JP6201461B2 - 分極処理装置 - Google Patents

分極処理装置 Download PDF

Info

Publication number
JP6201461B2
JP6201461B2 JP2013140167A JP2013140167A JP6201461B2 JP 6201461 B2 JP6201461 B2 JP 6201461B2 JP 2013140167 A JP2013140167 A JP 2013140167A JP 2013140167 A JP2013140167 A JP 2013140167A JP 6201461 B2 JP6201461 B2 JP 6201461B2
Authority
JP
Japan
Prior art keywords
electrode
film
sample
sample stage
electromechanical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013140167A
Other languages
English (en)
Other versions
JP2015015316A (ja
Inventor
孝和 木平
孝和 木平
智 水上
智 水上
尚弥 近藤
尚弥 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013140167A priority Critical patent/JP6201461B2/ja
Publication of JP2015015316A publication Critical patent/JP2015015316A/ja
Application granted granted Critical
Publication of JP6201461B2 publication Critical patent/JP6201461B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、分極処理装置に関する。
プリンタ、ファクシミリ、複写装置、プロッタ等の画像記録装置或いは画像形成装置としてのインクジェット記録装置に配される液滴吐出ヘッドは、液滴としてのインク滴を吐出するノズルの他、一般的に以下の構成を備えている。液滴吐出ヘッドは、ノズルと、ノズルが連通する加圧室と、加圧室内のインクを加圧する圧電素子等の電気機械変換素子、ヒータなどの電気熱変換素子、またはインク流路の壁面を形成する振動板とこれに対向する電極からなるエネルギー発生手段と、を備えている。なお、加圧室は、インク流路、加圧液室、圧力室、吐出室、液室等とも称される。そして、液滴吐出ヘッドでは、上記各エネルギー発生手段で発生したエネルギーで加圧室内インクを加圧することによってノズルからインク滴を吐出させる。ピエゾ式のインクジェット記録ヘッドには、圧電素子の軸方向に伸長、収縮する縦振動モードの圧電アクチュエータを使用したものと、たわみ振動モードの圧電アクチュエータを使用したものとの2種類が実用化されている。
上記インクジェット記録装置に配される液滴吐出ヘッド(液体吐出ヘッドとも称される)は、断面構成としては図1に示すようなものが一般的である。図1は、液滴吐出ヘッドの一例である、1ノズルのインクジェット記録ヘッド(以下、インクジェットヘッドともいう)の構成を示す断面図である。図1に示すように、インクジェットヘッド102は、インク滴を吐出するノズル11と、ノズル11が連通する液室とも呼ばれる圧力室21と、圧力室21内のインクを加圧する圧電素子などの電気機械変換素子40とで構成されている。圧力室21は、ノズル板10にSi基板製の圧力室基板20を配置することで空間として形成されている。
電気機械変換素子40は、ノズル板10と対向側に配置され圧力室21の壁面を構成する振動板30などを含む下地を変形変位させることで圧力室21内のインクをインク滴としてノズル11から吐出させるピエゾ型のものである。電気機械変換素子40は、下地(振動板30)上に下部電極42が形成されている。この下部電極42上に電気機械変換膜43が形成され、この電気機械変換膜43上に上部電極44が形成されている。すなわち、第1の電極となる下部電極42と第2の電極となる上部電極44との間に電気機械変換膜43が介装(部材間に備え付けることを意味する)されている。電気機械変換膜43としては、一般的には圧電素子を構成する圧電体層であるPZT膜等が用いられる。なお、下地(振動板30)と下部電極42との間には、酸化物電極とも呼ばれる図示しない密着層が設けられる場合もある。
ピエゾ式のインクジェット式記録ヘッドには、圧電素子の軸方向に伸長、収縮する縦振動モードの圧電アクチュエータを使用したものと、たわみ振動モードの圧電アクチュエータを使用したものとの2種類が実用化されている。たわみ振動モードのアクチュエータを使用したものとしては、例えば、振動板の表面全体に亘って成膜技術により均一な圧電材料層を形成し、この圧電材料層をリソグラフィ法により圧力発生室に対応する形状に切り分けて各圧力発生室に独立するように圧電素子を形成したものが知られている。
また、たわみ振動モードのアクチュエータに使用される圧電素子は、例えば、共通電極である下部電極と、下部電極上に形成されたPZT膜(圧電体層)と、PZT膜上に形成された個別電極である上部電極とで構成される。さらに、上部電極上には層間絶縁膜が形成されて下部電極と上部電極との絶縁が図られ、この層間絶縁膜に開口されたコンタクトホールを介して上部電極に電気的に接続される配線が設けられた構造となっている。(例えば、特許文献1、2参照)。
また、圧電素子の変位量の疲労現象、すなわち、繰り返し駆動中に分極が回転・伸縮を繰り返すため、駆動時間の経過とともに、その分極方向が駆動電界方向に沿って一部固定されてしまい、変位量が駆動中に低下してしまうことが知られている。この現象に対して分極処理工程(或いは、ポーリング工程、エージング工程)を含めることで、駆動時における変位量の変動を抑制する手法が既に知られている。さらに、その手段として、DC電圧、AC電圧或いはパルス波形を印加する手法や、コロナ放電などの放電を用いる手法も既に知られている(例えば、特許文献3参照)。
特許文献3には、分極処理をする目的で、コロナ放電を採用して、絶縁体材料(使用用途からは強誘電体材料)に対して分極処理する手段が開示されている。なお、特許文献3では、装置構成をコロナワイヤから針状電極に変更している。
しかしながら、下部の電極としては主にPtをベースにした金属電極を用いた実施例がほとんどであり、PZTの疲労特性に対する保証が懸念される。一般的にPZTに含まれるPb拡散による特性劣化が考えられ、酸化物電極を用いることで、疲労特性が改善されることが言われている(例えば、特許文献4参照)。
次に、図2に示すピエゾ膜(PZT膜:圧電体)の微細分域構造の模式図を参照して、分極処理前後の分極状態の変化について説明する。図2に示すように、電圧印加直前において圧電体結晶は分極の向きがランダムな状態となっていたものが、電圧印加を繰り返すことで、圧電体結晶は分極の向きが揃ったドメインの集合体となってくる。このため、電圧印加を行う前から分極の向きを揃えることが試されており、エージング工程またはポーリング(分極処理)工程と称した所定駆動電圧に対して変位量を安定化させる工夫が行われてきた(例えば、特許文献5、6参照)。具体的には、圧電素子に対して駆動パルス電圧を超える高電圧を印加するような手法が行われている。又、電極と電荷供給手段との間に電圧を印加してコロナ放電を生じさせることにより、電荷を供給し、圧電体内に電界を発生させる工夫が行われている(例えば、特許文献7参照)。
例えば、特許文献5、6の記載にあるような駆動パルス電圧を印加して処理する場合、具体的な印加方法について明記されていない。この場合、プローブカード等を用いてウェハレベルで処理することを想定すると、配置された端子電極数や配置等によっては、プローブカードの作製等に費用がかかるのと、1枚のプローブカードで処理できる端子電極数が少ない場合においては、ウェハレベルで処理するのに相当な時間を有することになる。
また、特許文献7の記載にあるコロナワイヤを用いて処理する場合でも、簡便に大面積を分極処理できる。しかしながら、コロナ分極を用いてさらなる処理時間の短縮化を目指す際、注入される電荷量を増やすためには、コロナワイヤ電極の電圧を上げることになるが、コロナワイヤ電極の電圧を上げてしまうと、放電の状態が変わってしまう。結果として、求める分極処理を行えなくなってしまう。
上述したような今までのコロナ放電による分極処理方法では、処理にかかるタクトタイムを短くしたいが、コロナ放電を起こす部位(コロナワイヤ等)の電圧は放電状態を維持するため、電圧を高くできない。仮に短縮化のために電圧を上げてしまうと、放電が脆弱な部分に集中してしまいクラック等を起こしてしまい試料を破壊してしまうという問題があった。
そこで、本発明は、上述した事情に鑑みてなされたものであり、コロナワイヤ電極を用いた分極処理装置で、従来よりも分極処理時間を短縮化することを目的とする。
上記課題を解決するとともに上記目的を達成するために、請求項1記載の発明は、基板または下地膜上に金属もしくは金属と酸化物から成る第1の電極を形成し、該第1の電極上に電気機械変換膜を形成し、該電気機械変換膜上に金属もしくは金属と酸化物から成る第2の電極を形成することにより構成した電気機械変換素子を有するアクチュエータ基板上の前記電気機械変換素子に対して、コロナ放電により分極処理を行う分極処理装置において、前記アクチュエータ基板上に形成された少なくとも前記電気機械変換素子を含む試料をセットするためのサンプルステージと、前記サンプルステージ上にセットされた前記試料に対向して設けられ、前記コロナ放電を行うコロナワイヤ電極またはコロナワイヤ電極とグリッド電極と、を備え、前記サンプルステージが、前記コロナワイヤ電極と逆極性の電圧を印加されていることを特徴とする。
本発明によれば、上記構成により、コロナワイヤ電極とサンプルステージとの間の電界強度がより高くなるとともに、サンプルステージ上の試料に向けてコロナワイヤ電極から発生した電荷の試料への注入量が増える。従って、従来よりも分極処理時間を短縮化することができる。
一般的な1ノズルの液滴吐出ヘッドとしてのインクジェット記録ヘッドの構成を示す模式的な断面図である。 ピエゾ膜の微細分域構造の模式図であって、分極処理前後の分極状態の変化について説明する図である。 圧電素子からなる電気機械変換素子の構成を示す模式的な断面図である。 (a)は圧電素子からなる電気機械変換素子のパターニング後の構成を示す断面図、(b)は(a)の平面図である。 分極処理装置の一例としてのコロナ帯電処理装置の構成を示す斜視図である。 (a)は圧電素子からなる電気機械変換素子の分極処理前の、(b)は同電気機械変換素子の分極処理後のP−Eヒステリシス曲線を示す線図である。 単純なコロナ放電による分極処理の原理を示す模式図である。 コロナ分極処理でのクラック不具合例を示す図であって、上部電極等を除去した電気機械変換膜部分の平断面図である。 ステージ電圧と分極処理時間との関係を説明するグラフである。 Pt上に作製したSRO結晶性を説明する図であって、縦軸にピーク強度を、横軸にPsi(°)を、それぞれ取って示す線図である。 (a)は多数の電気機械変換素子部のパターンを示すウェハの平面図、(b)はサンプルがサンプルステージの所定の部位にセットされた状態を示す平面図、(c)はサンプルがセットされるサンプルステージの中央部の断面図である。 実施例1〜5と比較例で作製した電気機械変換素子についての代表的なP−Eヒステリシス曲線を示す線図である。 複数の電気機械変換素子を有するインクジェット記録ヘッドの構成を示す断面図である。 インクジェット記録ヘッドを搭載したインクジエット記録装置を透視して示す斜視図である。 図14のインクジエット記録装置における機構部の概略的な一部断面正面図である。
以下、図を参照して実施例を含む本発明の実施の形態を詳細に説明する。各実施形態等に亘り、同一の機能および形状等を有する構成要素(部材や構成部品)等については、混同の虞がない限り一度説明した後では同一符号を付すことによりその説明を省略する。
以下、本願発明において、液滴吐出記録方式の「画像形成装置」は、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス等の媒体に液滴を着弾させて画像形成を行う装置を意味し、また、「画像形成」とは、文字や図形等の意味を持つ画像を媒体に対して付与することだけでなく、パターン等の意味を持たない画像を媒体に付与すること(単に液滴を媒体に着弾させること)をも意味する。
「液滴」とは、インクと称されるものに限らず、記録液、定着処理液、樹脂、液体などと称されるものを含み、画像形成を行うことが可能に微細粒状化して液滴にできる全ての液体の液滴の総称として用いる。また、「記録媒体」とは、材質を紙に限定するものではなく、OHPシート、布なども含み、液滴が付着されるものの意味であり、被記録媒体、記録紙、記録用紙、使用可能な薄紙から厚紙、はがき、封筒あるいは単に用紙などと称されるものを含むものの総称として用いる。また、画像とは2次元画像に限らず、3次元画像も含まれる。
図3は、本発明が適用される電気機械変換素子40の断面構成を示す。図3に示すように、下から上に向かって、アクチュエータ基板もしくは液室基板となる基板20、振動板30、下部電極42、電気機械変換膜43、上部電極44が順次積層されて構成されている。電気機械変換素子40は、下部電極42、電気機械変換膜43および上部電極44で形成される部分を指し、圧電素子である。
図4を参照して、圧電素子からなる電気機械変換素子40の絶縁保護膜、引き出し配線を含めた素子構成について説明する。図4(a)は、圧電素子からなる電気機械変換素子のパターニング後の構成を示す断面図、図4(b)は、図4(a)の平面図である。図4(a)、図4(b)に示すように、第1の絶縁保護膜45は、破線で示すコンタクトホール46を有しており、下部電極42と第3の電極47とが、また上部電極44と第4の電極48とが、それぞれ導通した構成となっている。
このとき、下部電極42および第3の電極47を共通電極、上部電極44および第4の電極48を個別電極として、共通電極、個別電極を保護する第2の絶縁保護膜49が形成され、その一部が開口されて電極パッド(PAD)として構成されている。共通電極用に作製されたものを共通電極パッド50、個別電極用に作製されたものを個別電極パッド51としている。
ここまで作製された電気機械変換素子40、第1の絶縁保護膜45、第2の絶縁保護膜49、共通電極パッド50、個別電極パッド51等を含む構造体を、コロナ放電により分極処理される電気機械変換素子部40Aとする。コロナ放電により分極処理される電気機械変換素子40を含む試料としては、後述する図11(a)に示すように、ウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55が挙げられる。電気機械変換素子部40Aは、少なくとも電気機械変換素子40を含み、図11(a)において、矩形状をなす白抜き部分として示されている。
電気機械変換素子部40Aを多数形成されたウェハ56で提供されるサンプル55に対して、図5に示す分極処理装置の一例としてのコロナ帯電処理装置1を用いて分極処理を行った。図5は、コロナ帯電処理装置1の構成を示す斜視図である。
図5に示すように、コロナ帯電処理装置1は、サンプルステージ4と、コロナワイヤ電極2とグリッド電極3とを備えている。サンプルステージ4は、後述する図11に示すウェハ56で提供されるサンプル55をセットするためのものであり、サンプルステージ4自体に電圧印加が可能となっている。コロナワイヤ電極2とグリッド電極3とは、サンプルステージ4上にセットされたサンプル55(図11参照)に対向して設けられ、サンプル55に多数形成された電気機械変換素子部40Aに対してコロナ放電を行うものである。
すなわち、コロナワイヤ電極2へのコロナ電圧の印加は、コロナ電源7によりなされる。グリッド電極3へのグリッド電圧の印加は、グリッド電源8によりなされる。また、サンプルステージ4へのステージ電圧の印加は、ステージ電源9によりなされる。
サンプルステージ4は、ステージ基台5に対して着脱可能に構成されており、サンプルステージ4がステージ基台5に装着載置されたとき、適宜の固定手段で固定される。ステージ基台5上には、電気絶縁性の材料で形成された柱状の2本の電極支持体6が所定の間隔を以って、かつ、ステージ基台5に対して鉛直上方向に延びて設けられている。コロナワイヤ電極2およびグリッド電極3は、2本の電極支持体6の上部の間に掛け渡されている。
グリッド電極3は、メッシュ加工が施されており、コロナワイヤ電極2に高い電圧を印加したときに、コロナ放電により発生するイオンや電荷等を効率よく安定的に下のサンプルステージ4に降り注ぐように工夫している。コロナワイヤ電極2やグリッド電極3に印加される電圧や、サンプルステージ4とコロナワイヤ電極2との間、サンプルステージ4とグリッド電極3との間の各距離を調整することにより、コロナ放電の強弱をつけることは可能である。
また、サンプルステージ4側も印加電圧の調整が可能であると共に、サンプルステージ4自体を変えることにより電圧印加領域を変更することや、サンプルステージ4に対する加熱が可能になっている。サンプルステージ4を加熱する加熱手段としては、例えば温度調節機能が付加された電熱ヒータなどが用いられる。
また、サンプルステージ4の体積抵抗率が、サンプル55を始めとしてセットされる試料の体積抵抗率以下に設定されている。ちなみに、サンプルステージ4の体積抵抗率は本構成では1[Ω・cm]程度であり、サンプル55を始めとしてセットされる試料の体積抵抗率は、Si基板ベースであり、本試料ではおよそ10[Ω・cm]となっている。これにより、電気機械変換素子部40A以外の基板部分へ蓄積された電荷を効率よくステージ側に放出することができ、電荷注入の基板側への蓄積による効率低下が抑制されるという効果を奏する。
ここで、分極処理の状態については、P−Eヒステリシス曲線から判断している。図6(a)は圧電素子である電気機械変換素子40の分極処理前の、図6(b)は電気機械変換素子40の分極処理後のP−Eヒステリシス曲線を示す。図6(a)、図6(b)にそれぞれ示すように、±150kV/cmの電界強度をかけてヒステリシスループを測定する。そして、最初の0kV/cm時の分極をPini、+150kV/cmの電圧印加後0kV/cmまで戻したときの0kV/cm時の分極をPrとしたときに、Pr−Piniの値(差分値)を分極率として定義し、この分極率から分極状態の良し悪しを判断している。
例えば、図6(b)のように、ここで分極率Pr−Piniが10μC/cm以下となっていることが好ましく、5μC/cm以下となっていることがさらに好ましい。この値に満たない場合は、PZTの圧電アクチュエータとして連続駆動後の変位劣化については十分な特性が得られない。
図7に単純なコロナ放電による分極処理の原理を示す。コロナワイヤ電極2を用いて、コロナ放電させるときには、大気中の分子をイオン化させることで、陽イオンを発生し、圧電素子からなる電気機械変換素子40のパッド部を介して陽イオンが流れ込むことで、電荷を圧電素子(電気機械変換素子40)に蓄積している。上部電極と下部電極の電荷差によって内部電位差が生じて、分極処理が行われていると考えている。ここで、分極処理に必要な電荷量Qを考えると1×10−8C以上の電荷量が蓄積されることが好ましく、4×10−8C以上の電荷量が蓄積されることがさらに好ましい。この値に満たない場合は、分極処理が十分できず、PZTの圧電アクチュエータとして連続駆動後の変位劣化については十分な特性が得られない。
所望な分極率Pr−Piniを得るためには、図5に示すように、コロナワイヤ電極2やグリッド電極3に印加される電圧や、サンプルステージ4とコロナワイヤ電極2との間、サンプルステージ4とグリッド電極3との間の各距離等を調整することにより、達成が可能である。このとき、サンプルステージ4はアース接地(GND)としている。ところが、所望な分極率を得た上で処理時間の短縮をしようとした場合には、電気機械変換膜に対して発生した電荷をより効率よく注入させる必要がある。しかし、単純にコロナワイヤ電極2の電圧を上げるだけでは電気機械変換膜中にクラックが発生する。
具体的な説明を行うと、図3や図4に示すように、電気機械変換膜43が、基板20に対して拘束状態がある場合においては、電界が発生し、その電界を受けて、自身が変形したくても、拘束力があるため自由に変形できない。このため、図8に示すように、電気機械変換膜43が変形しようと膜応力が発生し、その応力を緩和させるために、電気機械変換膜43中にクラックが発生してしまう不具合が生じ、処理時間の短縮が困難になってしまっている。なお、図8は図4に示した上部電極44等を除去した電気機械変換膜43部分の平断面を示している。
ここで、サンプルステージ4の電圧をコロナワイヤ電極2の電圧と逆極性に印加した際の分極処理に要した時間を図9に示す。なお、図9や後述する表1等では、サンプルステージを単に「ステージ」と記載することとする。図9より、サンプルステージを逆極性にしたことによって分極処理の効率が上がり、処理時間が短縮されていることが分かる。また、このとき電気機械変換膜中のクラック発生等の不具合も起きなかった。
以下に、本実施形態の各構成の材料、工法について具体的に説明する。
(基板)
図1、図3、図4等に示した基板20としては、シリコン単結晶基板を用いることが好ましく、通常100〜600μmの厚みを持つことが好ましい。面方位としては、(100)、(110)、(111)と3種あるが、半導体産業では一般的に面方位(100)、(111)が広く使用されている。本構成においては、主に(100)の面方位を持つ単結晶基板を主に使用した。また、図1に示すような圧力室21を作製していく場合、エッチングを利用してシリコン単結晶基板を加工していくが、この場合のエッチング方法としては、異方性エッチングを用いることが一般的である。異方性エッチングとは、結晶構造の面方位に対してエッチング速度が異なる性質を利用したものである。例えばKOH等のアルカリ溶液に浸漬させた異方性エッチングでは、(100)面に比べて(111)面は約1/400程度のエッチング速度となる。
従って、面方位(100)では約54°の傾斜を持つ構造体が作製できるのに対して、面方位(110)では深い溝を掘ることができるため、より剛性を保ちつつ、配列密度を高くすることができることが分かっている。この点から、本構成としては(110)の面方位を持った単結晶基板を使用することも可能である。但し、この場合、マスク材であるSiOもエッチングされてしまうということが挙げられるため、この辺りも留意して利用している。
(下地・振動板)
図1に示したように電気機械変換膜43によって発生した力を受けて、下地となる振動板30が変形変位して、圧力室21のインク滴を吐出させる。そのため、下地としては所定の強度を有したものであることが好ましい。材料としては、Si、SiO、SiをCVD法により作製したものが挙げられる。さらに図1に示すような下部電極42、電気機械変換膜43の線膨張係数に近い材料を選択することが好ましい。特に、電気機械変換膜としては、一般的に材料としてPZTが使用されることから線膨張係数8×10−6(1/K)に近い線膨張係数として、5×10−6〜10×10−6の線膨張係数を有した材料が好ましく、さらには7×10−6〜9×10−6の線膨張係数を有した材料がより好ましい。具体的な材料としては、酸化アルミニウム、酸化ジルコニウム、酸化イリジウム、酸化ルテニウム、酸化タンタル、酸化ハフニウム、酸化オスミウム、酸化レニウム、酸化ロジウム、酸化パラジウムおよびそれらの化合物等であり、これらをスパッタ法もしくは、Sol−gel(ゾルゲル)法を用いてスピンコータにて作製することができる。膜厚としては0.1〜10μmが好ましく、0.5〜3μmがさらに好ましい。この範囲より小さいと図1に示すような圧力室21の加工が難しくなり、この範囲より大きいと下地(振動板30)が変形変位しにくくなり、インク滴の吐出が不安定になる。
(第1の電極)
図1、図3等に示した第1の電極としての下部電極42としては、金属もしくは金属と酸化物から成っていることが好ましい。ここで、どちらも振動板30と金属膜から成る下部電極42の間に密着層(図示せず)を入れて剥がれ等を抑制するように工夫している。以下に密着層(図示せず)を含めて金属電極膜、酸化物電極膜の詳細について記載する。
密着層:
密着層の形成は、Tiをスパッタ成膜後、RTA(Rapid Thermal Annealing:急速熱処理)装置を用いて、650〜800℃、1〜30分、O雰囲気でチタン膜を熱酸化して、チタン膜を酸化チタン膜にする。酸化チタン膜を作成するには反応性スパッタでもよいがチタン膜の高温による熱酸化法が望ましい。反応性スパッタによる作製では、シリコン基板を高温で加熱する必要があるため、特別なスパッタチャンバ構成を必要とする。さらに、一般の炉による酸化よりも、RTA装置による酸化の方がチタンO膜の結晶性が良好になる。なぜなら、通常の加熱炉による酸化によれば、酸化しやすいチタン膜は、低温においてはいくつもの結晶構造を作るため、一旦、それを壊す必要が生じるためである。したがって、昇温速度の速いRTAによる酸化の方が良好な結晶を形成するために有利になる。またTi以外の材料としてはTa、Ir、Ru等の材料でも好ましい。
膜厚としては、10nm〜50nmが好ましく、15nm〜30nmがさらに好ましい。この範囲以下の場合においては、密着性に懸念があるのと、この範囲以上になってくるとその上で作製する電極膜の結晶の質に影響が出てくる。
金属電極膜:
金属材料としては従来から高い耐熱性と低い反応性を有する白金が用いられているが、鉛に対しては十分なバリア性を持つとはいえない場合もあり、イリジウムや白金−ロジウムなどの白金族元素や、これら合金膜も挙げられる。また、白金を使用する場合には下地(特にSiO)との密着性が悪いために、先の密着層を先に積層することが好ましい。作製方法としては、スパッタ法や真空蒸着等の真空成膜が一般的である。膜厚としては、80〜200nmが好ましく、100〜150nmがより好ましい。この範囲より薄い場合においては、共通電極として十分な電流を供給することができなくなり、インク吐出をする際に不具合が発生する。さらにこの範囲より厚い場合においては、白金族元素の高価な材料を使用する場合においては、コストアップとなる点や、白金を材料とした場合においては、膜厚を厚くしていたったときに表面粗さが大きくなり、その上に作製する酸化物電極膜やPZTの表面粗さや結晶配向性に影響を及ぼして、インク吐出に十分な変位が得られないような不具合が発生する。
酸化物電極膜:
材料としてはSrRuOを用いることが好ましい。左記以外にも、Srx(A)(1−x)Ruy(1−y)、A=Ba、Ca、 B=Co、Ni、x、y=0〜0.5で記述されるような材料についても挙げられる。成膜方法についてはスパッタ法により作製される。スパッタ条件によってSrRuO薄膜の膜質が変わるが、特に結晶配向性を重視し、下部電極(第1の電極)となるPt(111)にならってSrRuO膜についても(111)配向させる。そのためには、成膜温度については500℃以上での基板加熱を行い、成膜することが好ましい。
例えば特許文献8記載のSRO成膜条件については、室温成膜でその後、RTA処理にて結晶化温度(650℃)で熱酸加している。この場合、SRO膜としては、十分結晶化され、電極としての比抵抗としても十分な値が得られるが、膜の結晶配向性としては、(110)が優先配向しやすくなり、その上に成膜したPZTについても(110)配向しやすくなる。
Pt(111)上に作製したSRO結晶性については、PtとSROで格子定数が近いため、通常のθ−2θ測定では、SRO(111)とPt(111)の2θ位置が重なってしまい判別が難しい。Ptについては消滅則の関係からPsi=35°傾けた2θが約32°付近の位置には回折線が打ち消し合い、回折強度が見られない。そのため、Psi方向を約35°傾けて、2θが約32°付近のピーク強度で判断することでSROが(111)に優先配向しているかを確認することができる。図10に、2θ=32°に固定し、Psiを振ったときのデータを示す。Psi=0°ではSRO(110)ではほとんど回折強度が見られず、Psi=35°付近において、回折強度が見られることから本成膜条件にて作製したものについては、SROが(111)配向していることが確認できた。また、上述記載の室温成膜+RTA処理により作製されたSROについては、Psi=0°のときにSRO(110)の回折強度が見られる。
後述にて、詳細を記載するが、圧電アクチュエータとして連続動作したときに、駆動させた後の変位量が、初期変位に比べてどのくらい劣化したかを見積もったところ、PZTの配向性が非常に影響しており、(110)では変位劣化抑制において不十分である。さらにSRO膜の表面粗さを見たときに、成膜温度に影響し、室温から300℃では表面粗さが非常に小さく2nm以下になる。粗さについてはAFM(原子間力顕微鏡)により測定される表面粗さ(平均粗さ)を指標としている。表面粗さとしては、非常にフラットにはなっているが結晶性が十分でなく、その後成膜したPZTの圧電アクチュエータとしての初期変位や連続駆動後の変位劣化については十分な特性が得られない。表面粗さとしては、4nm〜15nmになっていることが好ましく、6nm〜10nmがさらに好ましい。この範囲を超えると、その後成膜したPZTの絶縁耐圧が非常に悪く、リークしやすくなる。従って上述に示すような、結晶性や表面粗さを得るためには、成膜温度としては500℃〜700℃、好ましくは520℃〜600℃の範囲で成膜を実施している。
成膜後のSrとRuの組成比については、Sr/Ruが0.82以上1.22以下であることが好ましい。この範囲から外れると比抵抗が大きくなり、電極として十分な導電性が得られなくなる。
さらにSRO膜の膜厚としては、40nm〜150nmが好ましく、50nm〜80nmがさらに好ましい。この膜厚範囲よりも薄いと初期変位や連続駆動後の変位劣化については十分な特性が得られない点やPZTのオーバーエッチングを抑制するためのストップエッチング層としての機能も得られにくくなる。この範囲を超えると、その後成膜したPZTの絶縁耐圧が非常に悪く、リークしやすくなる。また比抵抗としては、5×10−3Ω・cm以下になっていることが好ましく、さらに1×10−3Ω・cm以下になっていることがさらに好ましい。この範囲よりも大きくなると共通電極として、第5の電極との界面で接触抵抗が十分得られず、共通電極として十分な電流を供給することができなくなり、インク吐出をする際に不具合が発生する。
(電気機械変換膜)
図1、図3、図4等に示した電気機械変換膜43の材料としては、PZTを主に使用した。PZTとはジルコン酸鉛(PbZrO)とチタン酸鉛(PbTiO)の固溶体で、その比率により特性が異なる。一般的に優れた圧電特性を示す組成はPbZrOとPbTiOの比率が53:47の割合のときであり、化学式で示すと、Pb(Zr0.53,Ti0.47)O、一般にPZT(53/47)と示される。PZT以外の複合酸化物としてはチタン酸バリウムなどが挙げられ、この場合はバリウムアルコキシド、チタンアルコキシド化合物を出発材料にし、共通溶媒に溶解させることでチタン酸バリウム前駆体溶液を作製することも可能である。
これら材料は一般式ABOで記述され、A=Pb、Ba、Sr、B=Ti、Zr、Sn、Ni、Zn、Mg、Nbを主成分とする複合酸化物が該当する。その具体的な記述として(Pb1−x,Ba)(Zr,Ti)O、(Pb1−x,Sr)(Zr,Ti)O、これはAサイトのPbを一部BaやSrで置換した場合である。このような置換は2価の元素であれば可能であり、その効果は熱処理中の鉛の蒸発による特性劣化を低減させる作用を示す。
作製方法としては、スパッタ法もしくは、Sol−gel(ゾルゲル)法を用いてスピンコータにて作製することができる。その場合は、パターニング化が必要となるので、フォトリソエッチング等により所望のパターンを得る。
PZTをSol−gel法により作製した場合、出発材料に酢酸鉛、ジルコニウムアルコキシド、チタンアルコキシド化合物を出発材料にし、共通溶媒としてメトキシエタノールに溶解させ均一溶液を得ことで、PZT前駆体溶液が作製できる。金属アルコキシド化合物は大気中の水分により容易に加水分解してしまうので、前駆体溶液に安定剤としてアセチルアセトン、酢酸、ジエタノールアミンなどの安定化剤を適量、添加しても良い。
下地基板全面にPZT膜を得る場合、スピンコートなどの溶液塗布法により塗膜を形成し、溶媒乾燥、熱分解、結晶化の各々の熱処理を施すことで得られる。塗膜から結晶化膜への変態には体積収縮が伴うので、クラックフリーな膜を得るには一度の工程で100nm以下の膜厚が得られるように前駆体濃度の調整が必要になる。
電気機械変換膜の膜厚としては0.5μm〜5μmが好ましく、さらに好ましくは1μm〜2μmとなる。この範囲より小さいと十分な変位を発生することができなくなり、この範囲より大きいと何層も積層させていくため、工程数が多くなりプロセス時間が長くなる。
また比誘電率としては600以上2000以下になっていることが好ましく、さらに1200以上1600以下になっていることが好ましい。このとき、この値を満たないときには十分な変位特性が得られず、この値より大きくなると、分極処理が十分行われず、連続駆動後の変位劣化については十分な特性が得られないといった不具合が発生する。
(第2の電極)
図1、図3等に示した第2の電極としての上部電極44としては、金属もしくは酸化物と金属から成っていることが好ましい。以下に酸化物電極膜、金属電極膜の詳細について記載する。
酸化物電極膜:
酸化物電極膜の材料等については第1の電極で使用した酸化物電極膜で記載しており、SRO膜の膜厚としては、20nm〜80nmが好ましく、40nm〜60nmがさらに好ましい。この膜厚範囲よりも薄いと初期変位や変位劣化特性については十分な特性が得られない。この範囲を超えると、その後成膜したPZTの絶縁耐圧が非常に悪く、リークしやすくなる。
金属電極膜:
金属電極膜の材料等については第1の電極で使用した金属電極膜で記載しており、膜厚としては30〜200nmが好ましく、50〜120nmがさらに好ましい。この範囲より薄い場合においては、個別電極として十分な電流を供給することができなくなり、インク吐出をする際に不具合が発生する。さらにこの範囲より厚い場合においては、白金族元素の高価な材料を使用する場合においては、コストアップとなる点や白金を材料とした場合においては、膜厚を厚くしていたったときに表面粗さが大きくなり、絶縁保護膜を介して第3、第4の電極を作製する際に、膜剥がれ等のプロセス不具合が発生しやすくなる。
(第1の絶縁保護膜)
図4に示した第1の絶縁保護膜45の形成は、成膜・エッチングの工程による圧電素子へのダメージを防ぐとともに、大気中の水分が透過しづらい材料を選定する必要があるため、緻密な無機材料とする必要がある。有機材料では十分な保護性能を得るためには膜厚を厚くする必要があるため、適さない。絶縁膜を厚い膜とした場合、振動板の振動変位を著しく阻害してしまうため、吐出性能の低いインクジェットヘッドなってしまうことが要因である。
薄膜で高い保護性能を得るには、酸化物、窒化物、炭化膜を用いるのが好ましいが、絶縁膜の下地となる、電極材料、圧電体材料、振動板材料と密着性が高い材料を選定する必要がある。また、成膜法も圧電素子を損傷しない成膜方法を選定する必要がある。すなわち、反応性ガスをプラズマ化して基板上に堆積するプラズマCVD法やプラズマをターゲット材に衝突させて飛ばすことで成膜するスパッタリング法は好ましくない。好ましい成膜方法としては、蒸着法、ALD法などが例示できるが、使用できる材料の選択肢が広いALD法が好ましい。好ましい材料としては、Al,ZrO,Y,Ta,TiOなどのセラミクス材料に用いられる酸化膜が例として挙げられる。特にALD法を用いることで、膜密度の非常に高い薄膜を作製し、プロセス中でのダメージを抑制しようとしている。
第1の絶縁保護膜の膜厚は、圧電素子の保護性能を確保できる十分な薄膜とする必要があると同時に、振動板の変位を阻害しないように可能な限り薄くする必要がある。前述の好ましい第1の絶縁保護膜の膜厚は20nm〜100nmの範囲である。100nmより厚い場合は、振動板の変位が低下するため、吐出効率の低いインクジェットヘッドとなる。一方、20nmより薄い場合は圧電素子の保護層としての機能が不足してしまうため、圧電素子の性能が前述の通り低下してしまう。
また、第1の絶縁保護膜を2層にする構成も考えられる。この場合は、2層目の絶縁保護膜を厚くするため、振動板の振動変位を著しく阻害しないように第2の電極部付近において2層目の絶縁膜を開口するような構成も挙げられる。このとき2層目の絶縁膜としては、任意の酸化物、窒化物、炭化物またはこれらの複合化合物を用いることができるが、半導体デバイスで一般的に用いられるSiOを用いることができる。成膜は任意の手法を用いることができ、CVD法,スパッタリング法が例示でき、電極形成部等のパターン形成部の段差被覆を考慮すると等方的に成膜できるCVD法を用いることが好ましい。2層目の絶縁保護膜の膜厚は下部電極と個別電極配線に印加される電圧で絶縁破壊されない膜厚とする必要がある。すなわち絶縁膜に印加される電界強度を、絶縁破壊しない範囲に設定する必要がある。さらに、2層目の絶縁保護膜の下地の表面性やピンホール等を考慮すると膜厚は200nm以上必要であり、さらに好ましくは500nm以上である。
(第3の電極、第4の電極)
図4に示した第3の電極47、第4の電極48としては、Ag合金、Cu、Al、Au、Pt、Irの何れかから成る金属電極材料であることが好ましい。作製方法としては、スパッタ法、スピンコート法を用いて作製し、その後フォトリソエッチング等により所望のパターンを得る。膜厚としては、0.1μm〜20μmが好ましく、0.2μm〜10μmがさらに好ましい。この範囲より小さいと抵抗が大きくなり電極に十分な電流を流すことができなくなりヘッド吐出が不安定になり、この範囲より大きいとプロセス時間が長くなる。
また、共通電極、個別電極としてコンタクトホール部(10μm×10μm)での接触抵抗として、共通電極としては10Ω以下、個別電極としては1Ω以下が好ましく、さらに好ましくは、共通電極としては5Ω以下、個別電極としては0.5Ω以下である。この範囲を超えると十分な電流を供給することができなくなり、インク吐出をする際に不具合が発生する。
(第2の絶縁保護膜)
図4に示した第2の絶縁保護膜49としての機能は個別電極配線や共通電極配線の保護層の機能を有するパシベーション層である。図4に示す通り、個別電極引き出し部と図示しない共通電極引き出し部を除き、個別電極と共通電極上を被覆する。これにより電極材料に安価なAlもしくはAlを主成分とする合金材料を用いることができる。その結果、低コストかつ信頼性の高いインクジェットヘッドとすることができる。材料としては、任意の無機材料、有機材料を使用することができるが、透湿性の低い材料とする必要がある。無機材料としては、酸化物、窒化物、炭化物等が例示でき、有機材料としてはポリイミド、アクリル樹脂、ウレタン樹脂等が例示できる。ただし有機材料の場合には厚膜とすることが必要となるため、後述のパターニングに適さない。そのため、薄膜で配線保護機能を発揮できる無機材料とすることが好ましい。特に、Al配線上にSiを用いることが、半導体デバイスで実績のある技術であるため好ましい。また、膜厚は200nm以上とすることがこのましくさらに好ましくは500nm以上である。膜厚が薄い場合は十分なパシベーション機能を発揮できないため、配線材料の腐食による断線が発生し、インクジェットの信頼性を低下させてしまう。
また、圧電素子上とその周囲の振動板上に開口部をもつ構造が好ましい。これは、前述の第1の絶縁保護膜の個別液室領域を薄くしていることと同様の理由である。これにより、高効率かつ高信頼性のインクジェットヘッドとすることが可能になる。
開口部分の形成には、フォトリソグラフィ法とドライエッチングを用いることが、第1の絶縁膜保護膜および第2の絶縁膜保護膜で圧電素子が保護されているため可能である。またパッド部の面積については、50×50μm以上になっていることが好ましく、さらに100×300μm以上になっていることが好ましい。この値に満たない場合は、十分な分極処理ができなくなり、連続駆動後の変位劣化については十分な特性が得られないといった不具合が発生する。
以下、本発明の実施例1〜5、比較例を説明する。
(実施例1)
図4に示した基板20となる6インチのシリコンウェハに、熱酸化膜(膜厚1μm)を形成し、下部電極42を形成するための密着膜として、チタン膜(膜厚30nm)をスパッタ装置にて成膜した後に、RTAを用いて750℃にて熱酸化した。これに、引き続き、金属膜として白金膜(膜厚100nm)、酸化物膜としてSrRuO膜(膜厚60nm)をスパッタ成膜した。スパッタ成膜時の基板20の加熱温度については550℃にて成膜を実施した。次に電気機械変換膜43としてPb:Zr:Ti=114:53:47に調整された溶液を準備し、スピンコート法により膜を成膜した。
具体的な前駆体塗布液の合成については、出発材料に酢酸鉛三水和物、イソプロポキシドチタン、イソプロポキシドジルコニウムを用いた。酢酸鉛の結晶水はメトキシエタノールに溶解後、脱水した。化学両論組成に対し鉛量を過剰にしてある。これは熱処理中のいわゆる鉛抜けによる結晶性低下を防ぐためである。イソプロポキシドチタン、イソプロポキシドジルコニウムをメトキシエタノールに溶解し、アルコール交換反応、エステル化反応を進め、先記の酢酸鉛を溶解したメトキシエタノール溶液と混合することでPZT前駆体溶液を合成した。このPZT濃度は0.5モル/リットルにした。この液を用いて、スピンコートにより成膜し、成膜後、120℃乾燥→500℃熱分解を行った。3層目の熱分解処理後に、結晶化熱処理(温度750℃)をRTA(急速熱処理)にて行った。このときPZTの膜厚は240nmであった。この工程を計8回(24層)実施し、約2μmのPZT膜厚を得た。
次に、第2の電極である上部電極44(図4参照)を形成するための酸化物膜として、SrRuO膜(膜厚40nm)、金属膜としてPt膜(膜厚125nm)をスパッタ成膜した。その後、東京応化社製フォトレジスト(TSMR8800)をスピンコート法で成膜し、通常のフォトリソグラフィでレジストパターンを形成した後、ICPエッチング装置(サムコ製)を用いて図4に示すようなパターンを作製した。次に第1の絶縁保護膜45として、ALD工法を用いてAl膜を50nm成膜した。このとき原材料としてAlについては、TMA(シグマアルドリッチ社)、Oについてはオゾンジェネレータによって発生させたOを交互に積層させることで、成膜を進めた。その後、図4に示すように、エッチングによりコンタクトホール46部を形成する。その後、第3の電極47、第4の電極48としてAlをスパッタ成膜し、エッチングによりパターニング形成し、第2の絶縁保護膜としてSiをプラズマCVDにより500nm成膜し、電気機械変換素子40を作製した。
このようにして図4に示すように、電気機械変換素子40、第1の絶縁保護膜45、第2の絶縁保護膜49、共通電極パッド50、個別電極パッド51等を含む電気機械変換素子部40Aを作製した。
ここで、図11を参照して、コロナ放電により分極処理される電気機械変換素子部40Aを含む試料であるサンプル55およびサンプルステージ4の関係について補説する。図11(a)は多数の電気機械変換素子部40Aのパターンを示すウェハ56の平面図、図11(b)はサンプル55がサンプルステージ4の所定の部位にセットされた状態を示す平面図、図11(c)はサンプル55がセットされるサンプルステージ4の中央部の断面図である。
コロナ放電により分極処理される電気機械変換素子部40Aを含む試料は、図11(a)に示すように、ウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55で提供される。電気機械変換素子部40Aは、図11(a)、図11(b)において、矩形状をなす白抜き部分として示されている。ウェハ56には、ウェハ56の向きを合わせてサンプルステージ4にセットするためのオリエンテーションフラットと呼ばれるオリフラ部56aが形成されている。
図11(b)に示すように、サンプルステージ4には、ウェハ56のオリフラ部56aおよび外周輪郭形状に合わせた凹みである凹部4aが形成されている。凹部4aの深さDは、ウェハ56の厚み以下に設定されている。
ウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して図5に示すコロナ帯電処理装置1により分極処理を行った。コロナ帯電処理装置1には、直径φ50μmのタングステン製のコロナワイヤ電極を用いている(コロナワイヤ電極の数は1本でもそれ以上でもよく、本実施例ではコロナワイヤ電極1本での処理を行っている)。図5のコロナ電源7によるコロナ電圧は8.5kVとし、ステージ電源9によりサンプルステージ4に加えられる印加電圧を−100Vとした。処理条件の詳細と要した処理時間は、以下の表1に記載した。
Figure 0006201461
なお、表1において、コロナワイヤ電極2とグリッド電極3との間の距離を、コロナワイヤ−グリッド間距離と、グリッド電極3とサンプルステージ4との間の距離を、グリッド−ステージ4間距離と、簡略化して記載している。処理温度のRTは、室温(23℃)を示す。
実施例1によれば、サンプルステージ4をコロナワイヤ電極2の電圧と逆極性の電圧にすることで、コロナワイヤ電極2とサンプルステージ4との間の電位差がより大きくなり、試料への単位時間当たりの電荷注入量を増やすことができる。従って、従来よりもタクトタイムの短縮(処理の効率化)を行うことができ、分極処理時間を短縮化することができる、という基本的な効果を奏する。
(実施例2)
実施例1と同様にして、第2の絶縁保護膜49(図4参照)を形成した後、図11(a)に示すように、作製したウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して、図5に示すコロナ帯電処理装置1により分極処理を行った。実施例2は、実施例1と比較して、ステージ電源9によりサンプルステージ4に加えられる印加電圧を−500Vとした処理条件のみ相違する。
実施例2の処理条件の詳細と要した処理時間は、上記表1に記載したとおりである。実施例2によれば、実施例1と同様の効果を奏する他、サンプルステージ4に対する逆極性の電圧を実施例1よりも大きくすることで、実施例1よりも分極処理時間において短縮化が図られた。
(実施例3)
実施例1と同様にして第2の絶縁保護膜49(図4参照)を形成した後、図11(a)に示すように、作製したウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して、図5に示すコロナ帯電処理装置1により分極処理を行った。
実施例3は、実施例1、2と比較して、ウェハ56内に白抜き部で示す電気機械変換素子部40Aに対してのみ、ステージ電源9によりサンプルステージ4に加えられる印加電圧を−100Vとした処理条件のみ相違する。実施例1および2では、ウェハ56内に白抜き部で示す電気機械変換素子部40A以外のウェハ56全体に渡り、ステージ電源9によりステージ電圧が印加されていた。実施例3では、白抜き部で示す電気機械変換素子部40A以外のウェハ56にはステージ電圧が印加されておらず、表1に示すとおり、「フロート」状態になっている。
すなわち、実施例3では、ステージ電源9によりサンプルステージ4に印加されるステージ電圧の印加部分が、サンプルステージ4の逆極性電圧印加部分のパターンと、ウェハ56内に白抜き部で示す電気機械変換素子部40Aのパターン形状とが、ほぼ等しく設定されている。
処理条件の詳細と要した処理時間は、上記表1に記載したとおりであり、実施例3では、処理時間において実施例1と同じ結果を得た。
実施例3によれば、実施例1と同様の効果を奏する他、電気機械変換素子部40Aのみに逆極性の電圧を印加することで、コロナワイヤ電極2から発生した電荷を選択的に注入しやすくできる、という効果を奏する。
本実施例で使用したサンプルステージ4は、図11(b)において梨地模様で示すように、ステージ材質としてはアルミナの絶縁体でステージ基部を作り、ウェハ56形状に合わせた窪み・凹部4aを切削により作製した。次に、ウェハ56内に白抜き部で示す電気機械変換素子部40Aのパターンに対応したサンプルステージ4のパターン部分に貫通孔を空けた。この貫通孔から電極とステージ電源の接続を行う。そして、電圧印加パターンに形成された金属電極の薄板をパターンに併せて配置した。
(実施例4)
実施例1と同様にして第2の絶縁保護膜49(図4参照)を形成した後、図11(a)に示すように、作製したウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して、図5に示すコロナ帯電処理装置1により分極処理を行った。実施例4は、実施例3と比較して、白抜き部で示す電気機械変換素子部40A上と白抜き部で示す電気機械変換素子部40Aに対応した以外の部位を独立に電圧印加できるサンプルステージを用いて電気機械変換素子部40Aを−100V、電気機械変換素子部40A以外を50Vで分極処理を行った。
実施例4で使用したサンプルステージは、実施例3で使用したサンプルステージ4に、さらに電気機械変換素子部40A以外の部分も金属電極の薄板を配置した点が異なる。各電極間は放電しないよう3mm離している。
実施例4の処理条件の詳細と要した処理時間は、表1に記載したとおりである。実施例4によれば、実施例1と同様の効果を奏する他、電気機械変換素子部40Aに対応した以外の部位が、コロナワイヤ電極2と同極性の電圧を印加されていることにより、逆極性印加部分に電荷が注入されやすくすることをアシストすることができる。これにより、実施例4では分極処理時間において実施例2と同じ結果を得た。
(実施例5)
実施例1と同様にして第2の絶縁保護膜49(図4参照)を形成した後、図11(a)に示すように、作製したウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して、図5に示すコロナ帯電処理装置1により分極処理を行った。実施例5は、実施例1と比較して、サンプルステージ4を80℃に加熱して分極処理を行った点のみ相違する。
処理条件の詳細と要した処理時間は、表1に記載したとおりである。
実施例5によれば、実施例1と同様の効果を奏する他、サンプルステージ4を介した試料の加熱によって、電気機械変換膜を加熱することが可能となり、電気機械変換膜内の機械的、電気的な変化を促して分極処理の効率を向上させることができる。これにより、実施例5では分極処理時間において実施例1や3よりもやや短く、実施例2や4よりやや長い結果を得た。
(比較例)
実施例1と同様にして第2の絶縁保護膜49(図4参照)を形成した後、図11(a)に示すように、作製したウェハ56内に多数の電気機械変換素子部40Aを形成されたサンプル55に対して、図5に示すコロナ帯電処理装置1により分極処理を行った。比較例は、実施例1〜5と比較して、サンプルステージ4をアース接地(GND)し、室温(RT)で分極処理を行った点のみ相違する。処理条件の詳細と要した処理時間は、表1に記載したとおりであり、比較例では、処理時間において実施例1〜5程の短縮化を図ることができなかった。
実施例1〜5と比較例で作製した各電気機械変換素子40について、電気特性、電気機械変換能(圧電定数)の評価を行った。このとき、コロナ帯電処理を実施したときの電荷量(分極率=Pr−Pini)が3.0は、同に到達するのに要した時間を記載してある。代表的なP−Eヒステリシス曲線は図12に示す。電気機械変換能は電界印加(150kV/cm)による変形量をレーザードップラー振動計で計測し、シミュレーションによる合わせ込みから算出した。
1×1010回駆動後の特性においては、一般的なセラミック焼結体と同等の特性を有していた。
図1にインクジェット記録装置に配される1ノズルの液滴吐出ヘッド構成であるインクジェットヘッド102を示し、また、図13にこれらを複数個配置したものを示す。図1および図13に示すインクジェットヘッド102の作製過程において、本発明に係る実施例1〜5で説明したと同様の分極処理を実施することができる。なお、図13のインクジェットヘッド102では、下地(振動板30)上と下部電極42との間に密着層41が介装されている点が明示されている。
このような状態で、上述したような分極処理を行うことで、駆動パルス電圧に対して連続駆動させたときの変位量変化を抑制できる圧電素子である電気機械変換素子を製造し、インク吐出特性を良好に保持できると共に安定したインク吐出特性を得ることができる。加えて、圧電素子を高密度に配列することができる液滴吐出ヘッドであるインクジェットヘッド102を提供することができる。
また、電気機械変換素子が簡便な製造工程で(かつ、バルクセラミックスと同等の性能を持つ)形成でき、その後の圧力室形成のための裏面からのエッチング除去、ノズル孔を有するノズル板を接合することで液滴吐出ヘッドができる。図1および図13では液体供給手段、流路、流体抵抗についての記述は略した。
実施例1〜5で作製した電気機械変換素子を用いて、図1および図13のインクジェットヘッド102を作製し液の吐出評価を行った。粘度を5cpに調整したインクを用いて、単純pull波形(波形プロファイルとして、立ち下げ-保持-立ち上げを1μs-1.5μs-1μsとする波形)を加えたときの吐出状況を確認したところ、全てどのノズル孔からも吐出できていることを確認した。
次に、図14および図15を参照して、本発明に係る液滴吐出ヘッドの一例としてのインクジェットヘッドを搭載したインクジエット記録装置100の全体構成を説明する。図14は、インクジェットヘッドを搭載したインクジエット記録装置を透視して示す斜視図である。図15は、同記録装置の機構部の概略的な一部断面正面図である。
図14および図15に示すように、インクジェット記録装置100は、いわゆるシリアル型のインクジェット記録装置であり、印字機構部104等を有している。印字機構部104は、記録装置本体100Aの内部に主走査方向に移動可能なキャリッジ101と、図13に示したインクジェットヘッド102と、インクジェットヘッド102へインクを供給するインクカートリッジ103とを含んで構成されている。
記録装置本体100Aの下方部には、図15における左側の前方側から多数枚の用紙105を積載可能な給紙カセット106が、記録装置本体100Aに対して引き出し・押し込み自在に配設(配置して設けることを意味する)されている。給紙カセット106の上方には、用紙を手差しで給紙するための手差しトレイ107が記録装置本体100Aに対して揺動・開閉可能に設けられている。給紙カセット106あるいは手差しトレイ107から給送される用紙105を取り込み、印字機構部104によって所要の画像を記録した後、後面側に装着された排紙トレイ108に排紙する。
印字機構部104は、図示しない左右の側板に横架(横方向に架け渡すことを意味する)したガイド部材である主ガイドロッド109と従ガイドロッド110とでキャリッジ101を主走査方向に摺動自在に保持している。キャリッジ101は、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(Bk)の各色のインク滴を吐出するインクジェットヘッド102を複数のインク吐出口(ノズル)を主走査方向と交差する方向に配列し、インク滴吐出方向を下方に向けて装着している。
キャリッジ101は、インクジェットヘッド102に各色のインクを供給するための各インクカートリッジ103を交換可能に装着している。インクカートリッジ103は、上方に大気と連通する大気口、下方にはインクジェットヘッド102へインクを供給する供給口を設けられ、内部にはインクが充填された多孔質体を有している。この多孔質体の毛管力により、インクジェットヘッド102へ供給されるインクをわずかな負圧に維持している。また、インクジェットヘッド102としては、各色のインクジェットヘッド102を用いているが、各色のインク滴を吐出するノズルを有する1個の記録ヘッドでもよい。
ここで、キャリッジ101は、後方側(用紙搬送方向下流側)を主ガイドロッド109に摺動(接触して摺り動くことを意味する)自在に支持され、前方側(用紙搬送方向上流側)を従ガイドロッド110に摺動自在に載置されている。そして、このキャリッジ101を主走査方向に移動走査するため、タイミングベルト114をキャリッジ101に固定している。タイミングベルト114は、主走査モータ111で回転駆動される駆動プーリ112と従動プーリ113との間に張架(張力を付与する状態で掛け渡され装着されていることを意味する)されている。この主走査モータ111の正逆回転によりキャリッジ101が往復移動される。
一方、給紙カセット106にセットした用紙105をインクジェットヘッド102の下方側に搬送するために、給紙ローラ115、フリクションパッド116、ガイド部材117、搬送ローラ118、搬送コロ119、先端コロ120を有する。給紙ローラ115およびフリクションパッド116は、給紙カセット106から用紙105を分離給装する。ガイド部材117は用紙105を案内し、搬送ローラ118は給紙された用紙105を反転させて搬送する。搬送コロ119は搬送ローラ118の周面に押し付けられ、先端コロ120は搬送ローラ118からの用紙105の送り出し角度を規定する。
搬送ローラ118は、図14に示す副走査モータ121によってギヤ列を介して回転駆動される。そして、キャリッジ101の主走査方向の移動範囲に対応して搬送ローラ118から送り出された用紙105をインクジェットヘッド102の下方側で案内する用紙ガイド部材である印写受け部材122を設けている。この印写受け部材122の用紙搬送方向下流側には、用紙105を排紙方向へ送り出すために回転駆動される搬送コロ123、拍車124を設けている。さらに、用紙105を排紙トレイ108に送り出す排紙ローラ125および拍車126と、排紙経路を形成するガイド部材127、128とを配設している。
上述した構成を有するインクジェット記録装置100による記録時には、キャリッジ101を移動させながら画像信号に応じてインクジェットヘッド102を駆動する。これにより、停止している用紙105にインクを吐出して1行分を記録し、用紙105を所定量搬送後次の行の記録を行う。記録終了信号または用紙105の後端が記録領域に到達した信号を受けることにより、記録動作を終了させ用紙105を排紙する。また、キャリッジ101の移動方向右端側の記録領域を外れた位置には、インクジェットヘッド102の吐出不良を回復するための回復装置129を配置している。回復装置129は、キャップ手段と吸引手段とクリーニング手段を有している。キャリッジ101は印字待機中にはこの回復装置129側に移動されてキャッピング手段でインクジェットヘッド102をキャッピングされ、吐出口部を湿潤状態に保つことによりインク乾燥による吐出不良を防止する。また、記録途中などに記録と関係しないインクを吐出することにより、全ての吐出口のインク粘度を一定にし、安定した吐出性能を維持する。
吐出不良が発生した場合等には、キャッピング手段でインクジェットヘッド102の吐出口(ノズル)を密封し、チューブを通して吸引手段で吐出口からインクとともに気泡等を吸い出す。そして、吐出口面に付着したインクやゴミ等はクリーニング手段により除去され吐出不良が回復される。また、吸引されたインクは、記録装置本体100Aの下部に設置された廃インク溜(図示せず)に排出され、廃インク溜内部のインク吸収体に吸収保持される。
以上説明したとおり、インクジェット記録装置100においては、実施例1〜5の何れか1つの分極処理を実施して作製したインクジェットヘッド102を搭載しているので、振動板駆動不良によるインク滴吐出不良がない。また、変位の変動も抑制されているため、安定したインク滴吐出特性が得られて、画像品質が向上すると共にコスト的にも有利となる。
以上述べたとおり、本発明を特定の実施形態および実施例等について説明したが、本発明が開示する技術は、上述した実施形態および実施例等に例示されているものに限定されるものではない。すなわち、それらを適宜組み合わせて構成してもよく、本発明の範囲内において、その必要性および用途等に応じて種々の実施形態や実施例或いは変形例を構成し得ることは当業者ならば明らかである。
上記実施形態等では、電気機械変換素子40を用いた液滴吐出ヘッドとして、微小インクを吐出するインクジェットヘッド102を例示して説明したが、これに限定されない。例えば、インクに代えて、その用途に応じて使用する任意の微小液体を吐出する液体吐出ヘッドであってもよく、また液滴吐出ヘッドを用いたパターニング装置等にも適用可能なことは言うまでもない。
本発明に係る画像形成装置は、図14および図15に示したインクジェット記録装置100に限らない。例えば、プリンタ、プロッタ、ワープロ、ファクシミリ、複写機、またはこれら2つ以上の機能を備えた複合機等においてインクジェット記録装置を含む画像形成装置にも適用可能である。
本発明の適用分野としては、直接的には印刷分野、特にデジタル印刷分野が挙げられる。画像形成装置としては、マルチファンクション・プリンタ(以下、「MFP」という)を使用するデジタル印刷装置、オフィス、パーソナルで使用するプリンタ、MFPなどが挙げられる。また、応用分野としては、インクジェット技術を利用する三次元造型技術などにも適用可能である。
また、記録媒体としては、用紙105に限らず、使用可能な薄紙から厚紙、はがき、封筒、或いはOHPシート等まで、インクジェットヘッドを用いて画像形成可能な全ての記録媒体を含むものである。
1 コロナ帯電処理装置(分極処理装置の一例)
2 コロナワイヤ電極
3 グリッド電極
4 サンプルステージ
7 コロナ電源
8 グリッド電源
9 ステージ電源
10 ノズル板
11 ノズル
20 基板(アクチュエータ基板の一例)
21 圧力室
30 振動板
40 電気機械変換素子
40A 電気機械変換素子部
41 密着層
42 下部電極(第1の電極の一例)
43 電気機械変換膜
44 上部電極(第2の電極の一例)
45 第1の絶縁保護膜
46 コンタクトホール
47 第3の電極
48 第4の電極
49 第2の絶縁保護膜
50 共通電極パッド
51 個別電極パッド
55 サンプル(試料の一例)
56 ウェハ
100 インクジェットヘッド記録装置(画像形成装置の一例)
100A 記録装置本体
101 キャリッジ
102 インクジェットヘッド・記録ヘッド(液滴吐出ヘッドの一例)
104 印字機構部
105 用紙(記録媒体)
特許第3365485号公報 特許第4218309号公報 特開平08−180959号公報 特許第3019845号公報 特開2004−202849号公報 特開2010−034154号公報 特開2006−203190号公報 特許第3782401号公報

Claims (6)

  1. 基板または下地膜上に金属もしくは金属と酸化物から成る第1の電極を形成し、該第1の電極上に電気機械変換膜を形成し、該電気機械変換膜上に金属もしくは金属と酸化物から成る第2の電極を形成することにより構成した電気機械変換素子を有するアクチュエータ基板上の前記電気機械変換素子に対して、コロナ放電により分極処理を行う分極処理装置において、
    前記アクチュエータ基板上に形成された少なくとも前記電気機械変換素子を含む試料をセットするためのサンプルステージと、
    前記サンプルステージ上にセットされた前記試料に対向して設けられ、前記コロナ放電を行うコロナワイヤ電極またはコロナワイヤ電極とグリッド電極と、を備え、
    前記サンプルステージが、前記コロナワイヤ電極と逆極性の電圧を印加されていることを特徴とする分極処理装置。
  2. 請求項1記載の分極処理装置において、
    前記サンプルステージの体積抵抗率が、セットされる前記試料の体積抵抗率以下であることを特徴とする分極処理装置。
  3. 請求項1または2記載の分極処理装置において、
    前記サンプルステージの逆極性電圧印加部分のパターンと、前記アクチュエータ基板上の前記電気機械変換素子のパターン形状とが、ほぼ等しいことを特徴とする分極処理装置。
  4. 請求項3記載の分極処理装置において、
    前記サンプルステージの逆極性電圧印加部分のパターンと、前記アクチュエータ基板上の前記電気機械変換素子のパターン形状とを一致させる手段として、前記試料形状に合わせた凹部形状を前記サンプルステージ側に設けるとともに、前記凹部の深さが前記試料の厚み以下であることを特徴とする分極処理装置。
  5. 請求項3または4記載の分極処理装置において、
    前記サンプルステージの逆極性電圧印加部分以外の部位が、前記コロナワイヤ電極と同極性の電圧を印加されていることを特徴とする分極処理装置。
  6. 請求項1ないし5の何れか1つに記載の分極処理装置において、
    前記サンプルステージは、加熱手段を有していることを特徴とする分極処理装置。
JP2013140167A 2013-07-03 2013-07-03 分極処理装置 Expired - Fee Related JP6201461B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140167A JP6201461B2 (ja) 2013-07-03 2013-07-03 分極処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140167A JP6201461B2 (ja) 2013-07-03 2013-07-03 分極処理装置

Publications (2)

Publication Number Publication Date
JP2015015316A JP2015015316A (ja) 2015-01-22
JP6201461B2 true JP6201461B2 (ja) 2017-09-27

Family

ID=52436861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140167A Expired - Fee Related JP6201461B2 (ja) 2013-07-03 2013-07-03 分極処理装置

Country Status (1)

Country Link
JP (1) JP6201461B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551773B2 (ja) * 2015-02-16 2019-07-31 株式会社リコー 液滴吐出ヘッドおよび画像形成装置
JP6809094B2 (ja) * 2016-09-29 2021-01-06 セイコーエプソン株式会社 圧電素子、圧電アクチュエーター、超音波探触子、超音波装置、電子機器、液体噴射ヘッド、及び液体噴射装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169286A (en) * 1981-04-10 1982-10-18 Matsushita Electric Ind Co Ltd Manufacture of piezoelectric or pyroelectric film
JPS58102581A (ja) * 1981-12-14 1983-06-18 Japan Synthetic Rubber Co Ltd 改良された高分子圧電材料の製造法
JP3339005B2 (ja) * 1992-02-10 2002-10-28 株式会社アルバック 有機焦電圧電体の製造方法およびその製造装置
JPH08180959A (ja) * 1994-12-20 1996-07-12 Ulvac Japan Ltd コロナ分極処理方法およびコロナ分極装置
JP2011181554A (ja) * 2010-02-26 2011-09-15 Daikin Industries Ltd 分極処理方法、および分極処理装置
JP2011181748A (ja) * 2010-03-02 2011-09-15 Daikin Industries Ltd 分極化樹脂フィルムの製造方法
JP5836755B2 (ja) * 2011-10-04 2015-12-24 富士フイルム株式会社 圧電体素子及び液体吐出ヘッド
JP6012213B2 (ja) * 2012-03-19 2016-10-25 三菱重工業株式会社 超音波厚みセンサ用酸化物系無機圧電材料焼結体の分極処理方法、および分極処理装置

Also Published As

Publication number Publication date
JP2015015316A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6273829B2 (ja) 電気機械変換素子とその製造方法、及び電気機械変換素子を有する液滴吐出ヘッド、液滴吐出ヘッドを有する液滴吐出装置
JP6478139B2 (ja) 液滴吐出ヘッドの製造方法
JP5811728B2 (ja) 電気−機械変換素子、液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP6525255B2 (ja) 電気機械変換素子、電気機械変換素子の製造方法、液滴吐出ヘッド及び液滴吐出装置
JP6260858B2 (ja) 電気機械変換素子の製造方法、電気機械変換素子、液滴吐出ヘッド及び画像形成装置
JP6551773B2 (ja) 液滴吐出ヘッドおよび画像形成装置
JP6318793B2 (ja) 電気−機械変換素子、電気−機械変換素子の製造方法、インクジェット記録ヘッド及びインクジェット記録装置
JP6263950B2 (ja) 電気−機械変換素子とその製造方法及び電気−機械変換素子を備えた液滴吐出ヘッド、インクカートリッジ並びに画像形成装置
JP6079080B2 (ja) 電気−機械変換素子の製造方法、電気−機械変換素子、該電気−機械変換素子を備えた液滴吐出ヘッド、液滴吐出装置。
JP6201461B2 (ja) 分極処理装置
JP5831475B2 (ja) 液滴吐出ヘッド、電圧制御方法、および、画像形成装置
JP6112401B2 (ja) 電気機械変換素子の製造方法及び電気機械変換素子の製造装置
JP5834675B2 (ja) 電気−機械変換素子、液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP2014054802A (ja) 電気機械変換素子、液滴吐出ヘッドおよび液滴吐出装置
JP6175956B2 (ja) 電気−機械変換素子、電気−機械変換素子を配置した液滴吐出ヘッド、及び液滴吐出ヘッドを備えた液滴吐出装置
JP6350904B2 (ja) 電気機械変換部材、液滴吐出ヘッド、画像形成装置、及び、電気機械変換素子の分極処理方法
JP5998537B2 (ja) 電気−機械変換素子、液滴吐出ヘッド及び液滴吐出装置
JP6566323B2 (ja) 液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP2016164931A (ja) 分極処理装置、液滴吐出ヘッド、画像形成装置及び電気−機械変換素子の製造方法
JP6268985B2 (ja) 電気機械変換素子とその製造方法、及び電気機械変換素子を有する液滴吐出ヘッド、液滴吐出ヘッドを有する液滴吐出装置
JP6497043B2 (ja) 分極処理装置、液滴吐出ヘッド及び画像形成装置
JP2015164149A (ja) 分極処理前基板、アクチュエータ基板、アクチュエータ基板の製造方法、液滴吐出ヘッド及び画像形成装置
JP6198116B2 (ja) 電気機械変換素子の製造方法、電気機械変換素子、液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP2015046434A (ja) コロナ分極処理装置、電気−機械変換素子、インクジェット記録ヘッド、インクジェット記録装置及びコロナ分極処理方法
JP6460449B2 (ja) 電気機械変換素子、液滴吐出ヘッド及び液滴吐出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees