JP6169215B2 - 塩素バイパスダスト及び排ガスの処理方法 - Google Patents

塩素バイパスダスト及び排ガスの処理方法 Download PDF

Info

Publication number
JP6169215B2
JP6169215B2 JP2016078557A JP2016078557A JP6169215B2 JP 6169215 B2 JP6169215 B2 JP 6169215B2 JP 2016078557 A JP2016078557 A JP 2016078557A JP 2016078557 A JP2016078557 A JP 2016078557A JP 6169215 B2 JP6169215 B2 JP 6169215B2
Authority
JP
Japan
Prior art keywords
chlorine bypass
exhaust gas
dust
slurry
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016078557A
Other languages
English (en)
Other versions
JP2016188167A (ja
Inventor
淳一 寺崎
淳一 寺崎
齋藤 紳一郎
紳一郎 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2016188167A publication Critical patent/JP2016188167A/ja
Application granted granted Critical
Publication of JP6169215B2 publication Critical patent/JP6169215B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/162Cement kiln dust; Lime kiln dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/436Special arrangements for treating part or all of the cement kiln dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D2017/009Cyclone for separating fines from gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Civil Engineering (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Gas Separation By Absorption (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、セメント製造設備に付設されている塩素バイパス設備から回収される塩素バイパスダスト及び塩素バイパス設備から排出されるガスを処理する方法に関する。
従来、セメント製造設備におけるプレヒータの閉塞等の問題を引き起こす原因となる塩素を除去する塩素バイパス設備が用いられている。近年、廃棄物のセメント原料化又は燃料化によるリサイクルが推進され、廃棄物の処理量が増加するに従い、セメントキルンに持ち込まれる塩素等の揮発成分の量も増加し、塩素バイパスダストの発生量も増加している。そのため、塩素バイパスダストの有効利用方法の開発が求められていた。
かかる見地から、特許文献1及び2に記載のセメント原料化処理方法では、塩素を含む廃棄物に水を添加して廃棄物中の塩素を溶出させてろ過し、得られた脱塩ケーキをセメント原料として利用するとともに、排水のpHを調整して重金属を沈殿回収し、重金属回収後の排水を、塩分を回収した後又はそのまま放流する。
また、特許文献3に記載の塩素バイパスダストの処理方法及び装置では、塩素バイパスダストに水を加えてスラリーとして貯留し、貯留したスラリーをクリンカ、石膏及び混合材の少なくとも一つとともにセメント仕上工程へ供給し、セメント製造用のミルで混合粉砕する。
一方、上記塩素バイパス設備から排出されるガス(以下、「塩素バイパス排ガス」という)には、高濃度のSO2が含まれているため、脱硫処理が必要となる。そこで、例えば、特許文献4及び5では、塩素バイパスダストを回収した後、塩素バイパス排ガスをセメントキルン系に戻して処理している。
特許第3304300号公報 特許第4210456号公報 特許第4434361号公報 特開2010−180063号公報 特開2010−195660号公報
しかし、上記特許文献1及び2に記載の発明では、脱塩ケーキに重金属が残留するとともに、排水処理で回収された汚泥に重金属が含まれるため、脱塩ケーキや汚泥をセメント原料系に戻すと、セメント焼成系で重金属が循環濃縮するため、排水処理のための薬剤費が増加したり、クリンカ中の重金属濃度が増加する虞がある。
また、特許文献3に記載の処理方法では、塩素バイパスダストに水を加えてスラリーとすると、塩素バイパスダスト中のCaOが消和してCa(OH)2となる。そのため、スラリー中のカルシウム化合物として未反応で残ったCaO、Ca(OH)2及びCaCO3等が混在し、このスラリーをセメント仕上工程へ供給すると、製造されたセメントのCaO、Ca(OH)2含有率が安定せず、凝結時間等の物性に影響を及ぼす虞がある。
一方、上記塩素バイパス排ガスを、セメントキルン系に戻して脱硫を行うと、硫黄分の濃縮により、セメントキルンやプレヒータでのコーチングトラブルが増加したり、塩素バイパス設備からの低温の排ガスが導入されることでプレヒータ等での熱損失が大きくなり、セメントキルンのクリンカ生産量の低下に繋がるという問題がある。
そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、薬剤費及びクリンカ中の重金属濃度の増加を防止し、セメントの品質の安定性を確保しながら塩素バイパスダストを処理するとともに、セメントキルン等でのコーチングトラブルを回避し、プレヒータ等での熱損失を防止し、クリンカ生産量の低下を招くことなく塩素バイパス排ガスを処理することを目的とする。
上記目的を達成するため、本発明は、塩素バイパスダスト及び排ガスの処理方法であって、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備において、前記回収された塩素バイパスダストをスラリー化した後、該スラリーを脱水し、脱水により得られたケークを再溶解させ、+濃度及びCl-濃度が各々6質量%以下のスラリーを生成させ、該ケークが再溶解したスラリーを該塩素バイパス設備の排ガスに接触させて、該排ガスの脱硫を行うことを特徴とする。
本発明によれば、塩素バイパスダストを含むスラリーを塩素バイパス設備の排ガスに接触させることにより、スラリー中のCaO及びCa(OH)2を前記排ガス中のSO2と反応させて石膏(CaSO4)とすることができ、スラリーのCaO、Ca(OH)2の含有率を低下させることができる。また、塩素バイパス設備の排ガスに含まれるSO2と反応させることで、塩素バイパス設備の排ガス中の酸性ガス(SOx)を低コストで熱ロスを抑えながら脱硫処理することができる。また、塩素バイパスダストスラリーのK+濃度及びCl-濃度を各々6質量%以下にすることにより、シンゲナイトの生成を抑制して石膏を効率的に生成させることができる。
上記塩素バイパスダスト及び排ガスの処理方法において、前記ケークが再溶解したスラリーは、SO4 2-濃度が10000mg/L以下のものとすることができる。また、前記塩素バイパス設備の排ガスと接触した前記ケークが再溶解したスラリーを、ケーキとろ液とに固液分離することができる。

以上のように、本発明によれば、薬剤費及びクリンカ中の重金属濃度の増加を防止し、セメントの品質の安定性を確保しながら塩素バイパスダストを処理するとともに、セメントキルン等でのコーチングトラブルを回避し、プレヒータ等での熱損失を防止し、クリンカ生産量の低下を招くことなく塩素バイパス排ガスを処理することなどが可能となる。
本発明にかかる塩素バイパスダスト及び排ガス処理方法を適用した塩素バイパス設備の第1の例を示す概略図である。 本発明にかかる塩素バイパスダスト及び排ガス処理方法を適用した塩素バイパス設備の第2の例を示すフローチャートである。 +、Cl-及びSO4 2-と、シンゲナイトの生成量との関係を示すグラフで ある。
次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。
図1は、本発明にかかる塩素バイパスダスト及び排ガス処理方法を適用した塩素バイパス設備の第1の例を示し、この塩素バイパス設備1は、セメントキルン2の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部Gを冷却しながら抽気するプローブ3と、プローブ3で抽気した抽気ガスG1に含まれるダストの粗粉D1を分離するサイクロン4と、サイクロン4から排出された微粉D2を含む抽気ガスG2を冷却する熱交換器5と、熱交換器5からの抽気ガスG3を集塵するバグフィルタ6と、熱交換器5及びバグフィルタ6から排出されたダスト(D3+D4)を分級する分級機7と、分級機7から排出されたダストD5を一時的に貯留するダストタンク8と、ダストタンク8から排出されたダスト(塩素バイパスダスト)D6を水に溶解させた後、バグフィルタ6の排ガスG4と接触させる溶解反応槽9と、溶解反応槽9から排出されたスラリーS1のpH調整を行い重金属を不溶化させる調整槽10と、調整槽10から排出されたスラリーS2を固液分離する固液分離機11等で構成される。プローブ3〜バグフィルタ6の構成については、従来の塩素バイパス設備と同様の構成であるため、詳細説明を省略する。
分級機7は、熱交換器5及びバグフィルタ6から排出されたダスト(D3+D4)を分級する。この分級機7には、慣性力分級機(エアセパレータ、スターテバンドセパレータ、ハイドタイプセパレータ他)、遠心力分級機(ミクロンセパレータ、ターボクラシフィア他)等、供給するダストの粒度分布を調整できる装置であればいずれも用いることができ、2段、又は数段に分けてもよい。
溶解反応槽9は、ダストタンク8からのダストD6を水(又は温水)を用いてスラリー化するとともに、溶解反応槽9にバグフィルタ6からのSO2ガスを含む排ガスG4が供給され、スラリーに含まれるカルシウム化合物と、SO2ガスとを反応させるために備えられる。尚、溶解反応槽9として、充填塔、多孔板塔、ベンチュリースクラバー、スプレー塔、ミキシング型スクラバー又は散気盤等を使用することができ、また、これらは連続式、バッチ式のいずれでもよい。また、ダストD6の供給は、スラリー化後であっても、又はダストD6を直接溶解反応槽9に投入し、槽内でスラリー化を行う方式のいずれでもよい。
調整槽10は、溶解反応槽9から排出されたスラリーS1にpH調整剤を添加してpH調整を行い、鉛等の重金属を不溶化させるために備えられる。pH調整剤として、NaOH、Ca(OH)2、CaO、Mg(OH)2、さらに硫酸等を用いることができる。
固液分離機11は、調整槽10から排出されたスラリーS2を固液分離するために備えられ、フィルタープレス、遠心分離機、ベルトフィルター等を用いることができる。
次に、上記構成を有する塩素バイパス設備1の動作について、図1を参照しながら説明する。
セメントキルン2の窯尻から最下段サイクロンに至るまでのキルン排ガス流路からの燃焼ガスの一部Gは、プローブ3において、冷却ファン(不図示)からの冷風によって冷却され、塩素化合物の微結晶が生成される。この塩素化合物の微結晶は、抽気ガスG1に含まれるダストの微粉側に偏在しているため、サイクロン4で分級した粗粉D1をセメントキルン系に戻す。
サイクロン4によって分離された微粉D2を含む抽気ガスG2は、熱交換器5に導入されて抽気ガスG2と媒体との熱交換が行われる。熱交換によって冷却された抽気ガスG3は、バグフィルタ6に導入され、バグフィルタ6において抽気ガスG3に含まれるダストD4が回収される。バグフィルタ6で回収されたダストD4は、熱交換器5から排出されたダストD3とともに、分級機7で分級された後、ダストタンク8に一旦貯留され、溶解反応槽9に導入される。
溶解反応槽9に導入されたダストD6は、溶解反応槽9内の水と混合されてスラリーとなる。ここで、スラリー中には、カルシウム化合物として、CaO、CaCO3及びCa(OH)2が混在するが、CaO、Ca(OH)2は、排ガスG4に含まれるSO2と反応してCaSO4へと転換される。このCaO及びCa(OH)2と、SO2との反応の際には、溶解反応槽9における排ガスG4の減少率(SO2ガスの減少率)、溶解反応槽9内のスラリーのpH、ダストD6の化学分析値等によって、溶解反応槽9内のスラリーの滞留時間や、ダストD6の投入量、ダストD6を溶解させたスラリーの供給量を調整する。
次に、溶解反応槽9から排出されたスラリーS1を調整槽10に供給し、スラリーS1にアルカリ源を添加してpHを7〜10.5に調整し、鉛、カドミウム、銅、亜鉛等の重金属を不溶化させる。溶解反応槽9の排ガスG5は、セメントキルン2に付設されたプレヒータの出口に導入される。
次に、調整槽10から排出されたスラリーS2を固液分離機11において固液分離し、得られた固形分Cをセメント仕上工程へ供給する。一方、固液分離機11から排出されるろ液Lには、塩と重金属が含まれているため、製品としてのセメントの品質を考慮しながらセメント仕上工程に添加することで塩及び重金属処理を行うことができる。尚、セメント仕上工程に添加できなかったろ液Lは、塩及び重金属を回収した後放流する。
上述のように、本実施の形態によれば、セメントに添加した場合に、製品の品質に影響を与える虞のあるCaO及びCa(OH)2をSO2と反応させてCaSO4に変化させた後、脱水して得られた固形物をセメント仕上工程へ供給するため、CaO及びCa(OH)2の含有率の低いセメントを製造することができ、凝結時間等の物性に影響を与えず、セメントの品質の安定性を確保することができる。
また、上記固形分をセメント原料系に戻さないため、セメント焼成系で重金属が循環濃縮することがなく、排水処理のための薬剤費を低減することができるとともに、クリンカ
中の重金属濃度が増加することもない。
さらに、バグフィルタ6からのSO2ガスを含む排ガスG4、すなわち塩素バイパス設備1の排ガスには、酸性ガス(SOx)が含まれているが、この排ガスを上記CaO及びCa(OH)2との反応に利用するため、酸性ガスを低コストで熱ロスを抑えながら処理することができ、環境負荷を増加させることもない。
図2は、本発明にかかる塩素バイパスダスト及び排ガス処理方法を適用した塩素バイパス設備の第2の例を示し、この塩素バイパス設備31は、セメントキルン32の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部Gを冷却ファン34、35からの冷風で冷却しながら抽気するプローブ33と、プローブ33で抽気した抽気ガスG1に含まれるダストの粗粉D1を分離するサイクロン36と、サイクロン36からの粗粉D1から分取した粗粉D3を分級する分級機40と、サイクロン36から排出された微粉D2を含む抽気ガスG2を冷却する冷却器37と、冷却器37からの抽気ガスG3を集塵するバグフィルタ38と、冷却器37及びバグフィルタ38から排出されたダスト(D6+D7)を貯留するダストタンク39と、ダストタンク39から排出されたダスト(塩素バイパスダスト)D8等を第2の固液分離機47からのろ液L2に溶解させる第1の溶解槽41と、第1の溶解槽41から排出されたスラリーS1を固液分離する第1の固液分離機42と、第1の固液分離機42から排出されたケークCを再溶解(リパルプ)させる第2の溶解槽44と、第2の溶解槽44から排出されたリパルプスラリーRを用いてバグフィルタ38の排ガス(塩素バイパス排ガス)G4を脱硫する溶解反応槽46と、溶解反応槽46から排出されたスラリーS2を固液分離する第2の固液分離機47と、第1の固液分離機42から排出されたろ液L1から塩を回収する塩回収装置48等で構成される。プローブ33〜ダストタンク39の構成については、従来の塩素バイパス設備と同様の構成であるため、詳細説明を省略する。
分級機40は、サイクロン36から排出された粗粉D1から分取した粗粉D3を分級するために備えられ、分級機40で分級された微粉D5は第1の溶解槽41へ供給され、粗粉D4はセメントキルン32に付設されたプレヒータ等にセメント原料として戻される。尚、サイクロン36から排出された粗粉D1のうち余剰となる分は分級機40に供給せず、粗粉D1’としてそのまま前記プレヒータ等にセメント原料として戻される。
第1の溶解槽41は、ダストタンク39からのダストD8、及び分級機40からの微粉D5を第2の固液分離機47からのろ液L2を用いてスラリー化するために備えられる。
第1の固液分離機42は、第1の溶解槽41から排出されたスラリーS1を固液分離するために備えられる。固液分離されたケークCは第2の溶解槽44へ、ろ液L1は塩回収装置48へ供給される。
第2の溶解槽44は、第1の固液分離機42から排出されたケークCを再溶解させるために備えられ、リパルプしたスラリーRは、溶解反応槽46においてバグフィルタ38の排ガスG4の脱硫に利用される。
溶解反応槽46は、バグフィルタ38からファン45を介して供給された排ガスG4を第2の溶解槽44から供給されたリパルプしたスラリーRを利用して脱硫するために備えられる。脱硫によって生じた二水石膏を含むスラリーS2は第2の固液分離機47へ、脱硫された排ガスG5は、セメントキルン32の排ガス系へ戻される。
第2の固液分離機47は、溶解反応槽46から供給されたスラリーS2を固液分離するために備えられ、固液分離されたろ液L2は第1の溶解槽41で再利用され、固液分離されたケーク側に二水石膏Gyが回収される。
塩回収装置48は、第1の固液分離機42から排出されたろ液L1に含まれる塩を回収
するために備えられる。
次に、上記構成を有する塩素バイパス設備31の動作について、図2を参照しながら説明する。
セメントキルン32の窯尻から最下段サイクロンに至るまでのキルン排ガス流路からの燃焼ガスの一部Gをプローブ33によって抽気しながら、冷却ファン34、35からの冷風によって冷却する。これによって、塩素化合物の微結晶が生成される。この塩素化合物の微結晶は、抽気ガスG1に含まれるダストの微粉側に偏在しているため、サイクロン36で分級した粗粉D1をセメントキルン32に付設されたプレヒータ等にセメント原料として戻す(D1’)か、分取して(D3)分級機40に供給して、後述するように脱硫に利用する。
サイクロン36によって分離された微粉D2を含む抽気ガスG2を冷却器37に導入し、抽気ガスG2と媒体との熱交換を行う。熱交換によって冷却された抽気ガスG3をバグフィルタ38に導入し、バグフィルタ38において抽気ガスG3に含まれるダストD7を回収する。バグフィルタ38で回収したダストD7は、冷却器37から排出されたダストD6とともにダストタンク39に一旦貯留し、第1の溶解槽41に導入する。
一方、サイクロン36から排出された粗粉D1の一部を分取し、分級機40に供給して分級する。分取しなかった粗粉D1’はそのままセメントキルン32に付設されたプレヒータ等にセメント原料として戻す。分級機40で分級された微粉D5を第1の溶解槽41へ供給し、粗粉D4を前記プレヒータ等へ戻す。また、粗粉D1の一部を分取せずに、粗粉D1の全量を分級機40に供給してもよい。
第1の溶解槽41に導入された微粉D5、及びダストタンク39からのダストD8は、第1の溶解槽41内において、第2の固液分離機47から供給されたろ液L2と混合されてスラリーS1が生成される。
次に、第1の固液分離機42によって、第1の溶解槽41から排出されたスラリーS1を固液分離する。スラリーS1を固液分離しながら固液分離して得られるケークを水洗して塩素分を除去する。塩素分が除去されたケークCを第2の溶解槽44へ供給して再溶解させ、リパルプしたスラリーRを溶解反応槽46に供給して脱硫に利用する。尚、脱硫後の排ガスG5は、セメントキルン32の排ガス系へ導入する。
ここで、上記リパルプしたスラリーR中には、カルシウム化合物として、CaO、CaCO3及びCa(OH)2が混在するが、これらは、溶解反応槽46でバグフィルタ38の排ガスG4に含まれるSO2と反応して二水石膏(CaSO4・2H2O)へと転換される。この際、第1の固液分離機42においてカリウム分や塩素分を除去したため、リパルプしたスラリーRの塩素含有率が低く、スケールトラブルの原因となる石膏の溶解を最小限に抑えるることができるとともに、シンゲナイト(K2Ca(SO42)の生成を抑制することができる。
表1は、ダストタンク39からのダスト(塩素バイパスダスト)D8と水との混合割合を変化させ、溶解反応槽46に供給し、pHが4〜6となったスラリーS2を固液分離した後のろ液L2のpH及び化学分析値、並びにケークGyに含まれるシンゲナイト及び二水石膏の含有割合を示す。同表に示すように、溶解反応槽46に供給するスラリーR、すなわち塩素バイパスダストを溶解させたスラリー又は/及び塩素バイパスダストをスラリー化した後、脱水して得られたケークを再溶解させたスラリーのカリウム濃度、塩素濃度を6%以下とすることで、二水石膏の生成量に対してシンゲナイトの生成量の割合が小さくなる。
Figure 0006169215
また、塩素バイパスダストを溶解させたスラリー又は/及び塩素バイパスダストをスラリー化した後、脱水して得られたケークを再溶解させたスラリーに含まれるK+、Cl-及びSO4 2-と、シンゲナイトの生成量とは図3に示すような関係があるため、スラリーRのカリウム濃度、及び塩素濃度を6%以下とすることで、上記シンゲナイトの生成を低く抑えることができる。
次に、溶解反応槽46から排出されたスラリーS2を第2の固液分離機47で固液分離し、得られたろ液L2を第1の溶解槽41で再利用するとともに、ケーク側に二水石膏Gyを回収する。この二水石膏Gyの純度は75%以上である。
一方、第1の固液分離機42で固液分離して得られたろ液L1を塩回収装置48へ供給し、塩を回収し、排水処理後放流する。
1 塩素バイパス設備
2 セメントキルン
3 プローブ
4 サイクロン
5 熱交換器
6 バグフィルタ
7 分級機
8 ダストタンク 9 溶解反応槽
10 調整槽
11 固液分離機
31 塩素バイパス設備
32 セメントキルン
33 プローブ
34、35 冷却ファン
36 サイクロン
37 冷却器
38 バグフィルタ
39 ダストタンク
40 分級機
41 第1の溶解槽
42 第1の固液分離機
44 第2の溶解槽
45 ファン
46 溶解反応槽
47 第2の固液分離機
48 塩回収装置

Claims (3)

  1. セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスから塩素バイパスダストを回収する塩素バイパス設備において、
    前記回収された塩素バイパスダストをスラリー化した後、該スラリーを脱水し、
    脱水により得られたケークを再溶解させ、+濃度及びCl-濃度が各々6質量%以下のスラリーを生成させ、
    該ケークが再溶解したスラリーを該塩素バイパス設備の排ガスに接触させて、該排ガスの脱硫を行うことを特徴とする塩素バイパスダスト及び排ガスの処理方法。
  2. 前記ケークが再溶解したスラリーは、SO4 2-濃度が10000mg/L以下であることを特徴とする請求項1に記載の塩素バイパスダスト及び排ガスの処理方法。
  3. 前記塩素バイパス設備の排ガスと接触した前記ケークが再溶解したスラリーを、ケーキとろ液とに固液分離することを特徴とする請求項1又は2に記載の塩素バイパスダスト及び排ガスの処理方法。
JP2016078557A 2010-08-10 2016-04-11 塩素バイパスダスト及び排ガスの処理方法 Active JP6169215B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010179104 2010-08-10
JP2010179104 2010-08-10
JP2010238089 2010-10-25
JP2010238089 2010-10-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012528655A Division JP5943388B2 (ja) 2010-08-10 2011-08-04 塩素バイパスダスト及び排ガスの処理方法及び処理装置

Publications (2)

Publication Number Publication Date
JP2016188167A JP2016188167A (ja) 2016-11-04
JP6169215B2 true JP6169215B2 (ja) 2017-07-26

Family

ID=45567660

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012528655A Active JP5943388B2 (ja) 2010-08-10 2011-08-04 塩素バイパスダスト及び排ガスの処理方法及び処理装置
JP2016078557A Active JP6169215B2 (ja) 2010-08-10 2016-04-11 塩素バイパスダスト及び排ガスの処理方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012528655A Active JP5943388B2 (ja) 2010-08-10 2011-08-04 塩素バイパスダスト及び排ガスの処理方法及び処理装置

Country Status (7)

Country Link
US (1) US8623304B2 (ja)
EP (1) EP2604586A4 (ja)
JP (2) JP5943388B2 (ja)
KR (1) KR20130096227A (ja)
CN (1) CN103052607B (ja)
TW (1) TWI552796B (ja)
WO (1) WO2012020691A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680450B2 (ja) * 2011-03-09 2015-03-04 太平洋セメント株式会社 塩素バイパス排ガスの処理装置及び処理方法
US9422193B2 (en) 2013-08-12 2016-08-23 Certainteed Gypsum, Inc. Struvite-K and syngenite composition for use in building materials
US10479728B2 (en) 2013-08-12 2019-11-19 Certainteed Gypsum, Inc. Struvite-K and Syngenite composition for use in building materials
JP6357009B2 (ja) * 2014-05-20 2018-07-11 太平洋セメント株式会社 有価金属精錬用原料及び有価金属精錬用原料回収方法
JP6327943B2 (ja) * 2014-05-20 2018-05-23 太平洋セメント株式会社 廃棄物中の有価金属回収方法
EP2975009A1 (de) * 2014-07-14 2016-01-20 A TEC Holding GmbH Verfahren zur Behandlung und Verwertung von Bypassstäuben und Bypassgasen aus einer Industrieanlage
DE102014116532A1 (de) * 2014-11-12 2016-05-12 Thyssenkrupp Ag Verfahren zur Verminderung eines Schadstoffgehalts eines bei einer thermischen Behandlung eines Materials entstehenden oder genutzten Abgasstroms
CN104587826A (zh) * 2015-02-09 2015-05-06 安徽海螺建材设计研究院 新型干法水泥窑窑尾烟气脱硫系统及其脱硫工艺
WO2019068084A2 (en) 2017-09-30 2019-04-04 Certaineed Gypsum, Inc. STRUVITE-K / SYNGENITE CONSTRUCTION COMPOSITIONS COMPRISING SILICATE MATERIALS AND CONSTRUCTION ARTICLES SUCH AS WALL PANELS MANUFACTURED THEREFROM
EP3843878A1 (en) * 2018-08-29 2021-07-07 FLSmidth A/S A method and apparatus for reduction of hci emission from cement plants using cement raw meal as absorber
CN110052158B (zh) * 2019-06-06 2023-12-22 天津水泥工业设计研究院有限公司 一种基于水泥熟料生产线钙循环干法脱硫系统
CN113800790B (zh) * 2021-10-12 2022-08-12 武汉理工大学 一种水泥熟料及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065320A (en) * 1975-05-13 1977-12-27 Allis-Chalmers Corporation System for handling high sulfur materials
JP4210456B2 (ja) 1997-07-14 2009-01-21 太平洋セメント株式会社 セメント原料化処理方法
JP3304300B2 (ja) 1997-07-14 2002-07-22 太平洋セメント株式会社 セメント原料化処理方法
US6331207B1 (en) * 1999-02-10 2001-12-18 Ronald Frank Gebhardt Method of treating cement kiln dust for recovery and recycle
JP4434361B2 (ja) 1999-06-11 2010-03-17 太平洋セメント株式会社 塩素バイパスダストの処理方法及びその装置
JP2003002611A (ja) * 2001-06-15 2003-01-08 Fuji Kikai Kk 灰洗浄濾液の処理方法
JP2003236503A (ja) * 2002-02-19 2003-08-26 Taiheiyo Cement Corp 鉛分を含む廃棄物の処理方法
US7947242B2 (en) * 2002-12-11 2011-05-24 Taiheiyo Cement Corporation Cement kiln chlorine/sulfur bypass system
KR20060029135A (ko) * 2003-07-10 2006-04-04 다이헤이요 세멘토 가부시키가이샤 연소 배기 가스 처리 장치 및 처리 방법
DK1795510T3 (da) * 2004-09-29 2014-06-16 Taiheiyo Cement Corp System og fremgangsmåde til behandling af gasstøv udtaget fra cementovnsforbrændingsgas
JP2006347831A (ja) * 2005-06-17 2006-12-28 Tokuyama Corp セメント工場から排出されるダストの処理方法
JP5063885B2 (ja) * 2005-10-27 2012-10-31 太平洋セメント株式会社 鉛回収装置及び方法
JP5114227B2 (ja) * 2008-01-28 2013-01-09 住友大阪セメント株式会社 水溶性塩素含有廃棄物の処理方法及び処理装置
EP2287126A4 (en) * 2008-06-17 2014-03-26 Taiheiyo Cement Corp APPARATUS AND METHOD FOR TREATING GAS DISCHARGED FROM CEMENT OVEN
JP5068698B2 (ja) * 2008-06-19 2012-11-07 太平洋セメント株式会社 セメントキルン抽気ガスの処理システム及び処理方法
JP5172728B2 (ja) 2009-02-03 2013-03-27 太平洋セメント株式会社 セメント製造方法及び製造装置
JP5213126B2 (ja) 2009-02-27 2013-06-19 太平洋セメント株式会社 塩素バイパスシステム
CN201439512U (zh) * 2009-07-16 2010-04-21 太平洋水泥株式会社 焚烧灰的处理设备
KR101822025B1 (ko) * 2010-06-22 2018-01-25 다이헤이요 세멘토 가부시키가이샤 염소 바이패스 더스트의 처리 방법 및 처리 장치

Also Published As

Publication number Publication date
JP2016188167A (ja) 2016-11-04
JPWO2012020691A1 (ja) 2013-10-28
TWI552796B (zh) 2016-10-11
CN103052607B (zh) 2016-06-22
KR20130096227A (ko) 2013-08-29
EP2604586A4 (en) 2015-04-22
US20130202514A1 (en) 2013-08-08
EP2604586A1 (en) 2013-06-19
CN103052607A (zh) 2013-04-17
WO2012020691A1 (ja) 2012-02-16
TW201210678A (en) 2012-03-16
US8623304B2 (en) 2014-01-07
JP5943388B2 (ja) 2016-07-05

Similar Documents

Publication Publication Date Title
JP6169215B2 (ja) 塩素バイパスダスト及び排ガスの処理方法
JP5833002B2 (ja) 塩素バイパスダストの処理方法
EP1574487A1 (en) Cement kiln chlorine/sulfur bypass system
JP5680450B2 (ja) 塩素バイパス排ガスの処理装置及び処理方法
JP6357009B2 (ja) 有価金属精錬用原料及び有価金属精錬用原料回収方法
JP5854499B2 (ja) 塩素バイパス排ガスの処理方法
JP2014108907A (ja) セメントキルン燃焼排ガスの処理装置及び処理方法
JP5652950B2 (ja) 塩素バイパスシステム及び塩素バイパス抽気ガスの処理方法
JP5652947B2 (ja) セメントキルン燃焼ガス抽気ダストの処理方法及び処理装置
JP5468749B2 (ja) セメントキルン燃焼ガス抽気ダストの処理システム及び処理方法
JP4105466B2 (ja) セメントキルン抽気ガスの処理方法
JP2003236497A (ja) 廃棄物の処理方法
JP2003225633A (ja) 塩化物含有ダストの処理方法
JP5019831B2 (ja) セメントキルン燃焼ガス抽気ダストの処理方法
JP5661151B2 (ja) セメントキルン抽気ガスの処理方法及び処理システム
JP6338496B2 (ja) 抽気冷却装置並びにこれを用いた塩素バイパスシステム及びセメントキルン抽気ガスの処理方法
JP5602402B2 (ja) セメントキルン抽気ガスの処理システム及び処理方法
JP2002166244A (ja) 石油系燃焼灰の処理方法
JP2014108906A (ja) 塩素バイパスシステム
JP6083797B2 (ja) 鉛含有石膏中の鉛除去方法
JP2004269330A (ja) ガス抽気ダストの処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6169215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250