WO2019073514A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019073514A1
WO2019073514A1 PCT/JP2017/036629 JP2017036629W WO2019073514A1 WO 2019073514 A1 WO2019073514 A1 WO 2019073514A1 JP 2017036629 W JP2017036629 W JP 2017036629W WO 2019073514 A1 WO2019073514 A1 WO 2019073514A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
outdoor
dew point
evaporation
refrigeration cycle
Prior art date
Application number
PCT/JP2017/036629
Other languages
English (en)
French (fr)
Inventor
孝太 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17908098.1A priority Critical patent/EP3492837B1/en
Priority to PCT/JP2017/036629 priority patent/WO2019073514A1/ja
Priority to JP2019547813A priority patent/JP6785987B2/ja
Priority to US16/637,381 priority patent/US11262108B2/en
Priority to CN201780095629.0A priority patent/CN111183327B/zh
Publication of WO2019073514A1 publication Critical patent/WO2019073514A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a refrigeration cycle apparatus that suppresses transition to defrost operation.
  • a first threshold pressure is provided to the evaporation pressure value so that the evaporation temperature of the outdoor heat exchanger does not become 0 ° C. or less, and the rotational speed of the outdoor blower is a constant value of a table stored in advance.
  • An air conditioner is disclosed that controls within the range of
  • the first threshold pressure of the evaporation pressure value at which the evaporation temperature does not fall below 0 ° C. is unchanged regardless of the dew point temperature.
  • the dew point temperature changes depending on the humidity of the outdoor air and the like. For this reason, when the dew point temperature changes, it may not be possible to prevent frost formation on the outdoor heat exchanger, and there is a risk of shifting to the defrost operation.
  • the present invention has been made to solve the problems as described above, and provides a refrigeration cycle apparatus that suppresses transition to the defrosting operation.
  • a compressor, a flow path switching device, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger are connected by piping, and refrigerant flows through a refrigerant circuit and outdoor heat exchangers.
  • An outdoor fan to be circulated an outside air temperature detection unit that detects the temperature of the outdoor air, and a control unit that controls the operation of the outdoor fan. The control unit controls the outdoor air temperature detected by the outdoor air temperature detection unit.
  • Dew point temperature prediction means for predicting the dew point temperature after the set time based on the above, evaporation temperature prediction means for predicting the evaporation temperature after the set time of the refrigerant flowing to the outdoor heat exchanger during heating operation, and evaporation temperature prediction means And an air flow control means for changing the number of rotations of the outdoor fan such that the evaporation temperature exceeds the dew point temperature predicted by the dew point temperature prediction means.
  • the blower control means changes the rotational speed of the outdoor blower such that the evaporation temperature after the predicted set time exceeds the dew point temperature after the set time predicted based on the temperature of the outdoor air.
  • the blower control unit changes the rotational speed of the outdoor blower in accordance with the dew point temperature that changes with the temperature of the outdoor air. For this reason, even if the dew point temperature changes, it is possible to prevent frost formation on the outdoor heat exchanger. Therefore, it can suppress that a refrigerating cycle device shifts to defrost operation.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is a graph which shows the time change of liquid tube temperature in Embodiment 1 of this invention. It is a timing chart which shows operation of refrigerating cycle device 100 concerning Embodiment 1 of the present invention. It is a flowchart which shows operation
  • FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 is, for example, an air conditioner that adjusts air in an indoor space, and includes an outdoor unit 22 and an indoor unit 21.
  • the outdoor unit 22 includes a compressor 1, a flow path switching device 2, an outdoor heat exchanger 3, an outdoor blower 13, a first stationary valve 4, a second stationary valve 5, a low pressure detection unit 12, and a liquid pipe temperature detection.
  • a unit 9, an outside air temperature detection unit 8, a mode switch 23, and a control unit 20 are provided.
  • the indoor unit 21 is provided with two expansion units 10 and an indoor heat exchanger 11, respectively.
  • the compressor 1, the flow path switching device 2, the outdoor heat exchanger 3, the first stationary valve 4, the two expansion units 10, the two indoor heat exchangers 11 and the second stationary valve 5 are connected by piping
  • the refrigerant circuit is configured.
  • the compressor 1 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges it as a high temperature and high pressure refrigerant.
  • the flow path switching device 2 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the outdoor heat exchanger 3 exchanges heat, for example, between outdoor air and a refrigerant.
  • the outdoor heat exchanger 3 acts as a condenser during the cooling operation and acts as an evaporator during the heating operation.
  • the outdoor fan 13 distributes outdoor air to the outdoor heat exchanger 3 and includes a fan motor 7 and a fan 6.
  • the fan motor 7 drives the fan 6, and the fan 6 is an impeller rotationally driven by the fan motor 7.
  • the first stationary valve 4 is provided in a pipe connecting the outdoor heat exchanger 3 and the expansion unit 10, and the second stationary valve 5 is a pipe connecting the flow path switching device 2 and the indoor heat exchanger 11. Provided in The first stationary valve 4 and the second stationary valve 5 shut off the flow of the refrigerant between the outdoor unit 22 and the indoor unit 21 at the time of maintenance or the like.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands a refrigerant, and includes, for example, an electronic expansion valve whose opening degree is adjusted.
  • the indoor heat exchanger 11 exchanges heat, for example, between indoor air and a refrigerant.
  • the indoor heat exchanger 11 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • two expansion units 10 and two indoor heat exchangers 11 are connected in parallel, but one expansion unit 10 and one indoor heat exchanger 11 are also connected. Three or more expansion parts 10 and three or more indoor heat exchangers 11 may be connected in parallel, respectively.
  • the low pressure detection unit 12 is provided on the suction side of the compressor 1 and detects the low pressure of the refrigerant flowing to the suction side of the compressor 1.
  • the liquid pipe temperature detection unit 9 is provided in the outdoor heat exchanger 3 and detects the liquid pipe temperature of the refrigerant flowing to the outdoor heat exchanger 3.
  • the outside air temperature detection unit 8 detects the temperature of the outdoor air.
  • the mode switch 23 shifts to the silent mode.
  • the silent mode is a mode in which the upper limit value of the rotational speed of the outdoor blower 13 is restricted in order to reduce the noise generated from the outdoor unit 22.
  • the refrigeration cycle apparatus 100 has a cooling operation, a heating operation, and a defrost operation as operation modes.
  • the cooling operation will be described.
  • the refrigerant drawn into the compressor 1 is compressed by the compressor 1 and discharged in a high temperature and high pressure gas state.
  • the refrigerant in the high temperature and high pressure gaseous state discharged from the compressor 1 passes through the flow path switching device 2 and flows into the outdoor heat exchanger 3 acting as a condenser, and in the outdoor heat exchanger 3, the outdoor fan It exchanges heat with the outdoor air sent by 13 and condenses and liquefies.
  • the condensed liquid refrigerant passes through the first stationary valve 4 and then flows into the respective expansion units 10, and is expanded and reduced in pressure in the expansion unit 10 to form a low-temperature, low-pressure gas-liquid two-phase refrigerant Become. Then, the refrigerant in the gas-liquid two-phase state flows into the respective indoor heat exchangers 11 acting as an evaporator, and in the indoor heat exchanger 11, the refrigerant exchanges heat with the indoor air to evaporate and gasify. At this time, the indoor air is cooled and cooling is performed indoors.
  • the evaporated refrigerant in the low temperature and low pressure gaseous state passes through the second stationary valve 5 and the flow path switching device 2 and is drawn into the compressor 1.
  • Heating operation Next, the heating operation will be described.
  • the refrigerant drawn into the compressor 1 is compressed by the compressor 1 and discharged in a high temperature and high pressure gas state.
  • the refrigerant in a high temperature and high pressure gaseous state discharged from the compressor 1 passes through the flow path switching device 2 and the second stationary valve 5 and flows into the respective indoor heat exchangers 11 acting as a condenser,
  • the indoor heat exchanger 11 exchanges heat with indoor air, condenses and liquefies. At this time, indoor air is warmed and heating is performed indoors.
  • the condensed liquid refrigerant flows into the respective expansion units 10, and is expanded and reduced in pressure in the expansion units 10 to become a low temperature, low pressure, gas-liquid two-phase refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 3 acting as an evaporator after passing through the first stationary valve 4, and the outdoor heat exchanger 3 transmits the outdoor heat by the outdoor blower 13. It exchanges heat with air and evaporates to gasify.
  • the evaporated low-temperature low-pressure gas state refrigerant passes through the flow path switching device 2 and is drawn into the compressor 1.
  • the defrost operation is an operation for removing the frost attached to the outdoor heat exchanger 3 during the heating operation.
  • the refrigerant drawn into the compressor 1 is compressed by the compressor 1 and discharged in a high temperature and high pressure gas state.
  • the refrigerant in the high temperature and high pressure gas state discharged from the compressor 1 passes through the flow path switching device 2 and flows into the outdoor heat exchanger 3. At that time, the frost adhering to the outdoor heat exchanger 3 is melted.
  • the refrigerant in a liquid state which is heat-exchanged with the outdoor air sent by the outdoor blower 13, condensed and liquefied flows into the respective expansion units 10 after passing through the first stationary valve 4. .
  • the refrigerant is expanded and reduced in pressure in the expansion unit 10 to be a low temperature, low pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the respective indoor heat exchangers 11 acting as an evaporator, and in the indoor heat exchanger 11, the refrigerant exchanges heat with the indoor air to evaporate and gasify.
  • the evaporated refrigerant in the low temperature and low pressure gaseous state passes through the second stationary valve 5 and the flow path switching device 2 and is drawn into the compressor 1.
  • the control unit 20 is constituted by, for example, a microcomputer, and controls the capacity of the compressor 1, the opening degree of the expansion unit 10, the number of rotations of the outdoor blower 13 and the like based on detection values obtained by each sensor.
  • the control unit 20 has a normal mode and a silent mode.
  • the normal mode performs normal operation, and the silent mode restricts the maximum number of rotations of the outdoor fan 13 more than the normal mode to suppress noise.
  • the control unit 20 includes a dew point temperature prediction unit 24, an evaporation temperature prediction unit 25, a mode execution unit 26, and an air flow control unit 27.
  • the dew point temperature prediction means 24 predicts the dew point temperature after the set time based on the temperature of the outdoor air detected by the outside air temperature detection unit 8.
  • the dew point temperature prediction means 24 predicts the dew point temperature based on the outside air temperature on the assumption that the humidity is a predetermined value.
  • FIG. 2 is a graph showing the time change of the liquid pipe temperature in the first embodiment of the present invention.
  • the vertical axis indicates the evaporation temperature
  • the horizontal axis indicates time.
  • the evaporation temperature prediction means 25 predicts the evaporation temperature after a set time of the refrigerant flowing to the outdoor heat exchanger 3 during the heating operation.
  • the evaporation temperature prediction unit 25 predicts the evaporation temperature after the set time based on, for example, the liquid pipe temperature detected by the liquid pipe temperature detection unit 9. As shown in FIG. 2, the liquid pipe temperature changes with the passage of time.
  • the liquid pipe temperature detected at every set time z by the liquid pipe temperature detection unit 9 was sampled, and the liquid pipe temperature T2 before 2z, the liquid pipe temperature T1 before z, and the liquid pipe temperature T0 at the current time were plotted. From the inclination of time, the liquid pipe temperature after the set time z is predicted.
  • the evaporation temperature prediction means 25 predicts the liquid pipe temperature after the set time z as the evaporation temperature.
  • the mode executor 26 executes the silent mode.
  • the mode executor 26 executes the silent mode when the mode switch 23 is pressed while the compressor 1 is in operation and in the heating operation.
  • FIG. 3 is a timing chart showing the operation of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention.
  • the control unit 20 reduces the operating frequency of the outdoor blower 13 to a predetermined value.
  • the blower control unit 27 controls the outdoor fan 13 so that the evaporation temperature predicted by the evaporation temperature prediction unit 25 exceeds the dew point temperature predicted by the dew point temperature prediction unit 24. Change the rotation speed of
  • the blower control unit 27 sets the evaporation temperature within a range between the evaporation lower limit threshold obtained by adding the setting lower limit value to the dew point temperature and the evaporation upper limit threshold obtained by adding the setting upper limit value to the dew point temperature.
  • the rotation speed of the outdoor blower 13 is changed. In this manner, by setting the air flow control means 27 so that the evaporation temperature exceeds the evaporation lower limit threshold higher than the dew point temperature, a margin is taken in the adjustment range to ensure that the dew point temperature is not exceeded. it can.
  • the air flow control means 27 suppresses the excessive increase of the rotational speed of the outdoor fan 13 by setting the evaporation temperature to be lower than the evaporation upper limit threshold value. Further, when the mode execution means 26 executes the silent mode, the air flow control means 27 first lowers the rotational speed of the outdoor blower 13 to the initial silent rotational speed Fan0. Thereafter, the blower control unit 27 changes the number of rotations of the outdoor blower 13 based on the dew point temperature and the evaporation temperature.
  • the blower control means 27 changes the rotational speed of the outdoor blower 13 at intervals of z minutes.
  • the air flow control means 27 determines ⁇ Fan based on the evaporation temperature with the initial value set to 0, and the fluctuation amount ⁇ Fan of the rotational speed is added to the rotational speed z minutes before.
  • the fluctuation amount ⁇ Fan is + ⁇ when the evaporation temperature is lower than the evaporation lower limit threshold, and ⁇ when the evaporation temperature is higher than the evaporation upper limit threshold. Further, when the evaporation temperature is in the range between the evaporation lower limit threshold and the evaporation upper limit threshold, the fluctuation amount ⁇ Fan of the rotational speed becomes 0 and converges.
  • FIG. 4 is a flowchart showing the operation of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention.
  • the mode execution unit 26 executes the silent mode (step ST2).
  • the blower control unit 27 sets the rotation number of the outdoor blower 13 to the initial silent rotation number Fan0, and sets ⁇ Fan to zero.
  • step ST9 it is determined whether z minutes have elapsed. Step ST9 is repeated until z minutes have elapsed. When z minutes have passed (Yes in step ST9), the process returns to step ST3.
  • the blower control unit 27 controls the rotation of the outdoor blower 13 such that the evaporation temperature after the predicted set time exceeds the dew point temperature after the set time predicted based on the temperature of the outdoor air. Change the number.
  • the dew point temperature prediction means 24 predicts the dew point temperature after the set time which changes with the temperature of the outdoor air, and the air flow control means 27 makes the rotational speed of the outdoor fan 13 correspond to the predicted dew point temperature. Change. For this reason, even if the dew point temperature changes after the set time, frost formation on the outdoor heat exchanger 3 can be prevented in advance. Therefore, it can suppress that freezing cycle device 100 shifts to defrost operation.
  • the air flow control means 27 changes the number of rotations of the outdoor fan 13 so that the evaporation temperature exceeds the dew point temperature.
  • the shift to the defrosting operation can be suppressed even in the silent mode, so that the noise can be further reduced. That is, it is possible to suppress transition to the defrosting operation while reducing the noise by the outdoor fan 13.
  • a refrigeration cycle apparatus having a silent mode that regulates the upper limit value of the rotational speed of the outdoor blower is known.
  • the silent mode there is also a mode in which the upper limit value of the operating frequency of the outdoor fan is regulated.
  • the conventional air conditioning apparatus does not change the rotational speed after reducing the rotational speed of the outdoor fan to a predetermined value when transitioning to the silent mode at the time of heating. For this reason, the air volume which an outdoor air blower sends reduces, and the evaporation temperature of the refrigerant
  • the dew point temperature changes depending on the dry bulb temperature and wet bulb temperature of the environment in which the outdoor unit is installed.
  • the evaporation temperature of the outdoor heat exchanger decreases.
  • a hot gas defrost operation is performed to avoid a decrease in heat exchange capacity.
  • a noise is generated when switching to the hot gas defrost operation.
  • the silent mode is used during heating operation, there is a problem of noise due to frequent transition to defrost operation.
  • the evaporation temperature is 0 ° C. or less, and the outdoor fan is constantly maintained at a high rotational speed, so the noise reduction effect by the silent mode is reduced.
  • the number of rotations of the outdoor blower 13 is changed corresponding to the dew point temperature which changes depending on the temperature of the outdoor air. For this reason, even if the dew point temperature changes, frost formation on the outdoor heat exchanger 3 is suppressed.
  • the ventilation control means 27 may be comprised as what changes the rotation speed of the outdoor air blower 13 in the range which does not exceed a rotation speed upper limit threshold value. Thereby, it can suppress that the rotation speed of the outdoor air blower 13 rises excessively, and a noise generate
  • Control unit 20 may be configured to further include compression control means (not shown) that changes the operating frequency of compressor 1 within a range not exceeding the frequency upper limit threshold.
  • compression control means not shown
  • the defrosting operation can be avoided even when the rotation speed of the outdoor blower 13 is changed within a range not exceeding the rotation speed upper limit threshold in order to give priority to the reduction of noise by the air flow control means 27.
  • control unit 20 is a threshold value correction unit that adds a correction value to the set lower limit value and the set upper limit value when the defrosting operation is started while the blower control unit 27 changes the number of rotations of the outdoor blower 13 Not shown).
  • the control unit 20 determines that the predetermined humidity used when the dew point temperature prediction means 24 predicts the dew point temperature is Guess it is higher than the actual humidity. In this case, the defrosting operation can be avoided by adding the correction value to the set lower limit value and the set upper limit value.
  • the correction value is determined by feedback control.
  • the threshold value correction means ends the correction of the set lower limit value and the set upper limit value upon termination of the silent mode, stop of the refrigeration cycle apparatus 100 or elapse of a predetermined time.
  • the evaporation temperature predicting means 25 exemplifies a case of predicting the evaporation temperature based on the liquid pipe temperature detected by the liquid pipe temperature detection unit 9.
  • the evaporation temperature prediction unit 25 may predict the evaporation temperature based on the low pressure detected by the low pressure detection unit 12.
  • the evaporation temperature prediction means 25 predicts the saturated temperature conversion value of the low pressure as the evaporation temperature.
  • the liquid pipe temperature detection unit 9 can be omitted.
  • the first embodiment exemplifies a case where the mode switch 23 is adopted as a switch for shifting to the silent mode.
  • the present invention is not limited to this, and the end mode or the vendor may be configured to shift to the silent mode by performing communication operation with the remote control or the relay.
  • the control unit 20 is configured as an indoor control board or an outdoor control board, even if the switch mounted on the indoor control board or the outdoor control board is operated, the mode is shifted to the silent mode. Good.
  • the refrigeration cycle apparatus 100 may have an auto mode function in which the silent mode is automatically executed depending on the time zone or the outside air temperature or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍サイクル装置は、圧縮機、流路切替装置、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、室外熱交換器に室外空気を流通させる室外送風機と、室外空気の温度を検出する外気温度検出部と、室外送風機の動作を制御する制御部と、を備え、制御部は、外気温度検出部によって検出された室外空気の温度に基づいて設定時間後の露点温度を予測する露点温度予測手段と、暖房運転時に室外熱交換器に流れる冷媒の設定時間後の蒸発温度を予測する蒸発温度予測手段と、蒸発温度予測手段が予測した蒸発温度が、露点温度予測手段が予測した露点温度を上回るように、室外送風機の回転数を変化させる送風制御手段と、を有する。

Description

冷凍サイクル装置
 本発明は、デフロスト運転に移行することを抑制する冷凍サイクル装置に関する。
 従来、デフロスト運転を行う冷凍サイクル装置が知られている。デフロスト運転は、暖房運転中に流路切替装置が切り替わり、一時的に冷房運転と同じ冷媒の流れとなって、室外熱交換器に高温の冷媒が流されて、室外熱交換器に付着した霜を溶かすものである。しかし、デフロスト運転に切り替わる際の音が大きく、市場でクレーム対象となるおそれがある。そこで、デフロスト運転に移行することを抑制する空気調和装置が提案されている(例えば特許文献1参照)。特許文献1には、室外熱交換器の蒸発温度が0℃以下とならないように、蒸発圧力値に第1の閾圧力を設けて、室外送風機の回転数を、予め記憶されたテーブルの定数値の範囲内で制御する空気調和装置が開示されている。
特開2015-68596号公報
 しかしながら、特許文献1に開示された空気調和装置は、蒸発温度が0℃以下にならない蒸発圧力値の第1の閾圧力が、露点温度にかかわらず不変である。ここで、露点温度は、室外空気の湿度等によって変化する。このため、露点温度が変化した場合、室外熱交換器に着霜することを防止することができずデフロスト運転に移行してしまうおそれがある。
 本発明は、上記のような課題を解決するためになされたもので、デフロスト運転に移行することを抑制する冷凍サイクル装置を提供するものである。
 本発明に係る冷凍サイクル装置は、圧縮機、流路切替装置、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、室外熱交換器に室外空気を流通させる室外送風機と、室外空気の温度を検出する外気温度検出部と、室外送風機の動作を制御する制御部と、を備え、制御部は、外気温度検出部によって検出された室外空気の温度に基づいて設定時間後の露点温度を予測する露点温度予測手段と、暖房運転時に室外熱交換器に流れる冷媒の設定時間後の蒸発温度を予測する蒸発温度予測手段と、蒸発温度予測手段が予測した蒸発温度が、露点温度予測手段が予測した露点温度を上回るように、室外送風機の回転数を変化させる送風制御手段と、を有する。
 本発明によれば、送風制御手段は、予測された設定時間後の蒸発温度が室外空気の温度に基づいて予測された設定時間後の露点温度を上回るように室外送風機の回転数を変化させる。このように、送風制御手段は、室外空気の温度によって変化する露点温度に対応させて、室外送風機の回転数を変化させる。このため、露点温度が変化しても、室外熱交換器に着霜することを未然に防ぐことができる。従って、冷凍サイクル装置がデフロスト運転に移行することを抑制することができる。
本発明の実施の形態1に係る冷凍サイクル装置100を示す回路図である。 本発明の実施の形態1における液管温度の時間変化を示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置100の動作を示すタイミングチャートである。 本発明の実施の形態1に係る冷凍サイクル装置100の動作を示すフローチャートである。
実施の形態1.
 以下、本発明に係る冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置100を示す回路図である。図1に示すように、冷凍サイクル装置100は、例えば室内空間の空気を調整する空気調和機からなり、室外機22と、室内機21とを備えている。室外機22には、圧縮機1、流路切替装置2、室外熱交換器3、室外送風機13、第1の静止弁4、第2の静止弁5、低圧圧力検出部12、液管温度検出部9、外気温度検出部8、モードスイッチ23及び制御部20が設けられている。室内機21には、それぞれ2台の膨張部10及び室内熱交換器11が設けられている。
 圧縮機1、流路切替装置2、室外熱交換器3、第1の静止弁4、2台の膨張部10、2台の室内熱交換器11及び第2の静止弁5が配管により接続されて冷媒回路が構成されている。圧縮機1は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置2は、冷媒回路において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。
 室外熱交換器3は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器3は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機13は、室外熱交換器3に室外空気を流通させるものであり、ファンモータ7と、ファン6とを有している。ファンモータ7は、ファン6を駆動させるものであり、ファン6は、ファンモータ7によって回転駆動する羽根車である。第1の静止弁4は、室外熱交換器3と膨張部10とを接続する配管に設けられ、第2の静止弁5は、流路切替装置2と室内熱交換器11とを接続する配管に設けられている。第1の静止弁4及び第2の静止弁5は、メンテナンス等の際に、室外機22と室内機21との間の冷媒の流れを遮断する。
 膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁であり、例えば開度が調整される電子式膨張弁からなる。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。本実施の形態1では、2台の膨張部10及び2台の室内熱交換器11が、それぞれ並列に接続されているが、1台の膨張部10及び1台の室内熱交換器11としてもよいし、3台以上の膨張部10及び3台以上の室内熱交換器11がそれぞれ並列に接続されてもよい。
 低圧圧力検出部12は、圧縮機1の吸入側に設けられ、圧縮機1の吸入側に流れる冷媒の低圧圧力を検出する。液管温度検出部9は、室外熱交換器3に設けられ、室外熱交換器3に流れる冷媒の液管温度を検出する。外気温度検出部8は、室外空気の温度を検出する。モードスイッチ23は、サイレントモードに移行する。ここで、サイレントモードとは、室外機22から発生する騒音を低減するために、室外送風機13の回転数の上限値を規制するモードである。
 (冷房運転)
 次に、冷凍サイクル装置100の運転モードについて説明する。冷凍サイクル装置100は、運転モードとして、冷房運転、暖房運転及びデフロスト運転を有している。先ず、冷房運転について説明する。冷房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機1から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置2を通過して、凝縮器として作用する室外熱交換器3に流入し、室外熱交換器3において、室外送風機13によって送られる室外空気と熱交換されて凝縮して液化する。
 凝縮された液状態の冷媒は、第1の静止弁4を通過した後、それぞれの膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用するそれぞれの室内熱交換器11に流入し、室内熱交換器11において、室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、第2の静止弁5及び流路切替装置2を通過して、圧縮機1に吸入される。
 (暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機1から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置2及び第2の静止弁5を通過して、凝縮器として作用するそれぞれの室内熱交換器11に流入し、室内熱交換器11において、室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。
 凝縮された液状態の冷媒は、それぞれの膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、第1の静止弁4を通過した後、蒸発器として作用する室外熱交換器3に流入し、室外熱交換器3において、室外送風機13によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置2を通過して、圧縮機1に吸入される。
 (デフロスト運転)
 次に、デフロスト運転について説明する。デフロスト運転は、暖房運転時に室外熱交換器3に付着した霜を除去する運転である。デフロスト運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機1から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置2を通過して、室外熱交換器3に流入する。その際、室外熱交換器3に付着した霜が溶かされる。
 室外熱交換器3において、室外送風機13によって送られる室外空気と熱交換されて凝縮して液化した液状態の冷媒は、第1の静止弁4を通過した後、それぞれの膨張部10に流入する。冷媒は、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用するそれぞれの室内熱交換器11に流入し、室内熱交換器11において、室内空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、第2の静止弁5及び流路切替装置2を通過して、圧縮機1に吸入される。
 制御部20は、例えばマイコンから構成されており、各センサによって得られる検出値に基づいて、圧縮機1の容量、膨張部10の開度及び室外送風機13の回転数等を制御する。制御部20は、通常モードと、サイレントモードとを有している。通常モードは、通常運転を行うものであり、サイレントモードは、通常モードよりも室外送風機13の最大回転数を規制して騒音を抑える。制御部20は、露点温度予測手段24と、蒸発温度予測手段25と、モード実行手段26と、送風制御手段27とを有している。露点温度予測手段24は、外気温度検出部8によって検出された室外空気の温度に基づいて設定時間後の露点温度を予測するものである。露点温度予測手段24は、湿度を所定値として仮定した上で、外気温度に基づいて露点温度を予測する。
 図2は、本発明の実施の形態1における液管温度の時間変化を示すグラフである。図2において、縦軸は蒸発温度を示し、横軸は時間を示している。蒸発温度予測手段25は、暖房運転時に室外熱交換器3に流れる冷媒の設定時間後の蒸発温度を予測するものである。蒸発温度予測手段25は、例えば、液管温度検出部9によって検出された液管温度に基づいて、設定時間後の蒸発温度を予測する。図2に示すように、液管温度は、時間経過によって変化する。液管温度検出部9によって設定時間z毎に検出された液管温度がサンプリングされ、2z時間前の液管温度T2、z時間前の液管温度T1及び現時刻の液管温度T0をプロットしたときの傾きから、設定時間z後の液管温度を予測する。蒸発温度予測手段25は、設定時間z後の液管温度を蒸発温度と予測する。
 モード実行手段26は、サイレントモードを実行するものである。モード実行手段26は、圧縮機1が運転中且つ暖房運転時に、モードスイッチ23が押下された際に、サイレントモードを実行する。
 図3は、本発明の実施の形態1に係る冷凍サイクル装置100の動作を示すタイミングチャートである。図3に示すように、モード実行手段26がサイレントモードを実行すると、制御部20は、室外送風機13の運転周波数を所定値に低下させる。そして、送風制御手段27は、モード実行手段26がサイレントモードを実行した場合、蒸発温度予測手段25が予測した蒸発温度が、露点温度予測手段24が予測した露点温度を上回るように、室外送風機13の回転数を変化させるものである。
 より具体的には、送風制御手段27は、露点温度に設定下限値を加算した蒸発下限閾値と露点温度に設定上限値を加算した蒸発上限閾値との間の範囲に蒸発温度が入るように、室外送風機13の回転数を変化させるものである。このように、送風制御手段27が、露点温度よりも高い蒸発下限閾値を蒸発温度が上回るようにすることによって、調整範囲にマージンを取り、確実に露点温度を下回ることがないようにすることができる。
 また、送風制御手段27が、蒸発上限閾値を蒸発温度が下回るようにすることによって、室外送風機13の回転数が過剰に上昇することを抑制している。また、送風制御手段27は、モード実行手段26がサイレントモードを実行した場合、先ず、室外送風機13の回転数を初期サイレント回転数Fan0に低下させる。その後、送風制御手段27は、露点温度と蒸発温度とに基づいて室外送風機13の回転数を変化させる。
 このとき、送風制御手段27は、z分間隔で室外送風機13の回転数を変化させる。回転数の変動量ΔFanは初期値を0として、送風制御手段27が蒸発温度に基づいてΔFanを決定し、z分前の回転数に加算する。変動量ΔFanは、蒸発温度が蒸発下限閾値よりも低い場合に+αとなり、蒸発温度が蒸発上限閾値よりも高い場合に-αとなる。また、回転数の変動量ΔFanは、蒸発温度が蒸発下限閾値と蒸発上限閾値との間の範囲にある場合、0となり収束する。
 図3に示すように、冷凍サイクル装置100が暖房運転時にサイレントモードに移行すると、室外送風機13の運転周波数が低下し、室外送風機13の回転数が低下して、初期サイレント回転数Fan0となる。これにより、蒸発温度が低下する。また、騒音値が低下するが、熱交換能力も若干低下する。送風制御手段27がz分毎に室外送風機13の回転数を更新して、回転数がFan(n)=Fan(n-1)+ΔFanとなる。その際、蒸発温度が蒸発下限閾値より低い場合、熱交換能力の低下を抑えるため、送風制御手段27がFan(n)=Fan(n-1)+αとする。一方、蒸発温度が蒸発上限閾値より高い場合、騒音値の増加を抑えるため、送風制御手段27がFan(n)=Fan(n-1)-αとする。これにより、冷凍サイクル装置100は、騒音を抑えつつ、熱交換能力を維持する。従って、デフロスト運転に至らず、騒音の発生を抑えることができる。
 図4は、本発明の実施の形態1に係る冷凍サイクル装置100の動作を示すフローチャートである。次に、冷凍サイクル装置100の制御部20の動作について説明する。図4に示すように、圧縮機1が運転中且つ暖房運転時に、モードスイッチ23が押下された際(ステップST1のYes)、モード実行手段26がサイレントモードを実行する(ステップST2)。このとき、送風制御手段27は、室外送風機13の回転数を初期サイレント回転数Fan0とし、ΔFanを0とする。そして、送風制御手段27は、z分毎に室外送風機13の回転数を変化させる。具体的には、送風制御手段27は、室外送風機13の回転数Fan(n)=Fan(n-1)+ΔFanという式を用いて、回転数を変化させる(ステップST3)。
 蒸発温度が、露点温度予測手段24によって予測された露点温度に設定下限値を加算した蒸発下限閾値より小さい場合(ステップST4のYes)、ΔFan=+αであり、Fan(n)=Fan(n-1)+αとなる(ステップST5)。その後、ステップST9に移行する。また、蒸発温度が、露点温度予測手段24によって予測された露点温度に設定上限値を加算した蒸発上限閾値より大きい場合(ステップST6のYes)、ΔFan=-αであり、Fan(n)=Fan(n-1)-αとなる(ステップST7)。その後、ステップST9に移行する。蒸発温度が、蒸発下限閾値以上且つ蒸発上限閾値以下の場合(ステップST6のNo)、ΔFan=0であり、Fan(n)=Fan(n-1)となる(ステップST8)。
 ステップST9では、z分が経過したかが判定される。z分が経過するまで、ステップST9が繰り返される。z分が経過すると(ステップST9のYes)、ステップST3に戻る。
 本実施の形態1によれば、送風制御手段27は、予測された設定時間後の蒸発温度が室外空気の温度に基づいて予測された設定時間後の露点温度を上回るように室外送風機13の回転数を変化させる。このように、露点温度予測手段24が、室外空気の温度によって変化する設定時間後の露点温度を予測し、送風制御手段27は、予測された露点温度に対応させて、室外送風機13の回転数を変化させる。このため、設定時間後に露点温度が変化しても、室外熱交換器3に着霜することを未然に防ぐことができる。従って、冷凍サイクル装置100がデフロスト運転に移行することを抑制することができる。
 また、送風制御手段27は、モード実行手段26がサイレントモードを実行した場合、蒸発温度が露点温度を上回るように室外送風機13の回転数を変化させる。本実施の形態1は、サイレントモードにおいてもデフロスト運転に移行することを抑制することができるため、更に騒音を低減することができる。即ち、室外送風機13による騒音を低減しつつ、デフロスト運転に移行することを抑制することができる。
 従来、室外機から発生する騒音を低減する技術として、室外送風機の回転数の上限値を規制するサイレントモードを有する冷凍サイクル装置が知られている。なお、サイレントモードは、室外送風機の運転周波数の上限値を規制するモードも存在する。従来の空気調和装置は、暖房時にサイレントモードに移行すると、室外送風機の回転数を所定値にまで低下させた後、回転数を変化させない。このため、室外送風機が送る風量が低下して、室外熱交換器に流れる冷媒の蒸発温度が低下する。これにより、外気温度によって決定される露点温度よりも蒸発温度が低い場合、室外熱交換器に霜が付着する。ここで、露点温度は、室外機が設置されている環境の乾球温度及び湿球温度によって変化する。
 霜の成長が続くと、霜が風路に対する抵抗となるため、室外空気の量が減少する。また、室外送風機によって送られる室外空気の量が減少することに伴って、室外熱交換器の蒸発温度も低下する。蒸発温度が所定値を下回ると、熱交換能力の低下を回避するため、ホットガスデフロスト運転が実行される。しかし、ホットガスデフロスト運転に切り替わる際に音が発生する。このように、暖房運転時にサイレントモードが使用される場合、デフロスト運転に頻繁に移行することによる騒音の問題が生じる。また、外気温度が0℃以下では、蒸発温度は0℃以下になるため、室外送風機が高い回転数で常時維持されるため、サイレントモードによる騒音低減効果が低下する。
 これに対し、本実施の形態1は、室外空気の温度によって変化する露点温度に対応させて、室外送風機13の回転数を変化させる。このため、露点温度が変化しても、室外熱交換器3に着霜することが抑制される。
 なお、送風制御手段27は、室外送風機13の回転数を、回転数上限閾値を超えない範囲で変化させるものとして構成されてもよい。これにより、室外送風機13の回転数が過剰に上昇して、騒音が発生することを抑制することができる。このように、デフロスト運転を回避することよりも騒音の低減を優先することもできる。
 なお、制御部20は、圧縮機1の運転周波数を、周波数上限閾値を超えない範囲で変化させる圧縮制御手段(図示せず)を更に有するように構成されてもよい。これにより、送風制御手段27が騒音の低減を優先させるために、回転数上限閾値を超えない範囲で室外送風機13の回転数を変化させた場合も、デフロスト運転を回避することができる。
 また、制御部20は、送風制御手段27が室外送風機13の回転数を変化させているときにデフロスト運転が開始された場合、設定下限値及び設定上限値に補正値を加算する閾値補正手段(図示せず)を更に有する。制御部20は、送風制御手段27が室外送風機13の回転数を変化させているときにデフロスト運転が開始された場合、露点温度予測手段24が露点温度を予測する際に用いられる所定の湿度が、実際の湿度よりも高いと推測する。この場合、設定下限値及び設定上限値に補正値が加算されることにより、デフロスト運転を回避することができる。補正値は、フィードバック制御により決定される。閾値補正手段は、サイレントモードの終了、冷凍サイクル装置100の停止又は所定時間の経過によって、設定下限値及び設定上限値の補正を終了する。
 本実施の形態1では、蒸発温度予測手段25は、液管温度検出部9によって検出された液管温度に基づいて、蒸発温度を予測する場合について例示している。これに限らず、蒸発温度予測手段25は、低圧圧力検出部12によって検出された低圧圧力に基づいて、蒸発温度を予測するものであってもよい。蒸発温度予測手段25は、低圧圧力の飽和温度換算値を蒸発温度と予測する。これにより、液管温度検出部9を省略することができる。
 本実施の形態1では、サイレントモードに移行するためのスイッチとして、モードスイッチ23を採用している場合について例示している。これに限らず、エンドユーザ又は業者等がリモコン又はリレー等で通信操作することによって、サイレントモードに移行するように構成されてもよい。また、制御部20が室内制御基板又は室外制御基板として構成されている場合、室内制御基板又は室外制御基板に実装されたスイッチが操作されることによって、サイレントモードに移行するように構成されてもよい。更に、冷凍サイクル装置100は、時間帯又は外気温度等によって自動的にサイレントモードが実行されるオートモードの機能を有していてもよい。
 1 圧縮機、2 流路切替装置、3 室外熱交換器、4 第1の静止弁、5 第2の静止弁、6 ファン、7 ファンモータ、8 外気温度検出部、9 液管温度検出部、10 膨張部、11 室内熱交換器、12 低圧圧力検出部、13 室外送風機、20 制御部、21 室内機、22 室外機、23 モードスイッチ、24 露点温度予測手段、25 蒸発温度予測手段、26 モード実行手段、27 送風制御手段、100 冷凍サイクル装置。

Claims (10)

  1.  圧縮機、流路切替装置、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、
     前記室外熱交換器に室外空気を流通させる室外送風機と、
     前記室外空気の温度を検出する外気温度検出部と、
     前記室外送風機の動作を制御する制御部と、を備え、
     前記制御部は、
     前記外気温度検出部によって検出された室外空気の温度に基づいて設定時間後の露点温度を予測する露点温度予測手段と、
     暖房運転時に前記室外熱交換器に流れる冷媒の設定時間後の蒸発温度を予測する蒸発温度予測手段と、
     前記蒸発温度予測手段が予測した蒸発温度が、前記露点温度予測手段が予測した露点温度を上回るように、前記室外送風機の回転数を変化させる送風制御手段と、
     を有する冷凍サイクル装置。
  2.  前記制御部は、
     通常運転を行う通常モードと、前記通常モードよりも前記室外送風機の最大回転数を規制して騒音を抑える運転を行うサイレントモードと、を有し、
     暖房運転時に前記サイレントモードを実行するモード実行手段を更に有し、
     前記送風制御手段は、
     前記モード実行手段が前記サイレントモードを実行した場合、前記蒸発温度が前記露点温度を上回るように、前記室外送風機の回転数を変化させるものである
     請求項1記載の冷凍サイクル装置。
  3.  前記送風制御手段は、
     前記蒸発温度が、前記露点温度に設定下限値を加算した蒸発下限閾値を上回るように、前記室外送風機の回転数を変化させるものである
     請求項2記載の冷凍サイクル装置。
  4.  前記送風制御手段は、
     前記蒸発温度が、前記露点温度に設定上限値を加算した蒸発上限閾値を下回るように、前記室外送風機の回転数を変化させるものである
     請求項3記載の冷凍サイクル装置。
  5.  前記制御部は、
     前記送風制御手段が前記室外送風機の回転数を変化させているときにデフロスト運転が開始された場合、前記設定下限値及び前記設定上限値に補正値を加算する閾値補正手段を更に有する
     請求項4記載の冷凍サイクル装置。
  6.  前記送風制御手段は、
     前記モード実行手段が前記サイレントモードを実行した場合、前記室外送風機の回転数を初期サイレント回転数に低下させた後、前記露点温度と前記蒸発温度とに基づいて前記室外送風機の回転数を変化させるものである
     請求項2~5のいずれか1項に記載の冷凍サイクル装置。
  7.  前記送風制御手段は、
     前記室外送風機の回転数を、回転数上限閾値を超えない範囲で変化させるものである
     請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記制御部は、
     前記圧縮機の運転周波数を、周波数上限閾値を超えない範囲で変化させる圧縮制御手段を更に有する
     請求項1~7のいずれか1項に記載の冷凍サイクル装置。
  9.  前記室外熱交換器に流れる冷媒の液管温度を検出する液管温度検出部を更に備え、
     前記蒸発温度予測手段は、
     前記液管温度検出部によって検出された液管温度に基づいて、前記蒸発温度を予測するものである
     請求項1~8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記圧縮機の吸入側に流れる冷媒の低圧圧力を検出する低圧圧力検出部を更に備え、
     前記蒸発温度予測手段は、
     前記低圧圧力検出部によって検出された低圧圧力に基づいて、前記蒸発温度を予測するものである
     請求項1~9のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2017/036629 2017-10-10 2017-10-10 冷凍サイクル装置 WO2019073514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17908098.1A EP3492837B1 (en) 2017-10-10 2017-10-10 Refrigeration cycle device
PCT/JP2017/036629 WO2019073514A1 (ja) 2017-10-10 2017-10-10 冷凍サイクル装置
JP2019547813A JP6785987B2 (ja) 2017-10-10 2017-10-10 冷凍サイクル装置
US16/637,381 US11262108B2 (en) 2017-10-10 2017-10-10 Refrigeration cycle apparatus
CN201780095629.0A CN111183327B (zh) 2017-10-10 2017-10-10 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036629 WO2019073514A1 (ja) 2017-10-10 2017-10-10 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019073514A1 true WO2019073514A1 (ja) 2019-04-18

Family

ID=66100571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036629 WO2019073514A1 (ja) 2017-10-10 2017-10-10 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11262108B2 (ja)
EP (1) EP3492837B1 (ja)
JP (1) JP6785987B2 (ja)
CN (1) CN111183327B (ja)
WO (1) WO2019073514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137719A (zh) * 2021-03-10 2021-07-20 海信(山东)空调有限公司 一种空调器和控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412566B (zh) * 2020-03-27 2021-02-05 浙江国芝科技有限公司 一种引入室外风空调系统
US11709004B2 (en) 2020-12-16 2023-07-25 Lennox Industries Inc. Method and a system for preventing a freeze event using refrigerant temperature
CN113218117A (zh) * 2021-05-13 2021-08-06 广东纽恩泰新能源科技发展有限公司 一种减少空气能热泵结霜的方法及其系统
CN114838537B (zh) * 2022-05-10 2023-06-06 西安交通大学 一种延缓空气源热泵机组结霜的装置及控制方法
CN114992951B (zh) * 2022-05-25 2024-08-23 海信冰箱有限公司 一种冰箱及其静音控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308042A (en) * 1980-04-11 1981-12-29 Atlantic Richfield Company Heat pump with freeze-up prevention
JPH05164382A (ja) * 1991-04-30 1993-06-29 Matsushita Refrig Co Ltd 空気調和装置
JP2002054834A (ja) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp 冷凍サイクル装置
US20080307803A1 (en) * 2007-06-12 2008-12-18 Nordyne Inc. Humidity control and air conditioning
JP2015068596A (ja) 2013-09-30 2015-04-13 株式会社富士通ゼネラル 空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052319B2 (ja) * 2005-05-24 2008-02-27 ダイキン工業株式会社 空調システム
WO2009037759A1 (ja) * 2007-09-20 2009-03-26 Mitsubishi Electric Corporation 冷凍空調装置
JP5040981B2 (ja) * 2009-10-07 2012-10-03 三菱電機株式会社 空気調和装置
US20120255318A1 (en) * 2009-12-22 2012-10-11 Naohiro Kido Refrigeration apparatus
CN202254050U (zh) * 2011-09-17 2012-05-30 林勇 一种转轮除湿空调器
CN102418981B (zh) * 2011-11-09 2014-01-01 青岛海尔空调电子有限公司 空调静音运转的控制方法
JP6040099B2 (ja) * 2013-05-28 2016-12-07 サンデンホールディングス株式会社 車両用空気調和装置
US9890980B2 (en) * 2013-09-26 2018-02-13 Carrier Corporation System and method of freeze protection of a heat exchanger in an HVAC system
JP2015113993A (ja) 2013-12-09 2015-06-22 シャープ株式会社 空気調和機
CN103900174B (zh) * 2014-02-24 2016-08-17 西安建筑科技大学 一种可处理新风的双温辐射热泵型房间空调器
JP2017180901A (ja) * 2016-03-29 2017-10-05 株式会社富士通ゼネラル 空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308042A (en) * 1980-04-11 1981-12-29 Atlantic Richfield Company Heat pump with freeze-up prevention
JPH05164382A (ja) * 1991-04-30 1993-06-29 Matsushita Refrig Co Ltd 空気調和装置
JP2002054834A (ja) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp 冷凍サイクル装置
US20080307803A1 (en) * 2007-06-12 2008-12-18 Nordyne Inc. Humidity control and air conditioning
JP2015068596A (ja) 2013-09-30 2015-04-13 株式会社富士通ゼネラル 空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137719A (zh) * 2021-03-10 2021-07-20 海信(山东)空调有限公司 一种空调器和控制方法

Also Published As

Publication number Publication date
JPWO2019073514A1 (ja) 2020-04-02
EP3492837A1 (en) 2019-06-05
EP3492837A4 (en) 2019-06-12
US20200240679A1 (en) 2020-07-30
CN111183327B (zh) 2021-09-03
EP3492837B1 (en) 2020-03-18
JP6785987B2 (ja) 2020-11-18
US11262108B2 (en) 2022-03-01
CN111183327A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2019073514A1 (ja) 冷凍サイクル装置
JP5709993B2 (ja) 冷凍空気調和装置
US9217587B2 (en) Air conditioner
JP6559333B2 (ja) 空気調和機
WO2018173120A1 (ja) 除湿機
KR101199382B1 (ko) 공기 조화기 및 그 제어방법
WO2010137344A1 (ja) 空気調和装置
US10371407B2 (en) Air conditioning apparatus
JP6071648B2 (ja) 空気調和装置
JP3835453B2 (ja) 空気調和装置
JP2014190600A (ja) 空気調和装置
JPWO2019003306A1 (ja) 空気調和装置
WO2016103552A1 (ja) 空気調和装置
CN115031351B (zh) 空调器和空调器除霜控制方法
JP2014238179A (ja) 空気調和機の制御装置
JP5593905B2 (ja) 冷凍装置
JP2011007482A (ja) 空気調和装置
KR20100036786A (ko) 공기조화기 및 그 운전 방법
JP2007298218A (ja) 冷凍装置
JP2005055053A (ja) 空気調和装置
KR100408994B1 (ko) 멀티 에어컨의 냉방 운전 실내팬 제어방법
JP2005083616A (ja) 空気調和機
KR100800623B1 (ko) 공기조화기의 운전제어방법
JP2005133970A (ja) 空気調和装置
JP2001165518A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017908098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017908098

Country of ref document: EP

Effective date: 20181106

ENP Entry into the national phase

Ref document number: 2019547813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE