JP6038058B2 - ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法 - Google Patents

ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法 Download PDF

Info

Publication number
JP6038058B2
JP6038058B2 JP2014036037A JP2014036037A JP6038058B2 JP 6038058 B2 JP6038058 B2 JP 6038058B2 JP 2014036037 A JP2014036037 A JP 2014036037A JP 2014036037 A JP2014036037 A JP 2014036037A JP 6038058 B2 JP6038058 B2 JP 6038058B2
Authority
JP
Japan
Prior art keywords
group
gas separation
gas
formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014036037A
Other languages
English (en)
Other versions
JP2015160167A (ja
Inventor
幸治 弘中
幸治 弘中
岳史 成田
岳史 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014036037A priority Critical patent/JP6038058B2/ja
Priority to PCT/JP2015/054682 priority patent/WO2015129554A1/ja
Publication of JP2015160167A publication Critical patent/JP2015160167A/ja
Application granted granted Critical
Publication of JP6038058B2 publication Critical patent/JP6038058B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法に関する。
高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。そして、この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、その二酸化炭素等の不純物を除去する手段として膜分離方法が検討されている(特許文献1)。
膜分離方法を用いた天然ガスの精製では、より効率的にガスを分離するために、優れたガス透過性と分離選択性が求められる。これを実現するために種々の膜素材が検討されており、具体例として、ポリイミド化合物を用いたガス分離膜の検討が行われてきた。例えば非特許文献1には、カルボキシ基や水酸基等の極性基を導入したポリイミド化合物を用いることで、ガス分離膜の分離選択性を高めたことが記載されている。
また、実際のプラントにおいては、高圧条件や天然ガス中に存在する不純物(例えば、ベンゼン、トルエン、キシレン)の影響等によって膜が可塑化し、これによる分離選択性の低下が問題となる。この膜の可塑化を抑制するために、膜を構成するポリイミド化合物に架橋構造や分岐構造を導入することが有効であることが知られている(例えば、特許文献2〜7)。
実用的なガス分離膜とするためには、ガス分離選択性を確保するだけでなく、ガス分離層を薄層にして十分なガス透過性も確保しなければならない。そのための手法として、ポリイミド化合物等の高分子化合物を相分離法により非対称膜とすることで、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層をガス分離層とし、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
また、上記非対称膜の他に、ガス分離機能を担う素材と機械強度を担う素材とを別素材とする複合膜の形態も知られている。この複合膜は、機械強度の担うガス透過性支持体上に、ポリイミド等の高分子化合物からなる薄層のガス分離層が形成された構造を持つ。
特開2007−297605号公報 特開2013−188742号公報 特開2013−169485号公報 特開2013−046904号公報 特開2013−046903号公報 特開2013−046902号公報 特開2013−027819号公報
Journal of Membrane Science 2003,211,p41-49
上記のように、ガス透過性を向上させるためにガス分離層を薄層化した場合でも、ガス透過性とガス分離選択性を高いレベルで両立するのは容易ではない。ガス分離層を構成する高分子化合物の共重合成分を調整することで、ガス透過性又はガス分離選択性を調整することができるが、両者はトレードオフ関係にあり、両者をより高いレベルで両立するにはガス分離層の素材自体のさらなる改良が必要である。
本発明は、ガス透過性とガス分離選択性のいずれも良好なガス分離膜であって、高圧条件下で使用してもガス分離性能が低下しにくく、しかも天然ガス中に存在するトルエン等の不純物成分の影響も受けにくいガス分離膜を提供することを課題とする。また、本発明は、上記ガス分離膜を用いたガス分離モジュール、ガス分離装置、及びガス分離方法を提供することを課題とする。
本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、カルバモイル基を特定量含有するポリイミド化合物を用いてガス分離層を形成することで、ガス透過性とガス分離選択性のいずれにも優れ、且つ、高圧条件下で使用してもガス分離性能が低下しにくく、しかもトルエン等の不純物成分に対して高い耐性を示すガス分離膜が得られることを見い出した。本発明は、これらの知見に基づき完成させるに至ったものである。
上記の課題は以下の手段により達成された。
〔1〕
ポリイミド化合物を含有してなるガス分離層を有するガス分離膜であって、
上記ポリイミド化合物がカルバモイル基を有し、上記ポリイミド化合物中の上記カルバモイル基の含有量が0.1〜3.0mmol/gである、ガス分離膜。
〔2〕
上記ポリイミド化合物が、下記式(A)又は(B)で表される繰り返し単位を含む、〔1〕に記載のガス分離膜。
Figure 0006038058
式(A)中、Rは下記式(I−1)〜(I−28)のいずれかで表される構造の基を示す。ここでX〜Xは単結合又は2価の連結基を、Lは−CH=CH−又は−CH−を、R及びRは水素原子又は置換基を示し、*は式(A)中のカルボニル基との結合部位を示す。Rは置換基を示し、l1は1〜4の整数を示す。l1が1の場合、Rはカルバモイル基を有する基である。l1が2〜4の場合、Rの少なくとも1つはカルバモイル基を有する基である。
Figure 0006038058
式(B)中、Rは上記式(A)におけるRと同義である。R及びRは置換基を示す。m1及びn1は0〜4の整数であるが、m1とn1が共に0であることはない。m1が0の場合、Rの少なくとも1つはカルバモイル基を有する基であり、n1が0の場合、Rの少なくとも1つはカルバモイル基を有する基である。m1とn1が共に1以上である場合、R及びRの少なくとも1つはカルバモイル基を有する基である。Xは単結合又は2価の連結基を示す。
Figure 0006038058
〔3〕
上記式(A)で表される繰り返し単位が、下記式(a)で表される繰り返し単位である、〔2〕に記載のガス分離膜:
Figure 0006038058
式(a)中、Rは上記式(A)のRと同義である。R4aは、水素原子であるか、又はカルバモイル基を有さない置換基を示す。
〔4〕
上記ガス分離膜が、上記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、〔1〕〜〔3〕のいずれかに記載のガス分離膜。
〔5〕
上記支持層が、ガス分離層側の多孔質層と、その逆側の不織布層とからなる、〔4〕に記載のガス分離膜。
〔6〕
分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であり、二酸化炭素とメタンとの透過速度比(RCO2/RCH4)が15以上である、〔1〕〜〔5〕のいずれかに記載のガス分離膜。
〔7〕
二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、〔1〕〜〔6〕のいずれかに記載のガス分離膜。
〔8〕
〔1〕〜〔7〕のいずれかに記載のガス分離膜を具備するガス分離モジュール。
〔9〕
〔8〕に記載のガス分離モジュールを備えたガス分離装置。
〔10〕
〔1〕〜〔7〕のいずれかに記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。また、特に断らない場合であっても、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
本明細書において化合物の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させた誘導体を含む意味である。
本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
本明細書において置換基というときには、特に断らない限り、後記置換基群Zをその好ましい範囲とする。
本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、ガス透過性に優れ、且つ、ガス分離性能も高い。また、高圧条件下における使用や、トルエン等の不純物成分を含むガスの分離に用いても、ガス分離性能の低下が生じにくい。
本発明のガス分離方法によれば、より高い透過性で、且つ、より高い選択性でガスを分離することができる。さらに、高圧条件下でガスを分離しても、また、ガス中に不純物が存在しても、高いガス分離性能が持続する。
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。
以下、本発明について詳細に説明する。
本発明のガス分離膜は、特定量のカルバモイル基を有するポリイミド化合物を含んでなるガス分離層を備えている。
[ポリイミド化合物]
本発明に用いるポリイミド化合物は、その構造中にカルバモイル基(−C(=O)NH)を含有する。本発明に用いるポリイミド化合物中のカルバモイル基の含有量は、0.1〜3.0mmol/gである。ポリイミド化合物中のカルバモイル基の含有量が0.1mmol/gより少ないと、ポリイミド化合物に十分な極性を付与することができず、その結果、ポリイミド分子鎖間の相互作用が弱く、ポリイミド膜を十分に緻密化できない(ポリイミド分子鎖間の相互作用によるポリイミド分子の集合が十分に密にならない)ため、所望のガス分離性能が得られにくくなる。また、ポリイミド化合物中のカルバモイル基の含有量が3.0mmol/gよりも多いと、ポリイミド化合物間の相互作用が強くなりすぎて溶媒に対する溶解性が低下し、成膜しにくくなる。また、成膜できた場合でも、十分なガス透過性を示さないことがある。本発明に用いるポリイミド化合物中のカルバモイル基の含有量は、0.2〜2.5mmol/gであることが好ましく、0.3〜2.0mmol/gであることがより好ましく、0.4〜1.5mmol/gであることがさらに好ましい。
本発明に用いるポリイミド化合物中、カルバモイル基を有する構造に特に制限はない。具体的には、後述するようにポリイミド化合物がテトラカルボン酸二無水物とジアミン化合物との縮重合反応により合成される場合、テトラカルボン酸二無水物成分がカルバモイル基を有していても良いし、ジアミン成分がカルバモイル基を有していても良いし、テトラカルボン酸二無水物成分とジアミン成分の双方がカルバモイル基を有していてもよい。
本発明に用いるポリイミド化合物は、下記式(A)又は(B)で表される繰り返し単位を少なくとも含むことが好ましい。
Figure 0006038058
式(A)において、Rは、下記式(I−1)〜(I−28)のいずれかで表される構造の基を示す。下記式(I−1)〜(I−28)において、*は式(A)のカルボニル基との結合部位を示す。式(A)におけるRを母核と呼ぶことがあるが、この母核Rは式(I−1)、(I−2)または(I−4)で表される基であることが好ましく、(I−1)または(I−4)で表される基であることがより好ましく、(I−1)で表される基であることが特に好ましい。
Figure 0006038058
上記式(I−1)、(I−9)及び(I−18)中、X〜Xは、単結合又は2価の連結基を示す。この2価の連結基としては、−C(R−(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、−O−、−SO−、−C(=O)−、−S−、−NR−(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、−C−(フェニレン基)、又はこれらの組み合わせが好ましく、単結合又は−C(R−がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zに示されたアルキル基と同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。なお、式(I−18)は、Xが、その左側に記載された2つの炭素原子のいずれか一方、及び、その右側に記載された2つの炭素原子のうちいずれか一方と連結していることを意味する。
上記式(I−4)、(I−15)、(I−17)、(I−20)、(I−21)及び(I−23)中、Lは−CH=CH−又は−CH−を示す。
上記式(I−7)中、R、Rは水素原子又は置換基を示す。その置換基としては、後述する置換基群Zに列挙された基が挙げられる。RおよびRは互いに結合して環を形成していてもよい。
、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。
式(I−1)〜(I−28)中に示された炭素原子はさらに置換基を有していてもよい。この置換基の具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基又はアリール基が好ましい。
上記式(A)中、Rは置換基を示し、l1は1〜4の整数を示す。l1が1の場合、Rはカルバモイル基(−C(=O)NH)を有する基である。l1が2〜4の場合、Rの少なくとも1つはカルバモイル基を有する基であり、Rの1つ又は2つがカルバモイル基を有する基であることが好ましい。Rがカルバモイル基を有さない置換基である場合、この置換基の具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(より好ましくは炭素数1〜10、さらに好ましくは炭素数1〜5のアルキル基、さらに好ましくはエチル又はメチル)、ハロゲン原子、アルコキシ基(好ましくは炭素数1〜10、より好ましくは炭素数1〜5のアルコキシ基)、又は芳香族基(好ましくは炭素数3〜20の芳香族基、より好ましくは炭素数3〜20の芳香族複素環基(好ましくは環構成原子に窒素原子を含む)、さらに好ましくは炭素数4〜15の芳香族複素環基(好ましくは環構成原子に窒素原子を含む))が好ましい。
本明細書において、「カルバモイル基を有する基」はカルバモイル基を有していれば特に制限はないが、カルバモイル基又はカルバモイルアルキル基(好ましくは炭素数2〜10、より好ましくは炭素数2〜5のカルバモイルアルキル基、さらに好ましくはカルバモイルエチル又はカルバモイルメチル、さらに好ましくはカルバモイルメチル)が好ましく、なかでもカルバモイル基又はカルバモイルメチルが好ましい。
上記式(A)で表される繰り返し単位は、下記式(a)で表される繰り返し単位であることが好ましい。
Figure 0006038058
式(a)中、Rは上記式(A)におけるRと同義であり、好ましい形態も同じである。R4aは水素原子であるか、又はカルバモイル基を有さない置換基を示す。このカルバモイル基を有さない置換基の具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(より好ましくは炭素数1〜10、さらに好ましくは炭素数1〜5のアルキル基、さらに好ましくはエチル又はメチル)、ハロゲン原子、アルコキシ基(好ましくは炭素数1〜10、より好ましくは炭素数1〜5のアルコキシ基)、又は芳香族基(好ましくは炭素数3〜20の芳香族基、より好ましくは炭素数3〜20の芳香族複素環基(好ましくは環構成原子に窒素原子を含む)、さらに好ましくは炭素数4〜15の芳香族複素環基(好ましくは環構成原子に窒素原子を含む))が好ましい。なかでも、R4aのすべてが水素原子である形態、R4aのすべてがハロゲン原子である形態、カルバモイル基に対してオルト位に位置する2つのR4aが水素原子であり、パラ位に位置するR4aがアルキル基(より好ましくは炭素数1〜10、さらに好ましくは炭素数1〜5のアルキル基、さらに好ましくはエチル又はメチル)、アルコキシ基(好ましくは炭素数1〜10、より好ましくは炭素数1〜5のアルコキシ基)、又は芳香族基(好ましくは炭素数3〜20の芳香族基、より好ましくは炭素数3〜20の芳香族複素環基(好ましくは環構成原子に窒素原子を含む)、さらに好ましくは炭素数4〜15の芳香族複素環基(好ましくは環構成原子に窒素原子を含む))である形態、カルバモイル基に対してオルト位に位置するR4aのうち1つが水素原子であり、残る2つのR4aがアルコキシ基(好ましくは炭素数1〜10、より好ましくは炭素数1〜5のアルコキシ基)、又は芳香族基(好ましくは炭素数3〜20の芳香族基、より好ましくは炭素数3〜20の芳香族複素環基(好ましくは環構成原子に窒素原子を含む)、さらに好ましくは炭素数4〜15の芳香族複素環基(好ましくは環構成原子に窒素原子を含む))である形態が好ましい。
Figure 0006038058
式(B)中、Rは上記式(A)におけるRと同義である。R及びRは置換基を示す。m1及びn1はいずれも0〜4の整数であるが、m1とn1が共に0であることはない。
m1が0の場合、Rの少なくとも1つはカルバモイル基を有する基である。すなわち、m1が0の場合において、n1が1の場合にはRはカルバモイル基を有する基であり、n1が2の場合にはRの1つ又は2つがカルバモイル基を有する基であり、n1が3の場合には、Rの1つ、2つ又は3つがカルバモイル基を有する基であり、n1が4の場合には、Rの1つ、2つ、3つ又は4つがカルバモイル基を有する基である。m1が0の場合、n1が1であることが好ましい。
n1が0の場合、Rの少なくとも1つはカルバモイル基を有する基である。すなわち、n1が0の場合において、m1が1の場合にはRはカルバモイル基を有する基であり、m1が2の場合にはRの1つ又は2つがカルバモイル基を有する基であり、m1が3の場合には、Rの1つ、2つ又は3つがカルバモイル基を有する基であり、m1が4の場合には、Rの1つ、2つ、3つ又は4つがカルバモイル基を有する基である。n1が0の場合、m1が1であることが好ましい。
m1とn1が共に1以上である場合、R及びRの少なくとも1つがカルバモイル基を有する基である。ここで、「R及びRの少なくとも1つがカルバモイル基を有する基である」とは、Rの少なくとも1つがカルバモイル基を有する基であってRのすべてがカルバモイル基を有さない態様、及びRの少なくとも1つがカルバモイル基を有する基であってRのすべてがカルバモイル基を有さない態様を含む意味に用いる。m1とn1が共に1以上である場合、Rの少なくとも1つがカルバモイル基を有する基であり、且つ、Rの少なくとも1つがカルバモイル基を有する基であることが好ましい。なかでも、m1とn1が共に1であり、且つ、RとRが共にカルバモイル基を有する基であることが好ましい。
及びRがカルバモイル基を有する基でない場合、R及びRが採用しうる置換基の具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(より好ましくは炭素数1〜10、さらに好ましくは炭素数1〜5のアルキル基、さらに好ましくはエチル又はメチル)又はハロゲン原子が好ましい。
上記式(B)中、Xは上記式(I−1)におけるXと同義であり、好ましい形態も同じである。
本発明に用いるポリイミド化合物は、下記式(C)又は(D)で表される繰り返し単位を含んでもよい。
Figure 0006038058
Figure 0006038058
上記式(C)及び(D)中、Rは式(A)中のRと同義であり、好ましい形態も同じである。R〜Rは置換基を示す。置換基としては、後述する置換基群Zが挙げられる。
上記式(C)において、Rはアルキル基、ハロゲン原子、カルボキシ基又はヒドロキシ基であることが好ましい。Rの数を示すp2は0〜4の整数であるが、1〜4であることが好ましく、2〜4であることがより好ましく、より好ましくは3又は4である。Rがアルキルである場合、このアルキル基の炭素数は1〜10であることが好ましく、1〜5であることがより好ましく、1〜3であることがさらに好ましく、さらに好ましくはメチル、エチル又はトリフルオロメチルである。
式(C)において、ジアミン成分(すなわちRを有しうるフェニレン基)のポリイミド化合物に組み込まれるための2つの連結部位は、互いにメタ位又はパラ位に位置することが好ましい。
本発明において、上記式(C)で表される構造には、上記式(A)で表される構造は含まれないものとする(すなわち、上記式(C)で表される構造はカルバモイル基を有さない)。
上記式(D)において、R及びRはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基であることが好ましい。また、2つのRが連結して環を形成している形態や、2つのRが連結して環を形成している形態も好ましい。RとRが連結した構造に特に制限はないが、単結合、−O−又は−S−が好ましい。R及びRの数を示すq2及びr2は0〜4の整数であり、0〜3であることが好ましく、0〜2であることがより好ましい。R及びRがアルキル基である場合、このアルキル基の炭素数は1〜10であることが好ましく、1〜5であることがより好ましく、1〜3であることがさらに好ましく、さらに好ましくはメチル、エチル又はトリフルオロメチルである。
上記式(D)中、Xは上記式(I−1)におけるXと同義であり、好ましい形態も同じである。
本発明において、上記式(D)で表される構造には、上記式(B)で表される構造は含まれないものとする(すなわち、上記式(D)で表される構造はカルバモイル基を有さな)。
置換基群Z:
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10のアルキル基であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル)、シクロアルキル基(好ましくは炭素数3〜30、より好ましくは炭素数3〜20、特に好ましくは炭素数3〜10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10のアルケニル基であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10のアルキニル基であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリールオキシ基であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、
アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のヘテロ環チオ基であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、
スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、
シアノ基、スルホ基、カルボキシ基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3〜7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0〜30が好ましく、より好ましくは炭素数1〜12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
本明細書において、単に置換基としてしか記載されていないものは、特に断わりのない限りこの置換基群Zを参照するものであり、また、各々の基の名称が記載されているだけのとき(例えば、「アルキル基」と記載されているだけのとき)は、この置換基群Zの対応する基における好ましい範囲、具体例が適用される。
本発明に用いるポリイミド化合物が上記式(A)又は(B)で表される繰り返し単位を含む場合において、ポリイミド化合物中の上記式(A)又は(B)で表される繰り返し単位の含有量に特に制限はなく、ガス分離の目的(回収率、純度など)に応じガス透過性とガス分離選択性を考慮して適宜に調整される。
本発明に用いるポリイミド化合物は、式(A)、(B)、(C)及び(D)の各式で表される繰り返し単位の総和(100モル%)に対して、式(A)又は(B)で表される繰り返し単位の総量が5モル%以上であることが好ましく、10〜90モル%であることがより好ましく、20〜80モル%であることがさらに好ましく、30〜70モル%であることがさらに好ましい。式(A)又は(B)の繰り返し単位が有するカルバモイル基の数が多ければ、式(A)又は(B)で表される繰り返し単位の量をある程度減らしても、ポリイミド化合物中のカルバモイル基の量を本発明で規定する範囲内とすることができ、所望の効果を得ることができる。本発明に用いるポリイミド化合物は、繰り返し単位のすべてが式(A)、(B)、(C)又は(D)で表される構造であることが好ましい。
本発明に用いるポリイミド化合物の分子量は、重量平均分子量として10,000〜1000,000であることが好ましく、より好ましくは15,000〜500,000であり、さらに好ましくは20,000〜300,000である。
本明細書において分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン−ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2〜6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N−メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1〜2mL/minの範囲で行うことが好ましく、0.5〜1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10〜50℃で行うことが好ましく、20〜40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。
(ポリイミド化合物の合成)
本発明に用いるポリイミド化合物は、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、今井淑夫、横田力男編著、「最新ポリイミド〜基礎と応用〜」、株式会社エヌ・ティー・エス、2010年8月25日、p.3〜49、など)に記載の手法を適宜選択することができる。
本発明に用いるポリイミド化合物の合成において、原料として用いるテトラカルボン酸二無水物及びジアミン化合物のいずれか一方又は双方がカルバモイル基を有している。
本発明に用いうるポリイミド化合物の合成において、原料とするテトラカルボン酸二無水物の少なくとも1種は、下記式(IV)で表されることが好ましい。原料とするテトラカルボン酸二無水物のすべてが下記式(IV)で表されることが好ましい。
Figure 0006038058
式(IV)中、Rは上記式(A)におけるRと同義である。
本発明に用いうるテトラカルボン酸二無水物の具体例としては、例えば以下に示すものが挙げられる。
Figure 0006038058
Figure 0006038058
Figure 0006038058
本発明に用いるポリイミド化合物の合成において、原料とするジアミン化合物の少なくとも1種は、下記式(A−1)又は(B−1)で表されることが好ましい。
Figure 0006038058
式(A−1)中、R及びl1は、それぞれ上記式(A)におけるR及びl1と同義であり、好ましい形態も同じである。
上記式(A−1)で表されるジアミン化合物は、下記式(a−1)で表される化合物が好ましい。
Figure 0006038058
式(a−1)中、R4aは、上記式(a)におけるR4aと同義であり、好ましい形態も同じである。
Figure 0006038058
式(B−1)中、R、R、X、m1及びn1は、それぞれ上記式(B)におけるR、R、X、m1及びn1と同義であり、好ましい形態も同じである。
式(A−1)又は(B−1)で表されるジアミンの具体例としては、例えば、下記に示すものを挙げることができる。
Figure 0006038058
Figure 0006038058
また、本発明に用いうるポリイミド化合物の合成において、原料とするジアミン化合物として、上記式(A−1)又は(B−1)で表されるジアミンに加えて、下記式(C−1)又は(D−1)で表されるジアミンを用いてもよい。
Figure 0006038058
式(C−1)中、R及びp2は、それぞれ上記式(C)におけるR及びp2と同義であり、好ましい形態の同じである。式(C−1)で表されるジアミンには、式(A−1)で表されるジアミンは含まれない。
Figure 0006038058
式(D−1)中、R、R、X、q2及びr2は、それぞれ上記式(D)におけるR、R、X、q2及びr2と同義であり、好ましい形態も同じである。式(D−1)で表されるジアミンには、式(B−1)で表されるジアミンは含まれない。
式(C−1)又は(D−1)で表されるジアミンとして、例えば下記に示すものを用いることができる。
Figure 0006038058
Figure 0006038058
本発明に用いるポリイミド化合物は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。
本発明に用いるポリイミド化合物は、上記各原料を溶媒中に混合して、通常の方法で縮合重合させて得ることができる。
上記溶媒としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコールジメチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N−メチルピロリドン、2−ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルアセトアミド等のアミド系有機溶剤、ジメチルスルホキシド、スルホラン等の含硫黄系有機溶剤などが挙げられる。これらの有機溶剤は反応基質であるテトラカルボン酸二無水物、ジアミン化合物、反応中間体であるポリアミック酸、さらに最終生成物であるポリイミド化合物を溶解させることを可能とする範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)、アミド系(好ましくはN−メチルピロリドン)、含硫黄系(ジメチルスルホキシド、スルホラン)が好ましい。また、これらは、1種又は2種以上を組み合わせて用いることができる。
重合反応温度に特に制限はなくポリイミド化合物の合成において通常採用されうる温度を採用することができる。具体的には−40〜60℃であることが好ましく、より好ましくは−30〜50℃である。
上記の重合反応により生成したポリアミック酸を分子内で脱水閉環反応させることによりイミド化することで、ポリイミド化合物が得られる。脱水閉環させる方法としては、一般的な書籍(例えば、今井淑夫、横田力男編著、「最新ポリイミド〜基礎と応用〜」、株式会社エヌ・ティー・エス、2010年8月25日、p.3〜49、など)に記載の方法を参考とすることができる。例えば、120℃〜200℃に加熱して、副生する水を系外に除去しながら反応させる熱イミド化法や、ピリジンやトリエチルアミン、DBUのような塩基性触媒共存下で、無水酢酸やジシクロヘキシルカルボジイミド、亜リン酸トリフェニルのような脱水縮合剤を用いるいわゆる化学イミド化等の手法が好適に用いられる。
本発明において、ポリイミド化合物の重合反応液中のテトラカルボン酸二無水物及びジアミン化合物の総濃度は特に限定されるものではないが、5〜70質量%が好ましく、より好ましくは5〜50質量%が好ましく、さらに好ましくは5〜30質量%である。
本発明に用いるポリイミド化合物の具体例としては、後述する実施例に記載のP−01〜P−17や、P−01〜P−17において、各構造単位のモル比を適宜に変更したものが挙げられるが、本発明はこれらに限定されるものではなく、本発明の規定を満たすポリイミド化合物を広く用いることができる。
[ガス分離膜]
(ガス分離複合膜)
本発明のガス分離膜の好ましい態様であるガス分離複合膜は、ガス透過性の支持層の上側に、特定のポリイミド化合物を含有してなるガス分離層が形成されている。この複合膜は、多孔質の支持体の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。
図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は多孔質層からなる支持層(ガス透過性支持層)である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。
本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。
本発明のガス分離複合膜は、多孔質性の支持体(支持層)の表面ないし内面にガス分離層を形成・配置するようにしてもよく、少なくとも表面に形成して簡便に複合膜とすることができる。多孔質性の支持体の少なくとも表面にガス分離層を形成することで、高分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有する複合膜とすることができる。分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
本発明のガス分離複合膜において、ガス分離層の厚さは特に限定されないが、0.01〜5.0μmであることが好ましく、0.05〜2.0μmであることがより好ましい。
ガス透過性支持層に好ましく適用される多孔質支持体(多孔質層)は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1〜3000μm、好ましくは5〜500μmであり、より好ましくは5〜150μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20〜90%であり、より好ましくは30〜80%である。また、多孔質層の分画分子量が100,000以下であることが好ましい。さらに、その気体透過率は40℃、4MPaにおいて、二酸化炭素透過速度で3×10−5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。
本発明のガス分離複合膜においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。
<ガス分離複合膜の製造方法>
本発明の複合膜の製造方法は、好ましくは、上記ポリイミド化合物を含有する塗布液を支持体上に塗布してガス分離層を形成することを含む製造方法が好ましい。塗布液中のポリイミド化合物の含有量は特に限定されないが、0.1〜30質量%であることが好ましく、0.5〜10質量%であることがより好ましい。ポリイミド化合物の含有量が低すぎると、多孔質支持体上に製膜した際に、容易に下層に浸透してしまうがために分離に寄与する表層に欠陥が生じる可能性が高くなる。また、ポリイミド化合物の含有量が高すぎると、多孔質支持体上に製膜した際に孔内に高濃度に充填されてしまい、透過性が低くなる可能性がある。本発明のガス分離膜は、分離層のポリマーの分子量、構造、組成さらには溶液粘度を調整することで適切に製造することができる。
−有機溶剤−
塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n−ヘキサン、n−ヘプタン等の炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、tert−ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコールモノメチル又はモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチル又はモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチル又はモノエチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N−メチルピロリドン、2−ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。これらの有機溶剤は支持体を浸蝕するなどの悪影響を及ぼさない範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、アルコール系(好ましくはメタノール、エタノール、イソプロパノール、イソブタノール)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(エチレングリコール、ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)が好ましく、さらに好ましくは脂肪族ケトン系、アルコール系、エーテル系である。またこれらは、1種又は2種以上を組み合わせて用いることができる。
<支持層とガス分離層の間の他の層>
本発明のガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造と非シロキサン構造を有する化合物とが挙げられる。
−主鎖がポリシロキサンからなるシロキサン化合物−
シロキサン化合物層に用いうる、主鎖がポリシロキサンからなるシロキサン化合物としては、下記式(1)もしくは(2)で表されるポリオルガノシロキサンの1種又は2種以上が挙げられる。また、これらのポリオルガノシロキサンは架橋反応物を形成していてもよい。この架橋反応物としては、例えば、下記式(1)で表される化合物が、下記式(1)の反応性基Xと反応して連結する基を両末端に有するポリシロキサン化合物により架橋された形態の化合物が挙げられる。
Figure 0006038058
式(1)中、Rは非反応性基であって、アルキル基(好ましくは炭素数1〜18、より好ましくは炭素数1〜12のアルキル基)又はアリール基(好ましくは炭素数6〜15、より好ましくは炭素数6〜12のアリール基、さらに好ましくはフェニル)であることが好ましい。
Xは反応性基であって、水素原子、ハロゲン原子、ビニル基、ヒドロキシル基、及び置換アルキル基(好ましくは炭素数1〜18、より好ましくは炭素数1〜12のアルキル基)から選ばれる基であることが好ましい。
Y及びZは上記R又はXである。
本発明に用いるシロキサン化合物の粘度は、特に規定されるものではないが、25℃における粘度が10〜100,000mPa・sであることが好ましく、20〜50,000mPa・sであることがより好ましい。
mは1以上の数であり、好ましくは1〜100,000である。
nは0以上の数であり、好ましくは0〜100,000である。
Figure 0006038058
式(2)中、X、Y、Z、R、m及びnは、それぞれ式(1)のX、Y、Z、R、m及びnと同義である。
上記式(1)及び(2)において、非反応性基Rがアルキル基である場合、このアルキル基の例としては、メチル、エチル、へキシル、オクチル、デシル、及びオクタデシルを挙げることができる。また、非反応性基Rがフルオロアルキル基である場合、このフルオロアルキル基としては、例えば、−CHCHCF、−CHCH13が挙げられる。
上記式(1)及び(2)において、反応性基Xが置換アルキル基である場合、このアルキル基の例としては、炭素数1〜18のヒドロキシアルキル基、炭素数1〜18のアミノアルキル基、炭素数1〜18のカルボキシアルキル基、炭素数1〜18のクロロアルキル基、炭素数1〜18のグリシドキシアルキル基、グリシジル基、炭素数7〜16のエポキシシクロへキシルアルキル基、炭素数4〜18の(1−オキサシクロブタン−3−イル)アルキル基、メタクリロキシアルキル基、及びメルカプトアルキル基が挙げられる。
上記ヒドロキシアルキル基を構成するアルキル基の炭素数は1〜10の整数であることが好ましく、例えば、−CHCHCHOHが挙げられる。
上記アミノアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であることが好ましく、例えば、−CHCHCHNHが挙げられる。
上記カルボキシアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であることが好ましく、例えば、−CHCHCHCOOHが挙げられる。
上記クロロアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であることが好ましく、好ましい例としては−CHClが挙げられる。
上記グリシドキシアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であり、好ましい例としては、3−グリシジルオキシプロピルが挙げられる。
上記炭素数7〜16のエポキシシクロへキシルアルキル基の好ましい炭素数は8〜12の整数である。
炭素数4〜18の(1−オキサシクロブタン−3−イル)アルキル基の好ましい炭素数は4〜10の整数である。
上記メタクリロキシアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であり、例えば、−CHCHCH−OOC−C(CH)=CHが挙げられる。
上記メルカプトアルキル基を構成するアルキル基の好ましい炭素数は1〜10の整数であり、例えば、−CHCHCHSHが挙げられる。
m及びnは、化合物の分子量が5,000〜1000,000になる数であることが好ましい。
上記式(1)及び(2)において、反応性基含有シロキサン単位(式中、その数がnで表される構成単位)と反応性基を有さないシロキサン単位(式中、その数がmで表される構成単位)の分布に特に制限はない。すなわち、式(1)及び(2)中、(Si(R)(R)−O)単位と(Si(R)(X)−O)単位はランダムに分布していてもよい。
−主鎖にシロキサン構造と非シロキサン構造を有する化合物−
シロキサン化合物層に用いうる、主鎖にシロキサン構造と非シロキサン構造を有する化合物としては、例えば、下記式(3)〜(7)で表される化合物が挙げられる。
Figure 0006038058
式(3)中、R、m及びnは、それぞれ式(1)のR、m及びnと同義である。R’は−O−又は−CH−であり、R’’は水素原子又はメチルである。式(3)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、置換アルキル基であることが好ましい。
Figure 0006038058
式(4)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。
Figure 0006038058
式(5)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。
Figure 0006038058
式(6)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(6)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。
Figure 0006038058
式(7)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(7)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。
上記式(3)〜(7)において、シロキサン構造単位と非シロキサン構造単位とは、ランダムに分布していてもよい。
主鎖にシロキサン構造と非シロキサン構造を有する化合物は、全繰り返し構造単位の合計モル数に対して、シロキサン構造単位を50モル%以上含有することが好ましく、70モル%以上含有することがさらに好ましい。
シロキサン化合物層に用いるシロキサン化合物の重量平均分子量は、薄膜化と耐久性の両立の観点から、5,000〜1000,000であることが好ましい。重量平均分子量の測定方法は上述したとおりである。
さらに、シロキサン化合物層を構成するシロキサン化合物の好ましい例を以下に列挙する。
ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリスルホン−ポリヒドロキシスチレン−ポリジメチルシロキサン共重合体、ジメチルシロキサン−メチルビニルシロキサン共重合体、ジメチルシロキサン−ジフェニルシロキサン−メチルビニルシロキサン共重合体、メチル−3,3,3−トリフルオロプロピルシロキサン−メチルビニルシロキサン共重合体、ジメチルシロキサン−メチルフェニルシロキサン−メチルビニルシロキサン共重合体、ジフェニルシロキサン−ジメチルシロキサン共重合体末端ビニル、ポリジメチルシロキサン末端ビニル、ポリジメチルシロキサン末端H、及びジメチルシロキサン−メチルハイドロシロキサン共重合体から選ばれる1種又は2種以上。なお、これらは架橋反応物を形成している形態も含まれる。
本発明の複合膜において、シロキサン化合物層の厚さは、平滑性およびガス透過性の観点から、0.01〜5μmであることが好ましく、0.05〜1μmであることがより好ましい。
また、シロキサン化合物層の40℃、4MPaにおける気体透過率は二酸化炭素透過速度で100GPU以上であることが好ましく、300GPU以上であることがより好ましく、1000GPU以上であることがさらに好ましい。
(ガス分離非対称膜)
本発明のガス分離膜は、非対称膜であってもよい。非対称膜は、ポリイミド化合物を含む溶液を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層(ガス分離層)を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらの提案(例えば、米国特許第3,133,132号明細書)したものである。
本発明のガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層(ガス分離層)の厚さは特に限定されないが、実用的なガス透過性を付与する観点から、0.01〜5.0μmであることが好ましく、0.05〜1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されるものではないが5〜500μmであることが好ましく、5〜200μmであることがより好ましく、5〜100μmであることがさらに好ましい。
本発明のガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。
ノズルから吐出させるポリイミド化合物を含む溶液の溶液粘度は、吐出温度(例えば10℃)で2〜17000Pa・s、好ましくは10〜1500Pa・s、特に20〜1000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたポリイミド化合物の軟化点又は二次転移点よりも低い温度で実施することが好ましい。
本発明のガス分離非対称膜は、機械的強度をより高めるために、その引張強度は10N/mm以上が好ましく、12N/mm以上がより好ましい。この引張強度の上限に特に制限はないが、通常には25N/mm以下であり、20N/mm以下であってもよい。また、本発明のガス分離非対称膜の圧縮強さは、10MPa以上が好ましく、15MPa以上がより好ましい。この圧縮強さの上限に特に制限はないが、通常には50MPa以下であり、40MPa以下であってもよい。
本発明のガス分離非対称膜に、上記機械的強度と共に適度な柔軟性も付与するために、本発明のガス分離非対称膜の破断伸度は、12%以上が好ましく、16%以上がより好ましい。この破断伸度の上限に特に制限はないが、通常には25%以下であり、20%以下であってもよい。また、同様の観点から、本発明のガス分離非対称膜の引張弾性率は、100MPa以下であることが好ましく、90MPa以下であることがより好ましく、80MPa以下であることがさらに好ましい。引張弾性率の下限値は、機械的強度との両立を図るために、通常には10MPa以上であり、20MPa以上であってもよく、30MPa以上であってもよく、40MPa以上とすることもできる。
本発明のガス分離膜において、ガス分離層中のポリイミド化合物の含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中のポリイミド化合物の含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることが好ましく、70質量%以上であることがさらに好ましい。また、ガス分離層中のポリイミド化合物の含有量は、100質量%であってもよいが、通常は99質量%以下である。
(ガス分離膜の用途と特性)
本発明のガス分離膜(複合膜及び非対称膜)は、ガス分離回収、ガス分離精製に好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であることが好ましく、30GPU超であることがより好ましく、50〜500GPUであることがより好ましい。二酸化炭素とメタンとの透過速度比(RCO2/RCH4)は15以上であることが好ましく、20以上であることがより好ましく、23以上であることがさらに好ましく、25〜50であることが特に好ましい。RCO2は二酸化炭素の透過速度、RCH4はメタンの透過速度を示す。
なお、1GPUは1×10−6cm(STP)/cm・sec・cmHgである。
(その他の成分等)
本発明のガス分離膜のガス分離層には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。
また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤や、有機フルオロ化合物などを添加することもできる。
界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタインやアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッソ系界面活性剤などを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。
また、高分子分散剤を含んでいてもよく、この高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。
本発明のガス分離膜を形成する条件に特に制限はないが、温度は−30〜100℃が好ましく、−10〜80℃がより好ましく、5〜50℃が特に好ましい。
本発明においては、膜を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。
[ガス混合物の分離方法]
本発明のガス分離方法は、本発明のガス分離膜を用いて二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法である。ガス分離の際の圧力は0.5〜10MPaであることが好ましく、1〜10MPaであることがより好ましく、2〜7MPaであることがさらに好ましい。また、ガス分離温度は、−30〜90℃であることが好ましく、15〜70℃であることがさらに好ましい。二酸化炭素とメタンガスとを含む混合ガスにおいて、二酸化炭素とメタンガスの混合比に特に制限はないが、二酸化炭素:メタンガス=1:99〜99:1(体積比)であることが好ましく、二酸化炭素:メタンガス=5:95〜90:10であることがより好ましい。
[ガス分離モジュール・ガス分離装置]
本発明のガス分離膜を用いてガス分離モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。
また、本発明のガス分離膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。本発明のガス分離膜は、例えば、特開2007−297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
[合成例]
<ポリイミド(P−1)の合成>
2Lフラスコに、3,5−ジニトロベンズアミド(Sigma−Aldrich社製)14.0g(66mmol)を入れた後、メタノール600mLを加えて完溶させた。この3,5−ジニトロベンズアミドの溶液をSUS製耐圧容器(容量1.0L、日東高圧社製)に移した後、パラジウム炭素(パラジウム含率5%、約50%水湿潤品、川研ファインケミカル社製)2.8gを添加し、攪拌しながら1.0〜8.0MPaの水素圧をかけ、接触水素化を行った。接触水素化中は、水素圧とヒーターの温度を調整し、反応溶液の温度を35〜45℃に保ったまま、7時間撹拌し続けた。生成物等が析出しないように、反応溶液は約40℃のまま冷却せずに、耐圧容器からアスピレーターで2Lフラスコに移し、速やかにセライトろ過してパラジウム炭素を除いた。ろ過で得られた赤褐色溶液から、メタノールを減圧除去した。得られた固体をメタノールと水を用いた再結晶により精製し、目的の3,5−ジアミノベンズアミド3.4gを得た。
上記合成により得られた3,5−ジアミノベンズアミド1.09g(7.24mmol)、2,3,5,6−テトラメチル−1,4−フェニレンジアミン1.78g(10.86mmol)、N−メチルピロリドン50mLを300mLフラスコに入れて、窒素雰囲気下、攪拌して完溶させた。氷冷メタノールにより溶液を−10℃まで冷却した後、6FDA(東京化成工業社製)8.04g(18.1mmol)を添加し、N−メチルピロリドン6mLで洗い込んだ。オイルバスにより反応溶液を40℃まで昇温させた後、5時間攪拌した。ピリジン(和光純薬工業社製)0.43g(5.4mmol)、無水酢酸(和光純薬工業社製)6.10g(59.7mmol)を加え、反応溶液を80℃まで昇温させた後、3時間攪拌した。反応溶液を室温まで冷却し、アセトン80mLを加え、30分攪拌した。メタノール250mLを10分間かけて加え、P−1を白色粉体として析出させた。吸引ろ過して得られた白色粉体に対し、メタノール250mLを用いたリスラリー洗浄を4回繰り返し行い、N−メチルピロリドンを0.1%以下まで除去した後、送風乾燥機で40℃、12時間乾燥し、ポリイミド(P−01)9.23g(収率90%)を得た。ポリイミド(P−01)中のカルバモイル基の含有量は0.71mmol/gであった。
Figure 0006038058



<ポリイミド(P−02〜17)、比較ポリイミド01〜04の合成>
上記合成例に準じて、下記構造単位(繰り返し単位)からなるポリイミド(P−02〜17、比較ポリイミド01〜04)を合成した。
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
Figure 0006038058
<比較ポリマー>
下記構造単位(繰り返し単位)からなるセルロースアセテートとして市販品(商品名:L−70、ダイセル社製、酢化度0.55)を用いた。酢化度は、単位重量当たりの結合酢酸の重量百分率を意味する。
Figure 0006038058
[実施例1] 複合膜の作製
<平滑層付PAN多孔質膜の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
150mLの3口フラスコにUV9300(Momentive社製)39g、X−22−162C(信越化学工業社製)10g、DBU(1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン)0.007gを加え、n−ヘプタン50gに溶解させた。これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
(重合性の放射線硬化性組成物の調製)
上記放射線硬化性ポリマー溶液5gを20℃まで冷却し、n−ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5gおよびオルガチックスTA−10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(重合性の放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として上記の重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D−バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有する厚み1μmの平滑層を形成した。
<複合膜の作製>
30ml褐色バイアル瓶に、ポリイミド(P−01)を1.4g、テトラヒドロフラン8.6gを混合して30分攪拌した後、上記平滑層を付与したPAN多孔質膜上にスピンコートし、複合膜(実施例1)を得た。ポリイミド(P−01)層の厚さは約150nmであり、ポリアクリロニトリル多孔質膜の厚さは不織布を含めて約180μmであった。
なお、これらのポリアクリロニトリル多孔質膜の分画分子量は100,000以下のものを使用した。また、この多孔質膜の40℃、5MPaにおける二酸化炭素の透過性は、25000GPUであった。
[実施例2〜17] 複合膜の作製
上記実施例1において、ポリイミド(P−01)を表1に記載のとおりに変更したこと以外は実施例1と同様にして、表1に示す実施例2〜17の複合膜を作製した。
[比較例1〜5] 複合膜の作製
上記実施例1において、ポリイミド(P−01)を比較ポリイミド01〜04又はセルロースアセテート(比較ポリマー)に変更したこと以外は実施例1と同様にして、比較例1〜5の複合膜を作製した。
[実施例18] 非対称膜の作製
上記と同様に調製したポリイミド(P−01)の0.5gに対してメチルエチルケトン2.5g、N,N−ジメチルホルムアミド2.5g、n−ブタノール0.6gの混合溶液を加えて溶解させたのち、孔径5.0μmのPTFE製精密濾過膜でろ過し、これをドープ液とした。清浄なガラス板の上にポリエステル製不織布(阿波製紙社製、膜厚:95μm)を敷き、さらに上記ドープ液を室温(20℃)の環境で展開し、30秒静置したのち、一次凝固液(0℃、75重量%メタノール水溶液)に1時間浸漬したのち、さらに二次凝固液(0℃、75重量%メタノール水溶液)に1時間浸漬することで非対称膜を作製した。得られた非対称膜をメタノールで洗浄した後、イソオクタンでメタノールを置換し、更に50℃で8時間、110℃で6時間加熱してイソオクタンを蒸発乾燥させることで緻密なスキン層が0.1μm以下、ポリイミド層総膜厚が40μmの非対称膜(実施例18)を得た。
[実施例19] 非対称膜の作製
上記実施例18において、ポリイミド(P−01)をポリイミド(P−02)に変更したこと以外は実施例18と同様にして実施例19の非対称膜を作製した。
[比較例6] 非対称膜の作製
上記実施例18において、ポリイミド(P−01)を比較ポリイミド01に変更したこと以外は実施例18と同様にして比較例6の非対称膜を作製した。
[比較例7] 非対称膜の作製
上記実施例18において、ポリイミド(P−01)をセルロースアセテート(比較ポリマー)に変更したこと以外は実施例18と同様にして比較例7の非対称膜を作製した。
[試験例1] ガス分離膜のCO透過速度及びガス分離選択性の評価−1
上記各実施例および比較例のガス分離膜(複合膜及び非対称膜)を用いて、ガス分離性能を以下のように評価した。
ガス分離膜を多孔質支持体(支持層)ごと直径47mmに切り取り、透過試験サンプルを作製した。GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO)、メタン(CH)が40:60(体積比)の混合ガスをガス供給側の全圧力が4MPa(COの分圧:1.6MPa)、流量500mL/min、40℃となるように調整し供給した。透過してきたガスをガスクロマトグラフィーにより分析した。膜のガス透過性は、ガス透過率(Permeance)としてガス透過速度を算出することにより比較した。ガス透過率(ガス透過速度)の単位はGPU(ジーピーユー)単位〔1GPU=1×10−6cm(STP)/cm・sec・cmHg〕で表した。ガス分離選択性は、この膜のCHの透過速度RCH4に対するCOの透過速度RCO2の比率(RCO2/RCH4)として計算した。
[試験例2] トルエン暴露試験
トルエン溶媒を張った蓋のできるガラス製容器内に、100mlの空のビーカーを静置し、さらに実施例および比較例において作製したガス分離膜の切片をビーカーの中に入れ、ガラス製容器にガラス製の蓋を施し、密閉系とした。その後、40℃条件下で5時間保存した後、上記[試験例1]と同様にガス分離性能を評価した。トルエン暴露によって、ベンゼン、トルエン、キシレン等の不純物成分に対するガス分離膜の可塑化耐性を評価できる。
[試験例3] ガス分離膜のCO透過速度及びガス分離選択性の評価−2
上記実施例1、5、8、18及び19並びに比較例2、5、6及び7のガス分離膜(複合膜及び非対称膜)を用いて、ガス分離性能を以下のように評価した。
ガス分離膜を多孔質支持体(支持層)ごと直径47mmに切り取り、透過試験サンプルを作成した。GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO)、メタン(CH)が10:90(体積比)の混合ガスをガス供給側の全圧力が4MPa(COの分圧:0.4MPa)、流量500mL/min、30℃となるように調整し供給した。透過してきたガスをガスクロマトグラフィーにより分析した。CO透過速度とガス分離選択性は試験例1と同様にして評価した。
上記の各試験例の結果を下記表1に示す。
Figure 0006038058
上記表1に示されるように、カルバモイル基を有さないポリイミド化合物を用いて製造したガス分離膜は、高圧下でのCO透過速度、ガス分離選択性の双方において劣る結果となった(比較例1及び2)。また、カルバモイル基の含有量が本発明で規定するよりも少ないポリイミド化合物を用いて製造したガス分離膜は、CO透過速度、ガス分離選択性に劣っていた(比較例3)。逆に、カルバモイル基の含有量が本発明で規定するよりも多い場合には、極性が高く成り過ぎて溶媒に溶解せず、成膜することができなかった(比較例4)。さらに、ガス分離層に、ポリイミドに代えてセルロースアセテートを用いた場合には、CO透過速度とガス分離選択性の双方に劣る結果となった(比較例5)。
これに対し、カルバモイル基を本発明で規定する量含有するポリイミド化合物を用いて形成したガス分離層を有するガス分離膜は、試験例1において80GPU以上のCO透過速度を示し、CO透過性に優れていた。さらに、ガス分離選択性については試験例1においていずれも25以上の高い性能を有し、このガス分離選択性はトルエン暴露によっても大きく低下することはなかった。さらに、分離対象となるガスの温度並びにCOとCHの混合比を変えた試験例3においても、優れたCO透過速度、ガス分離選択性を示し、安定したガス分離膜性能を示すこともわかった。
以上の結果から、本発明のガス分離膜により、優れたガス分離方法、ガス分離モジュール、このガス分離モジュールを備えたガス分離装置を提供することができることが分かった。
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜

Claims (10)

  1. ポリイミド化合物を含有してなるガス分離層を有するガス分離膜であって、
    前記ポリイミド化合物がカルバモイル基を有し、前記ポリイミド化合物中の前記カルバモイル基の含有量が0.1〜3.0mmol/gである、ガス分離膜。
  2. 前記ポリイミド化合物が、下記式(A)又は(B)で表される繰り返し単位を含む、請求項1に記載のガス分離膜。
    Figure 0006038058
    式(A)中、Rは下記式(I−1)〜(I−28)のいずれかで表される構造の基を示す。ここでX〜Xは単結合又は2価の連結基を、Lは−CH=CH−又は−CH−を、R及びRは水素原子又は置換基を示し、*は式(A)中のカルボニル基との結合部位を示す。Rは置換基を示し、l1は1〜4の整数を示す。l1が1の場合、Rはカルバモイル基を有する基である。l1が2〜4の場合、Rの少なくとも1つはカルバモイル基を有する基である。
    Figure 0006038058
    式(B)中、Rは前記式(A)におけるRと同義である。R及びRは置換基を示す。m1及びn1は0〜4の整数であるが、m1とn1が共に0であることはない。m1が0の場合、Rの少なくとも1つはカルバモイル基を有する基であり、n1が0の場合、Rの少なくとも1つはカルバモイル基を有する基である。m1とn1が共に1以上である場合、R及びRの少なくとも1つはカルバモイル基を有する基である。Xは単結合又は2価の連結基を示す。
    Figure 0006038058
  3. 前記式(A)で表される繰り返し単位が、下記式(a)で表される繰り返し単位である、請求項2に記載のガス分離膜:
    Figure 0006038058
    式(a)中、Rは前記式(A)のRと同義である。R4aは、水素原子であるか、又はカルバモイル基を有さない置換基を示す。
  4. 前記ガス分離膜が、前記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、請求項1〜3のいずれか1項に記載のガス分離膜。
  5. 前記支持層が、ガス分離層側の多孔質層と、その逆側の不織布層とからなる、請求項4に記載のガス分離膜。
  6. 分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であり、二酸化炭素とメタンとの透過速度比(RCO2/RCH4)が15以上である、請求項1〜5のいずれか1項に記載のガス分離膜。
  7. 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、請求項1〜6のいずれか1項に記載のガス分離膜。
  8. 請求項1〜7のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。
  9. 請求項8に記載のガス分離モジュールを備えたガス分離装置。
  10. 請求項1〜7のいずれか1項に記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
JP2014036037A 2014-02-26 2014-02-26 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法 Expired - Fee Related JP6038058B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014036037A JP6038058B2 (ja) 2014-02-26 2014-02-26 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
PCT/JP2015/054682 WO2015129554A1 (ja) 2014-02-26 2015-02-19 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036037A JP6038058B2 (ja) 2014-02-26 2014-02-26 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法

Publications (2)

Publication Number Publication Date
JP2015160167A JP2015160167A (ja) 2015-09-07
JP6038058B2 true JP6038058B2 (ja) 2016-12-07

Family

ID=54008875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036037A Expired - Fee Related JP6038058B2 (ja) 2014-02-26 2014-02-26 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法

Country Status (2)

Country Link
JP (1) JP6038058B2 (ja)
WO (1) WO2015129554A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162565A (ja) 2016-07-25 2019-09-26 富士フイルム株式会社 ガス分離膜、ガス分離膜モジュールおよびガス分離装置
WO2018042894A1 (ja) * 2016-08-31 2018-03-08 富士フイルム株式会社 新規m-フェニレンジアミン化合物、及びこれを用いた高分子化合物の製造方法
JP6564156B2 (ja) * 2017-03-28 2019-08-21 富士フイルム株式会社 ガス検知素子及びその製造方法
JP6980228B2 (ja) * 2018-01-22 2021-12-15 株式会社カネカ 熱架橋性ポリイミド、その熱硬化物および層間絶縁フィルム
JP2022505766A (ja) * 2018-10-26 2022-01-14 オハイオ・ステイト・イノベーション・ファウンデーション 気体透過性膜およびそれを使用する方法
WO2020175671A1 (ja) 2019-02-28 2020-09-03 富士フイルム株式会社 ポリマー及びその製造方法、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置、並びにm-フェニレンジアミン化合物
JP6999611B2 (ja) * 2019-02-28 2022-01-18 富士フイルム株式会社 ポリマー及びその製造方法、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置、並びにm-フェニレンジアミン化合物
JP7441094B2 (ja) * 2020-03-27 2024-02-29 積水化学工業株式会社 防水透気膜とその製造方法、気体供給体、供給体ユニット、及び廃水処理装置
TWI758034B (zh) * 2020-12-25 2022-03-11 律勝科技股份有限公司 聚醯亞胺及其所形成之膜
TWI740758B (zh) * 2020-12-25 2021-09-21 律勝科技股份有限公司 聚醯胺醯亞胺共聚物及含其之薄膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1294731C (en) * 1986-04-25 1992-01-21 Masakazu Uekita Copolymeric and amphiphilic polyimide precursor, process for preparing the same and thin film
JPH01138533A (ja) * 1987-11-25 1989-05-31 Matsushita Electric Ind Co Ltd 強誘電性液晶表示素子
JP4145640B2 (ja) * 2002-11-28 2008-09-03 新日鐵化学株式会社 プリント回路基板用耐熱接着フィルム及びその製造方法
JP2013046903A (ja) * 2011-07-28 2013-03-07 Fujifilm Corp ガス分離複合膜、それを用いたガス分離モジュール、ガス分離装置およびガス分離方法

Also Published As

Publication number Publication date
JP2015160167A (ja) 2015-09-07
WO2015129554A1 (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6038058B2 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP6037804B2 (ja) ガス分離膜
WO2015041250A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP5972774B2 (ja) ガス分離複合膜及びその製造方法
WO2016136294A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びガス分離非対称膜の製造方法
WO2015129553A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP2014024939A (ja) ポリイミド樹脂の製造方法、ガス分離膜、ガス分離モジュール、及びガス分離装置、並びにガス分離方法
WO2015033772A1 (ja) ガス分離複合膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JPWO2017130604A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2017145747A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2017175598A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP6355058B2 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2017145432A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離層形成用組成物、ガス分離膜の製造方法、ポリイミド化合物及びジアミンモノマー
WO2017002407A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
JP6071920B2 (ja) ガス分離複合膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びガス分離複合膜の製造方法
JP5833986B2 (ja) ガス分離複合膜、その製造方法、それを用いたガス分離モジュール、及びガス分離装置、並びにガス分離方法
JP2017131856A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2017145728A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
WO2017145905A1 (ja) ポリイミド化合物、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2018043149A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
JP2019010631A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
WO2019044215A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、及びポリイミド化合物
JP2017185462A (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JPWO2017179393A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法
WO2017179396A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6038058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees