JP6062431B2 - 半導体発光装置 - Google Patents
半導体発光装置 Download PDFInfo
- Publication number
- JP6062431B2 JP6062431B2 JP2014521254A JP2014521254A JP6062431B2 JP 6062431 B2 JP6062431 B2 JP 6062431B2 JP 2014521254 A JP2014521254 A JP 2014521254A JP 2014521254 A JP2014521254 A JP 2014521254A JP 6062431 B2 JP6062431 B2 JP 6062431B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light emitting
- semiconductor light
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 212
- 239000000758 substrate Substances 0.000 claims description 222
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 210
- 239000012790 adhesive layer Substances 0.000 claims description 135
- 239000002245 particle Substances 0.000 claims description 79
- 238000007789 sealing Methods 0.000 claims description 66
- 229910052594 sapphire Inorganic materials 0.000 claims description 39
- 239000010980 sapphire Substances 0.000 claims description 39
- 150000004767 nitrides Chemical class 0.000 claims description 23
- 229920002050 silicone resin Polymers 0.000 claims description 23
- 239000010410 layer Substances 0.000 description 167
- 230000007423 decrease Effects 0.000 description 25
- 238000000605 extraction Methods 0.000 description 24
- 229920005989 resin Polymers 0.000 description 22
- 239000011347 resin Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 19
- 230000017525 heat dissipation Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 230000004907 flux Effects 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 239000010931 gold Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000009103 reabsorption Effects 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000009102 absorption Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000002223 garnet Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- -1 cerium activated yttrium Chemical class 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 229910003402 CdSe-ZnS Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910017414 LaAl Inorganic materials 0.000 description 1
- 229910017857 MgGa Inorganic materials 0.000 description 1
- 101100202329 Mus musculus Slc6a11 gene Proteins 0.000 description 1
- 101100202333 Mus musculus Slc6a12 gene Proteins 0.000 description 1
- 101150064359 SLC6A1 gene Proteins 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 150000001217 Terbium Chemical class 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49107—Connecting at different heights on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/641—Heat extraction or cooling elements characterized by the materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Description
本発明は、半導体発光素子を光源として備える半導体発光装置に関する。
従来、半導体発光素子を光源として備える半導体発光装置が知られている。こうした半導体発光装置には、一般的に、窒化物系半導体を用いた発光素子(発光ダイオード素子)が搭載される。窒化物系半導体を用いた発光素子として、サファイア基板等の透明基板を用いた半導体発光素子が知られている。このような半導体発光素子では、透明基板上に発光層を含む窒化物系半導体の多層膜が形成される。多層膜上には、通常、透光性電極及びパッド電極等の電極層が形成される。
半導体発光素子において、発光層から下方に出射された光は透明基板に入射し、基板裏面側にて反射される。基板裏面側で反射された光は、半導体発光素子の上部に戻っていき、その一部は半導体の多層膜に入射する。多層膜に入射した光は多層膜等を透過して発光素子の外部に取出されるが、一部の光は透光性電極、パッド電極及び発光層等に吸収される。そのため、基板裏面側で反射した光を発光素子の上面側(多層膜が形成されている側)から取出すよりも、透明基板の側面から取出す方が光取出し効率が向上する。
例えば、透明基板としてサファイア基板を用い、サファイア基板の側面から直接空気中に光が取出される場合を考えると、サファイア基板(屈折率=1.78)の側面と、空気(屈折率=1.0)の界面における全反射角度(θside:光が基板側面に垂直方向に対しこの角度以上の角度で入射すると全反射するという角度)は、θside≧34.18°となる。つまり、発光層から下方に出射されサファイア基板に入射した光のうち、直接あるいはサファイア基板の裏面で反射してサファイア基板の側面方向へ向かった光の中で、基板側面の垂直方向に対し34.18°≦θside≦90°でサファイア基板の側面に入射した光は、サファイア基板側面から取り出されることなく、サファイア基板上に形成された発光層を含む窒化物系半導体の多層膜側に戻ることになり、一方、θside<34.18°の入射角度を持った光は、サファイア基板の側面から空気中に出射される。
半導体発光素子は、通常、ステム等にマウントされた後、屈折率が1.4〜1.5程度の透明樹脂で封止される。この場合、透明基板と透明樹脂との屈折率差は、透明基板と空気との屈折率差に比べて小さいため、透明基板の側面が空気と接している場合に比べて、透明基板の側面において光が全反射し難くなる。そのため、透明基板の側面から効率よく光を取出し易くなる。
例えば、封止樹脂の屈折率を1.5とすると、サファイア基板の側面との界面における全反射角度は、θside≧57.43°となる。つまり、発光層から下方に出射されサファイア基板に入射した光のうち、直接又はサファイア基板の裏面で反射してサファイア基板の側面方向へ向かった光の中で、基板側面の垂直方向に対し57.43°≦θside≦90°でサファイア基板の側面に入射した光は、サファイア基板側面から取り出されることなく、サファイア基板上に形成された発光層を含む窒化物系半導体の多層膜側に戻ることになり、一方、θside<57.43°の入射角度を持った光は、サファイア基板の側面から透明樹脂中に出射される。この様に、半導体発光素子を透明樹脂で封止することにより、サファイア基板の側面からより多くの光を取出すことが可能になるが、サファイア基板の側面で全反射する光も一定量残るため、全反射光を極力少なくするような、光取出し効率の更なる向上が必要であった。
こうした問題に対して、後掲の特許文献1は、透明基板の裏面に凹凸を形成することを提案している。特許文献1では、従来、発光層から下方に出射されサファイア基板に入射し、サファイア基板の裏面で鏡面反射して再び発光層側へ戻っていた光が、この凹凸によって従来と異なる角度で反射されるため、基板の側面から光を取出しやすくなる。特許文献1において、透明基板の裏面が空気と接している場合は、その屈折率差が大きいため、凹凸構造によって強い光散乱効果が得られる。そのため、外部光取出し効率が改善する。
しかし、一般に、発光素子をステム等にマウントする際には、ダイボンドペーストとして屈折率1.5程度の透明シリコーン樹脂等を用いるため、そうした場合、屈折率差が小さくなり、凹凸構造による光散乱効果が抑制される。そのため、特許文献1に記載の発光素子を用いて半導体発光装置を構成した場合、外部光取出し効率を向上させることが困難となる。
本発明は、上記のような課題を解決するためになされたものであり、本発明の1つの目的は、外部光取出し効率を向上させることが可能な半導体発光装置を提供することである。
上記目的を達成するために、本発明の一の局面に係る半導体発光装置は、透明基板を含む半導体発光素子と、半導体発光素子が搭載される基板と、蛍光体を含み、半導体発光素子を基板上に固定する透光性を有する接着層と、蛍光体を含み、半導体発光素子を封止する封止部材とを含む。接着層は封止部材に含まれる蛍光体の平均粒径以下の厚みを有する。
透明基板を含む半導体発光素子は、透光性を有する接着層を介して、基板上に固定される。半導体発光素子から下方に出射された光は透明基板を透過して接着層に入射する。接着層には蛍光体が含有されているため、半導体発光素子からの光はこの蛍光体に一旦吸収されて、より長波長の光に波長が変換される。波長が変換された光は蛍光として蛍光体から出射される。さらに、接着層に含有される蛍光体によって、光の反射方向(蛍光の出射方向)が変えられるため、透明基板の側面から光を取出しやすくできる。
接着層中の蛍光体から上方に出射された光は、その出射角度によって、透明基板の側面又は半導体発光素子の上部に達する。ここで、半導体発光素子から出射される光よりも波長が長い光は半導体発光素子での再吸収が抑制される。蛍光体から出射される光は、長波長側に波長変換されているので、半導体発光素子の上部に達した場合でも、半導体発光素子での再吸収が抑制される。このように、接着層に蛍光体を含有することによって、透明基板の側面からの光取出しを容易にできるとともに、半導体発光素子での再吸収を抑制できるので、外部光取出し効率を向上できる。
さらに、接着層の厚みを封止部材に含まれる蛍光体の平均粒径以下とすることによって、接着層の厚みが大きくなり過ぎるのを抑制できる。これにより、接着層の厚みが大きくなり過ぎることに起因する放熱性の低下を抑制できる。その結果、放熱性の低下に起因する発光効率の低下を抑制できるので、輝度の高い半導体発光装置が得られる。
好ましくは、接着層に含まれる蛍光体の平均粒径は200nm以下である。
接着層に含まれる蛍光体の平均粒径を200nm以下とすることにより、容易に、接着層の厚みを封止部材に含まれる蛍光体の平均粒径以下にできる。そのため、容易に、放熱性の低下に起因する発光効率の低下を抑制できる。
この場合において、好ましくは、接着層に含まれる蛍光体の平均粒径は100nm以下である。
接着層に含まれる蛍光体の平均粒径を100nm以下とすることにより、より容易に、放熱性の低下に起因する発光効率の低下を抑制できる。
さらに好ましくは、基板は、光反射面を有し、半導体発光素子は、上記光反射面上に搭載されている。
基板の光反射面上に半導体発光素子を搭載することにより、接着層中の蛍光体から下方(基板側)に出射された光は、光反射面によって上方(半導体発光素子側)に反射される。また、接着層中の蛍光体に入射されずに基板の光反射面に達した光も、光反射面によって上方(半導体発光素子側)に反射できる。光反射面で反射された光は、透明基板の側面及び半導体発光素子の上面から取出される。そのため、外部光取出し効率が一層向上する。
さらに好ましくは、接着層に含まれる蛍光体は、封止部材に含まれる蛍光体に比べて、発光波長の長い蛍光を発する。
封止部材に含まれる蛍光体に比べて、発光波長の長い蛍光を発する蛍光体を接着層に含有することにより、接着層中の蛍光体から出射された光(蛍光)が封止部材中の蛍光体で吸収されるのを抑制できる。これにより、外部光取出し効率がより一層向上する。
透明基板は、サファイア基板、窒化物系半導体基板及びSiC基板のいずれかであるのが好ましい。
さらに好ましくは、接着層はシリコーン樹脂からなる。
シリコーン樹脂は、半導体発光素子から出射される光の透過性が高い。接着層にシリコーン樹脂を用いることにより、接着層中の蛍光体によって効率よく光を波長変換できる。そのため、透明基板の側面からの光取出しをより一層容易にできる。
以上より、本発明によれば、外部光取出し効率を向上させることが可能な半導体発光装置を容易に得ることができる。
以下、本発明を具体化した実施形態を図面に基づいて詳細に説明する。以下の説明及び図面においては、同一の部品又は構成要素には同一の参照符号及び名称を付してある。それらの機能も同様である。したがって、それらについての詳細な説明は繰返さない。
(第1の実施の形態)
[全体構成]
図1を参照して、本実施の形態に係る半導体発光装置50は、光源としての半導体発光素子100と、この半導体発光素子100が搭載(実装)される反射基板60(パッケージ基体)と、反射基板60における半導体発光素子100が搭載される面上に形成され、半導体発光素子100を封止する封止部材80とを含む。
[全体構成]
図1を参照して、本実施の形態に係る半導体発光装置50は、光源としての半導体発光素子100と、この半導体発光素子100が搭載(実装)される反射基板60(パッケージ基体)と、反射基板60における半導体発光素子100が搭載される面上に形成され、半導体発光素子100を封止する封止部材80とを含む。
半導体発光素子100は窒化物半導体を用いて形成された発光ダイオード素子(LED(Light Emitting Diode)チップ)からなる。
反射基板60は例えばメタルコア基板からなる。メタルコア基板は、銅ベースの金属基板からなり、その表面に反射率を高めるためのAgメッキ等が施されている。この反射基板60は、半導体発光素子100から発せられる光を反射する光反射面62を含む。メタルコア基板において、Agメッキ等が施された面が光反射面62である。光反射面62上には、接着層70を介して、上記半導体発光素子100が固定されている。接着層70はダイボンドペーストによって形成されている。この接着層70には蛍光体72が分散されている。
さらに、反射基板60には2本のリード端子64及び66が取付けられている。これらリード端子64及び66は、反射基板60の厚み方向に貫通するように取付けられることによって、一方の端部が半導体発光素子100が搭載される面側に突出している。リード端子64及び66は、反射基板60に対して絶縁固定されている。リード端子64及び66は、半導体発光素子100が搭載される面側に突出している部分において、それぞれ、例えば金線からなるワイヤ90及び92を介して半導体発光素子100と電気的に接続されている。
封止部材80は、透光性を有する透明樹脂からなり、反射基板60の光反射面62上において、半導体発光素子100を封止するように形成されている。封止部材80中には、半導体発光素子100からの光で励起されて蛍光を発する蛍光体82が分散されている。
[半導体発光素子100]
図2を参照して、半導体発光素子100は、自身が発する光に対して透光性を有する透明基板110を備える。透明基板110は、主面110aと側面110bとを持つ。本実施の形態では、透明基板110にサファイア基板を用いている。この透明基板110の厚みは例えば約120μmである。透明基板110の主面110a上には、半導体多層膜を含む多層構造体150が形成されている。この多層構造体150は、透明基板110側から順に形成された、n型層120、MQW(Multiple Quantum Well)構造を有するMQW発光層130、及び、p型層140を含む。
図2を参照して、半導体発光素子100は、自身が発する光に対して透光性を有する透明基板110を備える。透明基板110は、主面110aと側面110bとを持つ。本実施の形態では、透明基板110にサファイア基板を用いている。この透明基板110の厚みは例えば約120μmである。透明基板110の主面110a上には、半導体多層膜を含む多層構造体150が形成されている。この多層構造体150は、透明基板110側から順に形成された、n型層120、MQW(Multiple Quantum Well)構造を有するMQW発光層130、及び、p型層140を含む。
n型層120は、透明基板110の主面110a上に、バッファ層、下地層、n型窒化物半導体層、低温n型GaN/InGaN多層構造、及び、中間層である超格子層(以上、いずれも図示せず。)が主面110a側からこの順に形成されることによって構成されている。なお、本明細書において、超格子層とは、非常に薄い結晶層を交互に積層することにより、その周期構造が基本単位格子よりも長い結晶格子からなる層を意味する。p型層140は、MQW発光層130上に、p型AlGaN層、p型GaN層及び高濃度p型GaN層(以上、いずれも図示せず。)がMQW発光層130側からこの順に形成されることによって構成されている。
バッファ層は、例えばAls0Gat0N(0≦s0≦1、0≦t0≦1、s0+t0≠0)からなる。バッファ層は、AlN層又はGaN層から構成されているとより好ましい。N(窒素)の極一部(例えば0.5%〜2%程度)をO(酸素)に置き換えてもよい。そうすることにより、透明基板110の主面110aの法線方向に伸張するようにバッファ層が形成されるので、結晶粒の揃った柱状結晶の集合体からなるバッファ層が得られる。バッファ層の厚みは、特に限定されないが、3nm以上100nm以下であるのが好ましく、5nm以上50nm以下であればより好ましい。
下地層は、例えばAls1Gat1Inu1N(0≦s1≦1、0≦t1≦1、0≦u1≦1、s1+t1+u1≠0)からなる。下地層は、Als1Gat1N(0≦s1≦1、0≦t1≦1、s1+t1≠1)から構成されているとより好ましく、GaN層から構成されているとさらに好ましい。下地層の厚みは、1μm以上8μm以下であるのが好ましい。
n型窒化物半導体層は、例えばAls2Gat2Inu2N(0≦s2≦1、0≦t2≦1、0≦u2≦1、s2+t2+u2≒1)にn型不純物がドーピングされた層からなる。n型窒化物半導体層は、Als2Ga (1−s2) N(0≦s2≦1、好ましくは0≦s2≦0.5、より好ましくは0≦s2≦0.1)にn型不純物がドーピングされた層から構成されているとより好ましい。n型不純物にはSiが用いられている。n型ドーピング濃度(キャリア濃度とは異なる)は、特に限定されないが、1×1019cm−3以下であるのが好ましい。
低温n型GaN/InGaN多層構造は、MQW発光層130に対する透明基板110及び下地層からの応力を緩和する機能を有する。この低温n型GaN/InGaN多層構造は、約7nmの厚みを有するn型InGaN層、約30nmの厚みを有するn型GaN層、約7nmの厚みを有するn型InGaN層、及び、約20nmの厚みを有するn型GaN層を交互に積層した多層構造からなる。
超格子層(中間層)は、ワイドバンドギャップ層とナローバンドギャップ層とが交互に積層された超格子構造を有する。その周期構造は、ワイドバンドギャップ層を構成する半導体材料の基本単位格子及びナローバンドギャップ層を構成する半導体材料の基本単位格子よりも長い。超格子層の一周期の長さ(ワイドバンドギャップ層の厚みとナローバンドギャップ層の厚みとの合計厚み)は、MQW発光層130の一周期の長さよりも短い。超格子層の具体的な厚みは、例えば1nm以上10nm以下である。各ワイドバンドギャップ層は、例えばAlaGabIn(1−a−b)N(0≦a<1、0<b≦1)からなる。各ワイドバンドギャップ層は、GaN層から構成されていると好ましい。各ナローバンドギャップ層は、ワイドバンドギャップ層よりバンドギャップが小さく、かつ、MQW発光層130の各井戸層(図示せず)よりもバンドギャップが大きい半導体材料から構成されているのが好ましい。各ナローバンドギャップ層は、例えばAlaGabIn(1−a−b)N(0≦a<1、0<b≦1)からなる。各ナローバンドギャップ層は、GabIn(1−b)N(0<b≦1)から構成されていると好ましい。なお、ワイドバンドギャップ層及びナローバンドギャップ層の両方がアンドープであると駆動電圧が上昇するため、ワイドバンドギャップ層及びナローバンドギャップ層の少なくとも一方は、n型不純物がドーピングされているのが好ましい。
MQW発光層130は、バリア層及び井戸層(いずれも図示せず。)が交互に積層された多重量子井戸構造を有する。MQW発光層130の一周期(バリア層の厚みと井戸層の厚みとの合計厚み)の長さは、例えば5nm以上100nm以下である。各井戸層の組成は、半導体発光素子に求められる発光波長に合わせて調整される。例えば、各井戸層の組成は、AlcGadIn(1−c−d)N(0≦c<1、0<d≦1)とすることができる。各井戸層の組成は、Alを含まない、IneGa(1−e)N(0<e≦1)であればより好ましい。各井戸層の組成は同じであるのが好ましい。そうすることにより、各井戸層において、電子とホールとの再結合により発光する波長を同じにできる。そのため、半導体発光素子の発光スペクトル幅を狭くできるため好ましい。各井戸層の厚みは、1nm以上7nm以下であるのが好ましい。
各バリア層は、各井戸層よりもバンドギャップエネルギーが大きい方が好ましい。各バリア層の組成は、AlfGagIn(1−f−g)N(0≦f<1、0<g≦1)とすることができる。各バリア層の組成は、Alを含まないInhGa(1−h)N(0<h≦1)、又は、井戸層との格子定数をほぼ一致させたAlfGagIn(1−f−g)N(0≦f<1、0<g≦1)であればより好ましい。各バリア層の厚みは、小さいほど駆動電圧が低下する一方、極端に小さくすると発光効率が低下する傾向にある。そのため、各バリア層の厚みは、1nm以上10nm以下であるのが好ましく、3nm以上7nm以下であればより好ましい。
井戸層及びバリア層には、n型不純物がドーピングされている。ただし、井戸層及びバリア層には、n型不純物がドーピングされていなくてもよい。
p型層140は、例えばAls4Gat4Inu4N(0≦s4≦1、0≦t4≦1、0≦u4≦1、s4+t4+u4≠0)にp型不純物がドーピングされた層からなる。p型層140は、Als4Ga (1−s4) N(0<s4≦0.4、好ましくは0.1≦s4≦0.3)にp型不純物がドーピングされた層から構成されていればより好ましい。p型層140におけるキャリア濃度は、1×1017cm−3以上であるのが好ましい。ここで、p型不純物の活性率は0.01程度であることから、p型層140におけるp型ドーピング濃度(キャリア濃度とは異なる)は1×1019cm−3以上であるのが好ましい。ただし、MQW発光層130に近い層(例えばp型AlGaN層)では、p型ドーピング濃度はこれより低くてもよい。p型層140の厚み(3層の合計厚み)は、特に限定されないが、例えば50nm以上1000nm以下とすることができる。p型層140の厚みを小さくすれば、その成長時における加熱時間を短縮できるため、p型不純物のMQW発光層130への拡散を抑制できる。
上記多層構造体150はさらに、n型層120の一部が露出された領域である露出部と、露出部の外側の領域であるメサ部とを含む。
露出部の上面上(n型層120上)には、n側電極160が形成されている。このn側電極160は、ワイヤボンド領域であるパッド部160aと、このパッド部160aと一体に形成された電流拡散を目的とする細長い突出部(枝電極:図示せず)とを含む。n側電極160(パッド部160a)には、ワイヤ90が電気的に接続されている。メサ部の上面上(p型層140上)には、透明電極170を介してp側電極180が形成されている。n側電極160及びp側電極180は、半導体発光素子100に駆動電力を供給するための電極である。
透明電極170は、メサ部上において、比較的広い範囲にわたって広面積に形成されている。p側電極180は、透明電極170上の一部の領域に形成されている。このp側電極180は、ワイヤボンド領域であるパッド部180aと、このパッド部180aと一体に形成された電流拡散を目的とする細長い突出部(枝電極:図示せず)とを含む。p側電極180(パッド部180a)には、ワイヤ92が電気的に接続されている。
n側電極160は、n型層120上に、例えばチタン層、アルミニウム層及び金層がこの順に積層された多層構造を有する。n側電極160の厚みは例えば約1μmである。ワイヤボンドを行なう場合の強度を想定すると、n側電極160は1μm程度の厚みを有していればよい。
透明電極170は、例えばITO(Indium Tin Oxide)から構成されている。その厚みは、例えば20nm以上200nm以下である。
p側電極180は、透明電極170上に、例えばニッケル層、アルミニウム層、チタン層及び金層がこの順に積層された多層構造を有する。p側電極180の厚みは例えば約1μmである。p側電極180においても、ワイヤボンドを行なう場合の強度を想定すると、その厚みは1μm程度であればよい。
半導体発光素子100の上面には、SiO2からなる絶縁性の透明保護膜190が設けられている。この透明保護膜190は、半導体発光素子100の上面のほぼ全体を覆うように形成されている。ただし、透明保護膜190は、p側電極180のパッド部180a及びn側電極160のパッド部160aを露出させるようにパターニングされている。
[接着層70]
接着層70は、上記のように、ダイボンドペーストからなる。ダイボンドペーストは、熱硬化性樹脂であるシリコーン樹脂から構成されている。ダイボンドペーストは、硬化することによって半導体発光素子100を反射基板60上に固定する。この接着層70は、半導体発光素子100を反射基板60上に固定した状態で透明であり、その内部に上記蛍光体72が分散されている。接着層70を構成するシリコーン樹脂は、青色から紫外領域の短波長の光に対する透過性が高いため、半導体発光素子100から出射される光がこうした短波長の光である場合、接着層70中の蛍光体72によって効率よく光を波長変換できる。
接着層70は、上記のように、ダイボンドペーストからなる。ダイボンドペーストは、熱硬化性樹脂であるシリコーン樹脂から構成されている。ダイボンドペーストは、硬化することによって半導体発光素子100を反射基板60上に固定する。この接着層70は、半導体発光素子100を反射基板60上に固定した状態で透明であり、その内部に上記蛍光体72が分散されている。接着層70を構成するシリコーン樹脂は、青色から紫外領域の短波長の光に対する透過性が高いため、半導体発光素子100から出射される光がこうした短波長の光である場合、接着層70中の蛍光体72によって効率よく光を波長変換できる。
接着層70に含まれる蛍光体72には、平均粒径が200nm以下のものが用いられる。この蛍光体72の平均粒径は100nm以下であればより好ましく、100nmより小さければさらに好ましい。なお、接着層70の平均粒径の下限値は、0より大きい値であり、製造可能な範囲内において最低値とすることができる。また、本明細書において、「平均粒径」とは、レーザ回折・散乱法によって求めた粒度分布における積算値50%での粒径(平均粒径d50)を意味する。
接着層70の厚みTは、例えば2μm〜6μm程度とされている。後述するように、封止部材80に分散される蛍光体82には平均粒径が6μm〜20μm程度のものが用いられる。そのため、接着層70の厚みTは、封止部材80に分散される蛍光体82の平均粒径以下とされている。
ここで、ダイボンドペーストに用いられるシリコーン樹脂等の樹脂材料は、一般に熱抵抗が非常に高い。そのため、接着層の厚みが大きくなると半導体発光素子100の放熱特性が急激に低下する。接着層70に分散される蛍光体に、封止部材80に分散される蛍光体82と同程度の粒径の蛍光体を用いた場合、接着層70の厚みが大きくなり過ぎるので、半導体発光素子100の放熱特性が著しく低下する。このため、本実施の形態では、封止部材80に分散される蛍光体82よりも平均粒径が小さい蛍光体72を接着層70に分散させることによって、接着層70の厚みTを封止部材80に分散される蛍光体82の平均粒径以下としている。これにより、接着層70に蛍光体を分散させた場合でも、接着層70の厚みが大きくなり過ぎるのを抑制できる。
蛍光体72の含有量は、熱抵抗の上昇等を考慮すると、重量比で0.5%程度〜30%程度が好ましく、0.5%程度〜10%程度であればより好ましい。
平均粒径が200nm以下の蛍光体には、例えば平均粒径が100nm以下のナノ蛍光体(ナノ粒子蛍光体)及び現状10μm程度の粒径で使用されている蛍光体を小さく精製したもの、又は砕いて小さい粒径にしたもの等を用いることができる。
ナノ蛍光体の材料としては、例えば、ZnS:Mn2+ナノ蛍光体、ZnGa2O4:Mn2+ナノ蛍光体、YAG:Ce3+ナノ粒子、LaPO4:Lnナノ蛍光体、色素ドープシリカナノ蛍光体、GaNナノピラー蛍光体、TiO2:Eu3+微小球蛍光体、ZnS:Mn2+/SiO2ナノ蛍光体、CdSe−ZnS量子ドット等のこれまで知られている材料等を用いることができる。
白色光を発する白色LEDにおいてよく用いられるYAG(イットリウム・アルミ・ガーネット)蛍光体では、現在、100nm程度の粒径のものが得られている。そのため、接着層70中に分散する蛍光体72として、このような蛍光体を用いることもできる。
さらに、接着層70に含有される蛍光体72としては、例えば、Ce:YAG(セリウム賦活イットリウム・アルミニウム・ガーネット)蛍光体(Y3Al5O12:Ce,(Y,Gd)3Al5O12:Ce等)、Eu:BOSE(ユーロピウム賦活バリウム・ストロンチウム・オルソシリケート)蛍光体、Eu:SOSE(ユーロピウム賦活ストロンチウム・バリウム・オルソシリケート)蛍光体、ユーロピウム賦活αサイアロン蛍光体、Ce:TAG(セリウム附活テルビウム・アルミニウム・ガーネット)蛍光体(Tb3Al5O12:Ce等)、アルカリ土類(Eu附活M2Si5N8:Eu,MSi12O2N2:Eu等、Ce附活Ca3Sc2Si3O12)、カズン−Eu(Eu附活CaAlSi3N3)、La酸窒化物−Ce Ce附活LaAl(Si6−zAl2)N10−z0、βサイアロン系等が適用できる。
さらに、(Sr,Ba,Mg)2SiO4:Eu、Ca3(Sc,Mg)2Si3O12:Ce等からなる緑色蛍光体、(Sr,Ca)AlSiN3:Eu、CaAlSiN3:Eu等からなる赤色蛍光体、及び、(Si,Al)6(O,N)8:Eu、(Ba,Sr)2SiO4:Eu等からなる黄色蛍光体等を用いることもできる。
接着層70に含有される蛍光体72には、上記のように、黄色蛍光体、赤色蛍光体及び緑色蛍光体等を用いることが可能であるが、この蛍光体は、これら蛍光体のうちのいずれか1種類から構成されていてもよく、複数種類を組合せて構成されていてもよい。複数種類の組合せとしては、例えば、赤色蛍光体及び緑色蛍光体の組合せが挙げられる。
上記接着層70には、蛍光体72とともに拡散剤を含有してもよい。拡散剤としては、特に制限されるものではないが、例えば、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素、炭酸カルシウム、及び二酸化珪素等が好適に用いられる。拡散剤は、蛍光体72と同様、平均粒径の小さいものが好ましい。
なお、蛍光体の平均粒径が小さくなると発光効率が低下するおそれがある。そのため、発光効率の低下を考慮した場合、接着層70に分散する蛍光体には、封止部材80に分散される蛍光体82と同程度の平均粒径のものを用いるのが好ましい。一方、平均粒径の小さい蛍光体は発光効率が低下するおそれがあるものの、接着層70に多くの蛍光体を充填できるので、接着層70に多くの蛍光体を充填することによって発光効率の低下を小さくできる。さらに、平均粒径の小さい蛍光体は、接着層70に多くの蛍光体を充填した場合でも、接着層70の厚みの増加を抑制できるので、発光効率の低下を極力抑えながら、放熱性の低下を抑制できる。
[封止部材80]
封止部材80は透光性材料から構成されている。封止部材80は、透光性を有する材料であれば特に制限されるものではなく、当分野において従来から広く知られた材料を適宜用いて形成できる。封止部材80の構成材料には、例えば、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等の耐候性に優れた透光性樹脂材料、耐光性に優れたシリカゾル、及び、硝子等の透光性無機材料が好適に用いられる。本実施の形態では、封止部材80の構成材料である封止材にはシリコーン樹脂を用いている。
封止部材80は透光性材料から構成されている。封止部材80は、透光性を有する材料であれば特に制限されるものではなく、当分野において従来から広く知られた材料を適宜用いて形成できる。封止部材80の構成材料には、例えば、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等の耐候性に優れた透光性樹脂材料、耐光性に優れたシリカゾル、及び、硝子等の透光性無機材料が好適に用いられる。本実施の形態では、封止部材80の構成材料である封止材にはシリコーン樹脂を用いている。
封止部材80には、平均粒径が6μm〜20μm程度の蛍光体82が分散されている。封止部材80に含有される蛍光体82には、接着層70に含有される蛍光体72として用いることが可能な材料のものを用いることができる。
本実施の形態では、接着層70中の蛍光体72によって半導体発光装置50の色度等が全て決定されるのではなく、主として、封止部材80中の蛍光体82によって半導体発光装置50の色度等が制御される。そのため、接着層70に含有される蛍光体72との関係により、封止部材80に含有される蛍光体82の種類が決定される。例えば、半導体発光素子100の出射光が450nmにピーク波長を有する青色光であり、接着層70に緑色蛍光体が含有されている場合、封止部材80の蛍光体82として、赤色蛍光体を用いることができる。これにより、半導体発光装置50の発光色を白色光にできる。また、接着層70に含有される蛍光体72及び封止部材80に含有される蛍光体82はいずれも黄色蛍光体とすることもできる。これにより、半導体発光素子100から発せられる青色系の光と、半導体発光素子100からの光により励起された蛍光体から発せられる黄色系の光とが混色することによって、白色光が得られる。
[半導体発光素子100から出射された光の進路]
図6を参照して、接着層に蛍光体が含有されていない場合、活性層(発光層130)から下方に出射された光は、透明基板(サファイア基板)110に入射し、基板裏面にて反射されて透明基板110の上方(上面側)へと戻っていく。また、透明基板110に入射した光の一部は、透明基板110の側面110bへと出射される。
図6を参照して、接着層に蛍光体が含有されていない場合、活性層(発光層130)から下方に出射された光は、透明基板(サファイア基板)110に入射し、基板裏面にて反射されて透明基板110の上方(上面側)へと戻っていく。また、透明基板110に入射した光の一部は、透明基板110の側面110bへと出射される。
半導体発光素子は、通常、屈折率が1.4〜1.5程度の透明樹脂(封止部材)で封止される。例えば、屈折率1.5の透明樹脂により半導体発光素子を封止した場合、透明基板110(サファイアの屈折率=1.78)の側面110bと透明樹脂との界面において、その全反射角度は、θside≧57.43°となる。すなわち、透明基板110の裏面で鏡面反射すると仮定すると、0°≦θtop≦32.57°の角度で透明基板110の上面から入射した光は、透明基板110の側面110bから取出されることはなく、透明基板110上に形成された多層構造体150に戻ることになる。
一方、θtop>32.57°の入射角度を持った光は、透明基板110に入射する位置によって、透明基板110の側面110bに出射される光(一点鎖線矢印参照)と、多層構造体150に戻る光とに分かれる。この場合、透明基板110の側面110bに出射された光は、透明基板110の側面110bから外部に取出される。
透明基板110の裏面が鏡面である場合には、0°≦θtop≦32.57°の入射角度を持った光は、全て透明基板110から取出されることはなく、透明基板110の底面から接着層(図示せず)に入射し、反射基板(図示せず)で反射されて透明基板110に入射して多層構造体150に戻る(破線矢印参照)。多層構造体150に戻った光は、一部はチップ外(発光素子外)に取出され、一部は透明電極170、p側電極180、活性層(発光層130による再吸収)等の様々な光吸収体により吸収される。
図1及び図2を参照して、接着層70に蛍光体72が含有されている本実施の形態では、半導体発光素子100からの出射光は蛍光体72によって波長変換され、かつ、蛍光体72によって反射角度が変えられる。以下では、半導体発光素子100からの出射光を450nmにピーク波長を有する青色光として説明する。
半導体発光素子100から出射され、透明基板110に入射した光のうち、0°≦θtop≦32.57°の入射角を持った光は、透明基板110の底面において透明基板110/接着層70の界面にて全反射することなくほとんどが接着層70に入射する。一部フレネル反射により界面で反射されるが、その反射率は入射角0°で0.73%、入射角32°で0.91%と比較的低い値である。
接着層70には蛍光体72が含有されているため、接着層70に入射した光は、蛍光体72によって波長変換される。接着層70中の蛍光体72は、半導体発光素子100からの出射光によって励起され、この出射光よりも波長の長い蛍光(例えば、波長635nmの赤色光、波長530nmの緑色光等)を出射する。蛍光体72から上方に出射された光は、接着層70の下にある反射基板60を利用することなく上方に出射され、その出射角度によっては、透明基板110の側面110b又は上方へと出射される。蛍光体72から下方に出射された光は、反射基板60によって反射されて、透明基板110の側面110b又は上方へと出射される。
半導体発光素子100を封止する封止部材80(シリコーン樹脂)は、その屈折率が1.5であるため、透明基板110の側面110bの法線に対して57.4°以下の角度で入射する光は透明基板110の側面110bから出射されることになる。そのため、その光は、透明電極170(ITO)等による吸収のロスを受けないで半導体発光素子100外に取出される。
半導体発光素子100の出射光と同じ波長(450nm)の光は、半導体発光素子100の上部に戻る場合、活性層(発光層130)による再吸収のロスを受けることになる。一方、本実施の形態では、半導体発光素子100からの出射光が接着層70中の蛍光体72によってより長波長側に波長変換されるので、活性層(発光層130)による再吸収を抑制することが可能となり、光取出し効率を効果的に向上できる。
図3を参照して、反射膜等の構成材料である銀(Ag)、金(Au)及びロジウム等の金属材料は、光の波長が長波長になるほど、その反射率が高くなる傾向がある。具体的には、Agの反射率の波長分散は、波長450nmの光では96.6%、波長550nmの光では97.9%、波長650nmの光では98.3%と長波長になるほど光の反射率が徐々に高くなる傾向がある。電極の表面、ワイヤ、ボールボンド等に用いられるAuにおいては、波長450nmの光では38.7%、波長550nmの光では81.7%、波長650nmの光では95.5%と長波長になると光の反射率が急激に高くなる傾向がある。さらに、電極の反射膜等に用いられるロジウムにおいても、長波長の光の反射率が高いという傾向が見られる。
本実施の形態では、反射基板60の表面にAgメッキが施されている。また、リード端子64及び66と半導体発光素子100とを電気的に接続するワイヤ90及び92に、金線を用いている。このように、半導体発光装置50においては、長波長の光の方が、反射率が高くなる金属が非常に多く用いられている。したがって、半導体発光素子100から出射された光が、早く長波長の光に変換された方がこれら金属での反射率が高くなるため、光取出し効率が向上する。接着層70に入射した光が、反射基板60のAg(光反射面62)で反射される前に、例えば緑色光又は赤色光等の長波長側の波長に変換されていることで、より高い反射率で反射されるため、ロスが少なくなるというメリットがある。そのため、接着層70中の蛍光体72によって波長を変換することにより、光取出し効率をより効果的に向上できる。
さらに、接着層70中に含まれる蛍光体72に吸収された励起光(半導体発光素子100からの出射光)は、蛍光体72で吸収されて蛍光として再出射されたときには、出射の前後で進行方向を大きく変えることができる。このため、透明基板110に0°≦θtop≦32.57°の入射角で入射した光は、蛍光体72に吸収されることで、大きく角度を変えるので、透明基板110の側面110bから封止部材80に出射させ易くなる。このように、接着層70中に蛍光体72を含有することにより、光の進行方向が変わり、透明基板110の側面110bから光を取出し易くなるため、これによっても、光取出し効率が向上する。
なお、半導体発光素子100から出射される光は自然放出光であり、素子から離れるにしたがって空間を広がっていく。そのため、素子から遠いところで蛍光体に当てる場合には、多くの量の蛍光体が必要となる。できるだけ発光点(半導体発光素子100の位置)に近いところで、蛍光体に当てるように配置することで、少ない蛍光体量で効率よく蛍光体に素子から出射した光を当てることができる。このため、半導体発光素子100の直下の接着層70中に蛍光体72を入れることにより、その蛍光体72は、発光点に非常に近くなる。加えて、透明基板110の裏面から出射される光の量は多いため、接着層70中に蛍光体72を入れることにより、非常に効果的に半導体発光素子100から出射された光を蛍光体72に当てることができる。その結果、接着層70中の蛍光体72でより効率よく波長変換を行なうことができる。
[製造方法]
図1及び図2を参照して、本実施の形態に係る半導体発光装置50の製造方法について説明する。
図1及び図2を参照して、本実施の形態に係る半導体発光装置50の製造方法について説明する。
《半導体発光素子100》
約400μm〜約1300μmの厚みを有するサファイアからなる透明基板を準備する。この透明基板の主面(窒化物半導体層が形成される側の面)を鏡面研磨することにより、その面を鏡面状態(表面粗さRaで1nm以下程度)とする。
約400μm〜約1300μmの厚みを有するサファイアからなる透明基板を準備する。この透明基板の主面(窒化物半導体層が形成される側の面)を鏡面研磨することにより、その面を鏡面状態(表面粗さRaで1nm以下程度)とする。
次に、MOCVD(Metal Organic Chemical Vapor Deposition)法、HVPE(Hydride Vapor Phase Epitaxy)法及びMBE(Molecular Beam Epitaxy)法等の気相成長法を用いて、透明基板の主面上に窒化物半導体からなる多層膜を形成する。具体的には、図2を参照して、透明基板の主面上に、バッファ層、下地層、n型窒化物半導体層、低温n型GaN/InGaN多層構造及び超格子層からなるn型層120、MQW発光層130、p型層140をこの順に形成する。これにより、多層膜を含む多層構造体150が透明基板上に形成される。
次に、n型層120の一部が露出するように、p型層140、MQW発光層130及びn型層120の一部をエッチングする。このエッチングにより露出したn型層120の上面上にn側電極160を形成する。また、p型層140の上面上に、透明電極170及びp側電極180をこの順に形成する。その後、透明電極170及びエッチングによって露出した各層の側面を覆うように、透明保護膜190を形成する。
続いて、電極を形成した状態の基板に対して熱処理を行なうことで、電極を合金化する。これにより、電極と半導体層との良好なオーミック接触が得られるとともに、電極と半導体層との接触抵抗を低下させることができる。熱処理温度は、200℃〜1200℃の範囲が好ましく、300℃〜900℃の範囲であればより好ましく、450℃〜650℃の範囲であればさらに好ましい。上記以外の熱処理の条件としては、雰囲気ガスを酸素及び窒素の少なくとも一方を含有する雰囲気とする。また、例えばAr等の不活性ガスを含有する雰囲気、及び、大気条件での熱処理も可能である。
次に、上記工程により作製したウェハーを研削、研磨し、透明基板の厚みを小さくする。具体的には、ウェハーを研削機にセットし、基板の厚みが約160μmになるまで、基板の裏面(半導体層が形成されていない面)を研削する。次に、このウェハーを研磨機にセットし、研磨剤の番手を段階的に小さいものに変えながら、基板の裏面の表面が鏡面(光学的鏡面)になるまで研磨して、基板の厚みを約120μmにする。このように、基板に鏡面処理を施すのは、基板の表面に凹凸があると、スクライブ時(分割時)の応力が分散しやすくなるため、不正劈開及びチッピングの原因となるからである。鏡面研磨を施した後の基板の裏面の表面は、例えば、二乗平均平方根粗さRq(旧RMS)で10nm以下であるのが好ましい。
なお、基板の厚みは、20μm〜500μmの範囲内であるのが好ましく、80μm〜300μmの範囲内であればより好ましい。基板の厚みをこのような範囲内の厚みとすることにより、意図する方向に基板を容易に分割することが可能となる。
続いて、チップ分割に用いる破断線(図示せず)を透明基板110中に形成する。破断線は、チップ(半導体発光素子)を所定のサイズに分割するために透明基板110中に直線状に形成する。破断線は、レーザ光線を照射することにより形成するのが好ましい。特に、サファイアに対して透過するレーザ光線を照射することによって形成するのが好ましい。ここで透過するとは、レーザ光線を透明基板110(サファイア基板)に照射した直後、つまり、サファイアが変質していない状態において透過率が70%以上であることを意味する。ただし、上記透過率が80%以上であればより好ましく、90%以上であればさらに好ましい。
破断線を形成する際のレーザ光線の照射は、窒化物半導体が形成されている側(多層構造体150が形成されている側)から行なってもよいが、窒化物半導体での吸収を考慮して、透明基板110の裏面(多層構造体150が形成されていない側)から行なうのが好ましい。透明基板110の裏面側からレーザ光線の照射を行なうことにより、活性層等への影響を低減できる。
最後に、形成した破断線を起点とすることにより、ウェハーを個々のチップ(半導体発光素子)に分割する。これにより、半導体発光素子100が得られる。
《素子のダイボンド》
上記のようにして得られた半導体発光素子100を、ダイボンドペーストを用いて反射基板60(パッケージ基体)上に実装(固定)する。
上記のようにして得られた半導体発光素子100を、ダイボンドペーストを用いて反射基板60(パッケージ基体)上に実装(固定)する。
ダイボンドペーストには、透光性のシリコーン樹脂に蛍光体を混練したものを用いる。蛍光体の平均粒径は200nm以下とする。このような蛍光体として、例えば平均粒径が100nm以下のナノ蛍光体(ナノ粒子蛍光体)及び現状10μm程度の粒径で使用されている蛍光体を小さく精製したもの、又は砕いて小さい粒径にしたもの等を用いることができる。
ナノ蛍光体の合成方法としては、例えば以下の方法を用いることができる。
1.ゾルゲル法(錯体重合法)
錯体重合法によるYVO4:Eu3+蛍光体の合成
PVA法によるYNbO4:Eu3+蛍光体の合成
錯体均一沈殿法によるY2O2S:Eu3+蛍光体の合成
2.逆ミセル法及びコロイド析出法
コロイド析出法によるCdSナノ形成
3.ホットソープ法、超臨界水熱法、ソルボサーマル法(希土類アルミニウムガーネットの合成、複合酸化物の合成、Zn2SiO4:Mn2+ナノ蛍光体、LaPO4:Ce3+,Tb3+ナノ蛍光体)、スプレー熱分解法、グリコサーマル法(Y3Al5O12:Ce3+(YAG:Ce3+)、MgGa2O4:Mn2+、ZnGa2O4:Mn2+等の酸化物ナノ蛍光体)、ポリオール法によるY2O3:Bi3+,Eu3+等のナノ蛍光体
錯体重合法によるYVO4:Eu3+蛍光体の合成
PVA法によるYNbO4:Eu3+蛍光体の合成
錯体均一沈殿法によるY2O2S:Eu3+蛍光体の合成
2.逆ミセル法及びコロイド析出法
コロイド析出法によるCdSナノ形成
3.ホットソープ法、超臨界水熱法、ソルボサーマル法(希土類アルミニウムガーネットの合成、複合酸化物の合成、Zn2SiO4:Mn2+ナノ蛍光体、LaPO4:Ce3+,Tb3+ナノ蛍光体)、スプレー熱分解法、グリコサーマル法(Y3Al5O12:Ce3+(YAG:Ce3+)、MgGa2O4:Mn2+、ZnGa2O4:Mn2+等の酸化物ナノ蛍光体)、ポリオール法によるY2O3:Bi3+,Eu3+等のナノ蛍光体
ナノ蛍光体は、上記のような様々な方法により合成、形成することができ、どのような方法を用いても特に問題はない。
このようなダイボンドペーストを、反射基板60の光反射面62上に適量塗布し、半導体発光素子100をダイボンドする。その後、150℃で3時間、オーブンで加熱することにより、ダイボンドペーストを硬化させる。これにより、蛍光体72が含有された接着層70が形成され、この接着層70を介して、半導体発光素子100が反射基板60上に固定される。接着層70は、例えば2μm〜6μm程度の厚みに形成する。
蛍光体が含まれていないダイボンドペーストを用いた場合の接着層の厚みは、通常2μm〜6μm程度である。一方、ダイボンドペーストに入れる蛍光体の粒径が大きくなると、半導体発光素子100を固定した状態において、ダイボンドペースト(接着層)の厚みが大きくなる傾向がある。例えば、白色LED等に一般的に用いられている蛍光体の平均粒径は10μm〜20μm程度と非常に大きい。このような粒径の大きい蛍光体を用いた場合、ダイボンドペースト(接着層)の厚みは20μm〜40μm程度と非常に大きくなる。ダイボンドペーストは熱伝導率が非常に悪いため、接着層の厚みが大きくなることによって放熱特性が著しく低下する。
一方、ダイボンドペーストに、平均粒径が200nm以下の蛍光体を入れることによって、接着層70の厚みTが大きくなるのを抑制することが可能となる。そのため、接着層70の厚みTを、蛍光体が含まれていないダイボンドペーストを用いた場合の接着層の厚みと同程度にできる。
続いて、図1を参照して、反射基板60上に固定された半導体発光素子100を、ワイヤ90及び92を介して、リード端子64及び66と電気的に接続する。
《封止部材80による半導体発光素子100の封止》
反射基板60上に実装した半導体発光素子100を封止部材80で封止する。封止部材80には、透光性のシリコーン樹脂に蛍光体72を混練したものを用いる。蛍光体72の平均粒径は例えば6μm〜20μm程度である。
反射基板60上に実装した半導体発光素子100を封止部材80で封止する。封止部材80には、透光性のシリコーン樹脂に蛍光体72を混練したものを用いる。蛍光体72の平均粒径は例えば6μm〜20μm程度である。
蛍光体72が含有されたシリコーン樹脂によって、半導体発光素子100、ワイヤ90及び92、並びにリード端子64及び66の一部を封止し、150℃で3時間、オーブンで加熱することにより、シリコーン樹脂を硬化させる。これにより封止部材80が形成され、この封止部材80によって半導体発光素子100が封止される。
以上のようにして、本実施の形態に係る半導体発光装置50が製造される。
[本実施の形態の効果]
以上の説明から明らかなように、本実施の形態に係る半導体発光装置50は、以下に述べる効果を奏する。
以上の説明から明らかなように、本実施の形態に係る半導体発光装置50は、以下に述べる効果を奏する。
透明基板110を含む半導体発光素子100は、透光性を有する接着層70を介して、反射基板60上に固定される。半導体発光素子100から下方に出射された光は透明基板110を透過して接着層70に入射する。接着層70には蛍光体72が含有されているため、半導体発光素子100からの光はこの蛍光体72に一旦吸収されて、より長波長の光に波長が変換される。波長が変換された光は蛍光として蛍光体72から出射される。さらに、接着層70に含有される蛍光体72によって、光の反射方向(蛍光の出射方向)が変えられるため、透明基板110の側面110bから光を取出しやすくできる。
接着層70中の蛍光体72から上方に出射された光は、その出射角度によって、透明基板110の側面110b又は半導体発光素子100の上部に達する。ここで、半導体発光素子100から出射される光よりも波長が長い光は半導体発光素子100での再吸収が抑制される。蛍光体72から出射される光は、長波長側に波長変換されているので、半導体発光素子100の上部に達した場合でも、半導体発光素子100での再吸収が抑制される。このように、接着層70に含有された蛍光体72は、半導体発光素子100から出射された光を波長変換する機能と、半導体発光素子100から出射された光を散乱させる機能とを有している。したがって、接着層70に蛍光体72を含有することによって、透明基板110の側面110bからの光取出しを容易にできるとともに、半導体発光素子100での再吸収を抑制できるので、外部光取出し効率を向上できる。
上述のように、ダイボンドペーストの熱伝導率は非常に悪いため、接着層70の厚みTが大きくなり過ぎると、放熱特定が低下して発光効率が低下する。封止部材80に含有される蛍光体82と同程度の平均粒径を有する蛍光体を接着層に含有した場合、上記蛍光体82の平均粒径は非常に大きいため、接着層の厚みが大きくなり、放熱特性が著しく低下する。
封止部材80に含有される蛍光体82よりも平均粒径が小さい蛍光体72を接着層70に含有することにより、接着層70の厚みを封止部材80に含まれる蛍光体82の平均粒径以下とすることができる。これにより、接着層70の厚みが大きくなり過ぎるのを抑制することができるので、接着層70の厚みが大きくなり過ぎることに起因する放熱特性の低下を抑制できる。その結果、放熱特性の低下に起因する発光効率の低下を抑制できるので、輝度の高い半導体発光装置50が得られる。
接着層70に含有される蛍光体72の平均粒径を200nm以下とすることにより、容易に、接着層70の厚みTを封止部材80に含まれる蛍光体82の平均粒径以下にできる。そのため、容易に、放熱特性の低下に起因する発光効率の低下を抑制できる。
接着層70に含まれる蛍光体72の平均粒径を100nm以下とすることにより、より容易に、放熱性の低下に起因する発光効率の低下を抑制できる。なお、上記蛍光体72の平均粒径は、100nmより小さければさらに好ましい。
さらに、反射基板60の光反射面62上に半導体発光素子100を搭載することにより、接着層70中の蛍光体72から下方(基板側)に出射された光は、光反射面62によって上方(半導体発光素子100側)に反射される。また、接着層70中の蛍光体72に入射されずに反射基板60の光反射面62に達した光も、光反射面62によって上方(半導体発光素子100側)に反射できる。光反射面62で反射された光は、透明基板110の側面110b及び半導体発光素子100の上面から取出される。そのため、外部光取出し効率が一層向上する。
なお、接着層70の構成材料にシリコーン樹脂を用いることによって、シリコーン樹脂は半導体発光素子100から出射される光の透過性が高いため、接着層70中の蛍光体72によって効率よく光を波長変換できる。そのため、透明基板110の側面110bからの光取出しをより一層容易にできる。
[評価]
接着層中に平均粒径の異なるYAG蛍光体が含有された複数の半導体発光装置を作製し、これら半導体発光装置から出射される光の光束(lm)を測定した。半導体発光装置の色度特性は、JIS 28722の条件C、DIN5033teil7、ISOk772411に準拠のd・8(拡散照明・8°受光方式)光学系を採用した測定装置を用いて測定できる。例えば、CIEの色度表でx、y=(0.259、0.225)となる光を発するように、封止材(シリコーン樹脂)に入れた蛍光体と封止部材(シリコーン樹脂)とを2:100の重量比で混合したものを用いた。この際、封止部(シリコーン樹脂)に入れた蛍光体と、接着層(ダイボンドペースト)に入れた蛍光体の量を調整することで上記色度を実現できる。
接着層中に平均粒径の異なるYAG蛍光体が含有された複数の半導体発光装置を作製し、これら半導体発光装置から出射される光の光束(lm)を測定した。半導体発光装置の色度特性は、JIS 28722の条件C、DIN5033teil7、ISOk772411に準拠のd・8(拡散照明・8°受光方式)光学系を採用した測定装置を用いて測定できる。例えば、CIEの色度表でx、y=(0.259、0.225)となる光を発するように、封止材(シリコーン樹脂)に入れた蛍光体と封止部材(シリコーン樹脂)とを2:100の重量比で混合したものを用いた。この際、封止部(シリコーン樹脂)に入れた蛍光体と、接着層(ダイボンドペースト)に入れた蛍光体の量を調整することで上記色度を実現できる。
図4を参照して、図4の横軸は接着層に含有された蛍光体の平均粒径を示しており、図4の縦軸は半導体発光装置の光束を示している。図4より、蛍光体の平均粒径が200nmより大きくなるにしたがい、光束が低下していく傾向が認められる。これより、接着層に含有される蛍光体の平均粒径を200nm以下とすることにより、光束の低下を抑制して、光取出し効率を向上できることが確認された。なお、蛍光体の平均粒径が100nm以下であれば、光束の低下はより小さくなり、蛍光体の平均粒径が100nmより小さければ、光束の低下はさらに小さくなっている。そのため、蛍光体の平均粒径は、100nm以下であればより好ましく、100nmより小さければさらに好ましい。
続いて、光束を測定した半導体発光装置と同じ半導体発光装置を用いて、ジャンクション温度を測定した。その結果を図5に示す。図5の横軸は、図4の横軸と同様、接着層に含有された蛍光体の平均粒径を示している。図5の縦軸は、平均粒径10nmの蛍光体を用いた半導体発光装置のジャンクション温度を基準温度として、その温度よりどの程度ジャンクション温度が上昇したかをジャンクション温度上昇分として示している。
図5より、蛍光体の平均粒径が200nmより大きくなるにしたがい、ジャンクション温度の上昇分が大きくなる傾向が認められる。これは、接着層に含有される蛍光体の平均粒径が200nmより大きくなると、平均粒径の増加に伴って接着層の厚みが大きくなり放熱性が悪化するために、ジャンクション温度が上昇したものと考えられる。そのため、図4において、蛍光体の平均粒径が200nmより大きくなるにしたがい光束が低下していく傾向が認められた理由として、接着層の厚みが大きくなることによる放熱性の悪化により、発光効率が低下しているためと考えられる。
接着層に含有する蛍光体の平均粒径を200nm以下まで小さくすることにより、放熱特性の低下を抑えることができ、発光効率及び光取出し効率が改善するために、光束が増加すると考えられる。
《実施例1》
実施例1の半導体発光装置として、上記実施の形態で示した半導体発光装置50と同様の構成を有する半導体発光装置を作製した。実施例1の半導体発光装置は、白色光を発光する半導体発光装置である。搭載されている半導体発光素子は、450nmにピーク波長を有する青色光を出射する。
実施例1の半導体発光装置として、上記実施の形態で示した半導体発光装置50と同様の構成を有する半導体発光装置を作製した。実施例1の半導体発光装置は、白色光を発光する半導体発光装置である。搭載されている半導体発光素子は、450nmにピーク波長を有する青色光を出射する。
接着層にはシリコーン樹脂からなるダイボンドペーストを用いた。蛍光体を入れていないダイボンドペーストの熱抵抗は0.3K・cm2/Wであった。接着層に含有される蛍光体には緑色蛍光体を用い、封止部材に含有される蛍光体には赤色蛍光体を用いた。
《実施例2》
実施例2の半導体発光装置として、上記実施例1と同様の半導体発光装置を作製した。ただし、実施例2では、接着層に含有される蛍光体、及び、封止部材に含有される蛍光体のいずれもYAG蛍光体(黄色蛍光体)を用いた。接着層に含有される蛍光体の平均粒径は、50nm以下とした。
実施例2の半導体発光装置として、上記実施例1と同様の半導体発光装置を作製した。ただし、実施例2では、接着層に含有される蛍光体、及び、封止部材に含有される蛍光体のいずれもYAG蛍光体(黄色蛍光体)を用いた。接着層に含有される蛍光体の平均粒径は、50nm以下とした。
(第2の実施の形態)
本実施の形態に係る半導体発光装置では、接着層に、封止部材に含有される蛍光体よりも波長の長い蛍光を出射する蛍光体が含有されている。その他の構成は、上記第1の実施の形態に係る半導体発光装置50と同様である。
本実施の形態に係る半導体発光装置では、接着層に、封止部材に含有される蛍光体よりも波長の長い蛍光を出射する蛍光体が含有されている。その他の構成は、上記第1の実施の形態に係る半導体発光装置50と同様である。
封止部材に含まれる蛍光体に比べて、発光波長の長い蛍光を発する蛍光体を接着層に含有することにより、接着層中の蛍光体から出射された光(蛍光)が封止部材中の蛍光体で吸収されるのを抑制できる。これにより、外部光取出し効率をより一層向上できる。
このように、接着層には、封止部材に含まれる蛍光体の発光波長より長波長の蛍光を発する蛍光体が少なくとも1種類含まれているのが好ましい。接着層に、封止部材に含まれる蛍光体の発光波長と同程度の波長の蛍光を発する蛍光体が少なくとも1種類含まれる構成も好ましい構成であるといえる。
《実施例3》
実施例3の半導体発光装置は、白色光を発光する半導体発光装置である。搭載されている半導体発光素子は、450nmにピーク波長を有する青色光を出射する。実施例3では、封止部材に含有される蛍光体を緑色蛍光体とし、接着層に含有される蛍光体を赤色蛍光体とした。その他の構成は上記した実施例1の半導体発光装置と同様である。
実施例3の半導体発光装置は、白色光を発光する半導体発光装置である。搭載されている半導体発光素子は、450nmにピーク波長を有する青色光を出射する。実施例3では、封止部材に含有される蛍光体を緑色蛍光体とし、接着層に含有される蛍光体を赤色蛍光体とした。その他の構成は上記した実施例1の半導体発光装置と同様である。
実施例3の半導体発光装置では、接着層中の赤色蛍光体で赤色に変換された光は、反射基板(パッケージ)の表面で反射され、半導体発光素子の表面及び透明基板の側面等から出射され、封止部材中に出射される。封止部材中に出射された赤色の光は長波長であるため、封止部材中にある緑色蛍光体によって再吸収される可能性が低い。そのため、光取出し効率をより向上できる。
《実施例4》
実施例4の半導体発光装置は、実施例3の半導体発光装置とほぼ同様である。ただし、実施例4は、接着層に含有される蛍光体が黄色蛍光体(YAG蛍光体)である点において、実施例3とは異なる。
実施例4の半導体発光装置は、実施例3の半導体発光装置とほぼ同様である。ただし、実施例4は、接着層に含有される蛍光体が黄色蛍光体(YAG蛍光体)である点において、実施例3とは異なる。
このように、接着層に含有される蛍光体に黄色蛍光体を用いることも、上記理由により、封止部材に含まれる緑色蛍光体に再吸収される可能性が小さいため好ましい。
(第3の実施の形態)
本実施の形態に係る半導体発光装置は、光源としての半導体発光素子に、窒化物半導体からなる透明基板を用いている点において、上記第1の実施の形態とは異なる。窒化物半導体からなる透明基板には、c面GaN基板を用いている。その他の構成は、上記第1の実施の形態と同様である。
本実施の形態に係る半導体発光装置は、光源としての半導体発光素子に、窒化物半導体からなる透明基板を用いている点において、上記第1の実施の形態とは異なる。窒化物半導体からなる透明基板には、c面GaN基板を用いている。その他の構成は、上記第1の実施の形態と同様である。
本実施の形態においても、第1の実施の形態と同様の傾向を示した。さらに、接着層に含有される蛍光体の平均粒径を小さくすることによる光束の向上効果は、サファイア基板を用いた場合に比べて数%程度さらに向上する傾向が見られた。透明基板としてGaN基板を用いた半導体発光素子では、基板の屈折率がサファイア基板の1.78に比べて2.5と大きいため、基板側面からの光取出し効率がサファイア基板を用いた半導体発光素子に比べて低下する。このため、本構造が側面からの光取出し効率に関して効果的に働いたために、光束(光出力)が向上したと考えられる。また、GaN基板の熱伝導率がサファイア基板に比べて高いため、ジャンクション温度の上昇分が低く抑えられたことも原因の一つであると考えられる。
なお、透明基板にSiC基板を用いた場合も、透明基板にGaN基板を用いた場合と同様の結果が得られた。SiC基板は、GaN基板と同様に大きな屈折率を有するため、改善効果が効果的に働いたためであると考えられる。これより、SiC基板の場合においても有効であることが分かった。
(第4の実施の形態)
本実施の形態に係る半導体発光装置は、発光波長300nmの紫外光LED(半導体発光素子)が搭載されている。本実施の形態では、発光波長300nmの紫外光を発するように、MQW発光層の組成及び厚み等が調整されている。具体的には、MQW発光層は、AlGaNにInを添加したInAlGaN4元混晶の発光層としている。Al組成比が70%〜90%程度のAlGaNにInを数%添加している。発光層(バリア層、井戸層)の厚みによっても波長が変わる。そのため、波長を調整するために組成及び厚みは適宜調整している。
本実施の形態に係る半導体発光装置は、発光波長300nmの紫外光LED(半導体発光素子)が搭載されている。本実施の形態では、発光波長300nmの紫外光を発するように、MQW発光層の組成及び厚み等が調整されている。具体的には、MQW発光層は、AlGaNにInを添加したInAlGaN4元混晶の発光層としている。Al組成比が70%〜90%程度のAlGaNにInを数%添加している。発光層(バリア層、井戸層)の厚みによっても波長が変わる。そのため、波長を調整するために組成及び厚みは適宜調整している。
さらに、本実施の形態では、封止部材の中に青色蛍光体をいれることで、RGB3色の蛍光体を用いて、色度を調整している。本実施の形態に係る半導体発光装置においても、上記第1の実施の形態と同様の傾向を示し、同様の効果が得られた。
(第5の実施の形態)
本実施の形態に係る半導体発光装置は、上記第1の実施の形態とほぼ同様の構成を有している。ただし、本実施の形態では、接着層中に入れる蛍光体にCdSeナノ粒子を用いている。CdSeナノ粒子は、粒子サイズにより、発光波長を変えることが出来る。粒径2.5nmでは、青色の波長450nmの蛍光を発し、粒径3.3nmでは、緑色の波長520nmの蛍光を発し、粒径5.2nmでは、赤色の波長630nmの蛍光を発する。本実施の形態では、平均粒径3.3nmの蛍光体と平均粒径5.2nmの蛍光体とを用いた。このように、同じ材料で、粒径だけが異なり、発光色の異なる蛍光体を用いてもよい。この場合においても、蛍光体を入れていない場合にくらべ、ジャンクション温度の上昇は見られず、良好な発光特性の発光装置を得ることができた。
本実施の形態に係る半導体発光装置は、上記第1の実施の形態とほぼ同様の構成を有している。ただし、本実施の形態では、接着層中に入れる蛍光体にCdSeナノ粒子を用いている。CdSeナノ粒子は、粒子サイズにより、発光波長を変えることが出来る。粒径2.5nmでは、青色の波長450nmの蛍光を発し、粒径3.3nmでは、緑色の波長520nmの蛍光を発し、粒径5.2nmでは、赤色の波長630nmの蛍光を発する。本実施の形態では、平均粒径3.3nmの蛍光体と平均粒径5.2nmの蛍光体とを用いた。このように、同じ材料で、粒径だけが異なり、発光色の異なる蛍光体を用いてもよい。この場合においても、蛍光体を入れていない場合にくらべ、ジャンクション温度の上昇は見られず、良好な発光特性の発光装置を得ることができた。
[変形例]
上記実施の形態では、透明基板に、サファイア基板及びc面GaN基板を用いた例について示したが、本発明はそのような実施の形態には限定されない。透明基板は、自身が発する光に対して透光性を有する基板であればよい。そのような透明基板として、上記以外に、例えば窒化物半導体基板、SiC基板及び石英基板等の単結晶透明基板を用いることができる。窒化物半導体基板としては、AlxGayInzN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)からなる基板を用いることができる。窒化物半導体基板中に、Si、O、Cl、S、C、Ge、Zn、Cd、Mg又はBeがドーピングされていてもよい。n型窒化物半導体としては、これらのドーピング材料のうちでも、Si、O及びClが特に好ましい。さらに、窒化物半導体基板には、非極性基板を用いることもできる。非極性基板は、無極性基板及び半極性基板を含む。無極性基板の主面方位には、A面{11−20}、M面{1−100}及び{1−101}面等がある。半極性基板の主面方位には、緑色領域等での発光効率が高いことで知られる{20−21}等がある。これらの主面方位を持つ窒化物半導体基板についても本発明を適用できる。
上記実施の形態では、透明基板に、サファイア基板及びc面GaN基板を用いた例について示したが、本発明はそのような実施の形態には限定されない。透明基板は、自身が発する光に対して透光性を有する基板であればよい。そのような透明基板として、上記以外に、例えば窒化物半導体基板、SiC基板及び石英基板等の単結晶透明基板を用いることができる。窒化物半導体基板としては、AlxGayInzN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)からなる基板を用いることができる。窒化物半導体基板中に、Si、O、Cl、S、C、Ge、Zn、Cd、Mg又はBeがドーピングされていてもよい。n型窒化物半導体としては、これらのドーピング材料のうちでも、Si、O及びClが特に好ましい。さらに、窒化物半導体基板には、非極性基板を用いることもできる。非極性基板は、無極性基板及び半極性基板を含む。無極性基板の主面方位には、A面{11−20}、M面{1−100}及び{1−101}面等がある。半極性基板の主面方位には、緑色領域等での発光効率が高いことで知られる{20−21}等がある。これらの主面方位を持つ窒化物半導体基板についても本発明を適用できる。
透明基板にサファイア基板を用いる場合、基板の上面は平坦であってもよいし、例えば特開2008−177528号公報に記載されているような、上面に凹凸形状が形成されたPSS(Patterned Sapphire Substrate)であってもよい。
上記実施の形態では、約120μmの厚みを有する透明基板を用いた例について示したが、本発明はそのような実施の形態には限定されない。透明基板の厚みは特に限定されず、例えば20μm以上500μm以下(好ましくは80μm以上300μm以下)の厚みを有する透明基板を適宜用いることができる。
上記実施の形態において、n型層の各層にドーピングするn型不純物は、特に限定されないが、Si、P、As又はSb等であればよく、好ましくはSiである。また、超格子層は、ワイドバンドギャップ層及びナローバンドギャップ層とは異なる1層以上の半導体層と、ワイドバンドギャップ層と、ナローバンドギャップ層とが順に積層されて超格子構造を構成していてもよい。
上記実施の形態では、ITOからなる透明電極を用いた例について示したが、本発明はそのような実施の形態には限定されない。透明電極はITO以外に例えばIZO(Indium Zinc Oxide)等の透明導電膜を用いることもできる。また、n側電極は上記以外に例えばW/Al、Ti/Al、Ti/Al/Ni/Au、W/Al/W/Pt/Au及びAl/Pt/Au等であってもよい。
上記実施の形態では、SiO2からなる透明保護膜を用いた例について示したが、本発明はそのような実施の形態には限定されない。透明保護膜は、SiO2以外に例えばZrO2、TiO2、Al2O3、又はV、Zr、Nb、Hf、Taよりなる群から選択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、AlN、AlGaN等を用いることができる。透明保護膜は絶縁性を有する膜であるのが好ましい。
上記実施の形態では、n側電極及びp側電極を、突出部(枝電極)を含むように形成した例について示したが、本発明はそのような実施の形態には限定されない。n側電極及びp側電極は、突出部(枝電極)を含まない構成であってもよい。また、p側電極の直下の領域に、p側電極の下部において電流の注入を止めるための絶縁層を設けてもよい。
上記実施の形態では、封止部材に含有される蛍光体に、平均粒径の大きい蛍光体を用いた例を示したが、本発明はそのような実施の形態には限定されない。例えば、接着層に含有される蛍光体と同程度の平均粒径を有する蛍光体を、封止部材に含有してもよい。その場合、接着層の厚みが、封止部材に含有される蛍光体の平均粒径より大きくなる場合も起こり得るが、接着層に含有される蛍光体の平均粒径を200nm以下とすることにより、接着層の厚みが大きくなるのを抑制できるため、放熱特性の低下に起因する発光効率の低下を抑制できる。
上記実施の形態では、主として、封止部材中の蛍光体によって半導体発光装置の色度等を制御する例について示したが、本発明はそのような実施の形態には限定されない。例えば、主として、接着層中の蛍光体によって半導体発光装置の色度等を制御するようにしてもよい。
上記実施の形態では、接着層の構成するダイボンドペーストとして、シリコーン樹脂からなるダイボンドペーストを用いた例について示したが、本発明はそのような実施の形態には限定されない。ダイボンドペーストには、シリコーン樹脂以外に、例えばエポキシ樹脂、アクリル樹脂及びイミド樹脂等の熱硬化樹脂からなるものを用いてもよい。上記実施の形態では、従来から用いられているダイボンドペースト(樹脂)を用いて半導体発光素子をダイボンドすることができる。
上記実施の形態では、パッケージ基体としてメタルコア基板からなる反射基板を用いた例について示したが、本発明はそのような実施の形態には限定されない。反射基板には、メタルコア基板以外の種々の反射基板を用いることができる。例えば、反射基板として、アルミナ(Al2O3)、窒化アルミ(AlN)等を用いたセラミック基板、FR−4(Flame Retardant Type 4)、BTレジン(Bismaleimide−Triazine Resin)等の樹脂を用いた有機基板、銅/樹脂が混在した複合基板等を用いることもできる。窒化アルミの基体では、反射率が低いため、反射率の高い白樹脂等のコーティング、及びAgメッキ等が施されることがある。
半導体発光装置のパッケージ(PKG)形態は、上記実施の形態で示したパッケージ形態以外の形態であってもよい。なお、プリモールドPKGでは、パッケージ基体(反射基板)の材料として、例えばPPO樹脂(ポリフェニレンオキサイド樹脂)を用いることができ、セラミックPKGでは、例えばアルミナ(Al2O3)、窒化アルミ(AlN)等を用いることができる。焼結セラミック基板は、例えばアルミナを用いた場合、90%以上と高い反射率を有する反射基板としてそのまま用いることができる。反射基板の表面(光反射面)の反射率は、可視光領域において、光取出し効率の観点から80%以上であるのが好ましい。
上記実施の形態では、半導体発光装置(パッケージ)に1個の半導体発光素子を搭載した例について示したが、本発明はそのような実施の形態には限定されない。半導体発光装置(パッケージ)に搭載される半導体発光素子は、複数個であってもよい。その場合、各発光素子を固定する接着層には、同じ種類の蛍光体が含有されていてもよいし、異なる種類の蛍光体が含有されていてもよい。
さらに、上記実施の形態において、接着層及び封止部材に含有する蛍光体は、1種類であってもよいし、複数種類であってもよい。
上記で開示された技術を適宜組合せて得られる実施の形態についても、本発明の技術的範囲に含まれる。
今回開示された実施の形態は単に例示であって、この発明が上記した実施の形態のみに制限されるわけではない。この発明の範囲は、発明の詳細な説明の記載を参酌した上で、特許請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。
本発明によれば、外部光取出し効率を向上させることが可能な半導体発光装置を提供できる。
50 半導体発光装置
60 反射基板
62 光反射面
64、66 リード端子
70 接着層
72、82 蛍光体
80 封止部材
90、92 ワイヤ
100 半導体発光素子
110 透明基板
110b 側面
120 n型層
130 MQW発光層
140 p型層
150 多層構造体
160 n側電極
180 p側電極
60 反射基板
62 光反射面
64、66 リード端子
70 接着層
72、82 蛍光体
80 封止部材
90、92 ワイヤ
100 半導体発光素子
110 透明基板
110b 側面
120 n型層
130 MQW発光層
140 p型層
150 多層構造体
160 n側電極
180 p側電極
Claims (7)
- 透明基板を含む半導体発光素子と、
前記半導体発光素子が搭載される基板と、
蛍光体を含み、前記半導体発光素子を前記基板上に固定する透光性を有する接着層と、
蛍光体を含み、前記半導体発光素子を封止する封止部材とを含み、
前記接着層は前記封止部材に含まれる蛍光体の平均粒径以下の厚みを有する、半導体発光装置。 - 前記接着層に含まれる蛍光体の平均粒径は200nm以下である、請求項1に記載の半導体発光装置。
- 前記接着層に含まれる蛍光体の平均粒径は100nm以下である、請求項2に記載の半導体発光装置。
- 前記基板は、光反射面を有し、
前記半導体発光素子は、前記光反射面上に搭載されている、請求項1〜請求項3のいずれかに記載の半導体発光装置。 - 前記接着層に含まれる蛍光体は、前記封止部材に含まれる蛍光体に比べて、発光波長の長い蛍光を発する、請求項1〜請求項4のいずれかに記載の半導体発光装置。
- 前記透明基板は、サファイア基板、窒化物系半導体基板及びSiC基板のいずれかである、請求項1〜請求項5のいずれかに記載の半導体発光装置。
- 前記接着層は、シリコーン樹脂からなる、請求項1〜請求項6のいずれかに記載の半導体発光装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012136538 | 2012-06-18 | ||
JP2012136538 | 2012-06-18 | ||
PCT/JP2013/064909 WO2013190962A1 (ja) | 2012-06-18 | 2013-05-29 | 半導体発光装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013190962A1 JPWO2013190962A1 (ja) | 2016-05-26 |
JP6062431B2 true JP6062431B2 (ja) | 2017-01-18 |
Family
ID=49768565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014521254A Expired - Fee Related JP6062431B2 (ja) | 2012-06-18 | 2013-05-29 | 半導体発光装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9437787B2 (ja) |
JP (1) | JP6062431B2 (ja) |
CN (1) | CN103918093B (ja) |
WO (1) | WO2013190962A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015111626A1 (ja) * | 2014-01-22 | 2015-07-30 | 宇部マテリアルズ株式会社 | 蛍光体及び発光装置 |
WO2015129586A1 (ja) * | 2014-02-27 | 2015-09-03 | 京セラ株式会社 | 太陽電池モジュール |
KR102224077B1 (ko) * | 2014-06-05 | 2021-03-09 | 엘지이노텍 주식회사 | 발광소자 |
JP6684273B2 (ja) * | 2014-06-19 | 2020-04-22 | インクロン オサケユキチュアInkron Oy | シロキサン粒子材料を用いたledランプ |
JP2016134501A (ja) * | 2015-01-20 | 2016-07-25 | スタンレー電気株式会社 | 半導体発光装置 |
JP6866306B2 (ja) * | 2015-05-26 | 2021-05-12 | シグニファイ ホールディング ビー ヴィSignify Holding B.V. | スイッチング可能な高カラーコントラストライティング |
CN105304792A (zh) * | 2015-09-30 | 2016-02-03 | 桂林健评环保节能产品开发有限公司 | 一种节能led的制作工艺 |
CN108140702A (zh) * | 2015-10-27 | 2018-06-08 | 日本电气硝子株式会社 | 波长变换部件的制造方法 |
JP7003058B2 (ja) * | 2016-04-15 | 2022-02-04 | スージョウ レキン セミコンダクター カンパニー リミテッド | 発光素子、発光素子パッケージおよび発光モジュール |
CN106784240B (zh) * | 2016-12-23 | 2019-01-01 | 佛山市国星光电股份有限公司 | 一种白光led器件的封装方法及其led器件及其led灯 |
DE102017115656A1 (de) | 2017-07-12 | 2019-01-17 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement |
US10879431B2 (en) * | 2017-12-22 | 2020-12-29 | Lumileds Llc | Wavelength converting layer patterning for LED arrays |
CN109713106A (zh) * | 2018-11-15 | 2019-05-03 | 浙江英特来光电科技有限公司 | 一种led光源及其点胶方法 |
EP3767167B1 (en) * | 2018-11-22 | 2023-03-29 | Hangzhou Hanhui Optoelectronic Technology Co., Ltd. | Led light source for plant light supplementation and lamp comprising the same |
DE102018132955A1 (de) * | 2018-12-19 | 2020-06-25 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes bauelement |
KR102200206B1 (ko) * | 2019-02-01 | 2021-01-08 | (주)솔라루체 | Led 패키지 |
EP3942607A1 (en) | 2019-03-18 | 2022-01-26 | Intematix Corporation | Led-filament |
US11342311B2 (en) | 2019-03-18 | 2022-05-24 | Intematix Corporation | LED-filaments and LED-filament lamps utilizing manganese-activated fluoride red photoluminescence material |
CN113826225A (zh) | 2019-03-18 | 2021-12-21 | 英特曼帝克司公司 | 包括光致发光层状结构的封装白色发光装置 |
US11781714B2 (en) * | 2019-03-18 | 2023-10-10 | Bridgelux, Inc. | LED-filaments and LED-filament lamps |
CN110416391A (zh) * | 2019-08-28 | 2019-11-05 | 开发晶照明(厦门)有限公司 | 发光二极管封装元件 |
CN114843253A (zh) * | 2021-02-02 | 2022-08-02 | 光宝科技股份有限公司 | 发光装置 |
DE102021112359A1 (de) | 2021-05-12 | 2022-11-17 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische leuchtvorrichtung |
CN113675304A (zh) * | 2021-08-20 | 2021-11-19 | 江西兆驰半导体有限公司 | 一种氮化镓基发光二极管及其制作方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1224112C (zh) * | 1999-06-23 | 2005-10-19 | 西铁城电子股份有限公司 | 发光二极管 |
JP3393089B2 (ja) | 1999-06-23 | 2003-04-07 | 株式会社シチズン電子 | 発光ダイオード |
JP3492945B2 (ja) | 1999-07-19 | 2004-02-03 | 株式会社シチズン電子 | 発光ダイオード |
JP4101468B2 (ja) * | 2001-04-09 | 2008-06-18 | 豊田合成株式会社 | 発光装置の製造方法 |
JP4046485B2 (ja) | 2001-06-05 | 2008-02-13 | シャープ株式会社 | 窒化物系化合物半導体発光素子 |
JP2004071710A (ja) * | 2002-08-02 | 2004-03-04 | Nippon Leiz Co Ltd | 光源装置の製造方法および該方法により製造された光源装置 |
JP4254266B2 (ja) * | 2003-02-20 | 2009-04-15 | 豊田合成株式会社 | 発光装置及び発光装置の製造方法 |
US20080231170A1 (en) * | 2004-01-26 | 2008-09-25 | Fukudome Masato | Wavelength Converter, Light-Emitting Device, Method of Producing Wavelength Converter and Method of Producing Light-Emitting Device |
JP2007116131A (ja) * | 2005-09-21 | 2007-05-10 | Sanyo Electric Co Ltd | Led発光装置 |
US20070080636A1 (en) * | 2005-10-07 | 2007-04-12 | Taiwan Oasis Technology Co., Ltd. | White multi-wavelength LED & its manufacturing process |
JP2009267289A (ja) | 2008-04-30 | 2009-11-12 | Citizen Electronics Co Ltd | 発光装置 |
JP5284006B2 (ja) * | 2008-08-25 | 2013-09-11 | シチズン電子株式会社 | 発光装置 |
JP2010245481A (ja) | 2009-04-10 | 2010-10-28 | Sharp Corp | 発光装置 |
JP5332921B2 (ja) | 2009-06-05 | 2013-11-06 | 三菱化学株式会社 | 半導体発光装置、照明装置、及び画像表示装置 |
JP5707697B2 (ja) * | 2009-12-17 | 2015-04-30 | 日亜化学工業株式会社 | 発光装置 |
JP5047264B2 (ja) * | 2009-12-22 | 2012-10-10 | 株式会社東芝 | 発光装置 |
JP2012087162A (ja) * | 2010-10-15 | 2012-05-10 | Nippon Electric Glass Co Ltd | 波長変換部材およびそれを用いてなる光源 |
-
2013
- 2013-05-29 JP JP2014521254A patent/JP6062431B2/ja not_active Expired - Fee Related
- 2013-05-29 US US14/361,216 patent/US9437787B2/en active Active
- 2013-05-29 CN CN201380003789.XA patent/CN103918093B/zh not_active Expired - Fee Related
- 2013-05-29 WO PCT/JP2013/064909 patent/WO2013190962A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013190962A1 (ja) | 2013-12-27 |
US9437787B2 (en) | 2016-09-06 |
CN103918093A (zh) | 2014-07-09 |
JPWO2013190962A1 (ja) | 2016-05-26 |
CN103918093B (zh) | 2017-02-22 |
US20140353704A1 (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6062431B2 (ja) | 半導体発光装置 | |
JP6578588B2 (ja) | 蛍光体部材及び発光装置 | |
JP4991026B2 (ja) | 発光装置 | |
TWI278995B (en) | Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element | |
US20190019927A1 (en) | Semiconductor light emitting device and method for manufacturing the same | |
US8541801B2 (en) | Light-emitting-device package and a method for producing the same | |
JP5066786B2 (ja) | 窒化物蛍光体及びそれを用いた発光装置 | |
JP5151301B2 (ja) | 半導体発光素子及びその製造方法 | |
US20110049552A1 (en) | Light emitting diode package | |
KR20100091992A (ko) | 발광장치 및 그 제조방법 | |
TW201419592A (zh) | 發光裝置 | |
US20140070243A1 (en) | Light-emitting device and method of manufacturing the same | |
JP5644967B2 (ja) | 発光装置及びその製造方法 | |
JP6058939B2 (ja) | 発光装置及び発光装置の製造方法 | |
KR20120030286A (ko) | 적색 형광체, 이의 제조방법 및 이를 포함하는 발광장치 | |
JP2007300134A (ja) | 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置 | |
JP2002050800A (ja) | 発光装置及びその形成方法 | |
KR20110117415A (ko) | 반도체 발광소자, 반도체 발광소자 패키지 및 반도체 발광소자의 제조방법 | |
JP2006332501A (ja) | 発光ダイオード(led)及び発光ダイオードの製造方法 | |
JP2010118620A (ja) | 発光装置 | |
JP6062675B2 (ja) | 発光装置及び照明装置 | |
JP2001156336A (ja) | 発光ダイオード | |
JP3674387B2 (ja) | 発光ダイオードおよびその形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6062431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |