JP2019100591A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2019100591A
JP2019100591A JP2017230054A JP2017230054A JP2019100591A JP 2019100591 A JP2019100591 A JP 2019100591A JP 2017230054 A JP2017230054 A JP 2017230054A JP 2017230054 A JP2017230054 A JP 2017230054A JP 2019100591 A JP2019100591 A JP 2019100591A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
pipe
temperature
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017230054A
Other languages
English (en)
Inventor
光将 榎本
Mitsumasa Enomoto
光将 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017230054A priority Critical patent/JP2019100591A/ja
Publication of JP2019100591A publication Critical patent/JP2019100591A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡易な方法で高低差と配管長を合わせて推定できる空気調和装置を提供する。【解決手段】空気調和装置1では、冷媒回路10を暖房サイクルとし、圧縮機21の回転数を制御して冷媒回路10における冷媒流速VrをAm/sとし、この冷媒流速Vrであるときの室内側液温度Tliと室外側液温度Tloとの温度差ΔTを算出する。そして、この温度差ΔTと高低差・配管長推定テーブル300に定められている冷媒流速VrがAm/sであるときの各温度差ΔTを比較する。この段階で高低差Hあるいは配管長Lのうちの少なくとも一方が推定できない場合は、冷媒流速VrをBm/sに上昇させ、この冷媒流速Vrであるときの室内側液温度Tliと室外側液温度Tloとの温度差ΔTを算出して高低差・配管長推定テーブル300に定められている冷媒流速VrがBm/sであるときの各温度差ΔTと比較する。【選択図】図4

Description

本発明は、室外機と室内機が冷媒配管で接続された空気調和装置に関する。
従来、室外機の設置位置と室内機の設置位置との高低差を推定できる空気調和機や、室外機と室内機とを接続する冷媒配管の長さである配管長を推定できる空気調和装置が提案されている。
例えば、特許文献1では、室外機の設置位置と室内機の設置位置との高低差(以降、必要な場合を除いて単に「高低差」と記載する)を推定できる空気調和装置が提案されている。特許文献1に記載の空気調和装置は、冷房運転中に高低差の判定を行うものであり、膨張弁の開度の調整に対する室内熱交換器の冷媒出口側における冷媒過熱度の変化に基づいて高低差を推定している。
また、特許文献2では、室外機と室内機とを接続する冷媒配管の長さである配管長(以降、必要な場合を除いて単に「配管長」と記載する)を推定できる空気調和装置が提案されている。特許文献2に記載の空気調和装置は、冷房運転中に配管長の判定を行うものであり、圧縮機に吸入される冷媒の圧力である吸入圧力と室内熱交換器の飽和圧力とを用いて、冷媒配管を構成するガス管の圧力損失を算出している。そして、算出した圧力損失に基づいてガス管の長さを算出し、これを空気調和装置の配管長としている。
特開2013−76531号公報 特開2006−183979号公報
上述したように、高低差を推定する空気調和装置や、配管長を推定する空気調和装置はそれぞれ提案されている。しかし、高低差と配管長をそれぞれ推定するためには別々の手段が必要となり、各手段を実現するのに必要な装置も別々に必要となる。例えば、特許文献1に記載の高低差の推定では冷媒過熱度を用いるため、冷媒過熱度の検出装置が必要になる。また、特許文献2に記載の配管長の推定では吸入圧力と飽和圧力を用いるため、吸入圧力の検出装置と飽和圧力の検出装置とが必要になる。つまり、空気調和装置で高低差と配管長をそれぞれ推定するためには、それぞれを実行する装置を備える必要があり、空気調和装置がコストアップとなるという問題があった。
本発明は以上述べた問題点を解決するものであって、簡単な構成で高低差と配管長を合わせて推定できる空気調和装置を提供することを目的とする。
上記の課題を解決するために、本発明の空気調和装置は、圧縮機と室外熱交換器と膨張弁を有する室外機と、室内熱交換器を有する室内機と、室外機と室内機を接続する液管およびガス管と、室内熱交換器が凝縮器として機能するときに室内熱交換器から流出する冷媒の温度である室内側液温度を検出する室内側液温度センサと、室内熱交換器が凝縮器として機能するときに膨張弁に流入する冷媒の温度である室外側液温度を検出する室外側液温度センサと、圧縮機を制御して液管を流れる冷媒の速度である冷媒流速を変更する制御手段とを有する。そして、制御手段は、室内熱交換器が凝縮器として機能する状態で圧縮機を制御して異なる冷媒流速とした場合の、室内側液温度センサで検出した室内側液温度から室外側液温度センサで検出した室外側液温度を減じて求める各温度差に基づいて、室外機の設置場所と室内機の設置場所との高低差、および、冷媒配管の長さである配管長をそれぞれ推定する。
上記のように構成した本発明の空気調和装置によれば、簡単な構成で高低差と配管長を合わせて推定できるので、空気調和装置のコストアップを防ぐことができる。
本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。 室内機が室外機より下方に設置された状態を表す図面である。 室内機が室外機より上方に設置された状態を表す図面である。 高低差および配管長を推定する際に使用する高低差・配管長推定テーブルである。 室内機が室外機より下方に設置されている場合の高低差・配管長推定テーブルである。 室内機が室外機より上方に設置されている場合の高低差・配管長推定テーブルである。
以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、室外機と室内機が2本の冷媒配管で接続された空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
<空気調和装置の設置状態>
図1(A)に示すように、空気調和装置1は室外機2と室内機3とが冷媒配管である液管4およびガス管5で接続されている。具体的には、室外機2の閉鎖弁25と室内機3の液管接続部33とが液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34とがガス管5で接続されている。
上述した空気調和装置1が、図2および図3に示すように建物600に設置されている。図2は、室内機3が室外機2より下方に設置されている場合を示している。具体的には、室外機2が建物600の屋上に設置され、室内機2が建物600の内部に設置されている。そして、このときの室外機2の設置場所と室内機3の設置場所との高低差をH(単位:メートル)、液管4およびガス管5の長さである配管長をL(単位:メートル)としている。
また、図3は、室内機3が室外機2より上方に設置されている場合を示している。具体的には、室外機2が建物600の外部の地面に設置され、室内機2が建物600の内部に設置されている。そして、このときの室外機2の設置場所と室内機3の設置場所との高低差をH(単位:メートル)、液管4およびガス管5の長さである配管長をL(単位:メートル)としている。
尚、本実施形態の空気調和装置1では、高低差Hは最大で30メートル、配管長Lは最長100メートルとする。ここで、高低差Hは、室外機2が設置されている面(図2では建物600の屋上の床面、図3では地面)と、室内機3の筐体底面との間の高低差とする。また、配管長Lは、液管4とガス管5で同じ長さであり、液管4の長さは室外機2の閉鎖弁25から室内機3の液管接続部33までの長さ、ガス管5は室外機2の閉鎖弁26から室内機3のガス管接続部34までの長さとする。
<室外機の構成>
室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外ファン24と、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、膨張弁27と、室外機制御手段200を備えている。そして、室外ファン24と室外機制御手段200を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。
圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaに吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcに吸入管66で接続されている。
四方弁22は、冷媒回路10における冷媒の流れる方向を切り替えるための弁である。四方弁22はa、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。
室外熱交換器23は、後述する室外ファン24の回転により室外機2の内部に取り込まれた外気と、室外熱交換器23を流れる冷媒とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、後述する四方弁22の切り替えによって、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。
膨張弁27は、例えば電子膨張弁である。膨張弁27は、室外機液管63に設けられており、その開度が調整されることで、室内機3に流れる冷媒量を、室内機3で要求される冷房能力あるいは暖房能力に応じた量とする。
室外ファン24は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン24は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ71が設けられている。吸入管66には、圧縮機21に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ72が設けられている。
室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度を検出する室外熱交温度検出手段である室外熱交温度センサ73が設けられている。室外機液管63における膨張弁27と閉鎖弁25との間には、室外機液管63を流れる冷媒の温度を検出する室外側液温度センサ74が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度検出手段である外気温度センサ75が備えられている。
また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。
記憶部220は、例えばフラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン24の制御状態、膨張弁27の開度等を記憶している。また、記憶部220には、後述する高低差・配管長推定テーブル300が予め記憶されている。通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。また、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン24の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、膨張弁27の開度調整を行う。
<室内機の構成>
室内機3は、室内熱交換器31と、室内ファン32と、液管4が接続された液管接続部33と、ガス管5が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを形成している。
室内熱交換器31は、後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気と、室内熱交換器31を流れる冷媒とを熱交換させるものであり、一方の冷媒出入口が液管接続部33に室内機液管67で接続され、他方の冷媒出入口がガス管接続部34に室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。
室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。
以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内熱交換器31の図示しない冷媒パスの略中間部には、室内熱交換器51の温度を検出する室内熱交温度センサ76が設けられている。また、室内機液管67には、室内機液管67を流れる冷媒の温度を検出する室内側液温度センサ77が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ78が備えられている。
<冷媒回路の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。以下の説明では、まず、室内機3が暖房運転を行う場合について説明し、次に、冷房運転を行う場合について説明する。
<暖房運転>
空気調和機1が暖房運転を行う場合、CPU210は、図1(A)に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能する暖房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れ、閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。
室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。
室内熱交換器31から流出した冷媒は室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて室内機3で要求される暖房能力に応じた開度とされた膨張弁27を通過する際に減圧される。
膨張弁27を通過して室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<冷房運転>
空気調和機1が冷房運転あるいは除霜運転を行う場合、CPU210は、図1(A)に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。冷房運転の場合、室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。
室外熱交換器23から流出した冷媒は室外機液管63を流れ、室内機3で要求される冷房能力に応じた開度とされた膨張弁27および閉鎖弁25を介して液管4に流出する。液管4を流れ、液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入する。
室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、冷房運転の場合は、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。
室内熱交換器31から流出した冷媒は、室内機ガス管68を流れ、ガス管接続部34を介してガス管5に流出する。ガス管5を流れる冷媒は、閉鎖弁26を介して室外機2に流入し、室外機ガス管64、四方弁22、吸入管66の順に流れ、圧縮機21に吸入されて再び圧縮される。
<高低差および配管長の推定について>
次に、図1乃至図6を用いて、本実施形態の空気調和装置1における、高低差Hと配管長Lの推定に関わる動作について説明する。本実施形態の空気調和装置1では、室内熱交換器31が凝縮器として機能するようにすなわち冷媒回路10を暖房サイクルとし、圧縮機21の回転数を制御して冷媒回路10の液管4における冷媒の流速(以降、冷媒流速Vr(単位:m/s)と記載する)を所定の値とする。そして、室内側液温度センサ77で検出した冷媒の温度(以降、室内側液温度Tli(単位:℃)と記載する)から室外側液温度センサ74で検出した冷媒の温度(以降、室外側液温度Tlo(単位:℃)と記載する)を減じた温度差(以降、温度差ΔT(単位:℃)と記載する)を求め、求めた温度差ΔTを後述する高低差・配管長推定テーブル300と照合して、空気調和装置1の高低差Hと配管長Lを推定する。
尚、冷媒流速Vrは、圧縮機21の回転数をRc、圧縮機21の排除容積をD、圧縮機21の体積効率をη、圧縮機21に吸入される冷媒の密度をρs、液管4を流れる液冷媒の密度をρl、液管4の断面積をSl、液管4における体積流量をGl、冷媒回路10における冷媒循環量をGoとすると、以下に示す式により算出できる。

Vr=Gl/Sl・・・・・・・・数式1
Gl=Go/ρl・・・・・・・数式2
Go=Rc×D×η×ρs・・・数式3

上記数式1〜3に使用する各パラメータのうち、圧縮機21の回転数Rc以外のパラメータは定数のため、圧縮機21の回転数Rcを制御することで所望する冷媒流速Vrを実現できる。
また、冷媒回路10を暖房サイクルとして高低差Hおよび配管長Lを推定する場合の膨張弁27の開度は、凝縮器として機能する室内熱交換器31の冷媒出口側における冷媒過冷却度が0deg超つまり冷媒が過冷却液の状態であり、かつ、少しの冷媒圧力の低下で冷媒が液状態から気液二相状態となる値、例えば、2〜3degとなるように調整される。尚、室内熱交換器31の冷媒出口側における冷媒過冷却度は、室内熱交温度センサ78で検出した室内熱交換器31の温度から室内側液温度センサ77で検出した冷媒の温度を減じて求める。
以下、高低差Hと配管長Lの推定について説明するが、高低差Hと配管長Lとを推定する際に使用する高低差・配管長推定テーブル300について、この高低差・配管長推定テーブル300を用いた高低差Hと配管長Lの推定方法について、という順番で説明する。
<高低差・配管長推定テーブルについて>
図4に示す高低差・配管長推定テーブル300は、予め試験などを行って求められて、室外機制御手段200の記憶部220に記憶されているものである。高低差・配管長推定テーブル300には、冷媒流速Vrごとに、高低差Hと配管長Lに応じた温度差ΔTが定められている。具体的には、本実施形態の高低差・配管長推定テーブル300では、3つの冷媒流速Vr、Am/s、Bm/s、Cm/sごとに、高低差Hと配管長Lに応じた温度差ΔTが定められている。尚、冷媒流速Bm/sは冷媒流速Am/sより大きく、冷媒流速Cm/sは冷媒流速Bm/sより大きい。
ここで、高低差Hについては、室外機2の設置場所と室内機3の設置場所が同じ高さである場合の高低差Hを0メートルとする。また、図2に示すように室外機2の設置場所に対して室内機3の設置場所が下方である場合は、下方に向かうのにつれて高低差Hを10メートル/20メートル/30メートルとする。そして、図3に示すように室外機2の設置場所に対して室内機3の設置場所が上方である場合は、上方に向かうのにつれて高低差Hを−10メートル/−20メートル/−30メートルとする。
次に、高低差H、配管長L、および、冷媒流速Vrと温度差ΔTとの関係について詳細に説明する。まずは、高低差Hと温度差ΔTとの関係について説明する。高低差Hが−10メートル、−20メートル、−30メートルのいずれかである場合、つまり、室外機2の設置場所より室内機3の設置場所が上方である場合は、暖房サイクル時に凝縮器として機能する室内熱交換器31で凝縮し液管4へと流入した冷媒は、液管4内を重力によって流れ落ちて室外機2に流入する。このため、室内熱交換器31の冷媒出口つまりは室内側液温度センサ77が配置されている付近での冷媒の圧力に比べて、膨張弁27の冷媒入口つまりは室外側液温度センサ74が配置されている付近での冷媒の圧力が高くなる。
前述したように、高低差Hおよび配管長Lを推定するとき、室内熱交換器31の冷媒出口側における冷媒を過冷却度の小さい過冷却液としている。このため、室外機2の設置場所より室内機3の設置場所が上方であり、膨張弁27の冷媒入口での冷媒の圧力が室内熱交換器31の冷媒出口での冷媒の圧力より高い場合は冷媒が過冷却液のままとなり、冷媒の圧力が高くなっても冷媒の温度が変化しない。つまり、室内側液温度Tliと室外側液温度Tloが同じ温度となり、温度差ΔTが0℃となる。
一方、高低差Hが10メートル、20メートル、30メートルのいずれかである場合、つまり、室外機2の設置場所より室内機3の設置場所が下方である場合は、暖房サイクル時に凝縮器として機能する室内熱交換器31で凝縮し液管4へと流入した冷媒は、液管4内を重力に逆らって流れて室外機2に流入する。このため、室内熱交換器31の冷媒出口つまりは室内側液温度センサ77が配置されている付近での冷媒の圧力に比べて、膨張弁27の冷媒入口つまりは室外側液温度センサ74が配置されている付近での冷媒の圧力が低くなる。
前述したように、高低差Hおよび配管長Lを推定するとき、室内熱交換器31の冷媒出口側における冷媒を過冷却度の小さい過冷却液としている。このため、室外機2の設置場所より室内機3の設置場所が下方であり、膨張弁27の冷媒入口での冷媒の圧力が室内熱交換器31の冷媒出口での冷媒の圧力より低い場合は、冷媒の圧力の低下により冷媒が液状態から気液二相状態となり、冷媒が気液二相状態となった後は冷媒の圧力の低下に伴って冷媒の温度が低下する。つまり、室内側液温度Tliより室外側液温度Tloが低い温度となるため、温度差ΔTが0℃より大きな温度となる。室外側液温度Tloは、高低差Hが大きくなるほど冷媒の圧力が低下して低い温度となるので、高低差Hが大きくなるほど温度差ΔTが大きくなる。
尚、室外機2の設置場所と室内機3の設置場所が同じ高さである、つまり、高低差Hが0メートルである場合は、温度差ΔTは高低差Hの影響は受けない。
次に、配管長Lおよび冷媒流速Vrと温度差ΔTとの関係について説明する。冷媒が冷媒配管を流れる際の圧力損失の大きさは配管長Lに比例し、配管長Lが長くなるほど大きくなる。つまり、配管長Lが長くなるほど膨張弁27の冷媒入口での冷媒の圧力が室内熱交換器31の冷媒出口での冷媒の圧力より低くなる。冷媒の圧力の低下により冷媒が液状態から気液二相状態となり、冷媒が気液二相状態となった後は冷媒の圧力の低下に伴って冷媒の温度が低下するので、配管長Lが長くなるほど室外側液温度Tloが低い温度となって温度差ΔTが大きな温度となる。
また、冷媒が冷媒配管を流れる際の圧力損失の大きさは冷媒流速Vrの2乗に比例し、冷媒流速Vrが大きくなるほど冷媒が冷媒配管を流れる際の圧力損失が大きくなる。つまり、冷媒流速Vrが大きくなるほど膨張弁27の冷媒入口での冷媒の圧力が室内熱交換器31の冷媒出口での冷媒の圧力より低くなる。冷媒の圧力の低下により冷媒が液状態から気液二相状態となり、冷媒が気液二相状態となった後は冷媒の圧力の低下に伴って冷媒の温度が低下するので、冷媒流速Vrが大きくなるほど室外側液温度Tloが低い温度となって温度差ΔTが大きな温度となる。
以上説明したような高低差H、配管長L、および、冷媒流速Vrと温度差ΔTとの関係が、図4に示す高低差・配管長推定テーブル300に反映されている。以下、A、B、Cの3つの冷媒流速Vr毎に、高低差・配管長推定テーブル300を詳細に説明する。ここで、A、B、Cの3つの冷媒流速Vrは、A<B<Cの関係にあり、冷媒流速Vr=Am/sは冷媒の圧力損失が無視できるほどに小さく、冷媒流速VrがB、Cと大きくなるのにつれて圧力損失が大きくなるものとする。
<冷媒流速VrがAm/sの場合>
まず、室外機2の設置場所より室内機3の設置場所が上方である場合(高低差Hが−10メートル、−20メートル、−30メートルの場合)は、前述したように、膨張弁27の冷媒入口での冷媒の圧力が室内熱交換器31の冷媒出口での冷媒の圧力より高くなっても冷媒の温度が変化しない。また、冷媒流速VrがAm/sの場合は、配管長Lが変わっても冷媒が冷媒配管を流れる際の圧力損失が小さく、圧力損失が温度差ΔTに与える影響が小さい。このため、温度差ΔTには高低差Hのみが影響し、配管長Lに関わらず温度差ΔTが全て0℃となっている。
次に、高低差Hが0メートル、つまり、室外機2の設置場所と室内機3の設置場所が同じ高さである場合は、配管長Lが60メートル以下では温度差ΔTが0℃、配管長Lが70メートル以上では温度差ΔTが0.1℃となっている。高低差Hが0メートルの場合は、前述したように温度差ΔTは高低差Hの影響は受けず配管長Lのみの影響を受ける。しかし、冷媒流速VrがAm/sの場合は冷媒が冷媒配管を流れる際の圧力損失が小さいため、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが70メートル以上であり、しかもその影響は僅かである(配管長Lが60メートル以下のときの温度差ΔTより0.1℃だけ高い)。
そして、室外機2の設置場所より室内機3の設置場所が下方である場合(高低差Hが10メートル、20メートル、30メートルの場合)は、温度差ΔTには高低差Hと配管長Lの両方が影響し、高低差Hが大きくなるほど温度差ΔTは大きくなる。
一方、配管長Lによる影響は、上記高低差Hが0メートルの場合と同様に冷媒流速Vrが遅いことに起因して僅か(温度差ΔTの違いが0.1℃)となる。本実施形態の高低差・配管長推定テーブル300において、高低差Hが10メートルでは、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが40メートル以上であり、配管長Lが30メートル以下で温度差ΔTが1.4℃、40メートル以上で1.5℃である。また、高低差Hが20メートルでは、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが60メートル以上であり、配管長Lが50メートル以下で温度差ΔTが2.7℃、60メートル以上で2.8℃である。また、高低差Hが30メートルでは、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが60メートル以上であり、配管長Lが50メートル以下で温度差ΔTが3.9℃、60メートル以上で4.0℃である。
<冷媒流速VrがBm/sの場合>
冷媒流速VrがBm/sの場合は、冷媒流速VrがAm/sの場合より流速が大きくて冷媒の圧力損失が大きくなる。このため、室外機2の設置場所より室内機3の設置場所が上方である場合であっても、冷媒流速VrがAm/sの場合とは異なり、配管長Lがある程度長くなると温度差ΔTに配管長Lの影響が出始める。具体的には、高低差Hが−10メートルの場合は、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが50メートル以上であり、配管長Lが40メートル以下では温度差ΔTが0℃となり、配管長Lが50メートル以上では配管長Lが長くなるほど温度差ΔTが大きくなる。また、高低差Hが−20メートルの場合は、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが80メートル以上であり、配管長Lが70メートル以下では温度差ΔTが0℃となり、配管長Lが80メートル以上では配管長Lが長くなるほど温度差ΔTが大きくなる。
一方、高低差Hが−30メートルである場合は、高低差Hが−10メートルあるいは−20メートルである場合と比べて、配管長Lに依る圧力損失があっても室外側液温度センサ74が配置されている付近での冷媒の圧力が高くなって冷媒が過冷却液のままとなる。従って、温度差ΔTが全て0℃となる。
室外機2の設置場所と室内機3の設置場所が同じ高さである場合は、温度差ΔTnには配管長Lのみが影響し、配管長Lが長くなるほど温度差ΔTは大きくなる。また、室外機2の設置場所より室内機3の設置場所が下方である場合は、温度差ΔTには高低差Hと配管長Lの両方が影響し、高低差Hが大きくなるほど、また、配管長Lが長くなるほど温度差ΔTは大きくなる。前述したように、冷媒流速VrがBm/sの場合は、冷媒流速VrがAm/sの場合より流速が大きくて冷媒が受ける圧力損失も大きくなる。このため、冷媒流速VrがAm/sの場合と比べて、配管長Lが10メートル長くなるときの温度差ΔTが大きくなる度合が大きく、配管長Lが10メートル長くなると最大で1.0℃大きくなる(高低差Hが30メートルのときの、配管長Lが100メートルでの温度差ΔT(10.9℃)が、配管長Lが90メートルでの温度差ΔT(9.9℃)より1.0℃大きい)。
<冷媒流速VrがCm/sの場合>
冷媒流速VrがCm/sの場合は、冷媒流速VrがBm/sの場合より流速が大きくて冷媒の圧力損失も大きくなる。このため、室外機2の設置場所より室内機3の設置場所が上方である場合において、冷媒流速VrがAm/sやBm/sの場合と異なり、全ての高低差Hで圧力損失が温度差ΔTに与える影響が、高低差Hごとに特定の配管長Lより長くなると出始める。
具体的には、高低差Hが−30メートルの場合は、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが60メートル以上であり、配管長Lが50メートル以下では温度差ΔTが0℃となり、配管長Lが60メートル以上では配管長Lが長くなるほど温度差ΔTが大きくなる。
また、高低差Hが−20メートルの場合は、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが40メートル以上であり、配管長Lが30メートル以下では温度差ΔTが0℃となり、配管長Lが40メートル以上では配管長Lが長くなるほど温度差ΔTが大きくなる。
また、高低差Hが−10メートルの場合は、圧力損失による影響が出て冷媒が液状態から気液二相状態となるのは配管長Lが20メートル以上であり、配管長Lが10メートルでは温度差ΔTが0℃となり、配管長Lが40メートル以上では配管長Lが長くなるほど温度差ΔTが大きくなる。
室外機2の設置場所と室内機3の設置場所が同じ高さである場合は、温度差ΔTnには配管長Lのみが影響し、配管長Lが長くなるほど温度差ΔTは大きくなる。また、室外機2の設置場所より室内機3の設置場所が下方である場合は、温度差ΔTには高低差Hと配管長Lの両方が影響し、高低差Hが大きくなるほど、また、配管長Lが長くなるほど温度差ΔTは大きくなる。前述したように、冷媒流速VrがCm/sの場合は、冷媒流速VrがBm/sの場合より流速が大きくて冷媒の圧力損失も大きくなる。このため、冷媒流速VrがBm/sの場合と比べて、配管長Lが10メートル長くなるときの温度差ΔTが大きくなる度合が大きく、配管長Lが10メートル長くなると最大で6.8℃大きくなる(高低差Hが30メートルのときの、配管長Lが100メートルでの温度差ΔT(32.4℃)が、配管長Lが90メートルでの温度差ΔT(25.6℃)より6.8℃大きい)。
<高低差および配管長の推定方法>
次に、主に図5および図6を用いて、本実施形態の空気調和装置1で高低差Hと配管長Lを推定する方法について説明する。以下の説明では、まず、室外機2の設置場所が室内機3の設置場所より下方である場合について、図1、図2、および、図5を用いて説明する。次に、室外機2の設置場所が室内機3の設置場所より上方である場合について、図1、図3、および図6を用いて説明する。
<室外機の設置場所が室内機の設置場所より上方である場合>
図2に示すように、室外機2が建物600の屋上に設置され室内機2が建物600の内部に設置されている空気調和装置1で、高低差Hと配管長Lの推定を実行する指示が入力されると、室外機制御手段200のCPU210は、四方弁22を切り換えて冷媒回路10を暖房サイクルとする。次に、CPU210は、圧縮機21を起動しその回転数を冷媒回路10における冷媒流速VrがAm/sとなる回転数とする。
CPU210は、圧縮機21を起動してから冷媒回路10が安定するまで待って(例えば、圧縮機21の起動から10分後)、室内側液温度Tliと室外側液温度Tloをそれぞれ取り込む。具体的には、CPU210は、室内機3の室内側液温度センサ77が検出した室内側液温度Tliを、通信部230を介して取り込む。また、CPU210は、室外機2の室外側液温度センサ74が検出した室外側液温度Tloを、センサ入力部240を介して取り込む。
次に、CPU210は、取り込んだ室内側液温度Tliと室外側液温度Tloから温度差ΔTを算出する。具体的には、CPU210は、室内側液温度Tliから室外側液温度Tloを減じて温度差ΔTを求める。ここでは一例として、求めた温度差ΔTを4.0℃とする。
次に、CPU210は、記憶部220に記憶している高低差・配管長推定テーブル300を参照し、図5に示すように、冷媒流速VrがAm/sの場合のテーブルに定められている各温度差ΔTと上記算出した温度差ΔTを比較する。上述したように、求めた温度差ΔTが4.0℃であるため、これに該当するのは高低差Hが30メートルかつ配管長Lが60メートル以上のときの温度差ΔTとなる。
ここで、CPU210は、冷媒流速VrがAm/sの場合のテーブルに定められている各温度差ΔTと算出した温度差ΔTとの比較により高低差Hが30メートルであると確定する。しかし配管長Lについては、CPU210は、60メートル以上の温度差ΔTgが全て4.0℃であるために確定できない。そこで、CPU210は、冷媒流速VrをAm/sより大きくして、冷媒が冷媒配管を流れる際の圧力損失を大きくすることで、配管長Lの違いによる温度差ΔTの違いを大きくして配管長Lを確定する。
CPU210は、冷媒流速VrをBm/sまで上昇させるように、圧縮機21の回転数を上昇させる。そして、CPU210は、圧縮機21の回転数を上昇させてから所定時間経過後(例えば3分。冷媒回路10における冷媒流速VrがBm/sとなるのに必要な時間)に、再び室内側液温度Tliと室外側液温度Tloを取り込んで温度差ΔTを算出する。ここでは一例として、求めた温度差ΔTを8.1℃とする。
次に、CPU210は、記憶部220に記憶している高低差・配管長推定テーブル300を参照し、図5に示すように、冷媒流速VrがBm/sの場合のテーブルに定められている高低差Hが30メートルの場合の各温度差ΔTと上記算出した温度差ΔTを比較する。上述したように、求めた温度差ΔTが8.1℃であるため、これに該当するのは高低差Hが30メートルかつ配管長Lが70メートルのときの温度差ΔTとなる。ここで、CPU210は、配管長Lを70メートルと確定する。これで、CPU210は、高低差Hと配管長Lをそれぞれ確定できたので、CPU210は、高低差Hと配管長Lの推定に関わる処理を終了する。
以上の説明では、冷媒流速VrをBm/sまで上昇させたときに、高低差Hと配管長Lをそれぞれ確定できた。従って、冷媒流速VrをCm/sまで上昇させる必要がなかったため、図5に示す高低差・配管長推定テーブル300の冷媒流速VrがCm/sの場合のテーブルは参照しなかった。しかし、冷媒流速VrをBm/sとしたときに算出した温度差ΔTが、冷媒流速VrがBm/sの場合のテーブルに定められている各温度差ΔTのいずれにも該当しない場合、例えば、算出した温度差ΔTが7.6℃である場合は、高低差Hが30メートルのときのいずれの温度差ΔTにも該当せず、配管長Lは60メートルか70メートルのいずれかである、というところまでしかわからない。
上記のような場合は、冷媒流速VrをCm/sまで上昇させて温度差ΔTを算出し、高低差・配管長推定テーブル300の冷媒流速VrがCm/sの場合のテーブルに定められた各温度差ΔTと算出した温度差ΔTを比較すればよい。冷媒流速VrをBm/sからCm/sへと大きくすることで、冷媒が冷媒配管を流れる際の圧力損失が冷媒流速VrがBm/sである場合より大きくなるので、配管長Lの違いに起因した温度差ΔTの違いが大きくなる。従って、冷媒流速VrがCm/sの場合のテーブルに定められた各温度差ΔTと算出した温度差ΔTが、冷媒流速VrがBm/sである場合と比べて合致しやすくなり、配管長Lを確定できるようになる。
<室外機の設置場所が室内機の設置場所より下方である場合>
図3に示すように、室外機2が建物600の外部の地面に設置され、室内機2が建物600の内部に設置されている空気調和装置1で、高低差Hと配管長Lの推定を実行する指示が入力されると、CPU210は、前述した室外機2の設置場所が室内機3の設置場所より上方である場合に高低差Hと配管長Lの推定を行ったときと同様の手順で、温度差ΔTを算出する。ここでは一例として、求めた温度差ΔTを0.0℃とする。
次に、CPU210は、記憶部220に記憶している高低差・配管長推定テーブル300を参照し、図6に示すように、冷媒流速VrがAm/sの場合のテーブルに定められている各温度差ΔTと上記算出した温度差ΔTを比較する。上述したように、求めた温度差ΔTが0.0℃であるため、これに該当するのは、高低差Hが−10メートル以下の全ての温度差ΔT、および、高低差Hが0メートルかつ配管長Lが60メートル以下のときの温度差ΔTとなる。
ここでは、CPU210は、高低差Hと配管長Lをともに確定できない。前述したように、室外機2の設置場所が室内機3の設置場所より下方である場合は、冷媒流速VrがAm/sだと温度差ΔTには高低差Hのみが影響し、また、膨張弁27の冷媒入口の冷媒の圧力が室内熱交換器31の冷媒出口の冷媒の圧力より高くなるので、室内側液温度Tliと室外側液温度Tloが同じ温度となって温度差ΔTが0℃となる。従って、CPU210は、室外機2の設置場所と室内機3の設置場所が同じ高さであるか、あるいは、室外機2の設置場所が室内機3の設置場所より下方であることまでしかわからない。
次に、CPU210は、冷媒流速VrをBm/sまで上昇させるために、圧縮機21の回転数を上昇させる。そして、CPU210は、圧縮機21の回転数を上昇させてから所定時間経過後に、再び室内側液温度Tliと室外側液温度Tloを取り込んで温度差ΔTを算出する。ここでは一例として、求めた温度差ΔTを1.0℃とする。
次に、CPU210は、記憶部220に記憶している高低差・配管長推定テーブル300を参照し、図6に示すように、冷媒流速VrがBm/sの場合のテーブルに定められている各温度差ΔTと上記算出した温度差ΔTを比較する。上述したように、求めた温度差ΔTが1.0℃であるため、これに該当する温度差ΔTは冷媒流速VrがBm/sの場合のテーブルにはない。
しかし、テーブルに定められた各温度差ΔTのうち、求めた温度差ΔTである1.0℃に近い、例えば、求めた温度差ΔT±0.2℃以内の温度差ΔTは、高低差Hが−20メートルかつ配管長Lが100メートルであるときの温度差ΔT(=0.9℃)と、高低差Hが−10メートルかつ配管長Lが60メートルであるときの温度差ΔT(=0.8℃)と、高低差Hが−10メートルかつ配管長Lが70メートルであるときの温度差ΔT(=1.2℃)と、高低差Hが0メートルかつ配管長Lが20メートルであるときの温度差ΔT(=0.8℃)と、高低差Hが0メートルかつ配管長Lが30メートルであるときの温度差ΔT(=1.2℃)がある。
CPU210は、算出した温度差ΔT±0.2℃以内の温度差ΔTが定められている上記各高低差H(−20メートルと−10メートルと0メートル)、および、上記各配管長L(20メートルと30メートルと60メートルと70メートルと100メートル)に、高低差Hと配管長Lをそれぞれ絞り込んだうえで、冷媒流速VrをCm/sまで上昇させる。そして、CPU210は、圧縮機21の回転数を上昇させてから所定時間経過後に、再び室内側液温度Tliと室外側液温度Tloを取り込んで温度差ΔTを算出する。ここでは一例として、求めた温度差ΔTを5.9℃とする。
次に、CPU210は、記憶部220に記憶している高低差・配管長推定テーブル300を参照し、図6に示すように、冷媒流速VrがCm/sの場合のテーブルに定められている各温度差ΔTのうちの上記絞り込んだ高低差Hや配管長Lに対応する各温度差ΔTと算出した温度差ΔTを比較する。上述したように、求めた温度差ΔTが5.9℃であるため、これに該当する温度差ΔTは、絞り込んだ高低差Hのうちの−10メートル、かつ、絞り込んだ配管長Lのうちの70メートルに対応する温度差ΔTである。ここで、CPU210は、高低差Hを−10メートル、配管長Lを70メートルとそれぞれ確定できたので、高低差Hと配管長Lの推定に関わる処理を終了する。
尚、冷媒流速VrがCm/sの場合に算出した温度差ΔTが、冷媒流速VrがCm/sの場合のテーブルに定められている各温度差ΔTのいずれにも該当しない場合は、冷媒流速Vrをさらに上昇させて温度差ΔTを算出し、高低差・配管長推定テーブル300の冷媒流速VrがCm/sよりもさらに大きい場合のテーブルに定められた各温度差ΔTと算出した温度差ΔTを比較すればよい。
以上説明したように、本実施形態の空気調和装置1では、冷媒回路10を暖房サイクルとし、圧縮機21の回転数を制御して冷媒回路10における冷媒流速Vrを異ならせ、各冷媒流速Vrで室内側液温度Tliと室外側液温度Tloとの温度差ΔTを算出する。そして、この温度差ΔTと高低差・配管長推定テーブル300に定められている各温度差ΔTを比較することで、高低差Hと配管長Lとを推定する。このように、本実施形態の空気調和装置1は、圧縮機21と室外機制御手段200と室内側液温度センサ77と室外側液温度センサ74を用いて、高低差Hと配管長Lとを推定することができるため、高低差Hと配管長Lのそれぞれを推定するための装置を備える必要がなく、空気調和装置1がコストアップとなることを防ぐことができる。
尚、以上説明した実施形態では、高低差・配管長推定テーブル300には冷媒流速VrがA,B,Cの3つの値である場合の温度差ΔTが定められている場合を説明した。しかし、これに限られるものではなく、冷媒流速VrがA、B2つの値のみについて温度差ΔTが定められていてもよく、また、冷媒流速Vrが4つ以上の値について温度差ΔTが定められていてもよい。
また、以上説明した実施形態では、高低差Hは最大で30メートル、配管長Lは最長100メートルとした場合を例に挙げて説明した。しかし、これに限られるものではなく、高低差Hの最大値が30メートル未満あるいは30メートル超であってもよく、また、配管長Lの最大値は100メートル未満あるいは100メートル超であってもよい。
また、以上説明した実施形態の高低差・配管長推定テーブル300では、高低差Hと配管長Lに応じて1つの温度差ΔTが定められているが、この温度差ΔTをセンター値としその前後の温度、例えば、センター値±0.1℃の温度差ΔTまで含むようにしてもよい。
また、高低差・配管長推定テーブル300に代えて、温度差ΔTを含んだ高低差Hや配管長Lを算出する計算式を予め記憶部220に記憶し、この計算式を用いて高低差Hや配管長Lを算出するようにしてもよい。この場合、高低差Hを算出する計算式は、温度差ΔTと、冷媒回路10の液管4を流れる冷媒の密度と、重力加速度を含む関数であればよい。また、配管長Lを算出する計算式は、温度差ΔTと、冷媒回路10の液管4を流れる冷媒の密度と、冷媒流速Vrを含む関数であればよい。
1 空気調和機
2 室外機
3 室内機
4 液管
5 ガス管
10 冷媒回路
21 圧縮機
22 四方弁
27 膨張弁
74 室外側液温度センサ
76 室内熱交温度センサ
77 室内側液温度センサ
200 室外機制御手段
210 CPU
300 高低差・配管長推定テーブル
600 建物
H 高低差
L 配管長

Claims (2)

  1. 圧縮機と室外熱交換器と膨張弁を有する室外機と、
    室内熱交換器を有する室内機と、
    前記室外機と前記室内機を接続する液管およびガス管と、
    前記室内熱交換器が凝縮器として機能するときに、前記室内熱交換器から流出する冷媒の温度である室内側液温度を検出する室内側液温度センサと、
    前記室内熱交換器が凝縮器として機能するときに、前記膨張弁に流入する冷媒の温度である室外側液温度を検出する室外側液温度センサと、
    前記圧縮機を制御して前記液管を流れる冷媒の速度である冷媒流速を変更する制御手段と、
    を有する空気調和装置であって、
    前記制御手段は、
    前記室内熱交換器が凝縮器として機能する状態で前記圧縮機を制御して異なる冷媒流速とした場合の、前記室内側液温度センサで検出した室内側液温度から前記室外側液温度センサで検出した室外側液温度を減じて求める各温度差に基づいて、前記室外機の設置場所と前記室内機の設置場所との高低差、および、前記冷媒配管の長さである配管長をそれぞれ推定する、
    ことを特徴とする空気調和装置。
  2. 前記制御手段は、
    複数の前記冷媒流速毎に、前記高低差および前記配管長と、前記温度差を関連づけた高低差・配管長推定テーブルを予め記憶している、
    ことを特徴とする請求項1に記載の空気調和装置。
JP2017230054A 2017-11-30 2017-11-30 空気調和装置 Pending JP2019100591A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230054A JP2019100591A (ja) 2017-11-30 2017-11-30 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230054A JP2019100591A (ja) 2017-11-30 2017-11-30 空気調和装置

Publications (1)

Publication Number Publication Date
JP2019100591A true JP2019100591A (ja) 2019-06-24

Family

ID=66976634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230054A Pending JP2019100591A (ja) 2017-11-30 2017-11-30 空気調和装置

Country Status (1)

Country Link
JP (1) JP2019100591A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306704A (zh) * 2020-02-28 2020-06-19 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调
CN114322269A (zh) * 2022-01-13 2022-04-12 宁波奥克斯电气股份有限公司 冷媒平衡控制方法、装置、多联机及计算机可读存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306704A (zh) * 2020-02-28 2020-06-19 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调
CN111306704B (zh) * 2020-02-28 2021-09-21 重庆海尔空调器有限公司 用于控制空调的方法及装置、空调
CN114322269A (zh) * 2022-01-13 2022-04-12 宁波奥克斯电气股份有限公司 冷媒平衡控制方法、装置、多联机及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US9303908B2 (en) Air conditioner
US7946121B2 (en) Air conditioner
JP6569536B2 (ja) 空気調和装置
US20090044550A1 (en) Air conditioner
JP6468300B2 (ja) 空気調和装置
US7997093B2 (en) Air conditioner
AU2007264431A1 (en) Air conditioner
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP2007218532A (ja) 空気調和装置
JP2015117854A (ja) 空気調和装置
JP6716960B2 (ja) 空気調和装置
JP2019039599A (ja) 空気調和装置
JP2018132217A (ja) 空気調和装置
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP2018132219A (ja) 空気調和装置
JP6733424B2 (ja) 空気調和装置
JP2019100591A (ja) 空気調和装置
EP1970654B1 (en) Air conditioner
JP2017142017A (ja) 空気調和装置
JP6350338B2 (ja) 空気調和装置
JP2017155952A (ja) 空気調和装置
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2018132218A (ja) 空気調和装置
WO2018037496A1 (ja) 空気調和装置
JP2017142016A (ja) 空気調和装置