controls the four-way valve 2 to start the defrosting operation.
- the controller 80 continues the heating operation.
- the threshold ⁇ varies with the refrigerant temperature. Specifically, for example, it is assumed that the density of frost on the outdoor heat exchanger 3 is larger at a higher refrigerant temperature, and thus the controller 80 decreases the value of ⁇ accordingly. When the value of ⁇ is decreased in this manner, ⁇ Wtotal becomes equal to or larger than ⁇ at earlier timing and the defrosting operation is started earlier. For example, it is assumed that the density of frost on the outdoor heat exchanger 3 is smaller at a lower refrigerant temperature, and thus the controller 80 increases the value of ⁇ accordingly. When the value of ⁇ is increased in this manner, ⁇ Wtotal becomes equal to or larger than ⁇ at later timing and start of the defrosting operation is delayed.
- the fan input is the electric power, but the present invention is not limited thereto.
- the fan input may be the current value applied to the outdoor fan motor or the voltage value applied to the outdoor fan motor.
- Fig. 6 is a schematic view illustrating a state in which frost exists on the outdoor heat exchanger 3 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the frost on the outdoor heat exchanger 3 has a height Hf_total [mm], and adjacent fins 3b are apart from each other by a distance Fp [mm]. It is assumed that wind blows from one end of each fin 3b in the longitudinal direction thereof to the other end. Since frost exists on the outdoor heat exchanger 3 as illustrated in Fig. 6 , a wind speed ua decreases, and thus heat exchange at the outdoor heat exchanger 3 is hindered as compared to a case in which no frost exists on the outdoor heat exchanger 3.
- frost exists on a heat transfer tube 3a and the fins 3b included in the outdoor heat exchanger 3.
- the frost has a lower density as the heat transfer tube 3a and the fins 3b have lower temperatures. In other words, the frost density is smaller at a lower refrigerant temperature.
- the defrosting operation needs different defrosting heat amounts for an identical blockage state of the outdoor heat exchanger 3 and an identical amount of increase in the fan input. Specifically, at a higher refrigerant temperature, a larger amount of heat is needed to melt frost on the outdoor heat exchanger 3.
- Fig. 7 is a diagram illustrating a relation between a relative humidity ⁇ and a frost density ⁇ in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the horizontal axis represents the relative humidity ⁇ [%]
- the vertical axis represents the frost density ⁇ [kg/m 3 ].
- Fig. 7 illustrates cases with the refrigerant temperature Ts [degrees C] at -30 degrees C and -20 degrees C.
- the frost density ⁇ decreases as the relative humidity ⁇ increases.
- the frost density ⁇ is larger when the refrigerant temperature Ts is -20 degrees C than when the refrigerant temperature Ts is -30 degrees C.
- the frost density ⁇ increases as the refrigerant temperature Ts increases.
- a defrosting duration increases as the frost density ⁇ increases, and a larger defrosting capacity is needed as the frost density ⁇ increases.
- the defrosting duration increases as the refrigerant temperature Ts increases.
- Fig. 8 is a diagram illustrating a relation between the refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the necessary defrosting heat amount is proportional to the temperature of the refrigerant flowing through the refrigerant circuit 90 inside the outdoor heat exchanger 3.
- the defrosting duration increases as the refrigerant temperature Ts increases.
- a minimum defrosting duration is one minute when an average refrigerant temperature is -40 degrees C to -30 degrees C.
- the minimum defrosting duration is three minutes when the average refrigerant temperature is -10 degrees C to -5 degrees C.
- the minimum defrosting duration is five minutes when the average refrigerant temperature is -5 degrees C to 0 degrees C.
- Fig. 8 illustrates, for sake of simplicity of description, the proportional relation between the necessary defrosting heat amount and the refrigerant temperature Ts
- the present invention is not limited to such a relation.
- the amount of increase in the necessary defrosting heat amount for increase in the refrigerant temperature Ts does not need to be constant.
- Fig. 9 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- Fig. 10 is a diagram illustrating change in the frequency of the compressor 1 with elapsed time in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- a solid line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively high
- a dashed line indicates change in the frequency of the compressor 1 when the refrigerant temperature is relatively low.
- the defrosting operation can be performed in a shorter time at a relatively low refrigerant temperature than at a relatively high refrigerant temperature.
- efficient execution of the defrosting operation requires a time for melting frost on the outdoor heat exchanger 3 and a time for allowing melted frost to drop from the outdoor heat exchanger 3.
- melted frost potentially freezes again when the duration of the defrosting operation at a relatively low refrigerant temperature is shorter than the duration of the defrosting operation at a relatively high refrigerant temperature.
- the operation is performed with identical defrosting durations at a relatively low refrigerant temperature and a relatively high refrigerant temperature and with a low frequency of the compressor 1, which will be described below.
- Interval (a) refers to an interval in which the heating operation is executed
- Interval (b) refers to an interval in which the defrosting operation is executed
- Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation.
- the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency while the four-way valve 2 is switched to heating. After the compressor 1 is operated at the predetermined frequency for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency thereof. Then, when the frequency of the compressor 1 becomes zero (t11), the controller 80 switches the four-way valve 2 to cooling and starts the defrosting operation.
- the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t14), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
- the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time (time t12), the controller 80 controls the compressor 1 to decrease the frequency thereof so that the compressor 1 has a predetermined frequency f1. After the frequency of the compressor 1 is decreased to the predetermined frequency f1 (time t13), the controller 80 operates the compressor 1 at the predetermined frequency f1 for a predetermined time.
- the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t14), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
- the controller 80 controls the compressor 1 so that the frequency thereof has a predetermined frequency while the four-way valve 2 is switched to heating.
- Interval (a) refers to an interval in which the heating operation is executed
- Interval (b) refers to an interval in which the defrosting operation is executed
- Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation.
- change in the frequency of the compressor 1 as time elapses in Interval (a) and Interval (c) is identical to that in Fig. 9 , and thus description thereof will be omitted.
- the controller 80 controls the compressor 1 so that the compressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After the compressor 1 is operated at the predetermined frequency fmax for a predetermined time, the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t24), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
- the controller 80 controls the compressor 1 so that the compressor 1 has a predetermined frequency f2 while the four-way valve 2 is switched to cooling. After the compressor 1 acquires the predetermined frequency f2 (time t22) and has operated for a predetermined time (time t23), the controller 80 controls the compressor 1 to decrease the frequency of the compressor 1. Then, when the frequency of the compressor 1 becomes zero (time t24), the controller 80 switches the four-way valve 2 to heating again and starts the heating operation.
- the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other.
- the air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3, the power unit configured to supply electric power to the fan 31, a fan input detector configured to detect a physical value related to the electric power supplied to the fan 31, and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser.
- the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
- the controller 80 adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
- the compressor 1, the outdoor heat exchanger 3, the indoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of the compressor 1 than the outdoor heat exchanger 3 and provided closer to the discharge side of the compressor 1 than the indoor heat exchanger 5 are connected with each other.
- the air-conditioning apparatus 100 includes the fan 31 configured to deliver air toward the outdoor heat exchanger 3, the power unit configured to supply electric power to the fan 31, the fan input detector configured to detect a physical value related to the electric power supplied to the fan 31, and the controller 80 configured to control the four-way valve 2 to switch between the first operation in which the outdoor heat exchanger 3 functions as an evaporator and the second operation in which the outdoor heat exchanger 3 functions as a condenser.
- the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value.
- the controller 80 controls the frequency of the compressor 1 so that the frequency of the compressor 1 when the refrigerant flowing through the outdoor heat exchanger 3 has a high temperature is higher than the frequency of the compressor 1 when the refrigerant has a low temperature.
- Embodiment 2 unlike Embodiment 1, the timing of execution of the defrosting operation is determined based on a frosting amount Mf, and the frequency of the compressor 1 in the defrosting operation is determined based on the frosting amount Mf.
- any characteristic is same as that of Embodiment 1 unless otherwise stated, and any identical function and configuration will be described by using identical reference signs.
- the frosting amount mf(t) is given based on a surface area A0 [m 2 ], the frost density ⁇ f [kg/m 3 ], and a frost height Hf(t) through Expression (2.1) below.
- mf t A 0 ⁇ ⁇ f t ⁇ Hf t
- the surface area A0 [m 2 ] is a heat exchange surface area of the outdoor heat exchanger 3.
- the frost density ⁇ f [kg/m 3 ] is the density of frost on the outdoor heat exchanger 3, which is affected by a cooling surface temperature and a relative humidity.
- the frost height Hf(t) is the height of frost on the outdoor heat exchanger 3.
- the frosting amount Mf is given based on the frosting amount mf(t) through Expression (2.2) below.
- Mf ⁇ m t
- a defrosting heat amount Qf [kJ] is given based on the frosting amount Mf [kg] and a latent heat ⁇ H [kJ/kg] through Expression (2.3) below.
- Qf Mf ⁇ ⁇ H
- Tf Qf / P
- the controller 80 of the air-conditioning apparatus 100 according to Embodiment 2 determines the defrosting duration in accordance with the frosting amount. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced.
- the outdoor side fan 31 corresponds to a "fan" of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
- The present invention relates to an air-conditioning apparatus.
- A conventional air-conditioning apparatus detects, in a heating operation, the current value of an outdoor fan motor and the rotation speed of an outdoor fan, and determines whether to start a defrosting operation based on whether the current value of the outdoor fan motor becomes equal to or larger than a reference current value or the rotation speed of the outdoor fan decreases by a predetermined rotation speed (refer to Patent Literature 1).
- Patent Literature 1: Japanese Unexamined Patent Application Publication No.
2009-58222 - In the air-conditioning apparatus disclosed in
Patent Literature 1, the reference current value is determined in advance and cannot be changed with taken into account decrease in a fan input due to decrease in the fan rotation speed when the efficiency of the outdoor fan motor degrades by aging. This configuration prevents transition to the defrosting operation at appropriate timing in the heating operation. In other words, defrosting cannot be performed efficiently. - The present invention is intended to solve the above-described problem and provide an air-conditioning apparatus that performs a defrosting operation more efficiently than conventionally practiced.
- An air-conditioning apparatus according to an embodiment of the present invention includes, by connecting, a compressor, an outdoor heat exchanger, an indoor heat exchanger, and a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger. The air-conditioning apparatus includes a fan configured to deliver air toward the outdoor heat exchanger, a power unit configured to supply electric power to the fan, a fan input detector configured to detect a physical value related to the electric power supplied to the fan, and a controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger functions as an evaporator and a second operation in which the outdoor heat exchanger functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. The controller adjusts the reference value so that the reference value when refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant has a low temperature.
- The air-conditioning apparatus according to an embodiment of the present invention includes the controller configured to control the switching device to switch between the first operation in which the outdoor heat exchanger functions as an evaporator and the second operation in which the outdoor heat exchanger functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than the reference value. The controller adjusts the reference value so that the reference value when the refrigerant flowing through the outdoor heat exchanger has a high temperature is smaller than the reference value when the refrigerant flowing through the outdoor heat exchanger has a low temperature. With this configuration, a defrosting operation can be started at an appropriate timing while a heating operation is being performed. Thus, the defrosting operation can be performed more efficiently than has been conventionally practiced.
-
- [
Fig. 1] Fig. 1 is a schematic view illustrating an air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 2] Fig. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 3] Fig. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 4] Fig. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 5] Fig. 5 is a diagram illustrating change in a total electric power amount with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 6] Fig. 6 is a schematic view illustrating a state in which frost exists on anoutdoor heat exchanger 3 of the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 7] Fig. 7 is a diagram illustrating a relation between a relative humidity ϕ and a frost density ρ in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 8] Fig. 8 is a diagram illustrating a relation between a refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 9] Fig. 9 is a diagram illustrating change in the frequency of acompressor 1 with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - [
Fig. 10] Fig. 10 is a diagram illustrating change in the frequency of thecompressor 1 with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - An air-
conditioning apparatus 100 of the present invention will be described in detail below with reference to the drawings. The sizes of components in the drawings are in a relation different from that of their actual sizes in some cases. In the drawings, any components denoted by an identical reference sign are identical or equivalent to each other. This notation applies through the entire specification. In addition, any configuration of the components described in the entire specification is merely exemplary, and thus the present invention is not limited by the description. -
Fig. 1 is a schematic view illustrating the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. As illustrated inFig. 1 , the air-conditioning apparatus 100 includes acompressor 1, a four-way valve 2, anoutdoor heat exchanger 3, anexpansion valve 4, and anindoor heat exchanger 5. Thecompressor 1, the four-way valve 2, theoutdoor heat exchanger 3, theexpansion valve 4, and theindoor heat exchanger 5 are, for example, sequentially connected by pipes to form arefrigerant circuit 90. - The
compressor 1 is a variable capacity compressor configured to compress sucked refrigerant and discharge the refrigerant as high-temperature and highpressure refrigerant. The four-way valve 2 is a switching device that switches a direction in which the refrigerant discharged from thecompressor 1 flows, in response to, for example, execution of a heating operation or a cooling operation. The four-way valve 2 is provided closer to the discharge side of thecompressor 1 than theoutdoor heat exchanger 3 and provided closer to the discharge side of thecompressor 1 than theindoor heat exchanger 5.Fig. 1 illustrates an exemplary state in which the four-way valve 2 is switched to perform a cooling operation. InFig. 1 , a solid line arrow indicates the flow of the refrigerant when the cooling operation is performed. InFig. 1 , a dashed line arrow indicates the flow of the refrigerant when a heating operation is performed. - The
outdoor heat exchanger 3 is a heat exchanger configured to function as a condenser at the cooling operation and function as an evaporator at the heating operation. Anoutdoor side fan 31 is an air-sending unit configured to supply external air to theoutdoor heat exchanger 3 and form airflow. Theoutdoor side fan 31 is, for example, an axial-flow fan or a centrifugal fan. Theoutdoor side fan 31 rotates when an outdoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from theoutdoor side fan 31 and the refrigerant flowing inside theoutdoor heat exchanger 3. Theoutdoor side fan 31 is driven by a power unit (not illustrated) configured to supply electric power. - The
expansion valve 4 is used to decompress and expand the refrigerant flowed out of theoutdoor heat exchanger 3 at the cooling operation, and decompress and expand the refrigerant flowed out of theindoor heat exchanger 5 at the heating operation. - The
indoor heat exchanger 5 is a heat exchanger configured to function as an evaporator at the cooling operation and function as a condenser at the heating operation. Anindoor side fan 51 is an air-sending unit configured to supply indoor air to theindoor heat exchanger 5 and form airflow. Theindoor side fan 51 is, for example, an axial-flow fan or a centrifugal fan. Theindoor side fan 51 rotates when an indoor side motor (not illustrated) is driven. Heat is exchanged between the air supplied from theindoor side fan 51 and the refrigerant flowing inside theindoor heat exchanger 5. - An outdoor side
refrigerant temperature sensor 32 is a temperature detection unit configured to detect the temperature of the refrigerant flowing through theoutdoor heat exchanger 3. An indoor siderefrigerant temperature sensor 52 is a sensor configured to detect the temperature of the refrigerant flowing through theindoor heat exchanger 5. In the following description, a "refrigerant temperature" refers to the temperature of the refrigerant flowing inside theoutdoor heat exchanger 3. - A
controller 80 controls the outdoor side motor to control the rotation speed of theoutdoor side fan 31, and controls the indoor side motor to control the rotation speed of theindoor side fan 51. Thecontroller 80 controls the outdoor side motor by changing voltage and current input to the outdoor side motor. The control of the rotation speed of theoutdoor side fan 31 by thecontroller 80 allows control of the volume of air passing through theoutdoor heat exchanger 3. - A rotation speed detection unit configured to detect the rotation speed of the
outdoor side fan 31 may be provided to detect the current rotation speed of theoutdoor side fan 31. Alternatively, the current rotation speed of theoutdoor side fan 31 may be estimated from information on current applied to the outdoor side motor and voltage applied to the outdoor side motor. In the following description, a "fan input" refers to a physical value related to electric power supplied to the outdoor side fan 31 (the outdoor side motor configured to rotate the outdoor side fan 31). - The
controller 80 controls the indoor side motor so that theoutdoor side fan 31 rotates, for example, when the air-conditioning apparatus 100 starts operating. Thecontroller 80 is, for example, hardware such as a circuit device or software executed on an arithmetic device such as a microcomputer or a CPU, which are configured to achieve this functionality. - The cooling operation is executed when the
controller 80 switches the four-way valve 2 to cooling. The heating operation is executed when thecontroller 80 switches the four-way valve 2 to heating. In the following description, a "defrosting operation" refers to an operation executed when thecontroller 80 switches the four-way valve 2 to cooling and stops theoutdoor side fan 31. The heating operation corresponds to a "first operation" of the present invention, and the defrosting operation corresponds to a "second operation" of the present invention. - The following first describes, with reference to
Fig. 1 , the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention executes the cooling operation. The refrigerant discharged from thecompressor 1 flows into theoutdoor heat exchanger 3. Having flowed into theoutdoor heat exchanger 3, the refrigerant exchanges heat with the air supplied to theoutdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of theoutdoor heat exchanger 3. Having flowed out of theoutdoor heat exchanger 3, the refrigerant flows in theexpansion valve 4 and is depressurized therein, and then flows out of theexpansion valve 4 before flowing into theindoor heat exchanger 5. Having flowed into theindoor heat exchanger 5, the refrigerant exchanges heat with the air supplied to theindoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of theindoor heat exchanger 5. Having flowed out of theindoor heat exchanger 5, the refrigerant flows into thecompressor 1. - The following describes, with reference to
Fig. 1 , the flow of the refrigerant when the air-conditioning apparatus 100 of the present invention executes the heating operation. The refrigerant discharged from thecompressor 1 flows into theindoor heat exchanger 5. Having flowed into theindoor heat exchanger 5, the refrigerant exchanges heat with the air supplied to theindoor heat exchanger 5 through rotation of the indoor side fan, and then flows out of theindoor heat exchanger 5. Having flowed out of theindoor heat exchanger 5, the refrigerant flows in theexpansion valve 4 and is depressurized therein, and then flows out of theexpansion valve 4 before flowing into theoutdoor heat exchanger 3. Having flowed into theoutdoor heat exchanger 3, the refrigerant exchanges heat with the air supplied to theoutdoor heat exchanger 3 through rotation of the outdoor side fan, and then flows out of theoutdoor heat exchanger 3. Having flowed out of theoutdoor heat exchanger 3, the refrigerant flows into thecompressor 1. -
Fig. 2 is a diagram illustrating change in a frosting amount and total electric power with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention.Fig. 3 is a diagram illustrating change in the frosting amount and total current value with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - In
Fig. 2 , the horizontal axis represents elapsed time [min], and the vertical axis represents the frosting amount [g] and a total electric power amount [W]. InFig. 2 , a solid line indicates the frosting amount, and a dashed line indicates the total electric power. As illustrated inFig. 2 , the frosting amount increases as time elapses, and the total electric power increases as time elapses. - In
Fig. 3 , the horizontal axis represents elapsed time [min], and the vertical axis represents the frosting amount [g] and a total current value [A]. InFig. 3 , a solid line indicates the frosting amount, and a dashed line indicates the total current value. As illustrated inFig. 3 , the frosting amount increases as time elapses, and the total current value increases as time elapses. -
Fig. 4 is a diagram illustrating change in an electric power amount with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention.Fig. 5 is a diagram illustrating change in the total electric power amount with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention.Figs. 4 and5 illustrate a case in which the fan input is the electric power amount, which is the product of current value applied to an outdoor fan motor and voltage value applied to the outdoor fan motor. Processing illustrated inFigs. 4 and5 is performed at the heating operation. - First, as illustrated in
Fig. 4 , thecontroller 80 detects the fan input and calculates the amount of change in the fan input at each elapse of a predetermined time. Specifically, for example, when the fan input at time (t-1) is represented by W(t-1) and the fan input at time t is represented by W(t), thecontroller 80 calculates ΔW(t) as the difference between the fan inputs through Expression (1.1) below. -
- Then, the
controller 80 determines whether ΔWtotal is equal to or larger than a threshold α as in Expression (1.3) below. When having determined that ΔWtotal is equal to or larger than the threshold α, thecontroller 80 controls the four-way valve 2 to start the defrosting operation. When having determined that ΔWtotal is smaller than the threshold α, thecontroller 80 continues the heating operation. - The threshold α varies with the refrigerant temperature. Specifically, for example, it is assumed that the density of frost on the
outdoor heat exchanger 3 is larger at a higher refrigerant temperature, and thus thecontroller 80 decreases the value of α accordingly. When the value of α is decreased in this manner, ΔWtotal becomes equal to or larger than α at earlier timing and the defrosting operation is started earlier. For example, it is assumed that the density of frost on theoutdoor heat exchanger 3 is smaller at a lower refrigerant temperature, and thus thecontroller 80 increases the value of α accordingly. When the value of α is increased in this manner, ΔWtotal becomes equal to or larger than α at later timing and start of the defrosting operation is delayed. In the above description, the fan input is the electric power, but the present invention is not limited thereto. For example, the fan input may be the current value applied to the outdoor fan motor or the voltage value applied to the outdoor fan motor. -
Fig. 6 is a schematic view illustrating a state in which frost exists on theoutdoor heat exchanger 3 of the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. As illustrated inFig. 6 , the frost on theoutdoor heat exchanger 3 has a height Hf_total [mm], andadjacent fins 3b are apart from each other by a distance Fp [mm]. It is assumed that wind blows from one end of eachfin 3b in the longitudinal direction thereof to the other end. Since frost exists on theoutdoor heat exchanger 3 as illustrated inFig. 6 , a wind speed ua decreases, and thus heat exchange at theoutdoor heat exchanger 3 is hindered as compared to a case in which no frost exists on theoutdoor heat exchanger 3. - In the heating operation, frost exists on a
heat transfer tube 3a and thefins 3b included in theoutdoor heat exchanger 3. As the frost grows, draft resistance increases and input of theoutdoor side fan 31 increases. The frost has a lower density as theheat transfer tube 3a and thefins 3b have lower temperatures. In other words, the frost density is smaller at a lower refrigerant temperature. - Thus, when the
fins 3b is blocked, the amount of frost on theoutdoor heat exchanger 3 differs for different frost densities. In other words, the defrosting operation needs different defrosting heat amounts for an identical blockage state of theoutdoor heat exchanger 3 and an identical amount of increase in the fan input. Specifically, at a higher refrigerant temperature, a larger amount of heat is needed to melt frost on theoutdoor heat exchanger 3. -
Fig. 7 is a diagram illustrating a relation between a relative humidity ϕ and a frost density ρ in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. InFig. 7 , the horizontal axis represents the relative humidity ϕ [%], and the vertical axis represents the frost density ρ [kg/m3].Fig. 7 illustrates cases with the refrigerant temperature Ts [degrees C] at -30 degrees C and -20 degrees C. - As illustrated in
Fig. 7 , the frost density ρ decreases as the relative humidity ϕ increases. The frost density ρ is larger when the refrigerant temperature Ts is -20 degrees C than when the refrigerant temperature Ts is -30 degrees C. In other words, the frost density ρ increases as the refrigerant temperature Ts increases. A defrosting duration increases as the frost density ρ increases, and a larger defrosting capacity is needed as the frost density ρ increases. Thus, the defrosting duration increases as the refrigerant temperature Ts increases. -
Fig. 8 is a diagram illustrating a relation between the refrigerant temperature and a necessary defrosting heat amount in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. As illustrated inFig. 8 , the necessary defrosting heat amount is proportional to the temperature of the refrigerant flowing through therefrigerant circuit 90 inside theoutdoor heat exchanger 3. - As illustrated in
Fig. 8 , the defrosting duration increases as the refrigerant temperature Ts increases. Specifically, for example, a minimum defrosting duration is one minute when an average refrigerant temperature is -40 degrees C to -30 degrees C. For example, the minimum defrosting duration is three minutes when the average refrigerant temperature is -10 degrees C to -5 degrees C. For example, the minimum defrosting duration is five minutes when the average refrigerant temperature is -5 degrees C to 0 degrees C. - Although
Fig. 8 illustrates, for sake of simplicity of description, the proportional relation between the necessary defrosting heat amount and the refrigerant temperature Ts, the present invention is not limited to such a relation. The amount of increase in the necessary defrosting heat amount for increase in the refrigerant temperature Ts does not need to be constant. -
Fig. 9 is a diagram illustrating change in the frequency of thecompressor 1 with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention.Fig. 10 is a diagram illustrating change in the frequency of thecompressor 1 with elapsed time in the air-conditioning apparatus 100 according toEmbodiment 1 of the present invention. - In
Figs. 9 and 10 , the horizontal axis represents elapsed time, and the vertical axis represents the frequency of thecompressor 1. InFigs. 9 and 10 , a solid line indicates change in the frequency of thecompressor 1 when the refrigerant temperature is relatively high, and a dashed line indicates change in the frequency of thecompressor 1 when the refrigerant temperature is relatively low. - The defrosting operation can be performed in a shorter time at a relatively low refrigerant temperature than at a relatively high refrigerant temperature. However, efficient execution of the defrosting operation requires a time for melting frost on the
