JP2017180901A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2017180901A
JP2017180901A JP2016065182A JP2016065182A JP2017180901A JP 2017180901 A JP2017180901 A JP 2017180901A JP 2016065182 A JP2016065182 A JP 2016065182A JP 2016065182 A JP2016065182 A JP 2016065182A JP 2017180901 A JP2017180901 A JP 2017180901A
Authority
JP
Japan
Prior art keywords
indoor
temperature
indoor unit
outdoor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016065182A
Other languages
English (en)
Inventor
光将 榎本
Mitsumasa Enomoto
光将 榎本
遠藤 浩彰
Hiroaki Endo
浩彰 遠藤
純一 津野
Junichi Tsuno
純一 津野
智之 舟木
Tomoyuki Funaki
智之 舟木
大貴 ▲高▼雄
大貴 ▲高▼雄
Daiki Takao
勇太 清水
Yuta Shimizu
勇太 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016065182A priority Critical patent/JP2017180901A/ja
Publication of JP2017180901A publication Critical patent/JP2017180901A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】低負荷時であってもユーザの任意の室内機で確実に除湿することが可能な空気調和装置を提供する。【解決手段】複数台の室内機5a〜5dのうち少なくとも一台の室内機が冷房運転中であって、他の室内機がドライ運転の指示を受けていた場合、ドライ運転を行う室内機の室内熱交換器51a〜51bを流れる冷媒の蒸発温度が目標蒸発温度Tes以下となるように圧縮機21を制御することで、室内熱交換器の温度が必ず室内空気の露点温度以下となり、除湿を行うことができる。【選択図】図1

Description

本発明は、室内機を複数備えたマルチ型空気調和装置において、低負荷時であっても除湿を行うことが可能な空気調和装置に関する。
空気調和装置のドライ運転は、室温の低下を抑えつつ湿度を下げることで快適性を向上させる。ドライ運転は、再熱除湿と弱冷房除湿の2つの方式がある。再熱除湿は、室内機が備える熱交換器に、空気を除湿する蒸発器としての機能と空気を加熱する凝縮器としての機能の両方を持たせる運転である。一方、弱冷房除湿は、熱交換器全体を使って空気を除湿する運転である。再熱除湿は、弱冷房除湿と比べて室温低下を抑えられる。しかし、熱交換器の全体を使って空気を除湿できない。そのため、除湿量を上げるために冷媒循環量を弱冷房除湿よりも大きくする必要がある。それによって、消費電力も大きくなる。一方、空気を加熱しない弱冷房除湿は、再熱除湿と比べて室温低下が大きい。しかし、弱冷房除湿は熱交換器全体を使って空気を除湿できる。そのため、冷媒循環量が再熱除湿よりも少なくて済む。それによって、消費電力を小さくすることができる。
室内機を複数備えたマルチ型空気調和装置の冷房運転時において、室外機に設けられ、熱交換器に冷媒を送る圧縮機の回転数は、各室内機で要求された能力の合計値に基づいて決定される。従来、マルチ型空気調和装置で冷房運転を行っている中、ドライ運転を行う室内機が存在した場合、他の冷房運転中の室内機で要求された能力の合計値が低い、すなわち、低負荷状態だと、圧縮機の回転数が低くなり、ドライ運転を行う室内機の熱交換器温度(蒸発温度)が下がりにくくなる。もし、熱交換器温度が室内空気の露点温度を下回らなかった場合、除湿ができない。
そのため、複数の室内機のうちの一つに除湿用の室内機を備え、空気調和装置の冷房運転中には、除湿用の室内機に設けられた熱交換器内の冷媒の蒸発温度を他の室内機に設けられた熱交換器内の冷媒の蒸発温度よりも低くできる空気調和装置がある(例えば、特許文献1)。これにより、冷房運転を行っている室内機で要求された能力の合計値によらず、ドライ運転を行う室内機で確実に除湿を行うことができる。しかし、上述の技術では除湿用の室内機に別途圧縮機を設ける必要があるため、ドライ運転を行う室内機が予め決められた除湿用の室内機でしか行うことができなかった。
特開2009−180492号公報
本発明は以上述べた問題点を解決するものであって、マルチ型空気調和装置において、低負荷時であっても任意の室内機で除湿を行うことが可能な空気調和装置を提供することを目的とする。
上記の課題を解決するために、本発明の空気調和装置は、一台の室外機に対して、室内熱交換器を有する室内機を複数台接続し、当該各室内機を個別に運転可能とした空気調和装置において、複数台の前記室内機のうち少なくとも一台の室内機が冷房運転中であって、他の室内機がドライ運転の指示を受けた場合、ドライ運転を行う前記室内機の前記室内熱交換器を流れる冷媒の蒸発温度が目標蒸発温度以下となるように冷媒回路を制御する。
また、好ましくは、目標蒸発温度には、ドライ運転の指示を受けていた室内機が設けられている部屋の露点温度以下の温度が設定される。
また、好ましくは、前記圧縮機の回転数は、冷房運転を行う前記室内機の要求能力の合計値に基づいて定められる第1圧縮機回転数F1と、前記目標蒸発温度に基づいて定められる第2圧縮機回転数F2のうち何れか大きい方が設定される。
上記のように構成した本発明の空気調和装置によれば、低負荷時であっても任意の室内機で除湿を行うことができる。
本発明の実施形態である空気調和装置の冷媒回路図である。 本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。 本発明の実施形態における、室内機制御手段での処理を説明するフローチャートである。 本発明の実施形態における、ドライ室内機処理を説明するフローチャートである。 本発明の実施形態における、他室ドライ室内機処理を説明するフローチャートである。 本発明の実施形態における、冷房運転室内機処理を説明するフローチャートである。 本発明の実施形態における、目標相対湿度、室温と目標蒸発温度の関係を示すテーブルである。
以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に4台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行えるマルチ型の空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で並列に接続された4台の室内機5a〜5dとを備えている。
上記各構成要素は次のように接続されている。第1液管8aの一端が室外機2の第1液側閉鎖弁28aに、他端が室内機5aの閉鎖弁53aにそれぞれ接続されている。また、第2液管8bの一端が室外機2の第2液側閉鎖弁28bに、他端が室内機5bの閉鎖弁53bにそれぞれ接続されている。また、第3液管8cの一端が室外機2の第3液側閉鎖弁28cに、他端が室内機5cの閉鎖弁53cにそれぞれ接続されている。また、第4液管8dの一端が室外機2の第4液側閉鎖弁28dに、他端が室内機5dの閉鎖弁53dにそれぞれ接続されている。また、ガス管9は一端が室外機2のガス側閉鎖弁29に、他端が分岐して室内機5a〜5dの各閉鎖弁54a〜54dにそれぞれ接続されている。このように、室外機2と室内機5a〜5dとが第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で接続されて、空気調和装置1の冷媒回路10が構成されている。
まず、図1(A)を用いて、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第1室外膨張弁24aと、第2室外膨張弁24bと、第3室外膨張弁24cと、第4室外膨張弁24dと、室外ファン27と、一端に第1液管8aが接続された第1閉鎖弁28aと、一端に第2液管8bが接続された第2閉鎖弁28bと、一端に第3液管8cが接続された第3閉鎖弁28cと、一端に第4液管8dが接続された第4閉鎖弁28dと、一端にガス管9が接続されたガス側閉鎖弁29と、室外機制御手段200とを備えている。そして、室外ファン27および室外機制御手段200を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。
圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、後述する四方弁22のポートcと吸入管42で接続されている。
四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートdは、ガス側閉鎖弁29と室外機ガス管44で接続されている。
室外熱交換器23は、後述する室外ファン27の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は上述したように冷媒配管43で四方弁22のポートbに接続され、他方の冷媒出入口には室外機液管45の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。
室外機液管45の他端には、第1液分管46aの一端と第2液分管46bの一端と第3液分管46cの一端と第4液分管46dの一端が各々接続されている。また、第1液分管46aの他端は第1液側閉鎖弁28aと接続され、第2液分管46bの他端は第2液側閉鎖弁28bと接続され、第3液分管46cの他端は第3液側閉鎖弁28cと接続され、第4液分管46dの他端は第4液側閉鎖弁28dと接続されている。
第1液分管46aには、第1室外膨張弁24aが設けられている。また、第2液分管46bには、第2室外膨張弁24bが設けられている。また、第3液分管46cには、第3室外膨張弁24cが設けられている。さらには、第4液分管46dには、第4室外膨張弁24dが設けられている。
第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、第4室外膨張弁24dは、各々電子膨張弁である。第1室外膨張弁24aの開度を調節することで、後述する室内機5aの室内熱交換器51aを流れる冷媒量を調節する。第2室外膨張弁24bの開度を調節することで、後述する室内機5bの室内熱交換器51bを流れる冷媒量を調節する。第3室外膨張弁24cの開度を調節することで、後述する室内機5cの室内熱交換器51cを流れる冷媒量を調節する。第4室外膨張弁24dの開度を調節することで、後述する室内機5dの室内熱交換器51dを流れる冷媒量を調節する。
室外ファン27は、樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ33とが設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ34とが設けられている。室外熱交換器23には、室外熱交換器23の温度を検出する室外熱交温度センサ35が設けられている。
第1液分管46aにおける、第1室外膨張弁24aと第1液側閉鎖弁28aとの間には、この間の第1液分管46aを流れる冷媒の温度を検出する第1液温度センサ38aが設けられている。第2液分管46bにおける、第2室外膨張弁24bと第2液側閉鎖弁28bとの間には、この間の第2液分管46bを流れる冷媒の温度を検出する第2液温度センサ38bが設けられている。第3室外膨張弁24cと第3液側閉鎖弁28cとの間には、この間の第3液分管46cを流れる冷媒の温度を検出する第3液温度センサ38cが設けられている。第4室外膨張弁24dと第4液側閉鎖弁28dとの間には、この間の第4液分管46dを流れる冷媒の温度を検出する第4液温度センサ38dが設けられている。そして、室外機2の図示しない吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ100が備えられている。
また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230とを備えている。
記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態、後述する各種テーブル等を記憶する。通信部230は、室内機5a〜5dとの通信を行うインターフェイスである。
CPU210は、各種センサでの検出値を取り込むとともに、室内機5a〜5dから送信される運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号が通信部230を介して入力される。CPU210は、これら取り込んだ各種検出値や入力された各種情報に基づいて、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24cおよび第4室外膨張弁24dの開度制御や、圧縮機21や室外ファン27の駆動制御、四方弁22の切り換え制御を行う。
次に、4台の室内機5a〜5dについて説明する。4台の室内機5a〜5dは、室内熱交換器51a〜51dと、第1液管8aと第2液管8bと第3液管8cと第4液管8dがそれぞれ接続された液側閉鎖弁53a〜53dおよび分岐したガス管9の他端がそれぞれ接続されたガス側閉鎖弁54a〜54dと、室内ファン55a〜55dと、室内機制御手段500a〜500dとを備えている。そして、室内ファン55a〜55dおよび室内機制御手段500a〜500dを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50a〜50dを構成している。
尚、室内機5a〜5dの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5c、5dについては説明を省略する。また、図1(A)では、室内機5aの構成装置に付与した番号の末尾をaからb、cおよびdにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5c、5dの構成装置となる。
室内熱交換器51aは、後述する室内ファン55aの回転により室内機5aに備えられた図示しない吸込口から室内機5aの内部に取り込まれた室内空気と冷媒を熱交換させるものであり、一方の冷媒出入口が液側閉鎖弁53aに室内機液管71aで接続され、他方の冷媒出入口がガス側閉鎖弁54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
室内ファン55aは、室内熱交換器51aの近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を室内機5aに備えられた図示しない吹出口から室内へ供給する。
以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内熱交換器51aには、室内熱交換器51aの温度を検出する室内熱交温度センサ61aが設けられている。また、室内機ガス管72aには第1ガス温度センサ63aが設けられている。さらに、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ62aが備えられている。
また、室内機5aには、室内機制御手段500aが備えられている。制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aとを備えている。
記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。
CPU510aは、各種センサでの検出値を取り込むとともに、使用者が図示しないリモコンを操作して設定した運転条件やタイマー運転設定等を含んだ信号が図示しないリモコン受光部を介して入力される。CPU510aは、これら取り込んだ各種検出値や入力された各種情報に基づいて室内ファン55aの駆動制御を行う。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号を、通信部530aを介して室外機2に送信する。
次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5dが冷房運転を行う場合について説明し、暖房運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、冷房運転時の冷媒の流れを示している。
図1(A)に示すように、室内機5a〜5dが冷房運転を行う場合、つまり、冷媒回路10が冷房サイクルとなる場合は、室外機2では、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換えられる。これにより、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器51a〜51dが蒸発器として機能する。
圧縮機21から吐出された高圧の冷媒は、吐出管41から四方弁22を介して冷媒配管43に流入し、冷媒配管43から室外熱交換器23に流入する。冷媒配管43から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から流出した冷媒は、室外機液管45を流入した後分岐して第1液分管46a、第2液分管46b、第3液分管46c、および第4液分管46dを流れる。その後、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dを通過して減圧された後、第1液側閉鎖弁28a、第2液側閉鎖弁28b、第3液側閉鎖弁28c、および第4液側閉鎖弁28dを介して第1液管8a、第2液管8b、第3液管8c、および第4液管8dに流入する。第1液管8a、第2液管8b、第3液管8c、および第4液管8dに流入した冷媒は、液側閉鎖弁53a〜53dを介して室内機5a〜5dに流入する。
室内機5a〜5dに流入した冷媒は、室内機液管71a〜71dを流れて室内熱交換器51a〜51dに流入する。室内熱交換器51a〜51dに流入した冷媒は、室内ファン55a〜55dの回転により図示しない吸込口から室内機5a〜5dの内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器51a〜51dが蒸発器として機能し、室内熱交換器51a〜51dで冷媒と熱交換を行って冷やされた室内空気が図示しない吹出口から室内機5a〜5dが設置されている部屋に吹き出されることによって、各部屋の冷房が行われる。
室内熱交換器51a〜51dから流出した冷媒は室内機ガス管72a〜72dを流れ、ガス側閉鎖弁54a〜54dを介してガス管9に流入する。ガス管9からガス側閉鎖弁29を介して室外機2に流入した冷媒は、室外機ガス管44を流れて四方弁22に流入し四方弁22から吸入管42へと流れ、圧縮機21に吸入されて再び圧縮される。
尚、室内機5a〜5dが暖房を行う場合、つまり、冷媒回路10が暖房サイクルとなる場合は、室外機2では、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り換えられる。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a〜51dが凝縮器として機能する。
次に、本実施形態の空気調和装置1の冷房運転中、一台の室内機5がドライ(除湿)運転を行っている場合の制御について詳細に説明する。
尚、以下の説明では、室内温度センサ62a〜62dで検出する室内温度をTi、予めユーザ等により設定され記憶部520a〜520dに記憶された室内温度の目標値である設定温度をTstとする。
空気調和装置1の冷房運転時において、圧縮機21の回転数は、各室内機5で要求された能力の合計値に基づいて決定される。各室内機5で要求された能力とは、室内機5が設けられた部屋の室内温度Tiと、室内機毎に設定された設定温度Tstの温度差ΔT(=Ti−Tst)に基づいて算出されるものとする。従来、空気調和装置1で冷房運転を行っている中、ドライ運転を行う室内機5が存在した場合、他の冷房運転中の室内機5で要求された能力の合計値が低い、すなわち、低負荷状態だと、圧縮機21の回転数が低くなり、ドライ運転を行う室内機5の室内熱交換器51の温度(蒸発温度)が下がりにくくなる。もし、室内熱交換器51の温度が室内空気の露点温度を下回らなかった場合、除湿ができない。
そこで、本発明では、複数台の室内機5のうち少なくとも1台の室内機5が冷房運転中であって、他の室内機5がドライ運転の指示を受けた場合、ドライ運転に適した蒸発温度以下となるように圧縮機21の回転数を制御するようにしている。
以下、図2〜6を用いて本発明に関わる処理について詳細に説明する。尚、フローチャートでは、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、本発明に関わる処理を中心に説明しており、空気調和装置1が暖房運転を行うときの処理や、使用者の指示した設定温度や風量などの運転条件に対応した冷媒回路10の制御、等といった一般的な処理については説明を省略する。
まず、室外機2側で行う制御について詳細に説明する。図2のフローチャートによる処理は、室外機制御手段200が行う処理を示しており、ユーザによるリモコン操作等によって冷房運転若しくはドライ運転が開始された場合に行うものである。冷房運転若しくはドライ運転が開始されると、CPU210は、通信部230を介して冷房運転を行う各室内機5a〜5dから要求能力Cra〜Crdを受信する(ST101)。要求能力Craは、室内機制御手段500aが備えるCPU510aで算出される。要求能力Crbは、室内機制御手段500bが備えるCPU510bで算出される。要求能力Crcは、室内機制御手段500cが備えるCPU510cで算出される。要求能力Crdは、室内機制御手段500dが備えるCPU510dで算出される。
ステップST101の処理を終えたCPU210は、要求能力の合計値Crtを算出し(ST102)、合計値Crtから圧縮機回転数F1を算出する(ST103)。圧縮機回転数F1は、冷房運転に適した空調負荷に見合った回転数であって、予め記憶部220に記憶された要求能力の合計値Crtと圧縮機回転数F1との対応関係を規定したテーブル若しくは数式(予め試験等によって求められる)に基づいて算出される。
ステップST103の処理を終えたCPU210は、複数の室内機5のうちドライ運転を行う室内機(ドライ室内機)が存在するか否かを判定する(ST104)。ドライ室内機が有れば(ST104−YES)、CPU210は、通信部230を介してドライ運転を行う室内機5から目標蒸発温度Tesを受信する(ST105)。目標蒸発温度Tesとは、ドライ運転を行う室内機5が設置されている部屋の室内空気の相対湿度をユーザ等により予め設定された目標相対湿度にするために必要な温度である。ドライ運転を行う室内機5が設置されている部屋の室内空気の相対湿度が目標相対湿度より低い場合でない限り、目標蒸発温度Tesは必ず室内空気の露点温度以下となるため、必ず除湿を行うことができる。つまり、ドライ運転を行う室内機5の室内熱交換器51の温度を目標蒸発温度Tes以下にすることで、ドライ運転を行う室内機5が室内空気を目標相対湿度まで除湿することが可能となる。図7は、室温Tiと目標相対湿度と目標蒸発温度Tesの関係を示すテーブルである。例えば、室温が28℃で目標相対湿度が60%の場合、目標蒸発温度Tesは19.5℃に設定される。目標蒸発温度Tesは、ドライ運転を行う室内機5の室内機制御手段500が備える記憶部520に図7に示すようなテーブルを記憶させておき、CPU510で算出されるようにしてもよいし、固定値であってもよい。
ドライ運転を行う室内機5が無ければ(ST104−NO)、ステップST109に移行する。ステップST109では、CPU210は、圧縮機21の回転数を要求能力の合計値Crtに基づいて算出した圧縮機回転数F1に設定する。つまり、冷房運転に適した空調負荷に見合った回転数で圧縮機21を駆動させる。その後、ステップST110へ移行する。
ステップST105の処理を終えたCPU210は、目標蒸発温度Tesから圧縮機回転数F2を算出する(ST106)。圧縮機回転数F2は、ドライ運転を行う室内機5の室内熱交換器内を流れる冷媒の蒸発温度が目標蒸発温度Tesとなる回転数、つまり、確実に室内空気を除湿することが可能となる回転数であって、予め記憶部220に記憶された目標蒸発温度Tesと圧縮機回転数F2との対応関係を規定したテーブル若しくは数式(予め試験等によって求められる)に基づいて算出される。なお、ドライ運転を行う室内機5が複数台存在する場合は複数の室内機5から目標蒸発温度Tesを受信することになるが、その際は、最も低い目標蒸発温度Tesに基づいて圧縮機回転数F2を算出することで、ドライ運転を行う全ての室内機5で目標相対湿度まで除湿を行うことができる。
ステップST106の処理を終えたCPU210は、圧縮機回転数F2が圧縮機回転数F1よりも大きいか否かを判定する(ST107)。圧縮機回転数F2が圧縮機回転数F1より大きければ(ST107−YES)、CPU210は、圧縮機21の回転数を目標蒸発温度Tesに基づいて算出した圧縮機回転数F2に設定する(ST108)。つまり、冷房運転に適した空調負荷に見合った回転数だと除湿ができない状態(低負荷状態)と判断し、ドライ運転に適した回転数で圧縮機21を駆動させている。一方、圧縮機回転数F2が圧縮機回転数F1以下であれば(ST107−NO)、CPU210は、圧縮機21の回転数を要求能力の合計値Crtに基づいて算出した圧縮機回転数F1に設定する(ST109)。室内熱交換器51内を流れる冷媒の蒸発温度は、圧縮機21の回転数が大きくなればなる程下がる。そのため、圧縮機回転数F1が圧縮機回転数F2以上であれば、圧縮機21の回転数を圧縮機回転数F1に設定しても蒸発温度が目標蒸発温度Tes以下となる。つまり、冷房運転に適した空調負荷に見合った回転数でも除湿ができる状態と判断し、冷房運転に適した空調負荷に見合った回転数で圧縮機21を駆動させる。
ステップST108またはステップST109の処理を終えたCPU210は、室内機5の全台が運転を停止する指令を受けているか否かを判定し(ST110)、運転を停止する指令を受けていれば(ST110−YES)圧縮機21を停止させて、運転を停止する指令を受けていなければ(ST110−NO)ステップST101に処理を戻す。
続いて、各室内機5側で行う制御について詳細に説明する。図2のフローチャートによる処理は、室外機制御手段200が行う処理を示しており、ユーザによるリモコン操作等によって冷房運転若しくはドライ運転が開始された場合に行うものである。図3〜6のフローチャートによる処理は、各室内機5の各室内機制御手段500が行う処理を示しており、ユーザによるリモコン操作等によって冷房運転若しくはドライ運転が開始された場合に行うものである。すなわち、冷房運転若しくはドライ運転を行う室内機5が複数台存在すれば、各室内機制御手段500が並行して以下で説明する処理を実行する。冷房運転若しくはドライ運転が開始されると、CPU510は、除湿(ドライ)運転が開始されたか否かを判定する(ST201)。ドライ運転が開始された場合(ST201−YES)、図4のドライ室内機処理(A)へ移行する(ST202)。ドライ運転以外(冷房運転若しくは送風運転)が開始された場合(ST201−NO)、ステップST203へ移行し、他の室内機5がドライ運転を行っているか否かを判定する。他の室内機5がドライ運転を行っている場合(ST203−YES)、図5の他室ドライ室内機処理(B)へ移行する(ST204)。他の室内機5がドライ運転を行っていない場合(ST203−NO)、図6の冷房室内機処理(C)へ移行する(ST205)。
ステップST202、ステップST204又はステップST205の処理を終えたCPU510は、室内機5が運転を停止する指令を受けているか否かを判定し(ST206)、運転を停止する指令を受けていれば(ST206−YES)、当該室内機5に対応する室外膨張弁24を閉じて運転停止する。運転を停止する指令を受けていなければ(ST206−NO)ステップST201に処理を戻す。
[ドライ室内機処理(A)]
図4のフローチャートによる処理は、図3による処理がステップST202に移行したら行われる。まず、CPU510は、目標蒸発温度Tesを算出する(ST301)。目標蒸発温度Tesとは、前述の通り、ドライ運転を行う室内機5が設置されている部屋の室内空気の相対湿度をユーザ等により予め設定された目標相対湿度にするために必要な温度である。つまり、ドライ運転を行う室内機5の室内熱交換器51の温度を目標蒸発温度Tes以下にすることで、ドライ運転を行う室内機5が室内空気を除湿することが可能な温度、すなわち露点温度以下の温度となる。目標蒸発温度Tesは、固定値でもよい。例えば、Tes=10℃であれば、室内温度が18℃の時でも相対湿度が60%以下になるまで除湿を行うことができる。また、ユーザがリモコン等で目標湿度を設定できるようにした場合、予め記憶部220に記憶された目標蒸発温度Tesと設定湿度、室内温度との対応関係を規定した図7に示すようなテーブル若しくは数式に基づいて算出されるようにしてもよい。また、室内機5の図示しない吸込口に湿度センサを設けて、室内温度と検出湿度から露点温度を算出し、露点温度に基づいて目標蒸発温度Tesを算出するようにしてもよい。ステップST301の処理を終えたCPU510は、算出した目標蒸発温度Tesを通信部530を介して室外機2に送信する(ST302)。
ステップST302の処理を終えたCPU510は、温度差ΔTが第1所定温度T1以下であるか否かを判定する(ST303)。温度差ΔTとは、当該ドライ運転を行う室内機5が設けられた部屋の室内温度Tiと、室内機毎に設定された設定温度Tstの温度差ΔT(=Ti−Tst)である。第1所定温度T1とは、温度差ΔTがその値を超えている場合は空調負荷が大きいと判断できる温度である。温度差ΔT>T1の場合(ST303−NO)、室内ファン55の回転数をドライ運転時における最大回転数に設定し、当該ドライ運転を行う室内機5に対応する室外膨張弁24の開度制御を行う際の目標過熱度SHtを最小値に設定する(ST304)。なお、ドライ運転時における室内ファン55の回転数の最大値は、冷房運転時と比べて低く設定されている。これは、ドライ運転が室内温度の低下を抑えつつ相対湿度を下げることを目的としているからである。また、室外膨張弁24の開度制御を行うことで当該ドライ運転を行う室内機5に流れる冷媒の流量を調整している。室外膨張弁24の開度制御は、室内熱交温度センサ61の検出値とガス温度センサ63の検出値の差である過熱度SHが目標過熱度SHtとなるように制御される。このとき、目標過熱度SHtを下げると、室外膨張弁24を開方向に制御して当該ドライ運転を行う室内機5に流れる冷媒の流量を増加させることができる。反対に、目標過熱度SHtを上げると、室外膨張弁24を閉方向に制御して当該ドライ運転を行う室内機5に流れる冷媒の流量を減少させることができる。これによって、当該ドライ運転を行う室内機5のその時の室内熱交換器51の温度における冷媒と空気との熱交換量が最大になる。
一方、温度差ΔTが第1所定温度T1以下である場合(ST303−YES)、ステップST305へ移行し、温度差ΔTが第2所定温度T2以下であるか否かを判定する(ST305)。第2所定温度T2とは、温度差ΔTがその値以下である場合は空調負荷が小さいと判断される温度である。温度差ΔT>T2の場合(ST305−NO)、CPU510は、図3のフローチャートへ戻り、ステップST206へ移行する。温度差ΔT≦T2の場合(ST305−YES)、ステップST306へ移行し、室内ファン55の回転数がドライ運転時における最小回転数であるか否かを判定する(ST306)。室内ファン55の回転数がドライ運転時における最小回転数ではない場合(ST306−NO)、室内ファン55の回転数を所定回転数だけ下げる(ST307)。これによって、当該ドライ運転を行う室内機5のその時の室内熱交換器51の温度における冷媒と空気との熱交換量を減少方向に調整できる。所定回転数は、小さな値にすることで熱交換量のきめ細かい調整が可能となる。室内ファン55の回転数がドライ運転時における最小回転数である場合(ST306−YES)、ステップST308へ移行し、当該ドライ運転を行う室内機5に対応する室外膨張弁24の開度制御を行う際の目標過熱度SHtが最大値であるか否かを判定する(ST308)。当該ドライ運転を行う室内機5に対応する室外膨張弁24の開度制御を行う際の目標過熱度SHtが最大値ではない場合(ST308−NO)、当該ドライ運転を行う室内機5に対応する室外膨張弁24の開度制御を行う際の目標過熱度SHtを所定値だけ増加させる(ST309)。これによって、室内ファン55の回転数が最小回転数であっても、当該ドライ運転を行う室内機5のその時の室内熱交換器51の温度における冷媒と空気との熱交換量を減少方向に調整できる。所定値は、小さな値にすることで熱交換量のきめ細かい調整が可能となる。当該ドライ運転を行う室内機5に対応する室外膨張弁24の開度制御を行う際の目標過熱度SHtが最大値である場合(ST306−YES)、当該ドライ運転を行う室内機5のその時の室内熱交換器51の温度における冷媒と空気との熱交換量は最小であるため、ステップST308へ移行し、サーモオフ状態となるように室外膨張弁24を全閉にする。
ステップST304,ステップST307、ステップST309、ステップST310の処理を終えたCPU510は、図3のフローチャートへ戻り、ステップST206へ移行する。
以上のように、ドライ室内機処理を行う、すなわち、室内ファン55と室外膨張弁24を制御して室内機5での冷媒と空気との熱交換量を調整するので、ドライ運転中の室内機5は確実に除湿を行いつつ室内温度が設定温度付近で安定するようにドライ運転を行うことができる。
[他室ドライ室内機処理(B)]
図5のフローチャートによる処理は、図3による処理がステップST204に移行したら行われる。まず、CPU510は、室内ファン55の回転数をユーザ等により定められた回転数(要求回転数)で駆動させる(ST401)。その後、室内温度Tiが設定温度Tstを下回ったか否かを判定する(ST402)。室内温度Tiが設定温度Tstを下回っていたら(ST402−YES)、ステップST403へ移行し、サーモオフ状態となるように室外膨張弁24を全閉にする。室内温度Tiが設定温度以上である場合(ST402−NO)、若しくは、ステップST403の処理を終えたCPU510は、図3のフローチャートへ戻り、ステップST206へ移行する。
以上のように、他室ドライ室内機処理を行う、すなわち、他の室内機に除湿運転中の室内機が存在している状況で冷房運転を行う室内機5は、室内機5での冷媒と空気との熱交換量を調整することが無いため、他の室内機5でドライ運転中であっても室内熱交換器51の温度が目標蒸発温度Tesを上回ることが無く、確実に除湿を行うことができる。
[冷房室内機処理(C)]
図6のフローチャートによる処理は、図3による処理がステップST205に移行したら行われる。まず、CPU510は、要求能力Crを算出する(ST501)。要求能力Crとは、室内機5が設けられた部屋の室内温度Tiと、室内機毎に設定された設定温度Tstの温度差ΔT(=Ti−Tst)に基づいて算出され、予め記憶部220に記憶された要求能力Crと温度差ΔTとの対応関係を規定したテーブル若しくは数式(予め試験等によって求められる)に基づいて算出される。その後、算出した要求能力Crを通信部530を介して室外機2に送信する(ST502)。
ステップST502の処理を終えたCPU510は、室内ファン55の回転数をユーザ等により定められた回転数(要求回転数)で駆動させる(ST503)。その後、室内温度Tiが設定温度Tstを下回ったか否かを判定する(ST504)。室内温度Tiが設定温度Tstを下回っていたら(ST504−YES)、ステップST505へ移行し、サーモオフ状態となるように室外膨張弁24を全閉にする。室内温度Tiが設定温度以上である場合(ST504−NO)、若しくは、ステップST505の処理を終えたCPU510は、図3のフローチャートへ戻り、ステップST206へ移行する。
以上のように、冷房室内機処理を行う、すなわち、他の室内機にドライ運転中の室内機5が存在しない状況で冷房運転を行う室内機5は、室内機5での冷媒と空気との熱交換量を調整するため、要求能力Crに応じて圧縮機21の回転数を変化させているので、室内機5では空調負荷に見合った熱交換量で冷房運転を行うことができる。
1 空気調和装置
2 室外機
5 室内機
8 液管
51 室内熱交換器
24 室外膨張弁

Claims (3)

  1. 一台の室外機に対して、室内熱交換器を有する室内機を複数台接続し、当該各室内機を個別に運転可能とした空気調和装置において、
    複数台の前記室内機のうち少なくとも一台の室内機が冷房運転中であって、他の室内機がドライ運転の指示を受けた場合、
    ドライ運転を行う前記室内機の前記室内熱交換器を流れる冷媒の蒸発温度が目標蒸発温度以下となるように冷媒回路を制御することを特徴とする空気調和装置。
  2. 目標蒸発温度には、ドライ運転の指示を受けていた室内機が設けられている部屋の露点温度以下の温度が設定されることを特徴とする請求項1に記載の空気調和装置。
  3. 前記圧縮機の回転数は、
    冷房運転を行う前記室内機の要求能力の合計値に基づいて定められる第1圧縮機回転数F1と、
    前記目標蒸発温度に基づいて定められる第2圧縮機回転数F2のうち何れか大きい方が設定されることを特徴とする請求項1又は2に記載の空気調和装置。
JP2016065182A 2016-03-29 2016-03-29 空気調和装置 Pending JP2017180901A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016065182A JP2017180901A (ja) 2016-03-29 2016-03-29 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065182A JP2017180901A (ja) 2016-03-29 2016-03-29 空気調和装置

Publications (1)

Publication Number Publication Date
JP2017180901A true JP2017180901A (ja) 2017-10-05

Family

ID=60005874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065182A Pending JP2017180901A (ja) 2016-03-29 2016-03-29 空気調和装置

Country Status (1)

Country Link
JP (1) JP2017180901A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163920A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 空気調和装置及び空調制御方法
CN111183327A (zh) * 2017-10-10 2020-05-19 三菱电机株式会社 制冷循环装置
WO2020157851A1 (ja) * 2019-01-30 2020-08-06 三菱電機株式会社 空気調和装置
CN112856728A (zh) * 2018-01-23 2021-05-28 大金工业株式会社 空调装置
WO2022264254A1 (ja) * 2021-06-15 2022-12-22 三菱電機株式会社 多室型空気調和装置
CN115751510A (zh) * 2023-01-04 2023-03-07 常州市九洲干燥设备有限公司 一种带有自动报警功能的气体干燥装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183327A (zh) * 2017-10-10 2020-05-19 三菱电机株式会社 制冷循环装置
CN111183327B (zh) * 2017-10-10 2021-09-03 三菱电机株式会社 制冷循环装置
CN112856728A (zh) * 2018-01-23 2021-05-28 大金工业株式会社 空调装置
CN112856728B (zh) * 2018-01-23 2022-06-28 大金工业株式会社 空调装置
JP2019163920A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 空気調和装置及び空調制御方法
WO2020157851A1 (ja) * 2019-01-30 2020-08-06 三菱電機株式会社 空気調和装置
JPWO2020157851A1 (ja) * 2019-01-30 2021-09-09 三菱電機株式会社 空気調和装置
JP7058773B2 (ja) 2019-01-30 2022-04-22 三菱電機株式会社 空気調和装置
WO2022264254A1 (ja) * 2021-06-15 2022-12-22 三菱電機株式会社 多室型空気調和装置
JP7459381B2 (ja) 2021-06-15 2024-04-01 三菱電機株式会社 多室型空気調和装置
CN115751510A (zh) * 2023-01-04 2023-03-07 常州市九洲干燥设备有限公司 一种带有自动报警功能的气体干燥装置

Similar Documents

Publication Publication Date Title
JP2017180901A (ja) 空気調和装置
JP2012077948A (ja) コントローラおよび空調処理システム
JP2016061456A (ja) 空気調和装置
JP2016166719A (ja) 空気調和装置
JP2014153009A (ja) 外気処理装置
JP6283825B2 (ja) 空気調和装置
JP4869117B2 (ja) 空気調和装置
JP2019020061A (ja) 空気調和装置
KR102059047B1 (ko) 히트펌프 시스템 및 그 제어방법
KR20130053972A (ko) 공기조화기 및 그 제어방법
JP6638468B2 (ja) 空気調和装置
CN111886458B (zh) 空调机
JP2020122626A (ja) 空気調和機
JP2017142017A (ja) 空気調和装置
JP2011257097A (ja) 多室型空気調和装置
JP6672860B2 (ja) 空気調和装置
JP2019168116A (ja) 空気調和装置
JP2017133777A (ja) 空気調和装置
JP2019100591A (ja) 空気調和装置
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP7126611B2 (ja) 空気調和装置
JP7343755B2 (ja) 冷媒サイクルシステム
JP2017032251A (ja) マルチタイプ空気調和装置
WO2019181316A1 (ja) 空気調和機
JP2021162174A (ja) 空気調和装置