JP6078212B2 - 油圧トランスミッション弁 - Google Patents

油圧トランスミッション弁 Download PDF

Info

Publication number
JP6078212B2
JP6078212B2 JP2012174023A JP2012174023A JP6078212B2 JP 6078212 B2 JP6078212 B2 JP 6078212B2 JP 2012174023 A JP2012174023 A JP 2012174023A JP 2012174023 A JP2012174023 A JP 2012174023A JP 6078212 B2 JP6078212 B2 JP 6078212B2
Authority
JP
Japan
Prior art keywords
magnetic pole
transmission valve
anchor
hydraulic
hydraulic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012174023A
Other languages
English (en)
Other versions
JP2013044427A (ja
Inventor
ボーバン ドラーゼン
ボーバン ドラーゼン
フランツ ベルンド
フランツ ベルンド
トーマス ヤコブ
ヤコブ トーマス
クネヒト アンドレアス
クネヒト アンドレアス
マイシュ ディータ
マイシュ ディータ
ヴェーバ ハートムート
ヴェーバ ハートムート
Original Assignee
ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング filed Critical ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Publication of JP2013044427A publication Critical patent/JP2013044427A/ja
Application granted granted Critical
Publication of JP6078212B2 publication Critical patent/JP6078212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/127Assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material

Description

本発明は、油圧トランスミッション(変速機)弁に関する。
油圧弁は、既に特許文献1から公知となっている。この弁は、合成樹脂ケーシングを有する。この合成樹脂ケーシングは、透磁(磁気伝導)性の挿入ブッシング周りに射出成型されている。磁極コーン(円錐)を備える磁極が、合成樹脂ケーシングおよび挿入ブッシングの組み合わせの中に挿入される。基部となる合成樹脂部材が、挿入ブッシング内に挿入されている。ここで、合成樹脂部材は、鍋形状の磁極管の鍋形状の基部周りに射出成型されている。ディスク形状の磁極フランジが、鍋形状の基部の領域で磁極管に設けられている。磁極管の中に、アンカーが軸方向に移動可能に設けられている。ピストンがこのアンカーに挿入されている。このピストンは、磁極と一体に構成された油圧ブッシングに支持されている。
特許文献2からは、比例弁が既に公知となっている。この比例弁では、制御コーンとなる磁極コーンはトランペット型の形状を有している。鋼スリーブである磁極管は分離層を有し、それらは低摩擦ラッカー、PTFEまたはニッケルPTFEコーティングであり得る。
独国特許出願公開第19808279号明細書 独国特許出願公開第102009042888号明細書
したがって、本発明の目的は、摩擦係合状態で快適に連結するように構成されているトランスミッション・クラッチ、特に始動クラッチ、シフト・クラッチまたは同期クラッチのためのトランスミッション弁を提供することである。ここで、トランスミッション弁は、トランスミッション・オイル交換をほとんど必要としないかまたはまったく必要としない。さらに、このトランスミッション弁は、トランスミッション・オイルの品質が良好でない国々でも使用することができる。
上記目的は本発明によって解決される。
トランスミッション・オイル交換の間隔が長い場合、極端な場合には寿命がくるまでずっと、二重安全機能を確保するために、トランスミッション弁は極めて堅牢でなければならない。高いレベルの堅牢性は、可動部材が大きな公差を有することによって達成され得るが、この場合、制御品質に悪影響が及ぶ。
本発明に係るトランスミッション弁は、高レベルの堅牢性および高制御品質を有することによって上記の両立しづらい目的を達成する。高いレベルの堅牢性は、アンカーが常に確実に牽引されるのに充分に大きな軸方向力を生成するので、油圧オイル内の汚染粒子がトランスミッション弁の詰まりを引き起こすことがない、ことによって達成される。
それにもかかわらず、トランスミッション弁はなお高い制御品質を有している。この高い制御品質は、複数の設計手段によって達成される。すなわち、特に、アンカーおよび磁極(電機子)管の間の横方向力が最少化される。
横方向力を減少させるためのこの種の構成上の特徴は、アンカーおよび磁極管の間の極めて狭い動作間隙である。この間隙は、スリーブまたは薄いコーティングの代わりに極めて薄い分離層によって達成される。この種の極めて薄い分離層は、0.01mmから0.06mmの層厚を有している。この薄い分離層は、化学処理または電気めっき処理によって製造することができる。化学処理に関しては、たとえば、化学ニッケルめっきを使用することができる。すなわち、0.045mmの層厚が理想的であるということが分かっている。0.01mmという最小厚さが理論的に実施可能である。目下、既存の方法を用いて、0.02mm以上の層厚が実施可能であるということが検証されている。電気ニッケルめっきとは異なり、化学処理では電極を通じて電圧が印加されることはない。化学ニッケルめっきに関しては、層厚は極めて均一である。
アンカーのカバー面をコーティングすることもできる。カバー面とはアンカーの走行面のことである。したがって、化学ニッケルめっきが高い耐摩耗性と耐腐食性を提供する。代替的に、磁極管の内側をコーティングすることもできる。
磁極管が、アンカーと直接接触する磁化可能な基部を伴って構成される場合、この場所に分離手段を設けて磁気結合を防止しなければならない。この分離手段は、カバー面の分離層と同じ分離層であってもよい。したがって、アンカーの後方端面または磁極管の内側基部も、電気めっきによって、または化学的にコーティングされていてもよい。
トランスミッション弁の比例特性を提供するために、磁極コーンが設けられている。この種の磁極コーンによって、様々な別の力/距離ダイアグラム(相関関係)が実施可能である。ただし、主として直線の力/距離ダイアグラムが、制御を容易にするために望ましい。
磁極管とアンカーとの間の距離が小さくてしかも一定であるため、アンカーに加わる回転モーメントは極めて小さいので、アンカーはきわめて小さな横方向力しか有さない。さもなければ、こうした横方向力は、摩擦を増加させ、よって実施例にて後述するヒステリシスΔpを増加させる。
横方向力を小さく保つために、磁極コーンも、アンカーおよび磁極管に対して良好な同心状態で整列させる必要がある。この目的のために、本発明によって、磁極コーンおよびケーシングは、一体となるよう磁化可能な金属から一体的に製造される。さらに、ケーシングは、磁極管の磁化可能磁極フランジが支持される接続部を含む。この接続部は、アンカーのアンカー行路と、磁極コーンおよび磁極管の間の同心配置とを画定する。
好適な一形態においてアンカー行路を正確に画定するために、磁極フランジは、軸方向適合部のための端面を有し得る。この端面は、ケーシングの接触面と接触する。
磁極管と磁極コーンとの間を同心にするために、磁極フランジは、径方向適合部を有し得る。
径方向適合部および軸方向適合部は、共通適合部としてまとめることもできる。たとえば、磁極フランジは、径方向外側にコーン状になるよう構成することができ、それにより、ケーシングに向かうコーン状の接続箇所が設けられるようになる。しかし、この場合、アンカー行路の調整はより複雑になる。
いずれの場合であっても、磁極管は、磁極フランジに固定されているので、相対移動はない。特に、磁化可能な磁極フランジは、磁極管と一体的に構成されている。しかし、磁極フランジをディスクとして構成し、その磁極フランジを磁極管にプレス加工することもでき、それに続いて、ディスクおよび磁極フランジを含むユニットを、旋削または研磨することができる。したがって、ケーシングおよび磁極フランジの間の接続は、ポール管および磁極コーンの間の同軸配置をもっぱらまたは概ね画定する。この接続プロセスが小さな公差で再現可能な品質を有している場合、磁極管および磁極コーンを同軸にまたは互いに整列した状態で大量に製造することができる。磁極管内を運動するアンカーは、磁極コーンに移動することができる。その移動の際には、摩擦を生じさせる横方向力は存在しない。
いかなる状況でもアンカーと磁極コーンとの間で傾斜や摩擦が生じないようにするために、追加で、磁極コーンの内径を磁極管の内径よりも大きくなるように構成することができる。
磁極コーンと磁極管との間にスリーブを設けることができる。スリーブは、芯出し機能を有して構成することができる。しかし、その場合、スリーブは結果として肉厚に構成しなければならなくなる。なぜなら、本発明では、ケーシングと磁極フランジとの間の接続部によってポール管と磁極コーンとの間の同軸配置が提供されるため、この種のスリーブは省略するか、または薄く構成し、それにより、スリーブが芯出し機能を有さないようにすることができるからである。芯出し機能を有さないということは、組み立て中にケーシングと磁極フランジとの間の接続部に加わる力が大きいので、組み立て工程で薄いスリーブは整列誤差があればいずれにせよ変形してしまうということを意味する。この場合、この種の薄いスリーブの機能は、スリーブの外部の空間に対してスリーブ内部を封止するということである。スリーブ内部では、アンカーが油圧オイル内で移動する。スリーブの外部に、アンカーを移動させるためのコイルが設けられている。トランスミッション弁の実施例によっては、コイルは、空気、油圧オイル、または空気/油圧オイル混合物内に存在する。したがって、スリーブを使用して、電磁部材を油圧オイルに対して保護することができる。油圧オイルは、接触部分で導電体に出ていくことはない。
実施例で説明する、電磁部材がいずれにせよ油圧オイル内に存在するトランスミッション弁に関しても、この種のスリーブは意味あるものである。すなわち、このスリーブの機能は、電磁部分内部の油圧オイルへの空気の侵入を最小限にすることである。こうした空気の侵入は、アンカーを前後に摺動させる間の油圧減衰に悪影響を及ぼす可能性がある。スリーブは、スリーブ外部の空洞を封止し、また、磁極コーンおよび磁極管の間で軸方向の環状空洞を、油圧オイルの流過に対して不十分なかたちで封止するだけである。しかし、このスリーブは、油圧オイルで横方向の貫通孔を通じて電磁部分を充填する際に、スリーブ内部に空気が溜まることを防止する。したがって、トランスミッション弁の最初の検査を、現実的な大気条件および現実的な減衰によって行うことができる。
すなわち、油圧減衰はトランスミッション弁の制御性にとって重要である。同時に、アンカーが移動できるように、油圧オイルをアンカーの前後で、2つの空洞の間で軸方向に行き来させなければならない。したがって、油圧通路を、アンカーの2つの軸方向端面の間に設けなければならない。この通路は、アンカー内中心の穴として具現できる。この通路は、穴が中心に存在しているため横方向力を小さく抑える。さらに、有利な一形態では、スロットル・オリフィスを通路に設ける。この種の短尺のスロットル・オリフィスは、長尺の貫通孔と比べて、油圧減衰を比較的温度依存に設定することができるようにする。スロットル・オリフィスが、磁化不能(非透磁性)固着防止ディスクと一体化されていると都合が良い。固着防止ディスクが磁化不能であるため、スロットル・オリフィスが偏心し、すなわちアンカーの長手方向軸の外側に配置されていたとしても、横方向力は生じない。すなわち、スロットル・オリフィスを偏心して配置することは、固着防止ディスクを中央において閉止することができかつプランジャ用の中央接触面を形成することができるため、都合が良い。したがって、アンカー内の中央通路は、プランジャを中央で支持するために閉止することができる。油圧部分はプランジャによって作動可能である。このプランジャは、油圧ピストンで構成すると都合が良い。
プランジャの高い軸方向力を生じさせるために、トランスミッション弁の油圧ブッシングは、磁化可能に構成されるとともに、磁極コーンと一緒に磁極を形成すると都合が良い。
力/距離ダイアグラムに対して好影響を与えるために、ポール管は、磁極と同様にポール管コーンを有して形成することができる。
本発明に係るその他の利点は、特許請求の範囲、明細書および図面から明らかになる。以下、図面を参照しながら本発明を2つの実施形態に基づいてより詳細に説明する。
基本位置にある油圧トランスミッション弁を示す図である。 制御位置にある油圧トランスミッション弁を示す図である。 接触位置にある油圧トランスミッション弁を示す図である。 図1ないし図3に係るトランスミッション弁に関して、電流Iを介して操作接続部に加えられる油圧のダイアグラムの図である。 薄板クラッチの全行路にわたる薄板クラッチの接触力を、図1ないし図3に係るトランスミッション弁を用いた場合について示したダイアグラムの図である。 別の実施形態において油圧トランスミッション弁を基本位置で示した図である。 図6に係る油圧トランスミッション弁を制御位置で示した図である。 図6に係る油圧トランスミッション弁を接触位置で示した図である。
図1は、油圧弁1を基本位置で示した図である。油圧弁は圧力制御弁である。
このトランスミッション弁1は、ツインクラッチ・トランスミッションで使用される。トランスミッション弁1は、ツインクラッチを制御する。したがって、部分的に類似して構成されている複数のトランスミッション弁の油圧部分2の油圧ブッシング29が、ツインクラッチ・トランスミッションの制御プレート内に挿入される。油圧ブッシング29は、回転対称な旋削部材として構成されている。油圧部材2にそれぞれ接続されているトランスミッション弁1の電磁部材3は、制御プレートから突出るとともにオイル内に沈潜している。各電磁部材は、透磁性のケーシング4を有する。ケーシング4は、磁極コーン5と一体化されている。この磁極コーン5には、環状バー33がつながっている。環状バー33は、トランスミッション弁1の長手方向軸8に対して同軸になるように、電磁部材3の中心に向かう方向に延在している。磁極コーン6は、磁極管7の磁極管コーン9に対して実質的に鏡対称になるよう対向して設置されている。したがって、仮想の鏡面は、長手方向軸8に対して直交するように延在する。磁極管7は、旋削部材として構成されている。ケーシング4は、予め鍛造されており、旋削されて接続位置に挿入される。
非透磁性のスリーブ10が、一方では環状バー33に、他方では磁極管7に載置される。スリーブ10の壁が薄いため、スリーブ10は芯出しされない。その代わりに、磁極コーン9の磁極管7に対する必要な芯出しは、ケーシング4の接続部62によって行われる。スリーブ10を受容するために、磁極管7および環状バー33は、径方向外方に周回する部分11、12を有する。
磁極フランジ13は、電磁部材の後方部分において磁極管7から径方向外方に延在する。ここで、磁極フランジは、磁極管7と一体化されている。ケーシング4は、ポールフランジ13周りに曲きつけられており、それにより、磁極フランジ13がケーシング4に対して軸方向両側で支持される。結果として、接続部62がその場所に形成される。接続部62は、アンカー行路65を画定する。さらに、接続部62によって、磁極コーン9と磁極管7との間の同心性が画定される。
接続部62は、軸方向適合部61および径方向適合部60を含む。磁極フランジ13は、軸方向適合部61を提供するために端面63を有する。ここで、端面63は、ケーシング4の接触面64に接触する。この接触面は、トランスミッション弁1の長手方向軸8に対して直角をなす。径方向適合部60を設けるために、磁極フランジ13は、カバー面66を備える。したがって、磁極フランジ13は、ケーシング4の円筒状の凹部67内に挿入される。
ケーシング4の接触面64は、ケーシング4の長手方向軸8に対して極めて正確に直角でなければならない。同様に、磁極フランジ13の端面63は、磁極管7の長手方向軸8に対して極めて正確に直角でなければならない。磁極管7の長手方向軸8とケーシング4の長手方向軸8とは、図示された載置位置において合致している。
磁極フランジ13は、穴部15を有する。この穴部には、コイル14に電圧を印加するための電線16が通っている。このコイル14は、径方向内側で合成樹脂から成る支持要素17によって画定されている。したがって、支持要素17は、U字型の形状を有する。結果として、ディスク形状の鍔が、支持要素17の前方端部において支持要素17の径方向内側部分18から径方向外方に延びる。さらに、ディスク形状の鍔20も、支持要素17の後方端部において支持要素17の径方向内側部分18から径方向外方に延びる。径方向内側部分18は、スリーブ10上に載置されている。前方のカラー19は、ケーシング5に隣接している。後方の鍔20は、磁極フランジ13に隣接している。
磁極フランジ13は、径方向内側において閉止されるように構成されている。それにより、基部21が形成され、この基部が、磁極管の後方端部で磁極管7を閉止する。したがって、ストッパ23が、磁極管7内に突出する。この基本位置において、このストッパ23は、後方端面58においてアンカー22に接触する。油圧オイル用の環状受容空洞24が、ストッパ23周りに形成されている。
アンカー22は、中央貫通孔25を有する。中央貫通孔25は、アンカー22の正面端部のショルダ部で拡張されて、より大きな直径を有する貫通孔26になる。固着防止ディスク27が、この大きな方の貫通孔26に挿入されている。固着防止ディスクは、小さな開口部28を有する。この開口部は、長手方向軸8に対して偏心して設けられている。この小さな開口部28は、スロットル・オリフィスの機能を有する。
固着防止ディスク27の部分は、ディスク32として構成されている。この部分は、図3に示されるようにアンカーが完全に引き込まれた状態のときに、油圧部材2の透磁性の油圧ブッシング29のところでアンカー22が固着するのを防止するように構成されている。このディスク32は、プランジャ30用の径方向内側接触部分31から延びている。したがって、透磁性の油圧ブッシング29は、磁極コーン6につながる環状バー30とともに磁極5を形成する。
コイル14に電流が加わった場合に、アンカー22を軸方向に、磁極5に向けて引っ張る磁束は、下記のような順で通る:
−アンカー22から
−磁極管コーン9を有する磁極管7へ
−フランジ形状の磁極フランジ13へ
−ケーシング4の外側シェル34へ
−径方向内側を向いているケーシング部材35へ、
−環状バー33へ
−磁極コーン6へ、そして
−アンカー22に再び戻る。
したがって、環状バー33は、磁極コーン6と、管状バー33に、共通の磁極5として挿入されている油圧ブッシング29の端部36と、一緒に作動する。結果として、極めて高い軸方向力がアンカー22を引っ張る。ここで、軸方向力は比較的直線特性を有する。なぜなら、図1に示す基本位置にあるアンカー22は、既にa=0.2mm分だけ磁極コーン内に入り込んでいるからである。図3に示したように固着防止ディスク27が油圧ブッシング29に接触している場合、アンカー22の前方端面37は、磁極コーン6の軸方向コーン長さbをいまだに超えていない。
したがって、アンカー22に高い軸方向力が加わるにも関わらず、アンカー22が、図1に係る基本位置から図2に係る制御位置を経て、図3に係る固着防止ディスクに接触するまでの全行程が、直線の力/距離ダイアグラムを描くことが保証される。
アンカー22から磁極管に対して作用する横方向力はきわめて小さい。これは、複数の構成上の細部を組み合わせた結果である。すなわち、まず、アンカー22は、磁気的な分離のために化学的に塗布された分離層57によって磁極管7から分離されている。分離層57は、いわゆる化学ニッケルめっき層である。分離層57は、0.045mmの厚さを有する。
したがって、分離層57を作成するために、アンカー22は、設置前に槽の中に保持され、特にアンカー22の被覆面80および後方端面58が化学的にニッケルめっきを施される。間隙のない均一な分離層を形成するために、支持部がアンカー22を化学層内で支持してもよい。アンカー22を、中央貫通孔25内部において、そして/または前方端面37において支持することができる。これにより、その場所にニッケルめっきが施されないようにするか、またはわずかな量のニッケルめっきしか施されないようにすることができる。分離層57は、中央貫通孔25内と前方端面37には施されなくてもよい。後方端面58の径方向部分に分離層57を設けることを省略することもできる。いずれにせよ、径方向部分は、磁極管7の基部とは決して接触することはない。
磁極コーン6と磁極管7とを可能な限り良好に同軸に配置するために、磁束内の部材の数を上述したように最小化することによって、同軸誤差は極めて小さく抑えられている。しかし、このような構成のために、磁極コーン6の内径が、磁極管7の内径よりもわずかに大きくなっている。したがって、分離層57に加えて環状空隙が形成され、この空隙によって、アンカー22が磁極コーン6から分離される。
アンカー22の中心に貫通孔25を設けることは、横方向磁力を最小化するためのさらなる手段である。受入れ口の空洞24とアンカーの正面の空洞39との間で容積補償のために機能する貫通孔25が中心に存在しない場合は、アンカー22を通り抜ける磁力線が作り出され、結果として横方向力が生成される。アンカー22が移動し、その結果受入れ口の空洞24および空洞39の容積が変化する場合には、容積補償が不可欠となる。
磁極5の形成に関与する要素である、油圧ブッシング29の端部36も、アンカー22と同様に回転対称である。空洞29に出入りするプランジャ30にためさらなる容積補償を行うために、プランジャ30が通過する貫通孔40が拡張されて、流動損失なしで油圧オイルが通過できるのに充分な大きさの環状空洞41が設けられることになる。横断貫通孔42は、この環状空洞41から延びている。この横断貫通孔から、油圧オイルが油圧ブッシング29から出たり油圧ブッシング29に入ったりする。この横断貫通孔42は磁極5の外側に設けられているので、横断貫通孔によって磁界に対して非対称に負荷がかかることがなく、それにより横方向力が小さく保たれるようになっている。
組み立ての間、ケーシング4は磁極フランジ13周りに折り曲げられるため、磁極フランジ13は、ケーシング4に対して軸方向および径方向に展開される。アンカー22は、もっぱら磁極管7内に支持されているので、アンカー22も、ケーシング4またはケーシング4と一体化されている磁極コーン6に接触して配向されている。磁極コーン6とアンカー22との同軸配置が、横方向力を主として決定する。したがって、折り曲げの間にかかる力は極めて大きい。これに比べて、スリーブ10の厚さは極めて薄い。
すなわち、スリーブ10によって磁極管7に対する磁極コーン6の芯出しが行われることはない。あるいは、スリーブ10によって行われる芯出しは寸法上無視できるものである。したがって、スリーブ10の機能は、むしろ、電磁部材3内での油圧オイルへの空気の侵入を最少に抑えることである。つまり、このような油圧侵入物を最少に抑えられなければ、アンカー22が前後に移動する際に油圧減衰に悪影響が及ぶのである。スリーブ10は、磁極コーン6と磁極管コーン9との間で軸方向において、油圧オイルの流過にほぼ不充分なかたちで抵抗しつつ空洞29および環状空洞43を封止する。しかしながら、このスリーブは、横断貫通孔42を通じて油圧オイルを最初に電磁部材3に充填する際に空気がスリーブ10内部に蓄積することを防止する。つまり、このような空気は、支持要素17周りに閉じ込められ、スリーブ10によって外部に保持される。これによって、トランスミッション弁1の最初の検査は、現実的な周囲条件下で行うことができる。
油圧部材2は、プランジャ30と一体状に構成されている油圧ピストン50を備える。油圧ピストン50は、油圧ブッシング29内部で軸方向に移動可能に支持されている。したがって、油圧ピストン50は、補償コイルばね51の力に抵抗して移動可能である。油圧ピストン50は、2つの環状外周溝52、53を含む。油圧ピストン50が、補償コイルばね51の力に最大量抵抗して変位されることになる図3の位置に配置されている場合、後方の環状溝52によって、供給接続部Pの供給圧力を操作接続部Aに伝達することができる。
しかし、コイル14に対して充分に大きな電圧が引加されず、油圧ピストン50が図1の基本位置にある場合、油圧オイルが作動接続部Aからタンク排出口Tまで流れていく。
図4には、作動接続部Aでの油圧圧力Pが、図1ないし図3に係るトランスミッション弁1のためのコイル4を通る電流Iに関して示されている。このように、ヒステリシスループが形成されている。油圧ピストン50の移動方向に応じて、ヒステリシスループの実質的に平行な2つの直線54、55に沿った動きが生じる。縦座標方向における2つの直線54、55の距離は、ヒステリシスΔpとして示されている。ヒステリシスΔpは、3つの変数によって決定される。
1.油圧オイルの種類の他、油圧オイルの温度または油圧オイルの粘度に依存する2つの油圧接続部の流動力
2.選択された材料の関数である磁性ヒステリシス
3.対となる材料の摩擦係数によって影響を受けることに加え、横断力によって大いに影響を受ける様々な摩擦
上記の変数とは異なり、補償コイルばね51は、ばね力が極めて小さいため従属的な役割を果たすのみである。
ヒステリシスΔpが小さくなればなるほど、すなわち2つの直線54、55の縦座標方向におけるずれが小さくなればなるほど、トランスミッション弁1を特定の位置においてよりよく制御することができる。
このことは、トランスミッション弁1の用途として好ましい、摩擦クラッチを制御する場合において都合が良い。特に、薄板クラッチは、後述する図5のダイアグラムに示されるような所定のキス点(kiss point)kpを有する。
この目的のために、この図のダイアグラムには、薄板クラッチの行路Sにわたって薄板クラッチの油圧アクチュエータに加えられる力Fを示す。薄板クラッチによって伝達可能なトルクは、この力Fと直接比例する。薄板クラッチは、2つの薄板パケットを有する。外側の薄板群が一方の薄板パケットを形成する。内側の薄板群は他方の薄板パケットを形成する。外側の薄板群は、自身の外径において軸方向に移動可能かつ回転不能に、結合すべき伝達シャフトに支持されている。内側の薄板群は、自身の内径において回転不能にかつ軸方向に移動可能に、結合すべき他方の伝達シャフトに支持されている。1つまたは両方の薄板パケットの薄板群は、ばねによって互いに分離されている。これらのばねは、たとえばディスクばねまたは圧縮コイルばねとして構成してもよい。薄板クラッチの薄板は、起伏が少ない。
トランスミッション弁1が、操作接続部Aを通じて供給接続部Pから供給圧力を薄板クラッチの油圧アクチュエータの圧力室へと導くと、圧力室内の圧力は、コイルに予め加えられた負荷が克服されるまでずっと急速に増加し続ける。油圧アクチュエータの表面で倍増した圧力は、力Fを生み出す。この力Fは、距離Δs1にわたって直線状に増加する。いわゆるキス点kpに到達すると、外側の薄板群と内側の薄板群とが直接接触する。したがって、力Fは急速に増加する。車両の搭乗者が快適性の低下を感知しないようにするために、このキス点における制御は高品質でなければならない。しかし、図4に示すように、このことは、ヒステリシスΔpが小さな場合にのみ可能である。薄板クラッチの典型的な用途の場合、0.5バール以下のヒステリシスΔpが快適であると実証されている。
すなわち、良好なまたは小さなヒステリシスΔpを有するトランスミッション弁1によって、距離s_goodを越える両方の薄板パケットの移動を促進し、それに続いて、これら薄板パケットがゆっくりと点s_kpに到達するように制御する。不良なトランスミッション弁の場合には、距離s_badを越えてのみ移動するので、キス点に到達するまでに長い距離を経なければならなくなる。
図示されたトランスミッション弁1は、高レベルの堅牢性を有する。このことが意味するのは、油圧オイル内に汚染粒子があってもトランスミッション弁1が詰まることはないということである。なぜなら、軸方向力が充分に大きいのでアンカー22が常に明確に牽引されるからである。これにより、本明細書に記載されている分離層の厚さおよび材料の組み合わせの場合には、電流I=1Aに対して少なくとも15Nの力がアンカー22に生成する。
したがって、トランスミッション弁1は、ツインクラッチ・トランスミッションのツインクラッチの圧力またはオートマチック遊星トランスミッションの薄板クラッチの圧力を制御するのに特に適している。
図1ないし図3に係る圧力制御弁とは異なり、図6に係るトランスミッション弁101は、堆積流制御弁である。堆積流制御弁は、ギヤを入り切りさせるために設けられている。特にギヤにシンクロナス・リングが設けられている場合、図4および図5に関して上述したように使用された場合には、同様の境界条件が当てはまる。シンクロナス・リングに関しても、同期の噛合が行われる前に快適性の観点から精密に制御すべきである摩擦モーメント・トランスミッションが存在する。
しかしながら、このトランスミッション弁101は、2つの操作接続部AおよびBを有する。さらに、トランスミッション弁101は、2つのタンク排出部T1およびT2も有する。
油圧ピストン150は、2つの外周リング溝152、153および154を有する。油圧ピストン150が図6に示されている基本位置にある場合、コイル114に電流が印加されていないので、2つの操作接続部AおよびBの間で軸方向に設けられている供給接続部Pの堆積流が、中央リング溝152を通って流れて後方の操作接続部Bに到達し得る。前方の操作接続部Aは、この基本位置では、前方のリング溝154を介して後方のタンク排出部T2につながっている。
しかし、コイル14に十分な電圧が印加されると、油圧ピストン150が、図8に示すように補償コイルばね151のばね力に抗って最大の突き出し位置にくる。この最大突出位置において、油圧オイルは、供給接続部Pから前方の操作接続部Bに流れる。一方、後方の操作接続部Bは、後方のリング溝152を通って前方のタンク排出部T1につながる。
図6および図8に係るこれらの2つの対磁極位置の間に、図7に係る制御位置が存在する。
油圧トランスミッション弁は、ツインクラッチ・トランスミッションで使用しなくてもよい。トランスミッション弁を自動遊星トランスミッションで使用することも可能である。
アンカー22は、旋削部材として構成されている。アンカー22を焼結部材として構成することも可能である。
接続部62の部分で、ケーシング4は、ケーシング4内部に過剰な力をかけることなく折り曲げられるようにするために、厚さが薄くなった材料を有する。もし過剰な力がかかると、磁極コーンに対する磁極管7の同軸配置に悪影響を及ぼすおそれがある。したがって、ケーシング62は、接続部62において残りの部分よりも薄く構成されている。この接続部62の壁厚を薄くするかわりに、代替的に、外周スロットを凹設して、接続部62を確立するために簡単に曲げることのできるケーシングの舌部が残るようにする。
図示した接続部の他に、他の接続部も実施可能である。たとえば、磁極フランジをケーシングに対して押圧するねじ込み接続部も実施可能である。
1つの代替実施例では、PTFE粒子が薄い分離層に挿入されている。
分離層の実施形態に応じて、固着防止ディスクを省略することも実施可能である。しかしながら、化学ニッケルめっきは、この目的のために使用することできない。なぜなら、前方端面において0.9mmという層厚が部分的に必要になるからである。一方、0.05mmよりも大きな化学ニッケルメッキを施された分離層については張力が生じる。他方、分離層の製造時間は、層厚と非線形に増加する。しかしながら、その他の分離層、たとえば非電気めっき分離層が実施可能である。それは、例えば低摩擦ラッカーの場合である。
1つの代替実施例において、薄い分離層は、アンカーに設けられるのではなく、磁極管の内部に設けられる。
磁化不能金属から製造される固着防止ディスクを、特にオーステナイト系材料から製造することができる。しかしながら、固着防止ディスクを、その他の磁化不能材料、たとえば真鍮などから製造することもできる。合成樹脂材料も同様に使用できる。
薄板クラッチの代わりに、乾式クラッチを使用することもできる。
磁極コーンの内径は、磁極管の内径よりも大きくなくてもよい。両方の内径が組み立て後に内部で機械加工される場合、両者を同一サイズで構成することも考えられる。この場合、磁極コーンと磁極管との間の軸方向空間が非透磁性材料によって充填され、それにより、この場所からの汚染物の侵入が防止されていると好都合である。
上述の実施例は例示的なものにすぎない。異なる実施形態について記載した特徴を組み合わせることもできる。さらに、本発明に関連する装置の記載されていない特徴は、図面に示された装置部分の寸法形状から明らかになる。
1 トランスミッション弁
2 油圧部材
3 電磁部材
4 ケーシング
5、6 磁極コーン
7 磁極管
8 長手方向軸
9 磁極管コーン
10 スリーブ
13 磁極フランジ
14 コイル
15 穴部
16 導電体
17 支持要素
18 径方向内側部分
20 カラー
21 基部
22 アンカー
23 ストッパ
24 環状収容空洞
25 中央貫通孔
26 貫通孔
27 固着防止ディスク
28 小開口部
29 油圧ブッシング
30 環状バー
30 プランジャ
31 接触部分
32 ディスク
33 環状バー
34 外側シェル
35 ケーシング部材
36 ピニオン端部
37 前方端面
39 空洞
40 貫通孔
41 環状空洞
42 横方向貫通孔
43 環状空洞
50 油圧ピストン
51 コイルスプリング
52、53 環状溝
54、55 直線
57 分離層
58 端面
60 径方向適合部
61 軸方向適合部
62 接続部
63 端面
64 接触面
65 アンカー行路
66 カバー面
67 凹部
101 トランスミッション弁
114 コイル
150 油圧ピストン
152、153、154 リング溝
Δp ヒステリシス
T2 後方タンク排出部
P 供給接続部
B 操作接続部



Claims (14)

  1. 油圧部材(2)と電磁部材(3)とからなる油圧トランスミッション弁であって、
    当該電磁部材(3)は
    磁極コーン(6)と一体に形成されている磁化可能なケーシング(4)を有し、
    当該ケーシング(4)は、接続部(62)を有し、
    当該接続部(62)は、アンカー行路(65)と、当該磁極コーン(6)および磁極管(7)との間の同心配置とを画定し、
    当該磁極管(7)は、磁化可能な磁極フランジ(13)に固定され、
    当該磁極管(7)にのみ支持されるアンカー(22)は、0.01mmから0.06mmの厚さを有する分離層(57)によって当該磁極管(7)から磁気的に分離されており、
    当該油圧部材(2)は
    磁化可能な油圧ブッシング(29)を有し、
    当該油圧ブッシングは、環状バー(33)に挿入されており、
    当該環状バーは、前記トランスミッション弁(1)の長手方向軸(8)に対して同軸に前記ケーシング(4)から前記電磁部材(3)の中心に向かう方向に延在するとともに前記磁極コーン(6)で終端する、
    ことを特徴とする油圧トランスミッション弁。
  2. 前記接続部(62)は、軸方向適合部(61)と径方向適合部(62)とを備える、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  3. 前記磁極フランジ(13)は、前記軸方向適合部(61)を設けるための端面を有し、
    当該端面は、前記トランスミッション弁(1)の長手方向軸(8)に対して直交するように配向されている前記ケーシング(4)の接触面(64)に接触し、
    前記磁極フランジ(13)は、前記径方向適合部(60)を設けるためのカバー面(66)を有し、
    前記磁極フランジ(13)は、前記カバー面(66)によって前記ケーシング(4)の円筒凹部(67)に挿入されている
    ことを特徴とする請求項2に記載の油圧トランスミッション弁。
  4. 前記磁極フランジ(13)および前記磁極管(7)は、一体に形成されている、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  5. コイル(14)が、磁化不能なスリーブ(10)の径方向外側に設けられており、
    当該スリーブ(10)は、一方が磁極コーン(6)の環状バー(33)に設けられており、他方が磁極管(7)に設けられており、それにより、当該コイル(14)の設置空間は、油圧オイルが充填された当該スリーブ(10)内部でアンカー空洞から分離されている、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  6. 前記ケーシング(4)は、磁極フランジ(13)周りに折り曲げられている、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  7. 前記磁極フランジ(13)は穴部(15)を有し、当該穴部を通ってコイル(14)に電圧を印加するための導電体(16)が設置されており、
    当該コイル(14)は、合成樹脂材料から製造されている支持要素(17)によって径方向内側に画定されており、
    当該支持要素の一方は、前記磁極管(7)および前記環状バー(33)上に磁極(5)の部分で同軸に設けられており、当該支持要素の他方は、前記磁極管(7)の部分に設けられている
    ことを特徴とする請求項に記載の油圧トランスミッション弁。
  8. 前記分離層(57)が、前記アンカー(22)に設けられている、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  9. 前記分離層(57)が、ニッケルめっきである、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  10. 前記磁極管(7)は、前記磁極コーン(6)に向かう一端において、磁極管コーン(9)を備える、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  11. 前記アンカー(22)は、中央貫通孔(25)を有する、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  12. 前記アンカー(22)は、横方向力を防止するために、前記アンカーのカバー面(80)において前記分離層(57)によって分離されており、
    前記アンカー(22)は、磁気による固着を防止するために、前記磁極管(7)の磁化可能な基部(21)に向いている前記アンカーの端面(58)において、前記分離層(57)によって分離されている
    ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  13. 前記ケーシング(4)は、前記接続部(62)の部分において減少した材料厚を有する、ことを特徴とする請求項1に記載の油圧トランスミッション弁。
  14. 前記磁極コーン(6)の内径は、前記磁極管の内径よりもわずかに大きく、それにより、前記分離層(57)に加えて環状空隙が生じ、
    前記空隙は、前記アンカー(22)を前記磁極コーン(6)から分離する
    ことを特徴とする請求項1に記載の油圧トランスミッション弁。
JP2012174023A 2011-08-26 2012-08-06 油圧トランスミッション弁 Active JP6078212B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011053023.1 2011-08-26
DE102011053023A DE102011053023A1 (de) 2011-08-26 2011-08-26 Hydraulisches Getriebeventil

Publications (2)

Publication Number Publication Date
JP2013044427A JP2013044427A (ja) 2013-03-04
JP6078212B2 true JP6078212B2 (ja) 2017-02-08

Family

ID=46640592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174023A Active JP6078212B2 (ja) 2011-08-26 2012-08-06 油圧トランスミッション弁

Country Status (5)

Country Link
US (1) US8791780B2 (ja)
EP (1) EP2562773B1 (ja)
JP (1) JP6078212B2 (ja)
CN (1) CN102954274B (ja)
DE (1) DE102011053023A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527944B1 (de) * 2011-05-27 2020-11-25 SVM Schultz Verwaltungs-GmbH & Co. KG Elektromagnetisches Druckregelventil
DE102011055586A1 (de) 2011-11-22 2013-05-23 Audi Ag Elektrohydraulische Ventileinrichtung
DE102014207988B3 (de) * 2014-04-29 2015-09-10 Schaeffler Technologies AG & Co. KG Elektromagnetische Stellvorrichtung
DE102014109097A1 (de) * 2014-06-27 2015-12-31 Hilite Germany Gmbh Hydraulikventil
DE102014013602B3 (de) 2014-09-18 2015-10-01 Hilite Germany Gmbh Hydraulikventil
CN104315227A (zh) * 2014-09-24 2015-01-28 苏州全龙液压设备有限公司 用于驱动液压阀的电磁铁
KR101744812B1 (ko) 2015-06-15 2017-06-20 현대자동차 주식회사 차량용 밸브
DE102015120981A1 (de) 2015-07-03 2017-01-05 Hilite Germany Gmbh Hydraulikventil, insbesondere hydraulisches Getriebeventil
US10107411B2 (en) 2015-08-13 2018-10-23 Hilite Germany Gmbh Hydraulic valve
DE102016108067A1 (de) 2015-08-13 2017-02-16 Hilite Germany Gmbh Hydraulikventil
CN105065752B (zh) * 2015-08-31 2017-06-16 浙江大学 一种无弹簧快速响应阀
EP3427274B1 (en) 2016-03-07 2019-12-25 HUSCO Automotive Holdings LLC Electromagnetic actuator having a unitary pole piece
DE102016104307A1 (de) 2016-03-09 2017-09-14 Hilite Germany Gmbh Elektromagnetteil für ein Hydraulikventil und Hydraulikventil
DE102018111359A1 (de) * 2018-05-14 2019-11-14 ECO Holding 1 GmbH Aktuatorbaugruppe mit Hydraulikfluid-Reservoir
DE102019114408A1 (de) * 2019-05-29 2020-12-03 ECO Holding 1 GmbH Aktuator für ein Hydraulikventil und Hydraulikventil
DE102019120925A1 (de) * 2019-08-02 2021-02-04 ECO Holding 1 GmbH Linearaktuator
DE102019121090A1 (de) * 2019-08-05 2021-02-11 ECO Holding 1 GmbH Aktuator für ein Hydraulikventil und Hydraulikventil

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452079A (en) * 1944-06-22 1948-10-26 Bell Telephone Labor Inc Relay
GB925132A (en) * 1960-11-05 1963-05-01 Bosch Gmbh Robert Improvements in or relating to electromagnetic switches
US3479627A (en) * 1966-09-15 1969-11-18 Cornell Dubilier Electric Electromagnetic relay and method of manufacture thereof
FR1592884A (ja) * 1968-02-28 1970-05-19
DE2650873A1 (de) * 1976-11-06 1978-05-11 Philips Patentverwaltung Verfahren zur herstellung eines elektromagneten
DE3239345A1 (de) * 1982-10-23 1984-04-26 bso Steuerungstechnik GmbH, 6603 Sulzbach Betaetigungsmagnet
DE3309904A1 (de) * 1983-03-18 1984-09-20 Mannesmann Rexroth GmbH, 8770 Lohr Elektromagnet und magnetventil
DE3627648A1 (de) * 1986-08-14 1988-02-18 Philips Patentverwaltung Gleichstrommagnet
GB2257566A (en) * 1991-07-06 1993-01-13 Parmeko Ltd Proportional stroke wet pin solenoid
DE19808279A1 (de) 1998-02-27 1999-09-02 Hydraulik Ring Gmbh Magnetventil
JP2000277327A (ja) * 1999-03-24 2000-10-06 Denso Corp リニアソレノイド及びそれを用いた電磁弁
DE19934846A1 (de) * 1999-07-24 2001-01-25 Hydraulik Ring Gmbh Elektromagnet und hydraulisches Ventil mit einem Elektromagneten
JP2001263521A (ja) * 2000-03-17 2001-09-26 Denso Corp 電磁駆動装置およびそれを用いた流体制御弁と電磁駆動装置の製造方法
JP2002222710A (ja) * 2001-01-26 2002-08-09 Denso Corp 電磁駆動装置およびそれを用いた流量制御装置
US6929242B2 (en) * 2003-02-11 2005-08-16 Thomas Magnete Gmbh High force solenoid and solenoid-driven actuator
JP4105117B2 (ja) * 2004-03-29 2008-06-25 株式会社ケーヒン リニアソレノイドバルブ
JP2005310838A (ja) * 2004-04-16 2005-11-04 Hitachi Constr Mach Co Ltd 電磁式駆動ユニット
JP2006112620A (ja) * 2004-09-14 2006-04-27 Aisin Aw Co Ltd ダイヤフラム、及びそれを備えたソレノイドバルブ
JP2006222199A (ja) * 2005-02-09 2006-08-24 Isuzu Motors Ltd 比例ソレノイド及びそれを用いた流量制御弁
DE102006055796A1 (de) * 2006-11-27 2008-05-29 Robert Bosch Gmbh Druckregelventil
JP5128224B2 (ja) * 2007-09-28 2013-01-23 株式会社ケーヒン 電磁弁
JP5125441B2 (ja) * 2007-11-21 2013-01-23 アイシン・エィ・ダブリュ株式会社 リニアソレノイド装置および電磁弁
DE102008000534A1 (de) * 2008-03-06 2009-09-10 Zf Friedrichshafen Ag Elektromagnetische Stellvorrichtung
DE102009042888B4 (de) 2009-09-24 2014-05-08 Hilite Germany Gmbh Elektromagnetisches Proportionalstellglied
DE102009043320B4 (de) * 2009-09-28 2012-01-12 Hydraulik-Ring Gmbh Elektrohydraulisches Ventil
JP5077331B2 (ja) * 2009-11-16 2012-11-21 株式会社デンソー リニアソレノイド
KR101016189B1 (ko) * 2010-01-22 2011-02-24 주식회사 유니크 변속기용 솔레노이드밸브
CN201680039U (zh) * 2010-05-21 2010-12-22 三阳工业股份有限公司 电磁阀

Also Published As

Publication number Publication date
EP2562773A3 (de) 2017-12-20
CN102954274B (zh) 2016-09-28
EP2562773A2 (de) 2013-02-27
CN102954274A (zh) 2013-03-06
JP2013044427A (ja) 2013-03-04
US8791780B2 (en) 2014-07-29
EP2562773B1 (de) 2020-09-30
US20130181156A1 (en) 2013-07-18
DE102011053023A1 (de) 2013-02-28

Similar Documents

Publication Publication Date Title
JP6078212B2 (ja) 油圧トランスミッション弁
US8585014B2 (en) Linear solenoid and valve device using the same
US7938143B2 (en) Fluid pressure control apparatus
EP2255116B1 (en) Solenoid valve assembly
WO2011065114A1 (ja) ソレノイドバルブ
CN102686924A (zh) 具有弹簧塞的螺线管
JP2010065780A (ja) 電磁開閉弁
US20170045154A1 (en) Hydraulic valve
CN111350862A (zh) 电磁操纵装置
JP4492649B2 (ja) ブリード式バルブ装置
JP2009174623A (ja) 電磁弁
JP5513918B2 (ja) 電磁比例絞り弁
JP4501789B2 (ja) 三方電磁弁
JP2010025217A (ja) 電磁弁
JP4301318B2 (ja) ブリード式バルブ装置
JP4703615B2 (ja) ブリード式バルブ装置
JP2007100829A (ja) バルブ装置
JP4998315B2 (ja) 電磁弁
JP4066686B2 (ja) 電磁制御弁
WO2018030053A1 (ja) ソレノイドアクチュエータ
US20050178451A1 (en) Solenoid valve
JP2011256893A (ja) 電磁弁
JP2011009381A (ja) リニアソレノイド及びそれを用いたバルブ装置
US20220375671A1 (en) Solenoid
JPH084934A (ja) 流体制御用電磁弁

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170114

R150 Certificate of patent or registration of utility model

Ref document number: 6078212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250