outdoor heat exchanger 3 and a time for allowing melted frost to drop from theoutdoor heat exchanger 3. Thus, melted frost potentially freezes again when the duration of the defrosting operation at a relatively low refrigerant temperature is shorter than the duration of the defrosting operation at a relatively high refrigerant temperature. For this reason, inEmbodiment 1, the operation is performed with identical defrosting durations at a relatively low refrigerant temperature and a relatively high refrigerant temperature and with a low frequency of thecompressor 1, which will be described below. - The following describes, with reference to
Fig. 9 , an example in which the frequency of thecompressor 1 is changed based on the refrigerant temperature in the defrosting operation. InFig. 9 , Interval (a) refers to an interval in which the heating operation is executed, Interval (b) refers to an interval in which the defrosting operation is executed, and Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation. - As illustrated in
Fig. 9 , in Interval (a), thecontroller 80 controls thecompressor 1 so that thecompressor 1 has a predetermined frequency while the four-way valve 2 is switched to heating. After thecompressor 1 is operated at the predetermined frequency for a predetermined time, thecontroller 80 controls thecompressor 1 to decrease the frequency thereof. Then, when the frequency of thecompressor 1 becomes zero (t11), thecontroller 80 switches the four-way valve 2 to cooling and starts the defrosting operation. - As illustrated in
Fig. 9 , in Interval (b), when the refrigerant temperature is relatively high, thecontroller 80 controls thecompressor 1 so that thecompressor 1 has a predetermined frequency fmax while the four-way valve 2 is switched to cooling. After thecompressor 1 is operated at the predetermined frequency fmax for a predetermined time, thecontroller 80 controls thecompressor 1 to decrease the frequency of thecompressor 1. Then, when the frequency of thecompressor 1 becomes zero (time t14), thecontroller 80 switches the four-way valve 2 to heating again and starts the heating operation. - As illustrated in
Fig. 9 , in Interval (b), when the refrigerant temperature is relatively low, thecontroller 80 controls thecompressor 1 so that thecompressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After thecompressor 1 is operated at the predetermined frequency fmax for a predetermined time (time t12), thecontroller 80 controls thecompressor 1 to decrease the frequency thereof so that thecompressor 1 has a predetermined frequency f1. After the frequency of thecompressor 1 is decreased to the predetermined frequency f1 (time t13), thecontroller 80 operates thecompressor 1 at the predetermined frequency f1 for a predetermined time. After thecompressor 1 is operated at the predetermined frequency f1 for the predetermined time (time t13), thecontroller 80 controls thecompressor 1 to decrease the frequency of thecompressor 1. Then, when the frequency of thecompressor 1 becomes zero (time t14), thecontroller 80 switches the four-way valve 2 to heating again and starts the heating operation. - As illustrated in
Fig. 9 , in Interval (c), thecontroller 80 controls thecompressor 1 so that the frequency thereof has a predetermined frequency while the four-way valve 2 is switched to heating. - The following describes, with reference to
Fig. 10 , an example in which the frequency of thecompressor 1 is changed based on the refrigerant temperature in the defrosting operation. InFig. 10 , Interval (a) refers to an interval in which the heating operation is executed, Interval (b) refers to an interval in which the defrosting operation is executed, and Interval (c) refers to an interval in which the heating operation is executed after the defrosting operation. InFig. 10 , change in the frequency of thecompressor 1 as time elapses in Interval (a) and Interval (c) is identical to that inFig. 9 , and thus description thereof will be omitted. - As illustrated in
Fig. 10 , in Interval (b), when the refrigerant temperature is relatively high, thecontroller 80 controls thecompressor 1 so that thecompressor 1 has the predetermined frequency fmax while the four-way valve 2 is switched to cooling. After thecompressor 1 is operated at the predetermined frequency fmax for a predetermined time, thecontroller 80 controls thecompressor 1 to decrease the frequency of thecompressor 1. Then, when the frequency of thecompressor 1 becomes zero (time t24), thecontroller 80 switches the four-way valve 2 to heating again and starts the heating operation. - As illustrated in
Fig. 10 , in Interval (b), when the refrigerant temperature is relatively low, thecontroller 80 controls thecompressor 1 so that thecompressor 1 has a predetermined frequency f2 while the four-way valve 2 is switched to cooling. After thecompressor 1 acquires the predetermined frequency f2 (time t22) and has operated for a predetermined time (time t23), thecontroller 80 controls thecompressor 1 to decrease the frequency of thecompressor 1. Then, when the frequency of thecompressor 1 becomes zero (time t24), thecontroller 80 switches the four-way valve 2 to heating again and starts the heating operation. - As described above, in the air-
conditioning apparatus 100 according toEmbodiment 1, thecompressor 1, theoutdoor heat exchanger 3, theindoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of thecompressor 1 than theoutdoor heat exchanger 3 and provided closer to the discharge side of thecompressor 1 than theindoor heat exchanger 5 are connected with each other. The air-conditioning apparatus 100 includes thefan 31 configured to deliver air toward theoutdoor heat exchanger 3, the power unit configured to supply electric power to thefan 31, a fan input detector configured to detect a physical value related to the electric power supplied to thefan 31, and thecontroller 80 configured to control the four-way valve 2 to switch between the first operation in which theoutdoor heat exchanger 3 functions as an evaporator and the second operation in which theoutdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. Thecontroller 80 adjusts the reference value so that the reference value when the refrigerant flowing through theoutdoor heat exchanger 3 has a high temperature is smaller than the reference value when the refrigerant has a low temperature. With this configuration, the defrosting operation can be started at appropriate timing when the heating operation is performed. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced. - In the air-
conditioning apparatus 100 according toEmbodiment 1, thecompressor 1, theoutdoor heat exchanger 3, theindoor heat exchanger 5, and the four-way valve 2 provided closer to the discharge side of thecompressor 1 than theoutdoor heat exchanger 3 and provided closer to the discharge side of thecompressor 1 than theindoor heat exchanger 5 are connected with each other. The air-conditioning apparatus 100 includes thefan 31 configured to deliver air toward theoutdoor heat exchanger 3, the power unit configured to supply electric power to thefan 31, the fan input detector configured to detect a physical value related to the electric power supplied to thefan 31, and thecontroller 80 configured to control the four-way valve 2 to switch between the first operation in which theoutdoor heat exchanger 3 functions as an evaporator and the second operation in which theoutdoor heat exchanger 3 functions as a condenser. The first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value. Thecontroller 80 controls the frequency of thecompressor 1 so that the frequency of thecompressor 1 when the refrigerant flowing through theoutdoor heat exchanger 3 has a high temperature is higher than the frequency of thecompressor 1 when the refrigerant has a low temperature. With this configuration, the defrosting operation can be performed in accordance with the frosting amount more appropriately than conventionally practiced. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced. - In
Embodiment 2, unlikeEmbodiment 1, the timing of execution of the defrosting operation is determined based on a frosting amount Mf, and the frequency of thecompressor 1 in the defrosting operation is determined based on the frosting amount Mf. InEmbodiment 2, any characteristic is same as that ofEmbodiment 1 unless otherwise stated, and any identical function and configuration will be described by using identical reference signs. -
- Expression (2.1) below assumes that frost uniformly exists on the
outdoor heat exchanger 3. The surface area A0 [m2] is a heat exchange surface area of theoutdoor heat exchanger 3. The frost density ρf [kg/m3] is the density of frost on theoutdoor heat exchanger 3, which is affected by a cooling surface temperature and a relative humidity. The frost height Hf(t) is the height of frost on theoutdoor heat exchanger 3. -
-
-
- As described above, the
controller 80 of the air-conditioning apparatus 100 according toEmbodiment 2 determines the defrosting duration in accordance with the frosting amount. Accordingly, the defrosting operation can be performed more efficiently than conventionally practiced. - The
outdoor side fan 31 corresponds to a "fan" of the present invention. Reference Signs List -
- 1
compressor 2 four-way valve 3outdoor heat exchanger 3aheat transfer 4tube 3b finexpansion valve 5 indoor heat exchanger - 31
outdoor side fan 32 outdoor siderefrigerant temperature sensor 51indoor side fan 52 indoor siderefrigerant temperature sensor 80 controller - 90
refrigerant circuit 100 air-conditioning apparatus AO surface area f1, f2, fmax predetermined frequency Hf frost height Mf frosting amount mf frosting amount P defrosting capacity Qf defrosting heat amount t11, t12, t13, t14, t21, t22, t23, t24 time Tf the defrosting duration Ts surface temperature ua wind speed ΔH latent heat α threshold ρ frost density ρf frost density ϕ relative humidity
Claims (3)
- An air-conditioning apparatus comprising:a compressor;an outdoor heat exchanger;an indoor heat exchanger;a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger, the compressor, the outdoor heat exchanger, the indoor heat exchanger, and the switching device being connected one another;a fan configured to deliver air toward the outdoor heat exchanger;a power unit configured to supply electric power to the fan;a fan input detector configured to detect a physical value correlated to the electric power supplied to the fan; anda controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger serves as an evaporator and a second operation in which the outdoor heat exchanger serves as a condenser,wherein the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value, andwherein the controller is configured to adjust the reference value such that the reference value when a refrigerant temperature flowing in the outdoor heat exchanger is high to be lower than the reference value when the refrigerant temperature flowing in the outdoor heat exchanger is low.
- An air-conditioning apparatus comprising:a compressor;an outdoor heat exchanger;an indoor heat exchanger;a switching device, the switching device being provided closer to a discharge side of the compressor than the outdoor heat exchanger and provided closer to the discharge side of the compressor than the indoor heat exchanger, the compressor, the outdoor heat exchanger, the indoor heat exchanger, and the switching device being connected one another;a fan configured to deliver air toward the outdoor heat exchanger;a power unit configured to supply electric power to the fan;a fan input detector configured to detect a physical value correlated to the electric power supplied to the fan; anda controller configured to control the switching device to switch between a first operation in which the outdoor heat exchanger serves as an evaporator and a second operation in which the outdoor heat exchanger serves as a condenser,wherein the first operation is switched to the second operation when the physical value detected by the fan input detector is equal to or larger than a reference value, andwherein the controller is configured to control the compressor such that frequency of the compressor when a refrigerant temperature flowing in the outdoor heat exchanger is high to be higher than the frequency of the compressor when the refrigerant temperature flowing in the outdoor heat exchanger is low.
- The air-conditioning apparatus of claim 1 or 2, wherein the fan input detector detects a current value or a voltage value applied to an outdoor side motor configured to drive the fan, or electric power based on the current value and the voltage value.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054402 WO2016132473A1 (en) | 2015-02-18 | 2015-02-18 | Air conditioning device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3260790A1 true EP3260790A1 (en) | 2017-12-27 |
EP3260790A4 EP3260790A4 (en) | 2018-10-24 |
EP3260790B1 EP3260790B1 (en) | 2020-03-25 |
Family
ID=56689320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15882576.0A Active EP3260790B1 (en) | 2015-02-18 | 2015-02-18 | Air conditioning device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170363332A1 (en) |
EP (1) | EP3260790B1 (en) |
JP (1) | JP6338762B2 (en) |
CN (1) | CN107250679B (en) |
WO (1) | WO2016132473A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173297A1 (en) * | 2017-03-24 | 2018-09-27 | 東芝キヤリア株式会社 | Air conditioning device |
US10914503B2 (en) * | 2018-02-01 | 2021-02-09 | Johnson Controls Technology Company | Coil heating systems for heat pump systems |
CN114502895B (en) * | 2019-10-23 | 2023-04-14 | 日立江森自控空调有限公司 | Air conditioner, control method for air conditioner, and program |
WO2023223444A1 (en) * | 2022-05-18 | 2023-11-23 | 三菱電機株式会社 | Refrigeration cycle state predicting device, refrigeration cycle control device, and refrigeration cycle device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930980B2 (en) * | 1981-01-27 | 1984-07-30 | 三菱電機株式会社 | Frost detection device |
JPH01107056A (en) * | 1987-10-21 | 1989-04-24 | Toshiba Corp | Air conditioner |
JP2831838B2 (en) * | 1990-11-06 | 1998-12-02 | 株式会社東芝 | Air conditioner |
JP3034781B2 (en) * | 1995-06-07 | 2000-04-17 | シャープ株式会社 | refrigerator |
KR100225640B1 (en) * | 1997-06-27 | 1999-10-15 | 윤종용 | Defrosting control method for air conditioner |
CN1888671A (en) * | 2005-06-30 | 2007-01-03 | 乐金电子(天津)电器有限公司 | Air conditioner defrosting operation controlling device and operating method thereof |
JP2009058222A (en) * | 2006-03-31 | 2009-03-19 | Daikin Ind Ltd | Outdoor unit |
JP2010032107A (en) * | 2008-07-29 | 2010-02-12 | Hitachi Appliances Inc | Air conditioner |
JP2010091118A (en) * | 2008-10-03 | 2010-04-22 | Panasonic Corp | Air conditioner |
JP2010210223A (en) * | 2009-03-12 | 2010-09-24 | Mitsubishi Heavy Ind Ltd | Air conditioner |
US20120060530A1 (en) * | 2009-05-29 | 2012-03-15 | Daikin Industries, Ltd. | Air conditioner |
JP4836212B2 (en) * | 2009-07-22 | 2011-12-14 | シャープ株式会社 | Air conditioner |
JP6071648B2 (en) * | 2013-03-01 | 2017-02-01 | 三菱電機株式会社 | Air conditioner |
-
2015
- 2015-02-18 EP EP15882576.0A patent/EP3260790B1/en active Active
- 2015-02-18 US US15/543,289 patent/US20170363332A1/en not_active Abandoned
- 2015-02-18 CN CN201580075922.1A patent/CN107250679B/en active Active
- 2015-02-18 JP JP2017500189A patent/JP6338762B2/en active Active
- 2015-02-18 WO PCT/JP2015/054402 patent/WO2016132473A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN107250679B (en) | 2019-11-26 |
JPWO2016132473A1 (en) | 2017-09-07 |
EP3260790B1 (en) | 2020-03-25 |
EP3260790A4 (en) | 2018-10-24 |
US20170363332A1 (en) | 2017-12-21 |
CN107250679A (en) | 2017-10-13 |
JP6338762B2 (en) | 2018-06-06 |
WO2016132473A1 (en) | 2016-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6071648B2 (en) | Air conditioner | |
EP3225930B1 (en) | Air conditioner | |
US10151505B2 (en) | Air-conditioning apparatus | |
US10371407B2 (en) | Air conditioning apparatus | |
CN108139118B (en) | Refrigeration cycle device | |
US10345022B2 (en) | Air-conditioning apparatus | |
EP2918953A1 (en) | Air conditioner | |
JP6768546B2 (en) | Air conditioner | |
EP3260790B1 (en) | Air conditioning device | |
JP6827540B2 (en) | Air conditioner | |
JP6425826B2 (en) | Air conditioner | |
WO2014103620A1 (en) | Refrigeration device | |
CN113551437B (en) | Air conditioning system and control method | |
EP3764009B1 (en) | Air conditioning device | |
EP3508795B1 (en) | Air conditioning device | |
JPWO2020003490A1 (en) | Air conditioner | |
US11585578B2 (en) | Refrigeration cycle apparatus | |
US11913694B2 (en) | Heat pump system | |
WO2019111405A1 (en) | Air conditioner | |
EP3444546A1 (en) | Refrigeration cycle device | |
JP6271011B2 (en) | Refrigeration air conditioner | |
WO2019038804A1 (en) | Air conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170913 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180921 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24F 11/67 20180101ALI20180917BHEP Ipc: F24F 11/42 20180101AFI20180917BHEP Ipc: F24F 11/86 20180101ALI20180917BHEP Ipc: F24F 11/64 20180101ALI20180917BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015049620 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F24F0011020000 Ipc: F24F0011420000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24F 11/86 20180101ALI20190927BHEP Ipc: F24F 11/67 20180101ALI20190927BHEP Ipc: F24F 11/42 20180101AFI20190927BHEP Ipc: F24F 11/64 20180101ALI20190927BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191029 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1249001 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015049620 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200818 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1249001 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015049620 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210218 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602015049620 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150218 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20240326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231228 Year of fee payment: 10 Ref country code: GB Payment date: 20240108 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240103 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |