JP6120451B2 - ヒト化il−6および/またはil−6受容体 - Google Patents

ヒト化il−6および/またはil−6受容体 Download PDF

Info

Publication number
JP6120451B2
JP6120451B2 JP2014539105A JP2014539105A JP6120451B2 JP 6120451 B2 JP6120451 B2 JP 6120451B2 JP 2014539105 A JP2014539105 A JP 2014539105A JP 2014539105 A JP2014539105 A JP 2014539105A JP 6120451 B2 JP6120451 B2 JP 6120451B2
Authority
JP
Japan
Prior art keywords
murine
human
gene
mouse
endogenous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014539105A
Other languages
English (en)
Other versions
JP2014532416A5 (ja
JP2014532416A (ja
Inventor
リ−シェン ワン,
リ−シェン ワン,
アンソニー ティー. ジュニア ドア,
アンソニー ティー. ジュニア ドア,
ショーン スティーブンズ,
ショーン スティーブンズ,
アンドリュー ジェイ. マーフィー,
アンドリュー ジェイ. マーフィー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regeneron Pharmaceuticals Inc
Original Assignee
Regeneron Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regeneron Pharmaceuticals Inc filed Critical Regeneron Pharmaceuticals Inc
Publication of JP2014532416A publication Critical patent/JP2014532416A/ja
Publication of JP2014532416A5 publication Critical patent/JP2014532416A5/ja
Application granted granted Critical
Publication of JP6120451B2 publication Critical patent/JP6120451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5412IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

発明の分野
内在性非ヒト動物IL−6および/またはIL−6受容体遺伝子遺伝子の置き換えを有する非ヒト動物が提供される。非ヒト動物のIL−6遺伝子および/またはIL−6受容体遺伝子が、内在性非ヒト遺伝子座にて、ヒトIL−6遺伝子および/またはヒト化IL−6受容体遺伝子(ヒト配列を含む)で置き換えられる。ヒトIL−6遺伝子および/またはヒト化IL−6受容体遺伝子を有する非ヒト動物は、ヒトIL−6についてのトランスジェニック非ヒト動物に特徴的である1つまたは複数の病変を示さない。
背景
ヒトIL−6遺伝子についてのトランスジェニックマウスは、当該技術分野で公知である。しかしながら、マウスゲノムへのヒトIL−6導入遺伝子の無作為挿入は、ヒトIL−6タンパク質の不十分に調節された発現をもたらし、それ自体かかるトランスジェニックマウスにおいて様々な病変(形質細胞増加症および糸球体腎炎が挙げられるが、これらに限定されない)が現れる。結果として、これらのマウスは有用性が限定されている。
概要
ヒトまたはヒト化IL−6および/またはヒトまたはヒト化IL−6受容体を発現する非ヒト動物(例えばマウスおよびラット)が必要とされる。トランスジェニックhIL−6マウスにより示される1つまたは複数の病変を示さないかかるヒト化マウスが必要とされる。
1つの態様では、内在性IL−6遺伝子座および/またはIL−6受容体遺伝子座での、ヒトまたはヒト化IL−6および/またはIL−6受容体をコードする遺伝子による、内在性IL−6および/またはIL−6受容体をコードする遺伝子の置き換えを含む遺伝子改変された非ヒト動物が提供される。内在性ネズミIL−6遺伝子座でのヒトIL−6遺伝子による内在性IL−6遺伝子の置き換えを含み、および/またはヒトIL−6受容体遺伝子(またはそのエクトドメイン(ectodomain)をコードするヌクレオチド配列)による内在性IL−6受容体遺伝子(またはそのエクトドメインをコードするヌクレオチド配列)の置き換えを含むネズミ動物が提供される。
1つの態様では、内在性ネズミIL−6遺伝子座から、内在性ネズミプロモーターおよび/または内在性ネズミ調節エレメントの制御下で、ヒトIL−6遺伝子を発現する遺伝子改変されたネズミ動物が提供される。
1つの態様では、内在性ネズミIL−6受容体遺伝子座から、内在性ネズミプロモーターおよび/または内在性ネズミ調節エレメントの制御下で、ヒトIL−6受容体遺伝子(またはヒトエクトドメインならびにマウス膜貫通ドメインおよび細胞内ドメインをコードする遺伝子)を発現する遺伝子改変されたネズミ動物が提供される。
1つの態様では、ヒトIL−6タンパク質を発現する遺伝子改変された動物(例えば、ネズミ動物、例えばマウスまたはラット)であって、ここで非ヒト動物は、形質細胞増加症、糸球体腎炎、糸球体硬化症、メサンギウム増殖性糸球体腎炎、腸リンパ腫、腎臓リンパ腫、脾腫、リンパ節拡大、肝臓腫大、骨髄における巨核球、緻密で異常な形質細胞、肺または肝臓または腎臓への形質細胞の浸潤、腎臓におけるメサンギウム細胞増殖、IL−6の大脳過剰発現、白質における分岐型ミクログリア細胞、脳における反応性星状細胞増加症、腎不全、脾臓における巨核球の上昇(elevated megakaryocyte)、筋肉消耗(例えば、腓腹筋消耗)、筋肉カテプシンBおよびB+Lの上昇(例えば、およそ20倍および6倍)、およびそれらの組合せから選択される病変を示さない遺伝子改変された動物が提供される。
1つの実施形態では、非ヒト動物は、正常B細胞集団を含む。1つの実施形態では、正常B細胞集団は、野生型動物(例えば野生型マウス)と、数および免疫表現型がほぼ同じである。
1つの実施形態では、非ヒト動物はネズミ(例えば、マウスまたはラット)であり、約800pg/mL未満、約700、約600pg/mL未満、約500pg/mL未満、約400pg/mL未満、約300pg/mL未満または約200pg/mL未満のレベルで血清中にヒトIL−6(hIL−6)を発現する。特定の実施形態では、ネズミ動物は、約50〜約200pg/mL以下、別の実施形態では、約75〜125pg/mLのレベルで、別の実施形態では約100pg/mLで血清中にhIL−6を発現する。
1つの態様では、hIL−6および/またはhIL−6Rを発現する非ヒト動物であって、ここで非ヒト動物が、内在性非ヒトIL−6遺伝子座および/または内在性非ヒトhIL−6R遺伝子座からhIL−6および/またはhIL−6Rを発現する非ヒト動物が提供される。特定の実施形態では、非ヒト動物はネズミ(例えば、マウスまたはラット)である。
1つの態様では、内在性マウスIL−6遺伝子座からhIL−6を発現する遺伝子改変されたマウスであって、ここで内在性マウスIL−6遺伝子がhIL−6遺伝子で置き換えられている遺伝子改変されたマウスが提供される。
1つの実施形態では、上記マウスは、細胞の表面にヒトエクトドメインを含むIL−6受容体(IL−6R)を発現する細胞を含む。1つの実施形態では、細胞はリンパ球である。1つの実施形態では、リンパ球はB細胞である。
1つの実施形態では、エクソン1〜エクソン5および3’非翻訳配列を含む内在性マウスIL−6遺伝子座における約6.8kbが欠失し、ヒトIL−6遺伝子のエクソン1〜エクソン5を含む約4.8kbのヒトIL−6遺伝子配列で置き換えられる。特定の実施形態では、ヒトIL−6遺伝子は、ヒトBAC CTD−2369M23のヒトIL−6遺伝子のエクソン1〜エクソン5を含む。
1つの態様では、ヒトIL−6遺伝子からIL−6を発現する遺伝子改変されたマウスであって、その血清中にヒトIL−6を発現する遺伝子改変されたマウスが提供される。
1つの実施形態では、マウス血清は、約25〜約300pg/mL、50〜約250pg/mL、75〜約200pg/mLまたは100〜約150pg/mLのヒトIL−6の血清濃度を示す。特定の実施形態では、マウスの血清中のヒトIL−6のレベルは約100pg/mLである。
1つの実施形態では、マウスの骨髄中の汎(pan)B細胞特異的マーカーのレベルは、野生型マウスのレベルとほぼ同じである。1つの実施形態では、脾臓中の汎B細胞特異的マーカーのレベルは、野生型マウスのレベルとほぼ同じである。1つの実施形態では、汎B細胞特異的マーカーは、B220、CD19、CD20、CD22、CD79a、CD79b、L26およびPax−5(BSAP)から選択される。
1つの態様では、hIL6を発現する遺伝子改変されたマウスであって、形質細胞増加症、脾腫、リンパ節拡大、緻密で異常な形質細胞およびそれらの組合せから選択される特徴を示さない遺伝子改変されたマウスが提供される。
1つの実施形態では、上記マウスは、野生型マウスとほぼ同じ重量(体重当たり)である脾臓を含む。1つの実施形態では、マウスのリンパ節は、野生型マウスとほぼ同じ重量(体重当たり)である。1つの実施形態では、マウスの形質細胞は、ヒトIL−6を過剰発現するマウスに特徴的な形質細胞増加症(plasmocytosis)を示さない。
1つの実施形態では、上記マウスは、糸球体腎炎を示さない。
1つの実施形態では、上記マウスは、野生型マウスに匹敵するメサンギウム細胞レベルを示す。
1つの態様では、内在性マウスIL−6遺伝子座からhIL6を発現する遺伝改変マウスであって、ここで内因性マウスIL−6遺伝子は、hIL−6遺伝子で置き換えられており、該マウスが、形態学的に検出可能な神経病変、反応性星状細胞増加症およびそれらの組合せから選択される特徴を示さない遺伝子改変されたマウスが提供される。1つの実施形態では、上記マウスは、野生型マウス脳と形態学的に区別できない脳を含む。1つの実施形態では、上記マウスは、野生型マウスのレベル以下である反応性星状細胞増加症のレベルを示す脳組織を含む。
1つの実施形態では、上記マウスは、ニューロンにヒトIL−6を発現しない。1つの実施形態では、上記マウスは、野生型マウスにおける活性化星状細胞レベルに匹敵する活性化星状細胞レベルを含む。
1つの実施形態では、上記マウスは、その白質に分岐型ミクログリア細胞を含み、ここで分岐型ミクログリア細胞は、野生型マウスにおける分岐型ミクログリア細胞の量に等価な量で存在する。
1つの実施形態では、上記マウスは、反応性星状細胞増加症を示さない。1つの実施形態では、上記マウスの白質は、野生型マウスの白質と形態学的に区別できない。1つの実施形態では、上記マウスの白質は、反応性星状細胞の組織化学的染色に関して、野生型マウス白質と組織学的に区別できない。
1つの実施形態では、上記マウスは、野生型マウス脳と形態学的に区別できない脳を含む。1つの実施形態では、上記マウスは、野生型マウスのレベル以下である反応性星状細胞増加症のレベルを示す脳組織を含む。
1つの態様では、内在性マウスIL−6遺伝子座からhIL6を発現する遺伝子改変されたマウスであって、ここで内在性マウスIL−6遺伝子は、hIL−6遺伝子で置き換えられており、該マウスは、約50%以上分の寿命の短縮、腎不全、高ガンマグロブリン血症、脾臓における巨核球の上昇、骨髄における巨核球の上昇、脾臓の形質細胞増加症、胸腺の形質細胞増加症、リンパ節の形質細胞増加症、糸球体腎炎、糸球体硬化症およびそれらの組合せから選択される特徴を示さない遺伝子改変されたマウスが提供される。
1つの実施形態では、上記マウスは、20週を超える寿命を有する。1つの実施形態では、上記マウスは、30週、40週または50週を超える寿命を有する。1つの実施形態では、上記マウスは、同じ系統の野生型マウスの寿命とほぼ等しい寿命を示す。
1つの実施形態では、上記マウスは、野生型マウスのおおよその脾性巨核球レベル以下である、脾臓における巨核球のレベルを示す。
1つの実施形態では、上記マウスは、異常かつ緻密に配置された形質細胞様細胞を本質的に欠如するリンパ系器官を含む。
1つの実施形態では、上記マウスは、野生型マウスにおけるガンマグロブリン血清レベルに等価なガンマグロブリン血清レベルを示す。1つの実施形態では、マウスの血清中のα1−グロブリンおよびβ−グロブリンのレベルは、同じ系統の野生型マウスのα1−グロブリンおよびβ−グロブリン血清レベルに等価である。
1つの態様では、内在性マウスIL−6遺伝子座からヒトIL−6を発現する遺伝子改変されたマウスであって、ここで内在性マウスIL−6遺伝子がhIL−6遺伝子で置き換えられており、該マウスは、筋肉消耗、同じ系統の野生型マウスと比較した場合のカテプシンBレベルの上昇、同じ系統の野生型マウスと比較した場合のカテプシンA+Bレベルの上昇、同じ系統の野生型マウスと比較した場合の肝臓重量の増加、およびそれらの組合せから選択される特徴を示さない遺伝子改変されたマウスが提供される。
1つの実施形態では、マウスの肝臓の重量は、12週で約800〜900mgである。
1つの実施形態では、上記マウスは、その寿命を通して、野生型マウスで観察されるおおよそのレベル以下であるカテプシンBレベルを示す。1つの実施形態では、上記マウスは、その寿命を通して、野生型マウスで観察されるおおよそのレベル以下であるカテプシンA+Bレベルを示す。
1つの実施形態では、成体としての上記マウスは、同じ系統の野生型マウスの重量の約10%以内である腓腹筋重量を示す。1つの実施形態では、成体としての上記マウスは、野生型マウスの重量とほぼ同じである腓腹筋重量を示す。
1つの態様では、ヒトIL−6タンパク質をコードするヌクレオチド配列を含むマウスであって、ここでヒトIL−6タンパク質をコードするヌクレオチド配列は、全体または一部において、内在性マウスIL−6タンパク質をコードする内在性ヌクレオチド配列を置き換える、マウスが提供される。
1つの態様では、キメラヒト/マウスIL−6Rα遺伝子を形成するための、内在性マウスIL−6受容体遺伝子座でのヒトIL−6Rαのエクトドメイン配列によるマウスIL−6Rαエクトドメインの置き換えを含むマウスが提供される。
1つの実施形態では、キメラIL−6Rα遺伝子は、内在性マウスIL−6Rα遺伝子座にあるマウスプロモーターおよび/またはマウス調節エレメントの制御下にある。
1つの実施形態では、約35.4kbのマウスIL−6Rαエクトドメインをコードする配列は、約45.5kbのヒトIL−6Rエクトドメインをコードする配列で置き換えられる。
1つの実施形態では、ヒトIL−6Rエクトドメインをコードする配列は、エクソン1〜エクソン8において最初の(ATG)コドンを包含する。
1つの実施形態では、置き換えられるマウスIL−6Rα配列は、エクソン1〜エクソン8を包含する連続的な配列を含む。特定の実施形態では、エクソン1〜エクソン8およびイントロン8の一部が欠失される。
1つの態様では、内在性マウスIL−6遺伝子座でのヒトIL−6をコードするヒト遺伝子による、IL−6をコードするマウス遺伝子の置き換えを含む遺伝子改変されたマウスであって、ここでヒトIL−6をコードするヒト遺伝子は、内在性マウスIL−6遺伝子座における内在性マウス調節エレメントの制御下にある遺伝子改変されたマウスが提供される。
1つの実施形態では、ヒトIL−6をコードするヒト遺伝子は、BAC ID CTD−2369M23のヒトIL−6遺伝子である。
1つの実施形態では、上記マウスは、マウスIL−6Rαを発現する。1つの実施形態では、上記マウスはヒトIL−6Rαを発現する。1つの実施形態では、ヒト化IL−6Rαはヒトエクトドメインを含む。1つの実施形態では、ヒト化IL−6Rαは、マウス膜貫通ドメインおよびマウス細胞質ドメインを含む。1つの実施形態では、上記マウスは、エクトドメインのヒト化を含むが、膜貫通ドメインおよび/または細胞質ゾルドメインのヒト化を含まないヒト化IL−6Rαを発現する。
1つの実施形態では、上記マウスは、形質細胞増加症、糸球体硬化症、糸球体腎炎、腎不全、高ガンマグロブリン血症、脾臓における巨核球の上昇、骨髄における巨核球の上昇、脾腫、リンパ節拡大、緻密で異常な形質細胞、およびそれらの組合せから選択される特徴を示さない。
1つの態様では、内在性マウスIL−6Rα遺伝子のヒト化を含む遺伝子改変されたマウスであって、ここでヒト化は、内在性マウスIL−6Rα遺伝子座でのヒトIL−6Rαエクトドメインをコードする配列によるマウスIL−6Rαエクトドメインをコードする配列の置き換えを含む遺伝子改変されたマウスが提供される。
1つの実施形態では、マウスエクソン1〜エクソン8を含む連続的なマウス配列は、ヒトIL−6RαエクトドメインをコードするヒトIL−6Rα配列の連続的なゲノム断片で置き換えられる。1つの実施形態では、エクトドメインをコードするヒトIL−6Rα配列の連続的なゲノム断片は、BAC CTD−2192J23由来である。
1つの実施形態では、上記マウスは、ヒト化IL−6遺伝子をさらに含む。1つの実施形態では、上記マウスは、内在性マウスIL−6遺伝子座でのヒトIL−6遺伝子によるマウスIL−6遺伝子の置き換えを含む。1つの実施形態では、ヒト化IL−6遺伝子は、内在性マウス調節エレメントの制御下にある。
1つの態様では、マウスIL−6をコードするマウス遺伝子配列を、ヒトIL−6をコードするヒト遺伝子で置き換える工程を含む、ヒト化マウスを作製する方法が提供される。
1つの実施形態では、置き換えは、内在性マウスIL−6遺伝子座にあり、ヒトIL−6をコードするヒト遺伝子は、内在性マウス調節配列に作動可能に連結する。
1つの態様では、マウスIL−6Rαのエクトドメイン配列をコードするマウスエクソンを、ヒトIL−6Rαのエクトドメイン配列をコードするヒトゲノム断片で置き換えて、ヒト化IL−6Rα遺伝子を形成する工程を含む、ヒト化マウスを作製する方法が提供される。
1つの実施形態では、置き換えは、内在性マウスIL−6Rα遺伝子座にあり、ヒト化IL−6Rα遺伝子は、内在性マウス調節配列に作動可能に連結する。
1つの態様では、ヒトエクトドメイン配列によるマウスエクトドメインをコードする配列の置き換えを含むヒト化IL−6Rα遺伝子を含む遺伝子改変されたマウスであって、ここでヒト化IL−6Rα遺伝子は、マウス膜貫通配列およびマウス細胞質配列を含み、該マウスは、ヒトIL−6をコードする遺伝子をさらに含み、ヒトIL−6をコードする遺伝子は、内在性マウスIL−6調節エレメントの制御下にある遺伝子改変されたマウスが提供される。
1つの実施形態では、上記マウスは、完全マウスIL−6Rαを発現することが不可能であり、かつマウスIL−6を発現することが不可能である。
様々な態様では、本明細書中に記載される遺伝子改変されたマウスは、それらの生殖系列において遺伝子改変を含む。
1つの態様では、本明細書中で記載されるようなマウス由来の組織、細胞または膜断片が提供される。
1つの実施形態では、組織または細胞は、ヒトIL−6タンパク質を発現するが、マウスIL−6タンパク質を発現しないマウスに由来するものである。1つの実施形態では、組織または細胞は、ヒト化IL−6Rαタンパク質を発現するが、マウスIL−6Rαタンパク質を発現しないマウスに由来するものである。1つの実施形態では、ヒト化IL−6Rαタンパク質は、ヒトエクトドメインおよびマウス膜貫通ドメインおよびマウス細胞質ゾルドメインを含む。1つの実施形態では、組織または細胞は、ヒトIL−6、ヒト化IL−6Rαを発現し、かつマウスIL−6を発現せず、かつマウスエクトドメインを含むIL−6Rαを発現しないマウスに由来するものである。
1つの態様では、ヒト化IL−6Rα(ヒトエクトドメインおよびマウス膜貫通ドメインおよびマウス細胞質ドメイン)およびヒトIL−6を保有するマウス細胞のex vivo複合体が提供される。
1つの態様では、本明細書中に記載されるような遺伝子改変を含むマウス胚が提供される。
1つの態様では、本明細書中に記載されるような遺伝子改変を含むドナー細胞を含むマウス宿主胚が提供される。
1つの態様では、本明細書中に記載されるような遺伝子改変を含む多能性または全能性非ヒト動物細胞が提供される。1つの実施形態では、細胞はネズミ細胞である。1つの実施形態では、細胞はES細胞である。
1つの態様では、マウス卵であって、ここで該マウス卵は、異所性マウス染色体を含み、ここで該異所性マウス染色体は、本明細書中に記載されるような遺伝子改変を含むマウス卵が提供される。
1つの態様では、ヒトIL−6遺伝子または、ヒトまたはヒト化IL−6Rα遺伝子を含むように遺伝子改変されるマウス、胚、卵または細胞は、C57BL/A、C57BL/An、C57BL/GrFa、C57BL/KaLwN、C57BL/6、C57BL/6J、C57BL/6ByJ、C57BL/6NJ、C57BL/10、C57BL/10ScSn、C57BL/10CrおよびC57BL/Olaから選択されるC57BL系統由来であるマウス由来のものである。別の実施形態では、上記マウスは、129P1、129P2、129P3、129X1、129S1(例えば、129S1/SV、129S1/Svlm)、129S2、129S4、129S5、129S9/SvEvH、129S6(129/SvEvTac)、129S7、129S8、129T1、129T2である系統から成る群から選択される129系統である(例えば、Festingら(1999年) Revised nomenclature for strain 129 mice、Mammalian Genome、10巻:836頁を参照、同様にAuerbachら(2000年) Establishment and Chimera Analysis of 129/SvEv- and C57BL/6-Derived Mouse Embryonic Stem Cell Linesを参照)。特定の実施形態では、遺伝子改変されたマウスは、上記の129系統と上記のC57BL/6系統との混合物である。別の特定の実施形態では、上記マウスは、上記の129系統の混合物、または上記のBL/6系統の混合物である。特定の実施形態では、混合物の129系統は、129S6(129/SvEvTac)系統である。別の実施形態では、上記マウスは、BALB系統(例えば、BALB/c系統)である。さらに別の実施形態で、上記マウスは、BALB系統と別の上記の系統との混合物である。1つの実施形態では、上記マウスは、SwissまたはSwiss Websterマウスである。
本明細書中に記載される態様および実施形態はそれぞれ、実施形態または態様の文脈から明確にまたは明瞭に排除されない限りは、一緒に使用することが可能である。
特定の実施形態では、例えば以下が提供される:
(項目1)
内在性マウスIL−6遺伝子座でのヒトIL−6をコードするヒト遺伝子による、IL−6をコードするマウス遺伝子の置き換えを含む、遺伝子改変されたマウスであって、ヒトIL−6をコードする該ヒト遺伝子が、該内在性マウスIL−6遺伝子座における内在性マウス調節エレメントの制御下にある、遺伝子改変されたマウス。
(項目2)
ヒトIL−6をコードする前記ヒト遺伝子が、CTD−2369M23細菌人工染色体のヒトIL−6遺伝子のエクソン1〜エクソン5を含む、項目1に記載の遺伝子改変されたマウス。
(項目3)
マウスIL−6Rαを発現する、項目1に記載の遺伝子改変されたマウス。
(項目4)
ヒトIL−6Rα免疫グロブリンスーパーファミリードメインをコードする配列での、マウスIL−6Rα免疫グロブリンスーパーファミリードメインをコードする配列の置き換えを含む内在性マウスIL−6Rα遺伝子座からヒト化IL−6Rαを発現する、項目1に記載の遺伝子改変されたマウス。
(項目5)
形質細胞増加症、糸球体硬化症、糸球体腎炎、腎不全、高ガンマグロブリン血症、脾臓における巨核球の上昇、骨髄における巨核球の上昇、脾腫、リンパ節拡大、緻密で異常な形質細胞およびそれらの組合せから選択される特徴を示さない、項目1に記載の遺伝子改変されたマウス。
(項目6)
前記ヒト化IL−6Rαが、ヒトIL−6Rαのヒト免疫グロブリンスーパーファミリードメインを含む、項目4に記載の遺伝子改変されたマウス。
(項目7)
前記ヒト化IL−6Rαが、マウス膜貫通ドメインおよびマウス細胞質ドメインを含む、項目6に記載の遺伝子改変されたマウス。
(項目8)
内在性マウスIL−6Rα遺伝子のヒト化を含む遺伝子改変されたマウスであって、該ヒト化が、該内在性マウスIL−6Rα遺伝子座での、ヒトIL−6Rα免疫グロブリンスーパーファミリードメインをコードする配列による、マウスIL−6Rα免疫グロブリンスーパーファミリードメインをコードする配列の置き換えを含み、そしてここで該ヒト化IL−6Rα遺伝子が、内在性マウス調節エレメントの制御下にある、遺伝子改変されたマウス。
(項目9)
マウスエクソン1〜エクソン8を含む連続的なマウス配列が、ヒトIL−6Rα免疫グロブリンスーパーファミリードメインをコードするヒトIL−6Rα配列の連続的なゲノム断片で置き換えられる、項目8に記載の遺伝子改変されたマウス。
(項目10)
前記免疫グロブリンスーパーファミリードメインをコードするヒトIL−6Rα配列の前記連続的なゲノム断片が、CTD−2192J23細菌人工染色体に由来する、項目9に記載の遺伝子改変されたマウス。
(項目11)
内在性マウスIL−6遺伝子座での、ヒトIL−6をコードするヒト遺伝子による、IL−6をコードするマウス遺伝子の置き換えを含むヒト化IL−6遺伝子をさらに含む、項目8に記載の遺伝子改変されたマウス。
(項目12)
内在性マウスIL−6遺伝子座での、ヒトIL−6遺伝子によるマウスIL−6遺伝子の置き換えを含む、項目11に記載の遺伝子改変されたマウス。
(項目13)
前記ヒト化IL−6遺伝子が、内在性マウス調節エレメントの制御下にある、項目11に記載の遺伝子改変されたマウス。
(項目14)
マウスIL−6をコードするマウス遺伝子配列を、ヒトIL−6遺伝子が内在性マウス調節エレメントの制御下にあるように、ヒトIL−6をコードするヒト遺伝子で置き換える工程を含む、ヒト化マウスを作製する方法。
(項目15)
前記置き換えが、内在性マウスIL−6遺伝子座にあり、ヒトIL−6をコードする前記ヒト遺伝子が、内在性マウス調節配列に作動可能に連結する、項目14に記載の方法。
(項目16)
マウスIL−6Rαの免疫グロブリンスーパーファミリードメインをコードするすべてのマウスエクソンを、ヒトIL−6Rαの免疫グロブリンスーパーファミリードメインをコードするヒトゲノム断片で置き換えて、ヒト化IL−6Rα遺伝子を形成する工程を含み、ここで、該ヒト化IL−6Rα遺伝子が内在性マウス調節エレメントの制御下にある、ヒト化マウスを作製する方法。
(項目17)
前記置き換えが、内在性マウスIL−6Rα遺伝子座にあり、前記ヒト化IL−6Rα遺伝子が、内在性マウス調節配列に作動可能に連結する、項目16に記載の方法。
(項目18)
ヒト免疫グロブリンスーパーファミリードメインをコードする配列によるマウス免疫グロブリンスーパーファミリードメインをコードする配列の置き換えを含む、ヒト化IL−6Rα遺伝子を含む遺伝子改変されたマウスであって、該ヒト化IL−6Rα遺伝子が、マウス膜貫通配列およびマウス細胞質配列をさらに含み、該マウスが、ヒトIL−6をコードする遺伝子をさらに含み、ヒトIL−6およびヒト化IL−6Rαをコードする該遺伝子が、内在性マウス調節エレメントの制御下にある、遺伝子改変されたマウス。
(項目19)
マウスIL−6Rαを発現せず、マウスIL−6を発現しない、項目18に記載の遺伝子改変されたマウス。
図1は、ヒト(上部)およびマウス(下部)のIL−6ゲノム遺伝子座の図(原寸に比例しない)を提供する。エクソンI、エクソンII、エクソンIII、エクソンIVおよびエクソンV(ヒトおよびマウスの両方で)は、図の右側に塗りつぶした四角で示される。選択した推定上の調節領域は、図の左側に白抜きの四角で示される。
図2は、野生型マウス、ヒト化エクトドメインIL−6Rマウス、ならびにヒト化IL−6遺伝子およびヒト化IL−6R遺伝子を有するマウスにおけるテレピンの存在下または非存在下での急性期応答(mSAAレベル)を示す。
図3は、抗マウスIL−6R抗体の非存在下または存在下での野生型マウスにおけるテレピン依存的急性期応答(SAA)(左)、および抗ヒトIL−6R抗体の非存在下または存在下でのヒト化IL−6/IL−6Rマウスにおけるテレピン依存的急性期応答(右)を示す。
図4は、野生型およびヒト化IL−6マウスの脾性B細胞に関するFACS分析(汎B細胞マーカー)を示す。
図5は、野生型およびヒト化IL−6マウスの脾性T細胞に関するFACS分析(Tヘルパー細胞および細胞傷害性T細胞)を示す。
図6は、野生型およびヒト化IL−6マウスの脾性細胞に関するFACS分析(Ly6G/C(Gr1))を示す。
図7は、野生型およびヒト化IL−6マウスの脾性細胞に関するFACS分析(NK細胞および顆粒球(Ly6Ghi+/CD11bhi+)を示す。
図8は、野生型およびヒト化IL−6マウスの血液B細胞に関するFACS分析(汎B細胞マーカー)を示す。
図9は、野生型およびヒト化IL−6マウスの血液T細胞に関するFACS分析(Tヘルパー細胞および細胞傷害性T細胞)を示す。
図10は、野生型およびヒト化IL−6マウスの血液骨髄性細胞に関するFACS分析(Gr1細胞)を示す。
図11は、野生型およびヒト化IL−6マウスの血液骨髄性細胞に関するFACS分析(CD11b対Ly6G/C(Gr1))を示す。
図12は、野生型およびヒト化IL−6マウスの血液骨髄性細胞に関するFACS分析(DX5細胞対CD11b細胞)を示す。
図13は、野生型およびヒト化IL−6マウスに関する骨髄IgM/CD24/B220のFACS分析を示す。上部:骨髄における正常な進行。下部:野生型、hIL−6ヘテロ接合体およびhIL−6ホモ接合体に関するFACS分析(IgM染色)。
図14は、野生型およびヒト化IL−6マウスに関する骨髄IgM/CD24/B220のFACS分析を示す。上部:骨髄における正常な進行。下部:野生型、hIL−6ヘテロ接合体およびhIL−6ホモ接合体に関するFACS分析(CD24染色)。
図15は、野生型およびヒト化IL−6マウスに関する骨髄CD43およびB220のFACS分析を示す。上部:骨髄における正常な進行。下部:野生型、hIL−6ヘテロ接合体およびhIL−6ホモ接合体に関するFACS分析(CD43染色)。
詳細な説明
IL−6およびIL−6R
IL−6受容体(IL−6R)は、免疫グロブリンを合成するようにB細胞を誘導することに関与するB細胞刺激因子(BSF−2、またはB細胞刺激因子2、同様にBCDF、またはB細胞分化因子)に対する受容体として長い間特徴付けられた(Yamasakiら(1988年) Cloning and Expression of the Human Interleukin-6(BSF-2/IFNβ2)Receptor、Science 241巻:825〜828頁)。IL−6は、最初は、ヒト線維芽細胞をdsRNAポリ(I)ポリ(C)で処理して、抗ウイルス応答を誘導することによる、インターフェロン−βと称されるウイルス誘導性タンパク質に関する研究中のその発見の結果として、インターフェロン−β2と記載された(Weissenbachら(1980年) Two interferon mRNAs in human fibroblasts: In vitro translation and Escherichia coli cloning studies、Proc. Natl. Acad. Sci. USA 77巻(12号):7152〜7156頁、Kellerら(1996年) Molecular and Cellular Biology of Interleukin-6 and Its Receptor、Frontiers in Bioscience 1巻:d340〜357頁)。
ヒトcDNAは、19マー(mer)のシグナル配列および、チロシンキナーゼドメインを欠如する約82個のアミノ酸の細胞質ドメインを有する468アミノ酸タンパク質をコードする(同上文献を参照)。タンパク質のN末端(エクトドメイン)は、約90個のアミノ酸のIgスーパーファミリードメイン、Igスーパーファミリードメインと膜との間の250アミノ酸ドメイン、約28個のアミノ酸の膜貫通スパン(transmembrane span)を有する(同上文献を参照)。受容体のエクトドメインは、そのリガンドIL−6を結合し、それが膜におけるgp130との会合を誘発して、この複合体がシグナル伝達を行い、細胞質ドメインは、シグナルを伝達しないと報告されている(Tagaら(1989年) Interleukin-6 Triggers the Association of Its Receptor with a Possible Signal Transducer, gp 130、Cell 58巻:573〜581頁)。実際に、細胞質ドメインを欠如するIL−6Rの可溶性形態は、IL−6と会合して、細胞の表面でgp130を結合して、シグナルを効果的に伝達する(同上文献)。
タンパク質レベルでのhIL−6RおよびmIL−6Rの相同性はほんの約54%に過ぎず、膜貫通ドメインが約79%の相同性を有するのに対して、細胞質ドメインは、約54%の相同性を有する(Sugitoら(1990年))。
IL−6Rに対する天然リガンドであるIL−6はまず、HTLV−1形質転換T細胞の培養物から単離された(Hiranoら(1985年) Purification to homogeneity and characterization of human B cell differentiation factor (BCDF or BSFp-2)、Proc. Natl. Acad. Sci. USA 82巻:5490〜5494頁を参照)。IL−6遺伝子に関するヒト cDNAは、少なくとも二度、BSF−2として一度(Hiranoら(1086年) Complementary DNA fro a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin、Nature 324巻:73〜76頁を参照)、またIFNβ 2として一度(Zilbersteinら(1986年) Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines、EMBO 5巻:2529〜2537頁を参照)、クローニングされたが、その後、組換えヒトIL−6は検出可能なIFN活性を示さないことが実証されている。
ヒトIL−6は、マウスIL−6とほんの約42%の相同性を示す184アミノ酸のタンパク質であるが、ヒト遺伝子およびマウス遺伝子のゲノム構成(genomic organization)は基本的に同じであり、ヒト遺伝子およびマウス遺伝子のプロモーター領域は、高度に保存される400bpストレッチを共有する(Tanabeら(1988年) Genomic Structure of the Murine IL-6 Gene: High Degree Conservation of Potential Regulatory Sequences between Mouse and Human、J. Immunol. 141巻(11号):3875〜3881頁を参照)。
ヒトIL−6遺伝子は約5kbである(Yasukawaら(1987年) Structure and expression of human B cell stimulatory factor-2 (BSC-2/IL-6) gene、EMBO J. 6巻(10号):2939〜2945頁)のに対して、マウスIL−6遺伝子は約7kbである(Tanabeら(1988年) Genomic Structure of the Murine IL-6 Gene: High Degree Conservation of Potential Regulatory Sequences between Mouse and Human、J. Immunol. 141巻(11号):3875〜3881頁)。マウスおよびヒトのIL−6遺伝子は、調節に重要な高度に保存された5’−フランキング配列を共有すると報告されている。ヒトおよびマウスのIL−6ゲノム遺伝子座の概略図を図1に示す(原寸に比例しない)。エクソンI、エクソンII、エクソンIII、エクソンIVおよびエクソンV(ヒトおよびマウスの両方で)は、図の右側に塗りつぶした四角で示される。選択した推定上の調節領域は、図の左側に白抜きの四角で示される。ヒトに関する推定上の調節領域は、左から右へ、グルココルチコイドエレメント(−557〜−552)、IFNエンハンサーコア配列(−472〜−468)、グルココルチコイドエレメント(−466〜−461)、ATリッチ領域(−395〜−334)コンセンサスAP−1結合部位(−383〜−277)、IFNエンハンサーコア配列(−253〜−248)、GGAAA含有モチーフ(−205〜−192)、c−fos SRE相同性配列(−169〜−82)(IFNエンハンサーコア配列、cAMP応答エレメント、GGAAAモチーフ、CCAATボックス、およびGCリッチ領域を含有)、およびAP−1結合部位(−61〜−55)、およびCCAATボックス(−34〜−30)である。マウスに関する推定上の調節領域は、左から右へ、GCリッチ領域(−553〜−536)、グルココルチコイドエレメント(−521〜−516および−500〜−495)、Z−DNAストレッチ(−447〜−396)、IFNエンハンサーコア配列をオーバーラップするAP−1結合部位(−277〜−288)、IFNエンハンサーコア配列をオーバーラップするGGAAAモチーフ(−210〜−195)、c−fos SRE相同性領域(−171〜−82)(cAMP応答エレメント、IFNエンハンサーコア配列をオーバーラップするGGAAAモチーフ、およびGCリッチ領域を含有)、およびAP−1結合部位(−61〜−55)である。マウスコドンI〜Vは、それぞれ長さ19、185、114、150および165を有する。マウスイントロン長は、I〜II(162bp)、II〜III(1253bp)、III〜IV(2981bp)、IV〜V(1281bp)である。ヒトコドンI〜Vは、長さ19、191、114、147および165を有する。ヒトイントロン長は、I〜II(154)、II〜III(1047)、III〜IV(706)、IV〜V(1737)である。ゲノム構成データは、Tanabeら(1988年)およびYasukawaら(1987年) Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene、EMBO J. 9巻(10号):2939〜2945頁に由来する。
マウスおよびヒトのIL−6遺伝子は、それらの5’−フランキング配列の類似性に基づいて同様に調節されるようであると仮定することが合理的であり得る。種々の細胞型は、IL−1、TNF、PDGF、IFNβ、血清、ポリ(I)ポリ(C)およびシクロヘキシミドに応答してIL−6発現の増強を示す(Tanabeら(1988年)を参照)。ヒトにおけるIL−6は、急性期応答、造血、B細胞分化、T細胞活性化、種々の細胞型(例えば、肝細胞、線維芽細胞、内皮細胞、ニューロン、下垂体細胞、リンパ腫、骨髄腫、乳癌、NK細胞、マクロファージ、破骨細胞等)の成長および/または分化および/または活性化を媒介する(例えば、Heinrichら(1990年)、Kishimotoら(1989年)およびKellerら(1996年)、Sugitaら(1990年) Functional Murine Interleukin Receptor with Intracisternal A Particle Gene Product at its Cytoplasmic Domain、J. Exp. Med. 171巻:2001年〜2009年で概説される)。
しかしながら、実際に、ヒトIL−6についてのトランスジェニックマウスは、一連の実質的なおよび消耗性の病変を示し、それは、IL−6遺伝子の重大な多面発現作用を反映している。ヒトIL−6遺伝子、およびμエンハンサー(Eμ)を含有する6.6kb断片を含むトランスジェニックマウスは、高濃度のhIL−6および極めて高いIgG1レベル(野生型マウスを120倍〜400倍上回る)を生成し、それは、形質細胞増加症、メサンギウム増殖性糸球体腎炎および高い骨髄巨核球レベルを伴うIL−6調節解除を反映している(Suematsuら(1989年) IgG1 plasmacytosis in interleukin 6 transgenic mice、Proc. Natl Acad. Sci. USA 86巻:7547〜7551頁)。IL−6および/またはIL−6Rの異常調節は、骨髄腫、形質細胞腫(plastocytomas)、関節リウマチ、キャッスルマン病、メサンギウム増殖性糸球体腎炎、心臓粘液腫、形質細胞(plams cell)新形成、乾癬および他の障害に関連する(Kishimoto, T. (1989年) The Biology of Interleukin-6、Blood 74巻(1号):1〜10頁、Sugitaら(1990年)、同様にHiranoら(1990年) Biological and clinical aspects of interleukin 6、Immunology Today 11巻(12号):443〜449頁)を参照)。IL−6はまた、パラクリンおよび/またはオートクリン機序により前立がん癌患者のアンドロゲン枯渇処置中に前立腺内アンドロゲンのレベルを維持することに関係しており、去勢抵抗性前立腺腫瘍成長を潜在的に提供する(Chunら(2009年) Interleukin-6 Regulates Androgen Synthesis in Prostate Cancer Cells、Clin. Cancer Res. 15巻:4815〜4822頁)。
ヒトタンパク質は、212アミノ酸タンパク質として、成熟形態では、28アミノ酸シグナル配列の切断後の184アミノ酸タンパク質としてコードされる。それは、2つのN−グリコシル化部位および2つのO−グリコシル化部位を含有し、ヒトIL−6は、幾つかの細胞ではリン酸化される。マウスタンパク質は、211アミノ酸タンパク質として、成熟形態では、23アミノ酸シグナル配列の切断後の187アミノ酸タンパク質としてコードされる。O−グリコシル化部位が存在するが、N−グルコシル化部位は存在しない(IL−6に関する概説、例えば、Heinrichら(1990年) Interleukin-6 and the acute phase response、Biochem. J. 265巻:621〜636頁を参照)。
IL−6機能は多面発現作用である。IL−6受容体は、活性化B細胞に見出されるが、休止B細胞では見出されないと報告されている。対比して、IL−6Rは、休止T細胞に見出され、T細胞分化、活性化および増殖(IL−2存在下での細胞傷害性Tリンパ球へのT細胞の分化を含む)を促進することができると報告されている。
ヒト化IL−6/IL−6RエクトドメインマウスおよびIL−6媒介性急性期応答
ヒトにおいて、IL−6は、急性期応答を誘導する。ヒト肝細胞を用いた初期研究により、IL−6が、用量依存的および時間依存的様式で、例えばC−反応性タンパク質(CRP)および血清アミロイドA(SAA)などの急性期タンパク質を誘導することが確証された(Heinrichら(1990年)Interleukin-6 and the acute phase response、Biochem. J. 265巻(621〜636頁に概説)。したがって、ヒト化IL−6遺伝子およびヒト化IL−6R遺伝子を含む非ヒト動物(例えば、マウスまたはラット)は、ヒトIL−6により媒介される急性期応答を測定するための有用な系である。かかる動物はまた、物質がIL−6媒介性急性期応答を誘導するかどうかを、本明細書中に記載されるようなヒト化IL−6/IL−6R動物をその物質に曝露すること、および1つまたは複数の急性期応答タンパク質(またはRNA)のレベルを測定することにより決定するのに有用である。1つの実施形態では、ヒト化動物は、ヒトIL−6Rのアンタゴニストの存在下で物質に曝露され、1つまたは複数の急性期応答タンパク質(またはRNA)のレベルが測定され、ここでヒトIL−6Rアンタゴニストの存在下での急性期応答タンパク質(またはRNA)のレベルの低減は、ヒトIL−6R媒介性急性期応答を示す。
ヒトIL−6は、ヒトIL−6RおよびマウスIL−6Rの両方を結合させることができ、マウスIL−6は、マウスIL−6Rを結合するが、ヒトIL−6Rを結合しない(mIL−6のhIL−6Rへの結合は検出可能ではないのに対して、hIL−6は、mIL−6Rを結合するのにmIL−6と競合することができる;Coulieら(1989年) High-and low-affinity receptors for murine interleukin 6. Distinct distribution on B and T cells、Eur. J. Immunol. 19巻:2107〜211頁)、同様に例えばPetersら(1996年) The Function of the Soluble Interleukin 6(IL-6) Receptor in Vivo: Sensitization of Human Soluble IL-6 Receptor Transgenic Mice Towards IL-6 and Prolongation of the Plasma Half-life of IL-6、J. Exp. Med. 183巻:1399〜1406頁を参照)。したがって、マウスにおいてhIL−6Rを保有するヒト細胞(例えば、異種間移植で)は、IL−6媒介性機能(IL−6血球細胞またはリンパ球発達(例えば、造血、B細胞活性化、T細胞活性化等)の役割を含むがこれらに限定されない)を実行するのに内在性mIL−6に依存することはできない。
野生型マウスIL−6遺伝子およびヒトIL−6R遺伝子を含む(しかし、マウスIL−6R遺伝子は含まない)混合in vivo系では、急性期応答誘導物質は、急性期応答を示す検出可能レベルの急性期タンパク質を誘導すると予測されない。しかしながら、ヒト化IL−6遺伝子およびヒト化エクトドメイン配列を含むIL−6R遺伝子を含む本明細書中に記載されるようなヒト化マウスは、急性期応答誘導物質に応答して、血清中で急性期応答タンパク質を示す。急性期誘導物質テレピンの存在下または非存在下で急性期タンパク質に関して試験されたIL−6/IL−6Rについて野生型のマウスは、急性期タンパク質においてテレピン依存的増加を示した。ヒト化IL−6遺伝子を有するが、IL−6Rを有さないマウスは、テレピンの存在下で急性期応答を示さなかった。しかし、ヒトIL−6遺伝子およびヒト化エクトドメインを有するIL−6R遺伝子の両方を保有するマウスは、強力な急性期応答を示した(図2)。IL−6媒介性急性期応答は、適切な抗IL−6R抗体の、十分に高い抗体用量で急性期応答を抑止する能力から明らかなように、野生型マウス(図3、上部)およびヒト化IL−6/IL−6Rエクトドメインマウス(図3、下部)の両方でIL−6依存的であった。したがって、IL−6およびIL−6Rの二重ヒト化は、血清急性期タンパク質に関して、野生型IL−6媒介性急性期応答を再現する。
遺伝子改変されたマウス
ヒトIL−6および/またはヒト化IL−6受容体を内在性マウス遺伝子座から発現する遺伝子改変されたマウスであって、ここで内在性マウスIL−6遺伝子および/または内在性マウスIL−6受容体遺伝子が、ヒトIL−6遺伝子および/またはヒトIL−6受容体のエクトドメインをコードする配列を含むヒト配列で置き換えられている遺伝子改変されたマウスが提供される。遺伝子改変されたマウスは、マウスプロモーターおよび/またはマウス調節エレメントの制御下にあるヒトIL−6および/またはヒト化IL−6受容体をヒト化内在性遺伝子座から発現する。内在性マウス遺伝子座での置き換え(複数可)は、当該技術分野で公知のIL−6トランスジェニックマウスで観察される一連の実質的な病変をもたらさない様式で、ヒトIL−6およびヒト化IL−6受容体を発現する非ヒト動物を提供する。
ヒトIL−6を発現するトランスジェニックマウスは、当該技術分野で公知である。しかしながら、それらは一般に、それらの有用性を厳しく制限する重大な病変に悩まされる。本明細書に記載されるようなヒト化マウスは、内在性マウスIL−6およびIL−6Rα遺伝子座における内在性マウス調節エレメントの制御下でヒトIL−6および/またはヒト化IL−6受容体を発現する。一方で、これらのマウスは、当該技術分野で公知のトランスジェニックマウスとは異なるこれらの遺伝子に関する発現パターンを示す。
内在性非ヒト遺伝子座での、かつ内在性プロモーターおよび/または調節エレメントの制御下での相同ヒト遺伝子またはヒト配列またはオルソロガスヒト遺伝子またはヒト配列による非ヒト動物における非ヒト遺伝子の置き換えは、典型的なノックアウトプラス導入遺伝子動物とは実質的に異なり得る性質および特徴を有する非ヒト動物を生じ得る。典型的なノックアウトプラス導入遺伝子動物では、内在性遺伝子座は除去または損傷され、完全ヒト導入遺伝子は、動物のゲノムに挿入されて、おそらくそのゲノムへ無作為に組み込まれる。通常、組み込まれた導入遺伝子の位置は不明である。ヒトタンパク質の発現は、ヒト遺伝子の転写および/またはタンパク質アッセイおよび/または機能性アッセイにより測定される。ヒト配列の上流および/または下流にヒト導入遺伝子を含むことは、動物のゲノムにおいてその導入遺伝子がどこで終結する(wind up)としても、導入遺伝子の発現および/または調節に適した支持を提供するのに十分であると明白に仮定される。しかし、多くの場合、ヒト調節エレメントを有する導入遺伝子は、非生理的であるか、または別の方法では不満足である様式で発現し、実際には動物に有害であり得る。対比して、本発明者らは、内在性調節エレメントの制御下で、内在性遺伝子座での、ヒト配列による置き換えが、ヒト化動物の生理機能の状況で、置き換えられた遺伝子に関する生理機能が有意義かつ適当である有用なヒト化動物を生じる生理的に適当な発現パターンおよびレベルを提供する。
695bpのマウスIL−6遺伝子の発現を駆動するMHCクラスIプロモーターH2およびβ−グロビンイントロンを有する構築物を注入したマウス受精卵は、比較的高いレベル(野生型マウスと比較した場合)でマウスIL−6を構成的に発現するマウスを作製すると報告されている(Woodrofeら(1992年) Long-Term Consequences of Interleukin-6 Overexpression in Transgenic Mice、DNA and Cell Biology 11巻(8号):587〜592頁を参照)。しかし、これらのマウスは、腸、リンパ節および腎臓、ならびに脾性アミロイド沈着物と関連したリンパ腫を発症する傾向にある。それらはまた、異常B細胞成熟を示し(Woodrofeら、同上文献を参照)、その結果B細胞機能の研究が損なわれる。対比して、マウスIL−6遺伝子座でのヒトIL−6遺伝子によるマウスIL−6遺伝子の置き換えを含む本明細書中に記載されるようなマウスは、これらのリンパ腫を発症する傾向になく、該マウスは、明白に正常B細胞集団を示す。
IgMエンハンサーとカップリングさせたhIL−6遺伝子を含有する6.6kb(BamHI−Pvu II断片)長のヒトDNAの無作為挿入による、hIL−6についてのトランスジェニックマウス(C57BL/6)が報告されている(Suematsuら(1989年) IgG1 plasmocytosis in interleukin 6 transgenic mice、Proc. Natl. Acad. Sci. USA 86巻:7547〜7551頁を参照)。上記マウスは、血清中で800pg/mL〜20,000pg/mLでhIL−6を発現し、野生型マウスは通常、ほんの約100pg/mLのIL−6を発現する。上記マウスは、年を取るにつれ、血清Igの増加(野生型マウスを120倍〜400倍上回る)およびアルブミンの減少を示す。上記マウスは、非常に重い形質細胞増加症を患い、脾腫およびリンパ節拡大、ならびに骨髄中での形質細胞の提示および巨核球の増加を示す。検査すると、拡大したリンパ節であるようなものが、代わって緻密で異常な形質細胞の塊となったものである。脾臓および胸腺はともに、形質細胞の大量増殖を示し、これらがまた、肺、肝臓および腎臓の一部を浸潤する。これらのマウスにおける腎臓はまた、メサンギウム増殖性糸球体腎炎に特有なIL−6刺激メサンギウム細胞増殖を示す。同様に、ゲノムに無作為に挿入されたマウスH−2Lプロモーターにより駆動されるトリムhIL−6 cDNAについてのトランスジェニックマウス(BALB/c)は、重篤な形質細胞増加症を示す(Suematsuら(1992年) Generation of plasmacytomas with the chromosomal translocation t(12; 15) in interleukin 6 transgenic mice、Proc. Natl. Acad. Sci. USA 89巻:232〜235頁を参照)。hIL−6を過剰発現するC57BL/6マウスは、移植可能な形質細胞腫を発症しない(それらは形質細胞増加症を示さない)が、BALB/cマウスに戻し交配されたトランスジェニックBL/6マウスは発症すると報告されている。
グリア線維性酸性タンパク質(GFAP)遺伝子プロモーターにより駆動されるhIL−6 cDNAの無作為遺伝子導入は、マウス中枢神経系でhIL−6過剰発現をもたらし、それがまた、重大な病変につながると報告されている(Campbellら(1993年)Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6、Proc. Natl. Acad. Sci. USA 90巻:10061〜10065頁を参照)。これらのマウスは、広範な神経病変および反応性星状細胞増加症を示し、それは明らかにCNS許容性転写遺伝子座での、IL−6導入遺伝子の無作為組込みの結果としての制御の喪失に起因するCNSにおけるIL−6発現により生じる。マウス受精卵(F1 C57BL/6×BALB/c)に微量注入した、β−グロビン 3’−UTRに連結し、かつニューロン特異的エノラーゼプロモーターにより駆動されるhIL−6 cDNAの発現により、正常な寿命を有し、かつ明白な神経学的欠陥を伴わずに、ニューロンではhIL−6を発現したが、他の場所では発現しないマウスを作製した(Fattorら(1994年) IL-6 Expression in Neurons of Transgenic Mice Causes Reactive Astrocytosis and Increase in Ramified Microglial Cells But No Neuronal Damage、Eur. J. Neuroscience 7巻:2441〜2449頁を参照)が、該マウスは、脳全体にわたるプロセスの増加を伴って高レベル(野生型よりも20〜30倍高い)の活性化および拡大した星状細胞、ならびに白質における分岐型ミクログリア細胞の10〜15倍の増加を示した。したがって、IL−6の脳発現は、反応性星状細胞増加症から、明らかでかつ深刻な神経病変に及ぶ状態につながると報告されている。
β−グロビン 3’−UTRおよびマウスMT−1プロモーターに連結した639bpのhIL−6 cDNAのC57BL/6×「DBAII」マウスのF1交配の受精卵への微量注入により、hIL−6遺伝子が無作為に組み込まれたトランスジェニックマウスが作製されて、若年で腎不全で死亡する脆弱なかつ病的なマウスを作製したと報告されている(Fattoriら(1994年) Blood, Development of Progressive Kidney Damage and Myeloma Kidney in Interleukin-6 Transgenic Mice、Blood 63巻(9号):2570〜2579頁を参照)。トランスジェニックマウスは、12〜20週で止息し、血漿中のα1グロブリンおよびβグロブリンのレベルの上昇、高ガンマグロブリン血症、脾臓(野生型よりも3倍高い)および骨髄における巨核球の上昇、異常かつ緻密に配置された形質細胞様細胞を特徴とするリンパ器官(脾臓、胸腺およびリンパ節)の形質細胞増加症、および多発性骨髄腫と類似して糸球体硬化症につながる糸球体腎炎を示した。
H−2L駆動hIL−6 cDNAのC57BL/6Jマウスの受精卵への微量注入は、体重をマッチさせた対照と比較した場合にトランスジェニックマウスにおいて有意に低い腓腹筋重量を幾分特徴とする、マウスにおけるIL−6依存的筋肉消耗を引き起こし、差異は、IL−6アンタゴニストによる処置により改善されたことであった(Tsujinakaら(1996年) Interleukin 6 Receptor Antibody Inhibits Muscle Atrophy and Modulates Proteolytic Systems in Interleukin 6 Transgenic Mice、J. Clin. Invest. 97巻(1号):244〜249頁を参照)。12週で、これらのマウスは、600,000pg/mLを超える血清hIL−6レベルを示した。トランスジェニックマウスはまた、約862mgであった対照肝臓と比較した場合に、約1,242mgの重さがある肝臓を有した。IL−6アンタゴニストで処置したトランスジェニックマウスは、約888mgの重さがある肝臓を有した。筋肉カテプシンBおよびB+Lは、対照よりもトランスジェニックマウスにおいて有意に高く(20倍および6.2倍)、IL−6アンタゴニストで処置したトランスジェニックマウスにおいて除かれた現象である。カテプシンBおよびL mRNAは、野生型マウスと比較した場合に、それぞれ約277%および257%であると推定され、その違いは、IL−6アンタゴニスト処置により有意に低減された。
マウスMHCクラスI H−2Ldプロモーターにより駆動されるhIL−6ミニ遺伝子、およびニワトリβ−アクチンプロモーターにより駆動されるhIL−6Rミニ遺伝子、およびgp130遺伝子を含むマウスは、hIL−6トランスジェニックマウスに特有の病変(例えば、高ガンマグロブリン血症、脾腫、メサンギウム増殖性糸球体腎炎、肺リンパ様浸潤)ならびに心室拡大を示した(Hirotaら(1995年) Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice、Proc. Natl Acad. Sci. USA 92巻:4862〜4866頁)。心室拡大は、gp130の連続的な活性化により媒介されると考えられる(同上文献)。IL−6の役割は、サイトカイン受容体複合体を強化するのを助長して、IL−6シグナルを伝達することに関与するシグナル伝達構成要素であるgp130の二量体化を誘導すると報告されている(Paonessaら(1995年) Two distinct and independent sites on IL-6 trigger gp130 dimer formation and signalling、EMBO J. 14巻(9号):1942〜1951頁)。活性化複合体は、2:2:2の化学量論を示す2つのIL−6(各ILが、1つのIL−6Rαに結合する)および2つのgp130(各IL−6が、2つの独立したgp130結合部位を含有する)で構成される六量体であると考えられ、ここで、サイトカイン受容体複合体形成の一般のモデルと一致して(Stahl, N.およびYancopoulos, G.(1993年) The Alphas, Betas, and Kinases of Cytokine Receptor Complexes、Cell 74巻:587〜590頁、Davisら(1993年) LIFRβ and gp130 as Heterodimerizing Signal Transducers of the Tripartite CNTF Receptor、Science 260巻:1805〜1808頁、Murakamiら(1993年) IL-6-Induced Homodimerization of gp130 and Associated Activation of a Tyrosine Kinase、Science 260巻:1808〜1810頁を参照)、gp130の二量体化が、JAK−Tykチロシンキナーゼの活性化、gp130およびSTATファミリー転写因子および他の細胞内基質のリン酸化を引き起こす(同上文献、Stahl, N.(1994年) Association and Activation of Jak-Tyk Kinases by CNTF-LIF-OSM-IL-6β Receptor Components、Science 263巻:92〜95頁)。
ラットPEPカルボキシキナーゼプロモーターにより駆動されるヒトsIL−6Rおよびマウスメタロチオネイン−1プロモーターにより駆動されるヒトIL−6についてのトランスジェニックマウスは、ヒトIL−6単独またはヒトsIL−6R単独についてのトランスジェニックマウスよりも顕著に小さいと報告されており(Petersら(1997年) Extramedullary Expansion of Hematopoietic Progenitor Cells in Interleukin (IL-)-6-sIL-6R Double Transgenic Mice、J. Exp. Med. 185巻(4号):755〜766頁)、体脂肪の減少および体重の減少(20〜25g対40g)に反映された。二重トランスジェニックマウスはまた、脾臓(spleena)および肝臓(しかし、骨髄ではない)の造血細胞の髄外増殖、ならびに脾臓における巨核球の上昇および全ての実質器官における形質細胞浸潤に明白に起因して、単一トランスジェニックマウスに関して報告されている正常臓器の重さと比較して、脾臓(5倍)および肝臓(2倍)の腫大を示すと報告されている(同上文献)。二重トランスジェニック(double transgenics)はまた、単一トランスジェニックと比較して、顆粒球、マクロファージ、前駆細胞およびB細胞において約200〜約300倍の増加を伴う肝臓を示し、対比して、IL−6単一トランスジェニックマウスは、マクロファージ(15倍)およびB細胞(45倍)のより少ない増加を示した(同上文献)。極端な所見は、gp130シグナル伝達を活性化することにより、造血前駆細胞の成長および分化の刺激におそらく起因する(同上文献)。
さらに、二重トランスジェニック(マウスメタロチオニンプロモーター駆動hIL−6/ラットPEPカルボキシキナーゼプロモーター駆動hIL−6R)マウスは、IL−6が肝細胞増殖および病原性肝細胞形質転換の両方に関与するということを強力に示唆する持続性肝細胞増殖を伴って、ヒト結節性再生性過形成に一致すると報告される肝細胞過形成を示す(Maioneら(1998年) Coexrpession of IL-6 and soluble IL-6R causes nodular regenerative hyperplasia and adenomas of the liver、EMBO J. 17巻(19号)5588〜5597頁)。肝細胞過形成が単一トランスジェニックhIL−6マウスでは観察されないと報告されており、hIL−6はmIL−6Rを結合することができるので、二重トランスジェニック(double transgenic)が、可溶性IL−6R(本明細書では、可溶性hIL−6R)に複合体形成するより高レベルのhIL−6(その複合体は、IL−6単独よりも強力な阻害剤である)をもたらし得るとみなされるまで、その所見は逆説的であるようであり得る(同上文献)。
ヒトIL−6に対してトランスジェニックであるマウスに対比して、内在性マウスIL−6遺伝子座での置き換えを含むヒト化IL−6マウス(これは、マウス調節エレメントを保持するが、IL−6をコードする配列のヒト化を含む)は、従来技術のマウスの重篤な病変を示さない。hIL−6に関してヘテロ接合性またはホモ接合性である遺伝子改変されたマウスは、全体として正常であった。
実施例で記載されるようなヒト化IL−6遺伝子(MAID760)を有するマウスは免疫表現型判定され、汎B細胞マーカー(CD445R(B220))を使用した脾性B細胞のFACS分析(リンパ球でゲートした)において正常なB細胞数を有することが分かった(図4)。脾臓に関して、野生型マウスは、B細胞63%を示し、hIL−6ヘテロ接合体マウスは、B細胞63%を示し、内在性マウス遺伝子座でhIL−6に関してホモ接合性であるマウスは、B細胞63%を示した。TNP−KLHで免疫したホモ接合性hIL−6マウスに関するB細胞数もまた、正常であった(野生型に関して65%、およびhIL−6ホモ接合体に関して61%)。
脾性T細胞もまた、野生型とほぼ同じであった(図5)。Tヘルパー/T細胞傷害性に関する脾性T細胞の百分率は、野生型に関して20%/40%(1.4:1の比)、hIL−6ヘテロ接合体に関して23%/14%(1.6:1の比)、hIL−6ホモ接合体に関して21%/15%(1.4:1の比)であった(マーカーは、CD8a−APC、CD4−FITCであった)。TNP−KLHで免疫したホモ接合性hIL−6マウスは、野生型マウスに対して類似の脾性T細胞数を示した。即ち、野生型に関する21%/19%(1.1:1の比)と比較した場合、Tヘルパー/T細胞傷害性は22%/20%(同様に1.1:1の比)であった。
ヒト化IL−6マウスはまた、FACS分析(CD11bおよびDX5)に関してほぼ正常レベルの脾性NK細胞を示した(図7)。hIL−6ヘテロ接合体は、NK細胞2.2%を示し、hIL−6ホモ接合体は、NK細胞1.8%を示したのに対して、野生型マウスは、NK細胞2.4%を示した。TNP−KLHによる免疫に続いて、ホモ接合体は、脾性NK細胞1.6%を示したのに対して、野生型マウスは、脾性NK細胞2.1%を示した。
ヒト化IL−6マウスはまた、脾性Ly6G/C(Gr1)細胞の正常レベルを示した(図6)。hIL−6ヘテロ接合体は、GR1細胞7.0%(Gr1hi 1.3%)を示し、ホモ接合体は、Gr1細胞6.8%(Gr1hi 0.9%)を示したのに対して、野生型マウスは、Gr1細胞8.0%(Gr1hi 1.8%)を示した。免疫したIL−6ホモ接合体(TNP−KLHで免疫した)は、Gr1+細胞11%(Gr1hi 4.0%)を示したのに対して、野生型マウスは、Gr1細胞10%(Gr1hi 3.0%)を示した。
ヒト化IL−6マウスはまた、FACS分析において正常な血液B細胞数およびT細胞数を示した(図8および図9)。汎B細胞マーカー(CD445R(B220))によるFACsにより、ホモ接合性hIL−6マウスは、野生型53%と比較してB細胞52%を示した。ヘテロ接合体は38%を示した(2つの別の染色29%および47%の平均)。TNP−KLHで免疫したホモ接合性hIL−6マウスは、類似のB細胞数を与えた(野生型マウスに関する45%と比較して、43%)。
ヒト化IL−6マウスは、CD8aおよびCD4染色により測定される場合にFACS分析において正常血液T細胞数を示した。ヘテロ接合性hIL−6マウスは、Tヘルパー/T細胞傷害性数39%/26%(1.5:1の比)を示し、ホモ接合性hIL−6マウスは、Th/Tc数24%/20%(1.2:1の比)を示したのに対して、野生型マウスは、Th/Tc数26%/20%(1.3:1の比)を示した。TNP−KLHで免疫したホモ接合性hIL−6マウスは、Th/Tc数29%/21%(1.4:1の比)を有したのに対して、野生型の免疫マウスは、Th/Tc数28%/23%(1.2:1)を有した。
ヒト化IL−6マウスはまた、Ly6G/C(Gr1)およびCD11b、ならびにCD11bおよびDX5で染色したナイーブマウスおよび免疫マウス血液のFACS分析により測定される場合に、野生型マウスに類似した血中の骨髄性細胞数を示した(図10、図11、および図12)。ヘテロ接合性hIL−6マウスは、Gr+細胞 10.8%を示し、ホモ接合体が6.9%を示したのに対して、野生型マウスは、9.7%を示した。免疫したhIL−6ホモ接合体は、M1(10〜10のLy6G/C(Gr))/M2(約10〜10のLy6G/C(Gr)染色)数43%/34%を示したのに対して、野生型マウスは、45%/38%の数を有した。免疫したホモ接合性hIL−6マウスに関するCD11b(垂直軸)対Ly6G/C(水平軸)のFACSプロットは、四つの区画(左上/右上/右下)における細胞パーセント16%/8%/3%を示し、それらは免疫した野生型の四つの区画における数と一致した。
ホモ接合性TNP−KLH−免疫ヒト化IL−6マウスは、免疫した野生型マウスに類似したCD11b対DX5(NK)染色FACSプロットを示した。クアドラント分析血液FACSプロット(CD11b垂直軸、DX5(NK)水平軸)により、hIL−6ホモ接合体に関して左上/右上/右下の数9.5%/17%/10%、および野生型マウスに関して6.5%/17.3%/14%が明らかとなった。
ヒト化IL−6マウスは、野生型マウスで観察されるのと本質的に同じであるアイソタイプ応答を示した。初期および最終IgG1、IgG2a、IgG2b、IgG3、IgA、IgEおよびIgMレベルは、野生型マウスで観察されるのとほぼ同じであった。1つの実験では、最終IgMは、ヒト化マウスでわずかに高く、最終IgG3はまた、ヒト化マウスで上昇した。
骨髄IgM/CD24/B220染色によるFACS分析に基づいた、ナイーブhIL−6マウスにおけるB細胞の発達は、野生型マウスにおける発達と本質的に区別できなかった(図13)。免疫マウスの免疫表現型判定により、B細胞発達の進行における各種細胞型に関するマーカー集団はhIL−6マウスにおいて本質的に正常であることが明らかとなった。造血幹細胞、共通のリンパ系前駆体、プロB細胞、プレB細胞ならびに未熟および成熟B細胞からの細胞の進行は、hIL−6マウスでは正常である(図14および図15)。
(実施例1)hIL−6遺伝子による内在性マウスIL−6遺伝子の置き換え
ヒトIL−6遺伝子のエクソン1〜エクソン4を含有する4.8kbのヒトIL−6遺伝子で、6.8kbのネズミIL−6遺伝子座を置き換えた。
単一標的化工程においてヒトIL−6遺伝子でマウスを置き換えるための標的化構築物は、VELOCIGENE(登録商標)遺伝子操作技術を使用して構築した(Valenzuelaら(2003年) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis、Nature Biotech、21巻(6号):652〜659頁を参照)。マウスおよびヒトのIL−6 DNAは、それぞれ細菌人工染色体(BAC)RPCI−23クローン368C3、およびBAC CTDクローン2369M23から得た。簡潔に述べると、エクソン1におけるATGから3’下流配列の16ヌクレオチドを含むエクソン5まで伸長している4.8kbのヒトIL−6配列に隣接する(flanking)上流および下流のマウスIL−6ホモロジーアーム(ゲノム座標:NCBIh 37.1:ch7:22,766,882号〜22,771,637号)およびloxPが隣接した(floxed)neo選択カセットを含有して、gap修復クローニングにより生成したNotI線状化標的化構築物をF1H4マウス胚性幹(ES)細胞(C57BL/6×129 F1ハイブリッド)に電気穿孔した。正確に標的としたES細胞(MAID790)を一過性Cre発現ベクターでさらに電気穿孔して、薬物選択カセットを除去した。薬物カセットのない、標的としたES細胞クローン(MAID1428)を、VELOCIMOUSE(登録商標)方法により8−細胞段階マウス胚に導入した(米国特許第7,294,754号、同第7,576,259号、同第7,659,442号、およびPoueymirouら(2007年) F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses Nature Biotech. 25巻(1号):91〜99頁を参照)。ヒト化IL−6遺伝子を保有するVELOCIMICE(登録商標)(ドナーES細胞に完全に由来するF0マウス)は、対立遺伝子アッセイの変法を使用したマウス対立遺伝子の喪失およびヒト対立遺伝子の獲得に関する遺伝子型判定により同定された(Valenzuelaら(2003年)を参照)。
正確に標的としたES細胞クローンは、天然遺伝子座の喪失(loss−of−native allele)(LONA)アッセイ(Valenzuelaら 2003年)により同定され、ここでは天然の非修飾Il6遺伝子のコピー数は、欠失に関して標的としたマウスIl6遺伝子における配列に特異的な2つのTaqMan(商標)定量的ポリメラーゼ連鎖反応(qPCR)により決定した。qPCRアッセイは、下記プライマープローブセットを含んでいた(5’から3’を記した):上流フォワードプライマー、TTGCCGGTTT TCCCTTTTCT C(配列番号1)、上流リバースプライマー、AGGGAAGGCC GTGGTTGTC(配列番号2)、上流プローブ、FAM−CCAGCATCAG TCCCAAGAAG GCAACT−BHQ(配列番号3)、下流フォワードプライマー、TCAGAGTGTG GGCGAACAAA G(配列番号4)、下流リバースプライマー、GTGGCAAAAG CAGCCTTAGC(配列番号5)、下流プローブ、FAM−TCATTCCAGG CCCTTCTTAT TGCATCTG−BHQ(配列番号6)。ここで、FAMは、5−カルボキシフルオレセイン蛍光プローブを指し、BHQは、ブラックホールクエンチャー型の蛍光クエンチャーを指す(Biosearch Technologies)。標的化ベクターを取り込み、ゲノムに組み込まれたES細胞クローンから精製したDNAを、製造業者の提案に従って384ウェルPCRプレート(MicroAmp(商標)光学384ウェル反応プレート、Life Technologies)においてTaqMan(商標)遺伝子発現マスターミックス(Life Technologies)と組み合わせて、Applied Biosystems Prism 7900HT中で反復して(cycled)、これによりPCRの過程で蛍光データを収集して、域値サイクル(Ct)(集積した蛍光が予め設定した域値に達する分別PCRサイクル(fractional PCR cycle))を決定する。上流および下流のIl6特異的qPCRおよび標的化されていない参照遺伝子に関する2つのqPCRを各DNAサンプルに関して実行した。各Il6特異的qPCRと各参照遺伝子qPCRとの間のCt値の差(ΔCt)を算出して、続いて各ΔCtとアッセイしたサンプル全てに関する中央値ΔCtとの間の差を算出して、各サンプルに関してΔΔCt値を得た。各サンプルにおけるIl6遺伝子のコピー数を下記式から算出した:コピー数=2・2−ΔΔCt。ネイティブコピーの1つを喪失した正確に標的としたクローンは、1に等しいIl6遺伝子コピー数を有する。ヒトIL6遺伝子配列が、ヒト化対立遺伝子において欠失マウスIl6遺伝子配列を置き換えたことの確認は、下記プライマー−プローブセット(5’から3’を記した):ヒトフォワードプライマー、CCCCACTCCACTGGAATTTG(配列番号7)、ヒトリバースプライマー、GTTCAACCACAGCCAGGAAAG(配列番号8)およびヒトプローブ、FAM−AGCTACAACTCATTGGCATCCTGGCAA−BHQ(配列番号9)を含むTaqMan(商標)qPCRアッセイにより確認された。
同じLONAアッセイを使用して、標的としたES細胞に由来するマウスに関する尾部生検標本(biopsy)から精製したDNAをアッセイして、それらのIl6遺伝子型を決定して、ヒト化Il6対立遺伝子が生殖系列を通じて伝達されたことを確認した。置き換えに関してヘテロ接合性の2つの仔を交配して、ヒトIL−6遺伝子による内在性マウスIL−6遺伝子の置き換えに関してホモ接合性であるマウスを作製した。置き換えに関してホモ接合性である仔は表現型判定に使用される。
マウス遺伝子座の上流接合部およびhIL−6遺伝子を含有する配列は、5’−AATTAGAGAG TTGACTCCTA ATAAATATGA GACTGGGGAT GTCTGTAGCT CATTCTGCTC TGGAGCCCAC CAAGAACGAT AGTCAATTCC AGAAACCGCT ATGAACTCCT TCTCCACAAG TAAGTGCAGG AAATCCTTAG CCCTGGAACT GCCAGCGGCG GTCGAGCCCT GTGTGAGGGA GGGGTGTGTG GCCCAGG(配列番号10)内に存在するように設計され、ここでヒト遺伝子の最初のヌクレオチドの前の最後のマウスヌクレオチドは、CCGCT中の「T」であり、ヒト配列の最初のヌクレオチドは、ATGAA中の最初の「A」である。hIL−6遺伝子およびマウス遺伝子座を含有する配列の下流接合部は、5’−TTTTAAAGAA ATATTTATAT TGTATTTATA TAATGTATAA ATGGTTTTTA TACCAATAAA TGGCATTTTA AAAAATTCAG CAACTTTGAG TGTGTCACGC TCCCGGGCTC GATAACTATA ACGGTCCTAA GGTAGCGACT CGAGATAACT T−3’(配列番号11)内に存在するように設計され、ここで、ヒト配列の最後のヌクレオチドは、TCACG中の最後の「G」であり、マウス配列の最初のヌクレオチドは、CTCCC中の最初の「C」であり、下流接合部領域はまた、loxPが隣接したユビキチンプロモーター駆動neoカセットの除去用に3’末端にloxP部位を含有していた(その開始が示される)。マウスIL−6遺伝子座とのneoカセットの接合部は、5’−TATACGAAGT TATCCTAGGT TGGAGCTCCT AAGTTACATC CAAACATCCT CCCCCAAATC AATAATTAAG CACTTTTTAT GACATGTAAA GTTAAATAAG AAGTGAAAGC TGCAGATGGT GAGTGAGA(配列番号12)内に存在するように設計され、ここでAGCTC中の最後の「C」がneoカセットの最後のヌクレオチドであり、該カセットに続くマウスゲノムの最初のヌクレオチドは、CTAAGの最初の「C」である。
(実施例2)ナイーブおよび免疫したhIL−6マウスの免疫表現型判定:B細胞
hIL−6遺伝子の置き換えに関してホモ接合性のマウスをB細胞(DC445R(B220))に関して分析した。ナイーブおよび免疫(TNP−KLH)hIL−6マウスの脾性細胞調製物由来のリンパ球でゲートした画分を染色して、フローサイトメトリーを使用して免疫表現型判定をした。FACS分析により、CD45R(B220)−FITC染色により測定される場合の脾性細胞調製物のB細胞の百分率がナイーブ野生型、hIL−6ヘテロ接合体およびhIL−6ホモ接合体からの調製物に関してほぼ同じである(細胞の63%)ことが示された。免疫したマウスに関して、B細胞は、野生型マウスでは脾臓細胞調製物の総細胞の約65%を占めており、hIL−6ホモ接合体では総細胞の約61%を占めていた。hIL−6マウス(ナイーブおよび免疫の両方)の脾臓は、野生型マウスにおける脾性B細胞集団とほぼ同じサイズであるB細胞の集団を含有する。
野生型、hIL−6ヘテロ接合体およびhIL−6ホモ接合体の骨髄をB細胞マーカー(CD45R(B220)−APC、CD24(HSA)−PE、あるいは色素および/またはIgM(IgM−FITC)にコンジュゲートしたCD43で染色した。正常マウスの骨髄中のB細胞発達は、幹細胞から初期プロ(pro)−Bへ後期プロ−B細胞へ、大プレ(pre)−B細胞へ小プレ−B細胞へ未熟B細胞へ、最終的には成熟B細胞へと細胞が進行するにつれての、表面マーカーに反映される。共通のリンパ球前駆体であるプロ−B細胞は、CD45Rを発現して、後の段階で、IgMを未熟B細胞として、後に成熟B細胞として発現する。したがって、CD45R染色したB細胞および抗IgM染色したB細胞は、B細胞発達に特徴的なパターンを示すはずである。hIL−6ヘテロ接合体およびホモ接合体の骨髄は、野生型骨髄と本質的に区別できないCD45R(B220)−APCおよび抗IgM−FITC染色のパターンを呈しており、CD45R(B220)およびIgM、またはCD45R(B220)単独で陽性に染色されたB細胞の集団を示した。FACS染色により明らかとされるhIL−6マウスの骨髄中のB細胞亜集団は、野生型マウス由来のものと類似していた(表1、同様に図13も参照)。
Figure 0006120451
CD24に対する染色(図14を参照)により、表2で示される(正常)パターンが明らかとなり、骨髄中の正常な発達を示した。
Figure 0006120451
CD43に対する染色(図15を参照)により、表3で示される(正常)パターンが明らかとなり、骨髄中の正常な発達を示した。
Figure 0006120451
したがって、ナイーブhIL−6マウスの免疫表現型判定は、かかるマウスにおけるB細胞発達が本質的に正常であることを明らかにした。
(実施例3)hIL−6αエクトドメイン遺伝子配列による内在性マウスIL−6Rαエクトドメイン遺伝子配列の置き換え
ヒトIL−6Rα遺伝子のエクソン1〜エクソン8を含有する45kbのヒトIL−6Rα遺伝子で、35.4kbのマウスIL−6α遺伝子の遺伝子座を置き換えた。マウスエクソン9およびエクソン10は保持され、エクソン1〜エクソン8のみがヒト化された。総計して、35,384ntのマウス配列が45,047ntのヒト配列で置き換えられた。
単一標的化工程においてヒトIL−6Rα遺伝子でマウスを置き換えるための標的化構築物は、VELOCIGENE(登録商標)遺伝子操作技術を使用して構築した(Valenzuelaら(2003年) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis、Nature Biotech、21巻(6号):652〜659頁を参照)。マウスおよびヒトのIL−6Rα DNAは、それぞれ細菌人工染色体(BAC)RPCI−23クローン125J8、およびBAC CTDクローン2192J23から得た。簡潔に述べると、エクソン1におけるATGから3’下流配列の69ヌクレオチドを有するエクソン8まで伸長している45kbのヒトIL−6Rα配列に隣接する、上流および下流のマウスIL−6RαホモロジーアームおよびloxPが隣接したneo選択カセットを含有して、gap修復クローニングにより生成するNotI線状化標的化構築物をF1H4マウス胚性幹(ES)細胞(C57BL/6×129 F1ハイブリッド)に電気穿孔した。正確に標的としたES細胞(MAID794)を一過性Cre発現ベクターでさらに電気穿孔して、薬物選択カセットを除去した。薬物カセットのない、標的としたES細胞クローン(MAID1442)を、VELOCIMOUSE(登録商標)方法により8−細胞段階マウス胚に導入した(米国特許第7,294,754号、同第7,576,259号、同第7,659,442号、およびPoueymirouら(2007年) F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses Nature Biotech. 25巻(1号):91〜99頁を参照)。ヒト化IL−6Rα遺伝子を保有するVELOCIMICE(登録商標)(ドナーES細胞に完全に由来するF0マウス)は、対立遺伝子アッセイの変法を使用したマウス対立遺伝子の喪失およびヒト対立遺伝子の獲得に関する遺伝子型判定により同定された(Valenzuelaら(2003年)を参照)。
正確に標的としたES細胞クローンは、天然遺伝子座の喪失(LONA)アッセイ(Valenzuelaら(2003年))により同定され、ここでは天然の非修飾Il6遺伝子のコピー数は、欠失に関して標的としたマウスIl6遺伝子における配列に特異的な2つのTaqMan(商標)定量的ポリメラーゼ連鎖反応(qPCR)により決定した。qPCRアッセイは、下記プライマー−プローブセットを含んでいた(5’から3’を記した):上流フォワードプライマー、GCCCTAGCAT GCAGAATGC(配列番号13)、上流リバースプライマー、AAGAGGTCCC ACATCCTTTG C(配列番号14)、上流プローブ、CCCACATCCA TCCCAATCCT GTGAG(配列番号15)、下流フォワードプライマー、GAGCTTGCCC CCAGAAAGG(配列番号16)、下流リバースプライマー、CGGCCACATC TCTGGAAGAC(配列番号17)、下流プローブ、CATGCACTGC CCCAAGTCTG GTTTCAGT(配列番号18)。標的化ベクターを取り込み、ゲノムに組み込まれた、ES細胞クローンから精製したDNAを、製造業者の提案に従って384ウェルPCRプレート(MicroAmp(商標)光学384ウェル反応プレート、Life Technologies)においてTaqMan(商標)遺伝子発現マスターミックス(Life Technologies)と組み合わせて、Applied Biosystems Prism 7900HT中で反復して、これによりPCRの過程で蛍光データを収集して、域値サイクル(Ct)(集積した蛍光が予め設定した域値に達する部分PCRサイクル)を決定する。上流および下流のIL−6Rα特異的qPCRおよび標的としていない参照遺伝子に関する2つのpPCRを、各DNAサンプルに関して実行した。各IL−6Rα−特異的qPCRと各参照遺伝子qPCRとの間のCt値の差(ΔCt)を算出して、続いて各ΔCtとアッセイしたサンプル全てに関する中央値ΔCtとの間の差を算出して、各サンプルに関してΔΔCt値を得た。各サンプルにおけるIl−6遺伝子のコピー数を下記式から算出した:コピー数=2・2−ΔΔCt。その天然のコピーの1つを喪失した正確に標的としたクローンは、1に等しいIL−6Rα遺伝子コピー数を有する。ヒトIL−6Rα遺伝子配列が、ヒト化対立遺伝子において欠失マウスIL−6Rα遺伝子配列を置き換えたことの確認は、下記プライマー−プローブセット(5’から3’を記した):ヒトフォワードプライマー、GGAGAGGGCA GAGGCACTTA C(配列番号19)、ヒトリバースプライマー、GGCCAGAGCC CAAGAAAAG(配列番号20)およびヒトプローブ、CCCGTTGACT GTAATCTGCC CCTGG(配列番号21)を含むTaqMan(商標)qPCRアッセイにより確認された。
同じLONAアッセイを使用して、標的としたES細胞由来のマウスに関する尾部生検標本から精製したDNAをアッセイして、それらのIL−6Rα遺伝子型を決定して、ヒト化IL−6Rα対立遺伝子が生殖系列を通じて伝達されたことを確認した。置き換えに関してヘテロ接合性の仔を交配して、ヒトIL−6Rα(エクトドメイン)遺伝子による内在性マウスIL−6Rαの置き換えに関してホモ接合性であるマウスを作製した。置き換えに関してホモ接合性である仔は表現型判定に使用される。
マウス遺伝子座およびhIL−6α遺伝子を含有する配列の上流接合部は、5’−CGAGGGCGAC TGCTCTCGCT GCCCCAGTCT GCCGGCCGCC CGGCCCCGGC TGCGGAGCCG CTCTGCCGCC CGCCGTCCCG CGTAGAAGGA AGCATGCTGG CCGTCGGCTG CGCGCTGCTG GCTGCCCTGC TGGCCGCGCC GGGAGCGGCG CTGGCCCCAA GGCGCTGCCC TGCGCAGGGT AAGGGCTTCG G(配列番号22)内に存在するように設計され、ここでヒト遺伝子の最初のヌクレオチドの前の最後のマウスヌクレオチドは、GAAGC中の「C」であり、ヒト配列の最初のヌクレオチドは、ATGCT中の最初の「A」である。hIL−6遺伝子およびマウス遺伝子座を含有する配列の下流接合部は、5’−CAAGATTATT GGAGTCTGAA ATGGAATACC TGTTGAGGGA AATCTTTATT TTGGGAGCCC TTGATTTCAA TGCTTTTGAT TCCCTATCCC TGCAAGACCC GGGCTCGATA ACTATAACGG TCCTAAGGTA GCGACTCGAG ATAACTTC−3’(配列番号23)内に存在するように設計され、ここでヒト配列の最後のヌクレオチドは、CAAGA中の最後の「A」であり、マウス配列の最初のヌクレオチドは、CCCGG中の最初の「C」である。下流接合部領域はまた、loxPが隣接するユビキチンプロモーター駆動neoカセットの除去用に3’末端にloxP部位を含有していた。loxp部位の最初のヌクレオチドは、ATAAC中の最初の「A」である。マウスIL−6Rα遺伝子座とのneoカセットの接合部は、5’−TATACGAAGT TATCCTAGGT TGGAGCTCTA CTCCATATGC TCACTTGCCG TTGTTTGCTA CGATACGGTG AGGCCCGTGC GAAGAGTGGC ACAGATCAGG AGGCTTATGT GGTCAGTCCA CAGTATGGC(配列番号24)内に存在するように設計され、ここでAGCTCの最後の「C」は、neoカセットの最後のヌクレオチドであり、カセットに続くマウスゲノムの最初のヌクレオチドは、TACTCの最初の「T」である。
(項目1)
内在性マウスIL−6遺伝子座でのヒトIL−6をコードするヒト遺伝子による、IL−6をコードするマウス遺伝子の置き換えを含む、遺伝子改変されたマウスであって、ヒトIL−6をコードする該ヒト遺伝子が、該内在性マウスIL−6遺伝子座における内在性マウス調節エレメントの制御下にある、遺伝子改変されたマウス。
(項目2)
ヒトIL−6をコードする前記ヒト遺伝子が、BAC ID CTD−2369M23のヒトIL−6遺伝子である、項目1に記載の遺伝子改変されたマウス。
(項目3)
マウスIL−6Rαを発現する、項目1に記載の遺伝子改変されたマウス。
(項目4)
ヒト化IL−6Rαを発現する、項目1に記載の遺伝子改変されたマウス。
(項目5)
ヒト化IL−6Rαを発現する、項目1に記載の遺伝子改変されたマウス。
(項目6)
形質細胞増加症、糸球体硬化症、糸球体腎炎、腎不全、高ガンマグロブリン血症、脾臓における巨核球の上昇、骨髄における巨核球の上昇、脾腫、リンパ節拡大、緻密で異常な形質細胞およびそれらの組合せから選択される特徴を示さない、項目1に記載の遺伝子改変されたマウス。
(項目7)
前記ヒト化IL−6Rαが、ヒトエクトドメインを含む、項目4に記載の遺伝子改変されたマウス。
(項目8)
前記ヒト化IL−6Rαが、マウス膜貫通ドメインおよびマウス細胞質ドメインを含む、項目7に記載の遺伝子改変されたマウス。
(項目9)
内在性マウスIL−6Rα遺伝子のヒト化を含む遺伝子改変されたマウスであって、該ヒト化が、該内在性マウスIL−6Rα遺伝子座での、ヒトIL−6Rαエクトドメインをコードする配列によるマウスIL−6Rαエクトドメインをコードする配列の置き換えを含む、遺伝子改変されたマウス。
(項目10)
マウスエクソン1〜エクソン8を含む連続的なマウス配列が、ヒトIL−6RαエクトドメインをコードするヒトIL−6Rα配列の連続的なゲノム断片で置き換えられる、項目9に記載の遺伝子改変されたマウス。
(項目11)
前記エクトドメインをコードするヒトIL−6Rα配列の前記連続的なゲノム断片が、BAC CTD−2192J23に由来する、項目10に記載の遺伝子改変されたマウス。
(項目12)
ヒト化IL−6遺伝子をさらに含む、項目9に記載の遺伝子改変されたマウス。
(項目13)
内在性マウスIL−6遺伝子座での、ヒトIL−6遺伝子によるマウスIL−6遺伝子の置き換えを含む、項目12に記載の遺伝子改変されたマウス。
(項目14)
前記ヒト化IL−6遺伝子が、内在性マウス調節エレメントの制御下にある、項目12に記載の遺伝子改変されたマウス。
(項目15)
マウスIL−6をコードするマウス遺伝子配列を、ヒトIL−6をコードするヒト遺伝子で置き換える工程を含む、ヒト化マウスを作製する方法。
(項目16)
前記置き換えが、内在性マウスIL−6遺伝子座にあり、ヒトIL−6をコードする前記ヒト遺伝子が、内在性マウス調節配列に作動可能に連結する、項目15に記載の方法。
(項目17)
マウスIL−6Rαのエクトドメイン配列をコードするマウスエクソンを、ヒトIL−6Rαのエクトドメイン配列をコードするヒトゲノム断片で置き換えて、ヒト化IL−6Rα遺伝子を形成する工程を含む、ヒト化マウスを作製する方法。
(項目18)
前記置き換えが、内在性マウスIL−6Rα遺伝子座にあり、前記ヒト化IL−6Rα遺伝子が、内在性マウス調節配列に作動可能に連結する、項目17に記載の方法。
(項目19)
ヒトエクトドメイン配列によるマウスエクトドメインをコードする配列の置き換えを含む、ヒト化IL−6Rα遺伝子を含む遺伝子改変されたマウスであって、該ヒト化IL−6Rα遺伝子が、マウス膜貫通配列およびマウス細胞質配列をさらに含み、該マウスが、ヒトIL−6をコードする遺伝子をさらに含み、ヒトIL−6をコードする該遺伝子が、内在性マウスIL−6調節エレメントの制御下にある、遺伝子改変されたマウス。
(項目20)
完全マウスIL−6Rαを発現することが不可能であり、マウスIL−6を発現することが不可能である、項目19に記載の遺伝子改変されたマウス。

Claims (25)

  1. 内在性ネズミIL−6遺伝子座での、ヒトIL−6をコードするヒト遺伝子による、IL−6をコードするネズミ遺伝子の置き換えを含む、遺伝子改変されたネズミ動物であって、ヒトIL−6をコードする該ヒト遺伝子が、該内在性ネズミIL−6遺伝子座における内在性ネズミ調節エレメントの制御下にある、遺伝子改変されたネズミ動物。
  2. 前記ネズミ動物がマウスである、請求項1に記載のネズミ動物。
  3. 前記ネズミ動物がラットである、請求項1に記載のネズミ動物。
  4. 前記ネズミ動物が、ヒトIL−6Rαのエクトドメインを含むヒト化IL−6Rαをさらに含む、請求項1〜のいずれか一項に記載のネズミ動物。
  5. 前記ヒト化IL−6Rαが、ネズミIL−6Rα膜貫通ドメインおよびネズミIL−6Rα細胞質ドメインを含む、請求項に記載のネズミ動物。
  6. 形質細胞増加症、糸球体硬化症、糸球体腎炎、腎不全、高ガンマグロブリン血症、脾臓における巨核球の上昇、骨髄における巨核球の上昇、脾腫、リンパ節拡大、緻密で異常な形質細胞およびそれらの組合せからなる群から選択される特徴を示さない、請求項1〜のいずれか一項に記載のネズミ動物。
  7. 遺伝子改変されたネズミ動物であって、内在性ネズミIL−6Rα遺伝子座での、ヒトIL−6Rαエクトドメインをコードするヒトゲノム断片による、ネズミIL−6Rαのエクトドメインをコードするネズミゲノムセグメントの置き換えであって、ヒト化IL−6Rα遺伝子を形成する置き換えを含み、ここでヒト化IL−6Rα遺伝子は、内在性ネズミIL−6Rα遺伝子座における内在性ネズミ調節エレメントの制御下にあり、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通ドメイン配列およびネズミIL−6Rα細胞質ドメイン配列を含む、ネズミ動物。
  8. 前記ネズミ動物がマウスである、請求項に記載のネズミ動物。
  9. 前記ネズミ動物がラットである、請求項に記載のネズミ動物。
  10. マウスIL−6Rαのエクソン1〜エクソン8を含む連続的なマウス配列が、ヒトIL−6RαエクトドメインをコードするヒトIL−6Rα配列の連続的なゲノム断片で置き換えられる、請求項に記載のネズミ動物。
  11. IL−6遺伝子の内在性ネズミIL−6遺伝子座での、ヒトIL−6遺伝子によるマウスIL−6遺伝子の置き換えであって、ヒト化IL−6遺伝子を形成する置き換えをさらに含む、請求項〜1に記載のネズミ動物。
  12. 前記ヒト化IL−6遺伝子が、内在性ネズミIL−6遺伝子座での、内在性ネズミ調節エレメントの制御下にある、請求項1に記載のネズミ動物。
  13. 遺伝子改変されたネズミ動物であって、
    内在性ネズミIL−6遺伝子座での、ヒトIL−6をコードするヒト遺伝子による、IL−6をコードするネズミ遺伝子の置き換えであって、ヒトIL−6をコードする該ヒト遺伝子が、該内在性ネズミIL−6遺伝子座における内在性ネズミ調節エレメントの制御下にある、置き換え、および
    内在性ネズミIL−6Rα遺伝子座でのヒトIL−6Rαエクトドメインコード配列による、ネズミIL−6Rαエクトドメインコード配列の置き換えであって、該置き換えは、ヒト化IL−6Rα遺伝子を形成し、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通配列およびネズミIL−6Rα細胞質配列を含み、該ヒト化IL−6Rα遺伝子が、該内在性ネズミIL−6Rα遺伝子座における内在性調節エレメントの制御下にある、置き換え
    を含む、遺伝子改変されたネズミ動物。
  14. 前記ネズミ動物がネズミIL−6Rαを発現せず、ネズミIL−6を発現しない、請求項1に記載のネズミ動物。
  15. 前記ネズミ動物がマウスである、請求項1または1に記載のネズミ動物。
  16. 前記ネズミ動物がラットである、請求項1または1に記載のネズミ動物。
  17. 内在性ネズミIL−6遺伝子座において、IL−6をコードするネズミ遺伝子を、ヒトIL−6をコードするヒト遺伝子が該内在性ネズミIL−6遺伝子座において内在性ネズミ調節エレメントの制御下にあるように、ヒトIL−6をコードするヒト遺伝子で置き換える工程を含む、遺伝子改変されたネズミ動物を作製する方法。
  18. 内在性ネズミIL−6Rα遺伝子座において、ネズミIL−6Rαのエクトドメインをコードするネズミゲノムセグメントを、ヒト化IL−6Rα遺伝子が該内在性ネズミIL−6Rα遺伝子座において内在性ネズミ調節エレメントの制御下にあるように、ヒトIL−6Rαエクトドメインをコードするヒトゲノム断片で置き換えて、ヒト化IL−6Rα遺伝子を形成する工程を含む、遺伝子改変されたネズミ動物を作製する方法であって、ここで、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通ドメイン配列およびネズミIL−6Rα細胞質ドメイン配列を含む、方法
  19. 前記ネズミ動物がマウスである、請求項17または18に記載の方法。
  20. 前記ネズミ動物がラットである、請求項17または18に記載の方法。
  21. 単離されたネズミ胚性幹(ES)細胞であって、
    内在性ネズミIL−6遺伝子座での、ヒトIL−6をコードするヒト遺伝子による、IL−6をコードするネズミ遺伝子の置き換えを含み、ヒトIL−6をコードする該ヒト遺伝子が、該内在性ネズミIL−6遺伝子座における内在性ネズミ調節エレメントの制御下にある、単離されたネズミ胚性幹(ES)細胞。
  22. 単離されたネズミES細胞であって、
    内在性ネズミIL−6Rα遺伝子座での、ヒトIL−6Rαエクトドメインコード配列による、ネズミIL−6Rαエクトドメインコード配列の置き換えを含み、該置き換えは、ヒト化IL−6Rα遺伝子を形成し、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通配列およびネズミIL−6Rα細胞質配列を含み、該ヒト化IL−6Rα遺伝子は、該内在性ネズミIL−6Rα遺伝子座における内在性調節エレメントの制御下にあり、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通ドメイン配列およびネズミIL−6Rα細胞質ドメイン配列を含む、単離されたネズミES細胞。
  23. 内在性ネズミIL−6遺伝子座での、ヒトIL−6をコードするヒト遺伝子による、IL−6をコードするネズミ遺伝子の置き換えを含む、単離されたネズミES細胞であって、ヒトIL−6をコードする該ヒト遺伝子は、該内在性ネズミIL−6遺伝子座における内在性ネズミ調節エレメントの制御下にあり、該ネズミES細胞は、内在性ネズミIL−6Rα遺伝子座での、ヒトIL−6Rαエクトドメインコード配列による、ネズミIL−6Rαエクトドメインコード配列の置き換えを含み、該置き換えは、ヒト化IL−6Rα遺伝子を形成し、該ヒト化IL−6Rα遺伝子は、ネズミIL−6Rα膜貫通配列およびネズミIL−6Rα細胞質配列を含み、該ヒト化IL−6Rα遺伝子は、該内在性ネズミIL−6Rα遺伝子座における内在性調節エレメントの制御下にある、単離されたネズミES細胞。
  24. 前記ネズミの種がマウスである、請求項2〜2のいずれか一項に記載のES細胞。
  25. 前記ネズミの種がラットである、請求項2〜2のいずれか一項に記載のES細胞。
JP2014539105A 2011-10-28 2012-10-29 ヒト化il−6および/またはil−6受容体 Active JP6120451B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161552900P 2011-10-28 2011-10-28
US61/552,900 2011-10-28
US201161556579P 2011-11-07 2011-11-07
US61/556,579 2011-11-07
PCT/US2012/062379 WO2013063556A1 (en) 2011-10-28 2012-10-29 Humanized il-6 and il-6 receptor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016224713A Division JP2017035115A (ja) 2011-10-28 2016-11-18 ヒト化il−6および/またはil−6受容体

Publications (3)

Publication Number Publication Date
JP2014532416A JP2014532416A (ja) 2014-12-08
JP2014532416A5 JP2014532416A5 (ja) 2015-12-03
JP6120451B2 true JP6120451B2 (ja) 2017-04-26

Family

ID=47295138

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014539105A Active JP6120451B2 (ja) 2011-10-28 2012-10-29 ヒト化il−6および/またはil−6受容体
JP2016224713A Pending JP2017035115A (ja) 2011-10-28 2016-11-18 ヒト化il−6および/またはil−6受容体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016224713A Pending JP2017035115A (ja) 2011-10-28 2016-11-18 ヒト化il−6および/またはil−6受容体

Country Status (28)

Country Link
US (9) US8878001B2 (ja)
EP (2) EP2818478B1 (ja)
JP (2) JP6120451B2 (ja)
KR (2) KR102234632B1 (ja)
CN (2) CN104039821A (ja)
AU (1) AU2015207889B2 (ja)
BR (1) BR112014008529A2 (ja)
CA (1) CA2853731C (ja)
CY (2) CY1116614T1 (ja)
DK (2) DK2663575T3 (ja)
ES (2) ES2624605T3 (ja)
HK (2) HK1190408A1 (ja)
HR (2) HRP20141192T1 (ja)
HU (1) HUE033400T2 (ja)
IL (4) IL231896B (ja)
IN (1) IN2014CN03920A (ja)
LT (1) LT2818478T (ja)
MX (1) MX358390B (ja)
MY (2) MY172726A (ja)
PL (2) PL2818478T3 (ja)
PT (2) PT2663575E (ja)
RS (2) RS53683B1 (ja)
RU (2) RU2634417C2 (ja)
SG (3) SG11201400945UA (ja)
SI (2) SI2663575T1 (ja)
SM (1) SMT201400187B (ja)
WO (1) WO2013063556A1 (ja)
ZA (1) ZA201402635B (ja)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874881B2 (ja) 2009-10-06 2016-03-02 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 遺伝子改変されたマウスおよび移植方法
MX350385B (es) 2011-02-15 2017-09-04 Regeneron Pharma Ratones de m-csf humanizada.
MY172726A (en) 2011-10-28 2019-12-11 Regeneron Pharma Humanized il-6 and il-6 receptor
US20130261016A1 (en) * 2012-03-28 2013-10-03 Meso Scale Technologies, Llc Diagnostic methods for inflammatory disorders
US8962913B2 (en) 2012-06-18 2015-02-24 Regeneron Pharmaceuticals, Inc. Humanized IL-7 rodents
JP6283031B2 (ja) 2012-09-07 2018-02-21 イエール ユニバーシティ 遺伝学的に修飾された非ヒト動物およびその使用法
JP6282591B2 (ja) * 2012-09-13 2018-02-21 中外製薬株式会社 遺伝子ノックイン非ヒト動物
WO2014071397A2 (en) * 2012-11-05 2014-05-08 Regeneron Pharmaceuticals Genetically modified non-human animals and methods of use thereof
PL2958937T3 (pl) 2013-02-22 2019-01-31 Regeneron Pharmaceuticals, Inc. Myszy ekspresjonujące humanizowany główny układ zgodności tkankowej
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
KR102407354B1 (ko) * 2013-09-23 2022-06-10 리제너론 파마슈티칼스 인코포레이티드 인간화된 신호-조절 단백질 유전자를 가지는 비-인간 동물
PL2908626T3 (pl) 2013-10-15 2017-05-31 Regeneron Pharmaceuticals, Inc. Zwierzęta z humanizowaną
AU2014353346B2 (en) * 2013-11-19 2020-05-14 Regeneron Pharmaceuticals, Inc. Non-human animals having a humanized B-cell activating factor gene
SG10201811701YA (en) 2013-11-19 2019-01-30 Regeneron Pharma Non-human animals having a humanized a proliferation-inducing ligand gene
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
AU2015315834B2 (en) 2014-01-31 2019-12-12 Boehringer Ingelheim International Gmbh Novel anti-BAFF antibodies
PL3129400T3 (pl) 2014-04-08 2020-09-07 Regeneron Pharmaceuticals, Inc. Zwierzęta inne niż człowiek mające humanizowane receptory fc-gamma
EP3636073B1 (en) 2014-05-05 2023-11-15 Regeneron Pharmaceuticals, Inc. Humanized c5 and c3 animals
NO2785538T3 (ja) 2014-05-07 2018-08-04
FI3841877T3 (fi) 2014-05-19 2023-12-01 Regeneron Pharma Ihmisen epo:a ilmentäviä geneettisesti muunneltuja hiiriä
MX2016015609A (es) * 2014-05-30 2017-08-02 Regeneron Pharma Animales con dipeptidil peptidasa iv (dpp4) humanizada.
KR102482295B1 (ko) * 2014-06-19 2022-12-30 리제너론 파마슈티칼스 인코포레이티드 인간화 프로그램화 세포 사멸 1 유전자를 가지는 비인간 동물
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
CN113016720B (zh) 2014-11-24 2023-02-21 瑞泽恩制药公司 表达人源化cd3复合物的非人类动物
LT3086637T (lt) * 2014-12-05 2019-04-10 Regeneron Pharmaceuticals, Inc. Gyvūnai, išskyrus žmogų, turintys humanizuota diferenciacijos klasterio 47 geną
AU2016221497B2 (en) 2015-02-20 2021-06-03 Ultrahaptics Ip Limited Algorithm improvements in a haptic system
EP3537265B1 (en) 2015-02-20 2021-09-29 Ultrahaptics Ip Ltd Perceptions in a haptic system
NZ736031A (en) 2015-04-06 2022-07-29 Regeneron Pharma Humanized t cell mediated immune responses in non-human animals
PT3282835T (pt) 2015-04-13 2023-07-25 Univ Yale Ratinhos knockin de sirpa-il15 humanizadas e métodos de utilização dos mesmos
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
JP6997708B2 (ja) 2015-11-20 2022-02-04 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヒト化されたlymphocyte-activation gene 3遺伝子を有する非ヒト動物
PL3386534T3 (pl) 2015-12-08 2021-03-08 Regeneron Pharmaceuticals, Inc. Kompozycje i sposoby internalizacji enzymów
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
MA43962A (fr) 2016-02-04 2018-12-12 Regeneron Pharma Animaux non humains possédant un gène angptl8 modifié
DK3422845T3 (da) 2016-02-29 2021-08-30 Regeneron Pharma Gnavere med et humaniseret tmprss-gen
AU2017272337C1 (en) 2016-06-03 2024-02-29 Regeneron Pharmaceuticals, Inc. Non-human animals expressing exogenous terminal deoxynucleotidyltransferase
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
CN107815467B (zh) * 2016-08-31 2021-03-16 百奥赛图(北京)医药科技股份有限公司 人源化基因改造动物模型的制备方法及应用
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
CN108588126B (zh) 2017-03-31 2020-04-10 北京百奥赛图基因生物技术有限公司 Cd47基因人源化改造动物模型的制备方法及应用
WO2018177441A1 (en) 2017-03-31 2018-10-04 Beijing Biocytogen Co., Ltd GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC SIRPα
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
EP4299732A3 (en) 2017-11-30 2024-03-27 Regeneron Pharmaceuticals, Inc. Rats comprising a humanized trkb locus
US11360546B2 (en) 2017-12-22 2022-06-14 Ultrahaptics Ip Ltd Tracking in haptic systems
JP7483610B2 (ja) 2017-12-22 2024-05-15 ウルトラハプティクス アイピー リミテッド 触覚システムにおける不要な応答の最小化
AU2019242586A1 (en) 2018-03-26 2020-10-01 Regeneron Pharmaceuticals, Inc. Humanized rodents for testing therapeutic agents
US10911861B2 (en) 2018-05-02 2021-02-02 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
SG11202011284RA (en) * 2018-07-16 2020-12-30 Regeneron Pharma Non-human animal models of ditra disease and uses thereof
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
WO2020141330A2 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-air haptic textures
CN114164177A (zh) * 2019-01-17 2022-03-11 百奥赛图(北京)医药科技股份有限公司 人源化转基因动物
CA3133360A1 (en) 2019-04-04 2020-10-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized coagulation factor 12 locus
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
WO2020240876A1 (ja) * 2019-05-27 2020-12-03 株式会社トランスジェニック エクソンヒト化マウス
CN113874510A (zh) 2019-06-04 2021-12-31 瑞泽恩制药公司 包括具有β滑移突变的人源化TTR基因座的非人动物和使用方法
KR20220017939A (ko) 2019-06-07 2022-02-14 리제너론 파마슈티칼스 인코포레이티드 인간화 알부민 좌위를 포함하는 비-인간 동물
CA3154040A1 (en) 2019-10-13 2021-04-22 Benjamin John Oliver LONG Dynamic capping with virtual microphones
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
WO2021090028A1 (en) 2019-11-08 2021-05-14 Ultraleap Limited Tracking techniques in haptics systems
CN111304246B (zh) * 2019-12-17 2021-05-04 百奥赛图江苏基因生物技术有限公司 一种人源化细胞因子动物模型、制备方法及应用
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
CN115175559A (zh) * 2020-01-28 2022-10-11 瑞泽恩制药公司 包含人源化pnpla3基因座的非人动物及其使用方法
CA3167557A1 (en) 2020-04-21 2021-10-28 Davor Frleta Non-human animals having a humanized cxcl13 gene
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons
WO2024073679A1 (en) 2022-09-29 2024-04-04 Regeneron Pharmaceuticals, Inc. Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012025A1 (en) * 1994-10-14 1996-04-25 Basf Aktiengesellschaft TRANSGENIC NONHUMAN ANIMAL HAVING FUNCTIONALLY DISRUPTED INTERLEUKIN-1β CONVERTING ENZYME GENE
CZ298325B6 (cs) 1994-10-21 2007-08-29 Kishimoto@Tadamitsu Farmaceutický prípravek pro prevenci nebo lécení plasmocytosy
US20030082721A1 (en) * 2001-01-17 2003-05-01 Tai-Jay Chang Transgenic animals expressing androgen receptor complex-associated protein
CN1560081A (zh) * 2004-02-17 2005-01-05 大连帝恩生物工程有限公司 用能产生人IgGl重链-κ轻链小鼠作为制备人源化单克隆抗体和应用
EP2767161B1 (en) 2004-10-19 2018-02-07 Regeneron Pharmaceuticals, Inc. Method for generating an non-human animal homozygous for a genetic modification
US7759541B2 (en) 2004-12-13 2010-07-20 Iti Life Sciences Transgenic animals for assessing drug metabolism and toxicity
GB2434578A (en) 2006-01-26 2007-08-01 Univ Basel Transgenic animals
ES2398076T3 (es) 2006-06-02 2013-03-13 Regeneron Pharmaceuticals, Inc. Anticuerpos de alta afinidad contra el receptor de IL-6 humano
SG174053A1 (en) * 2006-09-01 2011-09-29 Therapeutic Human Polyclonals Inc Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
FR2942218A1 (fr) 2009-02-13 2010-08-20 Eurocave Sa Appareil de service au verre d'un liquide, notamment de vin
JP5874881B2 (ja) * 2009-10-06 2016-03-02 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 遺伝子改変されたマウスおよび移植方法
CA2784953C (en) * 2009-12-21 2018-05-22 Regeneron Pharmaceuticals, Inc. Humanized fc.gamma.r mice
MX350385B (es) 2011-02-15 2017-09-04 Regeneron Pharma Ratones de m-csf humanizada.
AU2012317395B2 (en) 2011-09-30 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
HUE035652T2 (en) 2011-10-28 2018-05-28 Regeneron Pharma Genetically Modified Major Histocompatibility Complex Mice
RS63220B1 (sr) 2011-10-28 2022-06-30 Regeneron Pharma Genetski modifikovani miševi sa ekspresijom himernih molekula klase ii glavnog kompleksa histokompatibilnosti (mhc)
MY172726A (en) 2011-10-28 2019-12-11 Regeneron Pharma Humanized il-6 and il-6 receptor

Also Published As

Publication number Publication date
KR102234632B1 (ko) 2021-04-02
PL2818478T3 (pl) 2017-09-29
RU2017129763A (ru) 2019-02-05
HRP20141192T1 (hr) 2015-02-13
RU2751240C2 (ru) 2021-07-12
JP2017035115A (ja) 2017-02-16
EP2818478A1 (en) 2014-12-31
RU2634417C2 (ru) 2017-10-26
PT2663575E (pt) 2014-12-05
US10004211B2 (en) 2018-06-26
US9622460B2 (en) 2017-04-18
ZA201402635B (en) 2015-09-30
WO2013063556A8 (en) 2014-04-17
RS55949B1 (sr) 2017-09-29
US20150272092A1 (en) 2015-10-01
HK1205135A1 (en) 2015-12-11
US20150013022A1 (en) 2015-01-08
IL243666A0 (en) 2016-03-31
KR20200024949A (ko) 2020-03-09
SMT201400187B (it) 2015-01-15
CA2853731C (en) 2021-05-18
IL231896A0 (en) 2014-05-28
CN104039821A (zh) 2014-09-10
EP2663575A1 (en) 2013-11-20
US20200008407A1 (en) 2020-01-09
MY172726A (en) 2019-12-11
US20150013023A1 (en) 2015-01-08
EP2818478B1 (en) 2017-02-01
CA2853731A1 (en) 2013-05-02
SG11201400945UA (en) 2014-04-28
CN108866101A (zh) 2018-11-23
RU2017129763A3 (ja) 2020-12-18
EP2663575B1 (en) 2014-10-01
IL264508A (en) 2019-02-28
NZ623145A (en) 2015-09-25
HRP20170656T1 (hr) 2017-06-30
US9125386B2 (en) 2015-09-08
PL2663575T3 (pl) 2015-03-31
IL243665B (en) 2018-02-28
SG10201600965YA (en) 2016-03-30
PT2818478T (pt) 2017-05-12
US8878001B2 (en) 2014-11-04
US9078418B2 (en) 2015-07-14
LT2818478T (lt) 2017-06-12
DK2663575T3 (en) 2014-12-15
RU2014121324A (ru) 2015-12-10
AU2015207889B2 (en) 2017-02-23
IL231896B (en) 2018-02-28
HUE033400T2 (en) 2017-12-28
SI2663575T1 (sl) 2015-01-30
RS53683B1 (en) 2015-04-30
MX358390B (es) 2018-08-17
WO2013063556A4 (en) 2013-06-20
US10433528B2 (en) 2019-10-08
US20160278352A1 (en) 2016-09-29
BR112014008529A2 (pt) 2017-04-18
AU2015207889A1 (en) 2015-08-20
IL243666B (en) 2019-02-28
CY1116614T1 (el) 2017-03-15
ES2525368T3 (es) 2014-12-23
SG10202100485XA (en) 2021-02-25
ES2624605T3 (es) 2017-07-17
IN2014CN03920A (ja) 2015-09-04
US11102962B2 (en) 2021-08-31
IL243665A0 (en) 2016-03-31
WO2013063556A1 (en) 2013-05-02
KR102084927B1 (ko) 2020-03-06
HK1190408A1 (en) 2014-07-04
US9392777B2 (en) 2016-07-19
KR20140091024A (ko) 2014-07-18
IL264508B (en) 2019-12-31
DK2818478T3 (en) 2017-05-22
US20130117873A1 (en) 2013-05-09
SI2818478T1 (sl) 2017-07-31
MX2014004900A (es) 2014-08-26
US20220053742A1 (en) 2022-02-24
US20170055506A1 (en) 2017-03-02
US20180271071A1 (en) 2018-09-27
NZ709432A (en) 2015-12-24
MY186903A (en) 2021-08-26
CY1118952T1 (el) 2018-01-10
JP2014532416A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
US11102962B2 (en) Humanized IL-6 and IL-6 receptor
AU2012327206B2 (en) Humanized IL-6 and IL-6 receptor
NZ709432B2 (en) Humanized il-6 and il-6 receptor
NZ623145B2 (en) Humanized il-6 and il-6 receptor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6120451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250