JP5901774B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP5901774B2
JP5901774B2 JP2014531399A JP2014531399A JP5901774B2 JP 5901774 B2 JP5901774 B2 JP 5901774B2 JP 2014531399 A JP2014531399 A JP 2014531399A JP 2014531399 A JP2014531399 A JP 2014531399A JP 5901774 B2 JP5901774 B2 JP 5901774B2
Authority
JP
Japan
Prior art keywords
low
temperature side
refrigerant
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014531399A
Other languages
English (en)
Other versions
JPWO2014030198A1 (ja
Inventor
杉本 猛
猛 杉本
野本 宗
宗 野本
智隆 石川
智隆 石川
池田 隆
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5901774B2 publication Critical patent/JP5901774B2/ja
Publication of JPWO2014030198A1 publication Critical patent/JPWO2014030198A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷凍装置に関する。
従来より、低温側冷媒が循環する低温側循環回路と高温側冷媒が循環する高温側循環回路とをカスケードコンデンサで接続した冷凍装置がある。この種の冷凍装置において低温側循環回路の低温側圧縮機が停止すると、冷媒が外気温度近くまで温められてガス化するため、低温側循環回路内の圧力が上昇する。このため、低温側圧縮機が長時間停止すると、低温側循環回路内の圧力が設計圧力(許容圧力)に達してしまい、異常停止や安全弁の作動による冷媒の放出等が行われる。
そこで、低温側圧縮機が長時間停止しても、低温側循環回路内の圧力が設計圧力を超えないように膨張タンクを備えた冷凍装置がある(例えば、特許文献1参照)。
特開平10−267441号公報
特許文献1では、膨張タンクを備えることで長時間停止時に低温側循環回路内の圧力が設計圧力を超えないようにすることができる。しかし、低温側循環回路内の圧力上昇を抑えるには、膨張タンクの容量を十分(特許文献1では、膨張タンクを除いた低温側循環回路の内容積の10倍程度の容量としている)に確保する必要があり、コストアップを招くという問題があった。
逆の考え方として、設計圧力を高くすれば膨張タンクの容量を低減でき、膨張タンク自体のコスト低減は可能である。しかし、設計圧力を高くするには低温側循環回路のその他の構造部分の耐圧強度を上げる必要が生じるため、結局、コストアップとなる。よって、コスト低減を図るには、設計圧力を低くすることが有効であるが、設計圧力を低くするには上述したように膨張タンクの大型化が避けられない。このように、設計圧力の抑制とコスト低減との両立が難しいという問題があった。
本発明は、上記のような課題を解決するためになされたものであり、低温側循環回路の設計圧力の抑制とコスト低減との両立が可能な冷凍装置を提供することを目的とする。
本発明に係る冷凍装置は、高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とを有し、高温側冷媒が循環する高温側循環回路と、低温側圧縮機、カスケード熱交換器の低温側凝縮器及び受液器を有する低温側熱源回路と、第1流量調整弁及び低温側蒸発器が直列に接続されて構成された冷却ユニットとを、低温側熱源回路から冷却ユニットへ冷媒を流す液配管と冷却ユニットから低温側熱源回路に冷媒を流すガス配管とで連結して構成され、低温側冷媒が循環する低温側循環回路と、受液器の出口に設けられ、受液器を通過後の冷媒を減圧して気液2相として液配管に流すための第2流量調整弁と、低温側循環回路において低温側圧縮機の吸入側に、タンク用電磁弁を介して接続され、運転停止中の低温側循環回路内の圧力上昇を抑えるための膨張タンクと、低温側圧縮機の吐出側の圧力を検出する低温側高圧圧力センサと、低温側圧縮機の吸入側の圧力を検出する低温側低圧圧力センサと、低温側高圧圧力センサ又は低温側低圧圧力センサにより検出された検出圧力に基づきタンク用電磁弁の開閉制御を行う制御装置とを備え、制御装置は、運転停止中に検出圧力が低温側循環回路の設計圧力よりも低い所定圧力を超えると、タンク用電磁弁を開いて低温側循環回路内の冷媒が膨張タンクに流れるようにし、冷凍装置の起動時に低温側圧縮機と高温側圧縮機との両方を起動すると共に、その起動前の停止期間が予め設定した期間以上の場合、検出圧力が所定圧力を超えるか否かをチェックし、超える場合、タンク用電磁弁を開き、低温側蒸発器の蒸発温度を目標蒸発温度にするために必要な冷媒量、膨張タンク内の冷媒を低温側循環回路に回収してからタンク用電磁弁を閉じ、検出圧力が所定圧力を超えない場合、タンク用電磁弁を閉じるものである。
本発明によれば、第2流量調整弁により液配管内の冷媒状態を気液2相とすることで、低温側循環回路の設計圧力を低く抑えるにあたり通常大型化が必要となる膨張タンクの容量を低減でき、低温側循環回路の設計圧力の抑制とコスト低減との両立が可能な冷凍装置を得ることができる。
本発明の実施の形態1における冷凍装置の冷媒回路図である。 図1の冷凍装置の低温側循環回路の動作を示した圧力―エンタルピ線図である。 本発明の実施の形態1の冷凍装置の回路内容積と回路内圧力との関係を表わした線図である。 本発明の実施の形態1に係る冷凍装置における低温側圧縮機の長時間停止後の起動時の動作を示すフローチャートである。 本発明の実施の形態1に係る冷凍装置における低温側圧縮機のサーモオフ後の起動時の動作を示すフローチャートである。 本発明の実施の形態2に係る冷凍装置の構成を示す図である。 図6の冷凍装置の動作を示した圧力―エンタルピ線図である。 本発明の実施の形態2に係る冷凍装置における二段式圧縮機の長時間停止後の起動時の動作を示すフローチャートである。 本発明の実施の形態2に係る冷凍装置における二段式圧縮機のサーモオフ後の起動時の動作を示すフローチャートである。
実施の形態1.
図1は、本発明の実施の形態1における冷凍装置の冷媒回路図である。
冷凍装置は、二元冷凍サイクルを行う冷凍装置であって、高温側循環回路aと低温側循環回路bとを備えている。高温側循環回路aは、高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と、高温側蒸発器4とを直列に接続して構成される。
低温側循環回路bは、低温側圧縮機5と、補助コンデンサ6と、低温側凝縮器7と、受液器9と、冷却ユニット13とを直列に接続して構成される。本発明の低温側熱源回路は、少なくとも低温側圧縮機5と低温側凝縮器7と受液器9とを備えて構成される。
冷却ユニット13は、液電磁弁10と、低温側第1流量調整弁11と、低温側蒸発器12とを直列に接続して構成され、例えばショーケースやユニットクーラに用いられる。低温側第1流量調整弁11は温度式自動膨張弁か若しくは電子式膨張弁で構成される。冷却ユニット13は、低温側循環回路bのその他の回路部分と液配管15及びガス配管16により接続されている。液配管15及びガス配管16は、冷却ユニット13を設置する現地にて長さが調整される。
低温側循環回路bにおいて受液器9の出口には、液配管15の冷媒状態を調整する低温側第2流量調整弁14が設けられている。低温側第2流量調整弁14は例えば電子式膨張弁で構成される。
また、低温側循環回路bにおいて低温側圧縮機5の吸入側には、通電時に閉となるタンク用電磁弁17を介して膨張タンク18が接続されている。膨張タンク18は、運転停止時の低温側循環回路bの圧力上昇を抑えるためのタンクであり、低温側循環回路bの冷媒が完全にガス化しても、その圧力が設計圧力(許容圧力)を超えないようにするためのものである。
また、低温側圧縮機5の吐出側には低温側高圧圧力センサ19が設置され、低温側圧縮機5の吸入側には低温側低圧圧力センサ20が設置されている。
高温側循環回路aと低温側循環回路bは、カスケードコンデンサ8を共通して備えており、高温側蒸発器4と低温側凝縮器7とによりカスケードコンデンサ8が構成されている。カスケードコンデンサ8は例えばプレート式熱交換器であり、高温側循環回路aを循環する高温側冷媒と低温側循環回路bを循環する低温側冷媒との熱交換を行う。
冷凍装置において使用する冷媒は、低温側循環回路bでは液配管15やガス配管16を有しており、内部に充填する冷媒量が比較的多くなり、また、外部への漏れも懸念されることから、地球温暖化係数(GWP)が1であるCO冷媒を使用する。一方、高温側循環回路aは、回路全体の配管長さが比較的短いため内部に充填する冷媒量が少なく、また、閉じている閉回路であるため、COよりは大きくなるものの比較的にGWPが小さな冷媒(例えばR410A、R134a、R32、HFO冷媒)を使用する。
冷凍装置には更に、冷凍装置全体を制御する制御装置50が設けられている。制御装置50はマイクロコンピュータで構成され、CPU、RAM及びROM等を備えている。制御装置50は、低温側高圧圧力センサ19及び低温側低圧圧力センサ20からの検出信号が入力され、その検出信号に基づいてタンク用電磁弁17を制御したり、図示しない他の各種センサからの出力に基づいて、低温側圧縮機5、液電磁弁10、低温側第1流量調整弁11、高温側圧縮機1、高温側膨張弁3等を制御する。
図2は、図1の冷凍装置の低温側循環回路bの動作を示した圧力―エンタルピ線図である。図2におけるA〜Eは、図1のA〜Eに示す各配管位置における冷媒状態を示しており、A点が低温側圧縮機5の吐出、B点が低温側凝縮器7の出口、C点が液配管15内、D点が低温側蒸発器12の入口、E点が低温側圧縮機5の吸入の状態を示す。以下、冷凍装置の低温側循環回路bの動作について図1及び図2を参照して説明する。
低温側圧縮機5の吸入冷媒は、圧縮されて高温高圧のガス冷媒(A点)となる。この高温高圧のガス冷媒は、補助コンデンサ6(送風機(図示せず)により空冷する)で外気により空冷され、放熱する。このように補助コンデンサ6を通過させることで、カスケードコンデンサ8での熱交換処理を低減することができる。
補助コンデンサ6を通過した冷媒は、カスケードコンデンサ8の低温側凝縮器7に流入し、高温側冷媒と熱交換して凝縮液化し、高圧液冷媒となる(B点)。この液冷媒は受液器9を通って低温側第2流量調整弁14で減圧され、中圧の気液2相冷媒(C点)となって液配管15を介して冷却ユニット13に流入する。
冷却ユニット13に流入した冷媒は、開放された液電磁弁10を通り、低温側第1流量調整弁11にて更に減圧され(D点)、その後、低温側蒸発器12に流入する。低温側蒸発器12に流入した冷媒は、ショーケース内の空気と熱交換してショーケース内を冷却し、ここで再び低圧ガス状態となる(E点)。そして、低圧ガス状態の冷媒は、ガス配管16を経由して再び低温側圧縮機5に吸入される。
なお、高温側循環回路aでは、高温側圧縮機1を流出した高温高圧の冷媒が、高温側凝縮器2で放熱する。そして、高温側凝縮器2から流出した冷媒は、高温側膨張弁3によって減圧される。高温側膨張弁3にて減圧された冷媒は、カスケードコンデンサ8の高温側蒸発器4に流入して低温側冷媒と熱交換し、蒸発して低圧ガス冷媒となり、再び高温側圧縮機1に吸入される。
次に、膨張タンク18の役割と必要容量について説明する。まず、冷凍装置の長時間停止時の低温側循環回路bの状態について説明する。
低温側循環回路bを長時間停止する場合(低温側圧縮機5が運転していない場合)に、高温側循環回路aの高温側圧縮機1側の運転を、仮に停止せずに継続していれば、カスケードコンデンサ8が冷却されるため、低温側循環回路b内の圧力上昇を抑えることができる。しかし、低温側圧縮機5を長時間停止(又はサーモオフ)する場合に高温側循環回路aの高温側圧縮機1を運転することは、ショーケースの温度を下げるという冷凍装置の本来の目的から外れた運転であるため、いわば無駄な運転となり、好ましくない。
一方、低温側圧縮機5の停止時に高温側圧縮機1も動かさないとすれば、最悪、外気(周囲温度)に相当する圧力まで低温側循環回路bの圧力が上昇する。低温側循環回路bに用いているCO冷媒は、大気圧での沸点が−78.5℃と沸点が低い冷媒である。このため、外気温度が例えば常温である25℃程度であれば、CO冷媒は低温側循環回路b内でガス化し、低温側循環回路b内の圧力が上昇する。
このため、低温側循環回路bには、熱交換器や受液器9よりも容量の大きい膨張タンク18を設け、低温側蒸発回路内に存在する冷媒が蒸発してガス化しても、低温側循環回路b内の圧力が高くならないようにしている。膨張タンク18の大きさは、運転停止中の低温側循環回路b内の圧力が設計圧力を超えないように設計される。
本発明では、低温側循環回路bの設計圧力の低減を目的としており、ここでは、周囲温度が46℃で、低温側循環回路bの設計圧力を、冷媒としてR410Aを用いた場合と同等の4.15Mpaに抑えることを目的として以下の説明を行う。
まず、低温側循環回路bの設計圧力を4.15Mpaに抑えるにあたり、冷却ユニット13とカスケードコンデンサ8とを接続する液配管15内の冷媒状態に応じて、膨張タンク18の必要容量が異なる点について説明する。
図3は、本発明の実施の形態1の冷凍装置の回路内容積と回路内圧力との関係を表わした線図である。図3の横軸は、膨張タンク18を除いた低温側循環回路b内の回路内容積である。縦軸は、運転停止中の低温側循環回路b内の圧力である。図3の例は、低温側循環回路bにCO冷媒を使用し、低温側圧縮機5の称呼出力が約10馬力程度で、液配管15及びガス配管16のそれぞれの長さが70m、周囲温度が46℃として計算した例である。
また、低温側蒸発器12は、ショーケースとして、8尺のショーケースが6台、6尺のショーケースが2台接続されているとして計算している。ショーケースの合計の内容積は約72リットルである。図3において三角(▲)は、液配管15の中が液で充満した状態の場合の、低温側循環回路b内の回路内容積と回路内圧力との関係を示している。図3において菱形(◆)は、液配管15の中の冷媒状態を気液2相状態(特に、乾き度を0.1〜0.2とした状態)とした場合の、低温側循環回路b内の回路内容積と回路内圧力との関係を示している。
図3より、運転停止中の低温側循環回路b内の圧力は、膨張タンク18を除いた低温側循環回路b内の回路内容積が大きい程、低く抑えることができることがわかる。また、液配管15内の冷媒状態が液で充満しているよりも気液2相とした場合の方が、必要とする回路内容積が少なくて済むことがわかる。
ここで、低温側圧縮機5、補助コンデンサ6、低温側凝縮器7、受液器9(10馬力クラスでは約40リットル)、液配管15(70m)、ガス配管16(70m)、低温側蒸発器12(ショーケース8台で約72リットル)の合計内容積が約160リットルであるとする。
周囲温度が46℃で、低温側循環回路bの設計圧力を、冷媒としてR410Aを用いた場合と同等の4.15Mpaに抑えるとすると、液配管15内が液で充満している場合では、図3より約400リットルとなる。なお、液配管15が液冷媒で充満している場合の低温側循環回路bの冷媒量は約30kgとなる。冷凍装置内に上記の400リットルを保持するには、400リットルと合計内容積の160リットルとの差である、240リットルの膨張タンク18が必要となる。すなわち、外形270mm(肉厚8mm)で約1500mm長さのタンクであれば、3本必要である。しかし、3本のタンクを備えるとなると、冷凍装置自体が大きくなると共に、膨張タンク18自体のコストもかかってくる。
これに対し、液配管15内の冷媒状態を気液2相とした場合には、低温側循環回路bの設計圧力を4.15Mpaに抑えるにあたり、必要とする回路内容積は図3より300リットルに低減できる。よって、膨張タンク18の容量を、300リットルと160リットルの差である140リットルに低減できる。したがって、膨張タンク18の小型化が可能であり、液配管15内が液冷媒で充満する場合と比べてコスト低減が可能である。
液配管15内の冷媒状態が気液2相状態である場合、液配管15内では、液冷媒とガス冷媒とが相対速度をもって流れている。液配管15内の冷媒が、乾き度0.1から0.2程度の気液2相状態の場合、液配管15断面の液相と気相の占める割合はそれぞれ0.5程度になることが知られている。すなわち乾き度0.1から0.2程度の気液2相状態の冷媒が流れる液配管15内での平均密度は、完全な液状態の半分程度となり、このため気液2相状態の冷媒が流れる液配管15内の必要冷媒量は液状態の半分程度になる。
この場合、液配管15の中の冷媒量は半減するため、低温側循環回路b内の冷媒量が約26kgになる。このように冷媒量が減るため、上述したように低温側循環回路b内の設計圧力を4.15Mpaに抑える場合の膨張タンク18の容量を低減できる。
以上より、低温側循環回路bの設計圧力を4.15Mpaに抑えるにあたり、大型化する傾向にある膨張タンク18の容量を、液配管15内に流れる冷媒状態を気液2相とすることで、容量低減が可能となる。液配管15内に流れる冷媒状態を気液2相とするには、低温側第2流量調整弁14を制御すればよく、低温側第2流量調整弁14は、低温側圧縮機5が起動している間(起動時や通常運転中)、液配管15内が気液2相となるように開度調整される。
なお、上記の計算では、周囲温度が46℃相当まで上がるとして上記膨張タンク18の容量を算出しているが、通常の外気温度、例えば32℃程度であれば、更に膨張タンク18の容量を削減できる。
膨張タンク18の容量を低減する方法として、更に以下の方法がある。CO冷媒はHFC冷媒に比べて圧損が少ないため、ガス配管16の配管径は、HFC冷媒を用いる場合より細くできる。例えばR410Aで10馬力相当ではガス配管16径φ31.75mmであるのに対し、CO冷媒では例えばφ19.05mmとすることが可能である。しかし、配管内容積を確保するために、HFC冷媒並みの配管径(φ19.05mm→φ31.75mm)にすれば、延長配管70mで、内容積が約40リットル増加する。このため、膨張タンク18の内容積を更に140リットルから100リットルに低減できる。
ところで、低温側循環回路bの設計圧力を上記の4.15Mpaよりも高くして、例えば8.5Mpaとした場合、プレートフィンチューブ式の低温側蒸発器12の内部に通す銅配管(ヘアピン)の仕様は、例えばφ9.52mm(肉厚0.8mm)程度になり、高コスト化する。しかし、低温側循環回路bの設計圧力を4.15Mpaに抑えれば、低温側蒸発器12のヘアピンの仕様はφ9.52mm(肉厚0.35mm)程度になり、材料費だけでも半分程度になる。
また、低温側循環回路bの設計圧力を4.15Mpa程度に抑えれば、低温側圧縮機5、補助コンデンサ6、カスケードコンデンサ8、受液器9、液配管15、ガス配管16、膨張タンク18のそれぞれについても、肉厚を薄くすることができる。つまり、低コスト化が可能である。
次に、冷凍装置の長時間停止時の動作について説明する。
低温側圧縮機5が長時間停止(例えば、連休や年末年始等で2〜3日、停止する場合等が該当し、予め設定した期間以上の停止)した場合、上述したように低温側循環回路b内の圧力は次第に上昇する。制御装置50は、運転停止中も低温側高圧圧力センサ19及び低温側低圧圧力センサ20からの検出信号に基づいて低温側循環回路b内の圧力をチェックしており、低温側循環回路b内の圧力が設計圧力(例えば、4.15Mpa)よりも低い所定圧力(例えば、4Mpa)を超えると、タンク用電磁弁17を開き、低温側循環回路b内の冷媒を膨張タンク18に回収する。これにより、低温側循環回路b内の圧力が設計圧力を超えるのを防止できる。
ところで、冷凍装置の運転中、低温側圧縮機5の低温側蒸発器12には霜が発生するため、霜を除去するための霜取りが行われる。霜取りは、低温側蒸発器12に設けたヒーター(図示せず)により行われ、この霜取りの間、低温側圧縮機5は停止する。よって、霜取りの間も低温側循環回路b内の圧力は次第に上昇する。
なお、低温側圧縮機5が停止するタイミングは、上記の霜取りの間の他、ショーケース内の温度が設定温度よりも所定値低下してサーモオフされる場合等がある。このように、低温側圧縮機5が停止されるタイミングは様々であり、その停止期間も様々である。つまり、霜取り中や数日の間、運転が停止される長時間の場合もあれば、サーモオフの間の短時間の場合もある。
停止期間が短時間であれば、その間、低温側圧縮機5が停止しても低温側循環回路b内の圧力はそれほど上昇しない。しかし、停止期間が長時間であれば、膨張タンク18を低温側循環回路bに連通させることで上述したように低温側循環回路b内の圧力が設計圧力を超えないものの、設計圧力に近い圧力まで上昇している可能性がある。このように運転停止後の低温側圧縮機5の起動時における、低温側循環回路b内の圧力は、サーモオフ後の起動なのか、長時間停止後の起動なのかに応じて異なってくる。
次に、これらの低温側圧縮機停止からの起動時の低温側循環回路bの冷媒状態について説明する。
長時間停止後の起動時は、上述したように、設計圧力に近い圧力まで上昇している可能性がある。特開2004−190917号公報では、この状態で低温側圧縮機5を起動すると、設計圧力を超えることに配慮し、まず高温側圧縮機1を起動し、所定時間経過してから低温側圧縮機5を起動するようにしている。したがって、長時間停止後の起動時に、低温側圧縮機5と高温側圧縮機1との両方を同時に起動する場合に比べて、プルダウン速度(運転停止中に温度上昇したショーケース内の温度を設定温度までに下げる低下速度)が遅くなる。
しかし、本実施の形態1では、長時間停止からの起動時に、低温側圧縮機5と高温側圧縮機1との両方を同時に起動でき、プルダウン速度の向上が可能となっている。以下、この点について説明する。
(長時間停止後の起動)
図4は、本発明の実施の形態1に係る冷凍装置における低温側圧縮機5の長時間停止からの起動時の動作を示すフローチャートである。以下、図4を参照して冷凍装置の低温側圧縮機5の長時間停止からの起動時の動作を説明する。
長時間停止からの起動の際、まず、制御装置50は、低温側圧縮機5と高温側圧縮機1との両方を起動する(S1)。そして、制御装置50は、低温側高圧圧力センサ19又は低温側低圧圧力センサ20の検出圧力が許容圧力以下の所定圧力(ここでは4Mpa)を超えるかどうかをチェックする(S2)。制御装置50は、検出圧力が所定圧力を超えると判断した場合、タンク用電磁弁17を開く(S3)。これにより、膨張タンク18内の冷媒が低温側循環回路b内に回収される。そして、所定時間が経過すると(S4)、タンク用電磁弁17を閉じて(S5)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。
なお、ステップS4における所定時間は、ショーケース内の温度を通常運転における設定温度にするための目標蒸発温度に達するまでに要する時間(例えば、2〜3分)が設定される。なお、ステップS4の判断の指標を、所定時間に代えて低温側低圧圧力センサ20により検出された低圧圧力としてもよい。要は、低温側蒸発器12の蒸発温度を目標蒸発温度にするために必要な冷媒量、膨張タンク18内から回収することができることを判断できる指標であればよい。
指標を低圧圧力とした場合は、低温側低圧圧力センサ20により検出された低圧圧力が、目標蒸発温度に対応する目標圧力に低下したかを判断し、目標圧力に到達したら、タンク用電磁弁17を閉じるようにすればよい。以上のように制御するため、長時間停止後の起動時に低温側圧縮機5と高温側圧縮機1との両方を同時に起動しても、低温側循環回路b内の圧力が設計圧力を超えることがない。
一方、制御装置50は、ステップS2で検出圧力が所定圧力を超えないと判断した場合、タンク用電磁弁17を閉じ(S5)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。
(サーモオフ後の起動(サーモオン))
図5は、本発明の実施の形態1に係る冷凍装置における低温側圧縮機5のサーモオフ後の起動時の動作を示すフローチャートである。以下、図5を参照してサーモオフ後の起動時の動作を説明する。なお、サーモオフ中、タンク用電磁弁17は閉じられているものとする。
サーモオフ後の起動、つまりサーモオンの際、まず、制御装置50は、低温側圧縮機5と高温側圧縮機1との両方を起動する(S11)。サーモオフにより低温側圧縮機5が停止している期間は、数分程度の短い期間であるため、その間の低温側循環回路bの圧力上昇は僅かであり、設計圧力よりも十分低い状態にある。
ところで、サーモオフの間は低温側圧縮機5の運転が停止しているため、ショーケース内の温度は次第に上昇する。この場合、低温側蒸発器12における蒸発温度を下げて冷却能力を高め、ショーケース内の温度を設定温度まで下げる必要がある。
そこで、制御装置50は、タンク用電磁弁17を開き(S12)、膨張タンク18内の冷媒を低温側循環回路b内に回収して、低温側循環回路bの蒸発温度を下げる。そして、所定時間が経過すると(S13)、タンク用電磁弁17を閉じ(S14)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。なお、ステップS13における所定時間は、蒸発温度を目標蒸発温度にするために要する時間(例えば、2〜3分)が設定される。なお、ステップS13の判断の指標を、所定時間に代えて低温側低圧圧力センサ20により検出された低圧圧力としてもよい。要は、低温側蒸発器12の蒸発温度を目標蒸発温度にするために必要な冷媒量、膨張タンク18内から回収することができることを判断できる指標であればよい。
指標を低圧圧力とした場合は、低温側低圧圧力センサ20により検出された低圧圧力が、目標蒸発温度に対応する目標圧力に低下したかを判断し、目標圧力に到達したら、タンク用電磁弁17を閉じるようにすればよい。
なお、万一停電して、長時間停止した場合も考えて、タンク用電磁弁17は通電閉となるものを選定するとよい。これにより、停電時にはタンク用電磁弁17が開かれた状態となるため、低温側循環回路b内の圧力が上昇した際に、低温側循環回路b内の冷媒を膨張タンク18に回収でき、低温側循環回路b内の圧力が設計圧力を超えるのを防止することができる。停電復帰後の再起動時は、タンク用電磁弁17を所定時間(例えば、2〜3分)開いて、 冷媒を低温側循環回路b内に回収してから、タンク用電磁弁17を閉じる。
以上説明したように、本実施の形態1によれば、膨張タンク18を設けると共に、タンク用電磁弁17を設けて液配管15内の冷媒状態が気液2相になるようにしたことで、以下の効果が得られる。すなわち、低温側循環回路bの作動冷媒として例えばCO等の低GWPでHFC冷媒よりも設計圧力を高くする必要のある冷媒を用いてなお、設計圧力をHFC冷媒を用いる場合と同等の例えば、4.15Mpa程度に低く抑えるにあたり、通常大型化が必要となる膨張タンク18の容量低減を図ることができる。これにより、CO冷媒を用いながらも、設計圧力を低く抑えることができる冷凍装置を低コストで構成でき、設計圧力の抑制とコスト低減との両立を図ることができる。
また、低温側循環回路bの構成部品等を、汎用性のあるHFC冷媒で使用の材料を使って構成できるので、地球温暖化に対応可能なCO冷媒を使って、HFC冷媒機種からのコストアップを大幅に抑えることができる。なお、低温側循環回路bの構成部品等とは、低温側圧縮機5、補助コンデンサ6、カスケードコンデンサ8、受液器9、低温側蒸発器12(ショーケース、ユニットクーラ)、現地接続の液配管15、ガス配管16及び膨張タンク18が該当する。
また、膨張タンク18を、受液器9の3倍程度の大きさにでき、据付性も向上できる。
ガス配管16の配管径をHFC冷媒並みの配管径とすれば、更に膨張タンク18の容量を受液器9の2倍程度の容量までに低減できる。
また、低温側圧縮機5の起動時(長時間停止後の起動時)に、低温側循環回路bの圧力が設計圧力よりも低い所定圧力を超える場合、タンク用電磁弁17を開き、膨張タンク18内の冷媒が低温側循環回路bに回収されるようにした。このため、低温側循環回路bの起動時に、低温側循環回路bの圧力上昇を抑えるために、高温側循環回路aの高温側圧縮機1を先に運転する必要が無く、無駄な運転を無くすことができる。
また、低温側圧縮機5の起動時に低温側循環回路b内の圧力が設計圧力を超えないようにするために、高温側圧縮機1を先に起動してから低温側圧縮機5を遅れて起動させる制御が不要で、高温側圧縮機1と低温側圧縮機5を同時に起動できる。よって、プルダウン速度を速くすることができる。
また、タンク用電磁弁17を通電閉となるものとしたため、万一の停電時の対応(低温側循環回路bの圧力上昇防止)も可能となる。
また、従来一般に、低温側圧縮機5の長時間停止時に低温側循環回路bの圧力が設計圧力を超える場合、上述したように安全弁を開放して、低温側循環回路b内の冷媒を外部に放出するようにしている。この場合、冷媒を補充する必要があるなどの不都合を生じる。しかし、本実施の形態では、長時間停止しても低温側循環回路bの圧力が設計圧力を超えないため、この不都合を解消できる。
実施の形態2.
上記実施の形態1では、2元冷凍サイクルを行う冷凍装置について説明したが、実施の形態2では、二段式圧縮機31を用いた冷凍装置について説明する。
二段式圧縮機31を用いた冷凍装置においても、実施の形態1と同様、液配管41内の冷媒状態を気液2相にすることで後述の循環回路cの冷媒量を削減して、膨張タンク44の容量を低減できる。
図6は、本発明の実施の形態2に係る冷凍装置の構成を示す図である。
冷凍装置は、低段側圧縮機31a及び高段側圧縮機31bを備えた二段式圧縮機31と、ガスクーラー32と、中間冷却器33と、冷却ユニット37とを冷媒配管で順次、接続した循環回路cを備えている。本発明の熱源回路は、二段式圧縮機31とガスクーラー32と中間冷却器33とを備えて構成される。
冷却ユニット37は、液電磁弁34と、第1流量調整弁35と、蒸発器36とを直列に接続して構成され、例えば、ショーケースやユニットクーラに用いられる。冷却ユニット37は、循環回路cのその他の冷媒回路部分と液配管41及びガス配管42により接続されている。液配管41及びガス配管42は、冷却ユニット37を設置する現地にて長さが調整される。
また、循環回路cには、液配管41の冷媒状態を調整する第2流量調整弁40が設けられている。第2流量調整弁40は例えば電子式膨張弁で構成される。
また、循環回路cにおいて、低段側圧縮機31aの吸入側には通電閉となるタンク用電磁弁43を介して膨張タンク44が接続されている。膨張タンク44は、運転停止時の循環回路cの圧力上昇を抑えるためのタンクであり、循環回路cの冷媒が完全にガス化しても、その圧力が設計圧力(許容圧力)を超えないようにするためのものである。
また、冷凍装置は、ガスクーラー32と中間冷却器33との間から分岐した冷媒を中間冷却器33に流入させる分岐管45と、分岐管45に設けられた中間冷却用流量調整弁46とを備えている。また、低段側圧縮機31aの吐出側と高段側圧縮機31bの吸入側を中間冷却器33に接続する接続回路47を備えている。中間冷却器33では中間冷却用流量調整弁46で減圧された冷媒と低段側圧縮機31aから吐出した冷媒を熱交換すると共に、この両冷媒とガスクーラー32から流出して中間冷却用流量調整弁46を介さずに直接流入した冷媒とを熱交換する。
本実施の形態2では、冷凍装置に用いられる冷媒として、例えばCO 冷媒を想定している。
また、低段側圧縮機31aの吐出側には高圧圧力センサ48が設置され、低段側圧縮機31aの吸入側には低圧圧力センサ49が設置されている。
冷凍装置には更に、冷凍装置全体を制御する制御装置60が設けられている。制御装置60はマイクロコンピュータで構成され、CPU、RAM及びROM等を備えている。制御装置60は、高圧圧力センサ48及び低圧圧力センサ49からの検出信号が入力され、その検出信号に基づいてタンク用電磁弁43を制御したり、図示しない他の各種センサからの出力に基づいて、二段式圧縮機31、液電磁弁34、第1流量調整弁35、中間冷却用流量調整弁46等を制御する。
図7は、図6の冷凍装置の動作を示した圧力―エンタルピ線図である。図7におけるF〜Nは、図6のF〜Nに示す各配管位置における冷媒状態を示している。以下、冷凍装置の動作について図6及び図7を参照して説明する。
二段式圧縮機31の高段側圧縮機31bから吐出された高温高圧の吐出ガス(F点)は、ガスクーラー32で冷却されて若干過冷却された状態(G点)となる。そして、その過冷却された冷媒は分岐され、分岐された冷媒のうち大部分の冷媒(主冷媒)は、分岐管45に設けた中間冷却用流量調整弁46にて中間圧力(M点)まで減圧された残りの冷媒(中間冷却器用冷媒)と中間冷却器33にて熱交換し、更に過冷却を増した状態(H点)となる。そして、中間冷却器33にて冷却された主冷媒は、第2流量調整弁40で減圧され、気液2相冷媒(I点)となって液配管41を介して冷却ユニット37に流入する。
冷却ユニット37に流入した冷媒は、開放された液電磁弁34を通り、第1流量調整弁35にて更に減圧され(J点)、その後、蒸発器36に流入する。蒸発器36に流入した冷媒は、ショーケース内の空気と熱交換してショーケース内を冷却し、ここで再び低圧ガス状態(K点)となる。そして、低圧ガス状態の冷媒は、ガス配管42を経由して二段式圧縮機31の低段側圧縮機31aに吸入され、中間圧力(L)まで圧縮される。低段側圧縮機31aより中間圧力まで圧縮された冷媒は中間冷却器33に流入する。
中間冷却器33には上述したように、低段側圧縮機31aから吐出された冷媒の他、中間圧力(M点)まで減圧された中間冷却器用冷媒が流れ込む。この中間冷却器用冷媒の蒸発によって、低段側圧縮機31aから吐出されて中間冷却器33に流入した過熱蒸気の過熱を除去すると同時に、第1流量調整弁35に向かう高圧の主冷媒の過冷却度を大きくする。
中間冷却器33は冷媒液と蒸気とが共存する状態にあるが、低段側圧縮機31aから中間冷却器33に流入した冷媒は、冷却されて乾き飽和蒸気に近い蒸気となって高段側圧縮機31bに吸い込まれて圧縮され(F点)、吐出される。
以下、長時間停止後の起動時の動作と、サーモオフ後の起動時の動作について説明する。これらの起動時のタンク用電磁弁43の制御は実施の形態1と基本的に同様である。
(長時間停止後の起動)
図8は、本発明の実施の形態2に係る冷凍装置における二段式圧縮機の長時間停止からの起動時の動作を示すフローチャートである。以下、図8を参照して冷凍装置の二段式圧縮機31の長時間停止からの起動時のタンク用電磁弁43の動作を説明する。
長時間停止後の起動の際、まず、制御装置60は二段式圧縮機31を起動する(S21)。そして、制御装置60は、高圧圧力センサ48又は低圧圧力センサ49の検出圧力が許容圧力以下の所定圧力(ここでは4Mpa)を超えるかどうかをチェックする(S22)。制御装置60は、検出圧力が所定圧力を超えると判断した場合、タンク用電磁弁43を開く(S23)。これにより、膨張タンク44内の冷媒が循環回路c内に回収される。そして、所定時間が経過すると(S24)、タンク用電磁弁43を閉じて(S25)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。
なお、ステップS24における所定時間は、蒸発温度が、ショーケース内の温度を通常運転における設定温度にするための目標蒸発温度に達するまでに要する時間(例えば、2〜3分)が設定される。なお、ステップS24の判断の指標を、所定時間に代えて低圧圧力センサ49により検出された低圧圧力としてもよい。この場合、低圧圧力が、目標蒸発温度に対応する目標圧力に低下したかを判断し、目標圧力に到達したら、タンク用電磁弁43を閉じるようにすればよい。
一方、制御装置60は、検出圧力が所定圧力を超えないと判断した場合、タンク用電磁弁43を閉じ(S25)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。
(サーモオフ後の起動(サーモオン))
図9は、本発明の実施の形態2に係る冷凍装置における二段式圧縮機のサーモオフ後の起動時の動作を示すフローチャートである。以下、図9を参照してサーモオフ後の起動時の動作を説明する。なお、サーモオフ中、タンク用電磁弁43は閉じられているものとする。
サーモオフからの起動、つまりサーモオンの際、まず、制御装置60は、二段式圧縮機31を起動する(S31)。サーモオフにより二段式圧縮機31が停止している期間は、数十分程度の短い期間であるため、その間の循環回路cの圧力上昇は僅かであり、設計圧力よりも十分低い状態にある。
ところで、サーモオフの間、ショーケース内の温度は次第に上昇する。この場合、蒸発器36における蒸発温度を下げて冷却能力を高め、ショーケース内の温度を設定温度まで下げる必要がある。
そこで、制御装置60は、タンク用電磁弁43を開き(S32)、膨張タンク44内の冷媒を循環回路c内に回収して、循環回路cの蒸発温度を下げる。そして、所定時間が経過すると(S33)、タンク用電磁弁43を閉じ(S34)、起動時の動作を終了する。その後は、ショーケース内を設定温度に維持する通常運転が行われる。なお、ステップS33における所定時間は、蒸発温度を目標蒸発温度にするために要する時間(例えば、2〜3分)が設定される。なお、ステップS33の判断の指標を、所定時間に代えて低圧圧力センサ49により検出された低圧圧力としてもよい。この場合、低圧圧力が、目標蒸発温度に対応する目標圧力に低下したかを判断し、目標圧力に到達したら、タンク用電磁弁43を閉じるようにすればよい。
なお、万一停電して、長時間停止した場合も考えて、タンク用電磁弁43は通電閉となるものを選定するとよい。これにより、停電時にはタンク用電磁弁43が開かれた状態となるため、循環回路c内の圧力が上昇した際に、循環回路c内の冷媒を膨張タンク44に回収でき、循環回路c内の圧力が設計圧力を超えるのを防止することができる。停電復帰後の再起動時は、タンク用電磁弁43を所定時間(例えば、2〜3分)開いて、冷媒を循環回路c内に回収してから、タンク用電磁弁43を閉じる。
以上説明したように、本実施の形態2によれば、二段式圧縮機31を備えた冷凍装置においてCO冷媒を用いる場合も、実施の形態1と同様の作用効果を得ることができる。
1 高温側圧縮機、2 高温側凝縮器、4 高温側蒸発器、5 低温側圧縮機、6 補助コンデンサ、7 低温側凝縮器、8 カスケードコンデンサ、9 受液器、10 液電磁弁、11 第1流量調整弁、12 低温側蒸発器、13 冷却ユニット、14 低温側第2流量調整弁、15 液配管、16 ガス配管、17 タンク用電磁弁、18 膨張タンク、19 低温側高圧圧力センサ、20 低温側低圧圧力センサ、31 二段式圧縮機、31a 低段側圧縮機、31b 高段側圧縮機、32 ガスクーラー、33 中間冷却器、34 液電磁弁、35 第1流量調整弁、36 蒸発器、37 冷却ユニット、40 第2流量調整弁、41 液配管、42 ガス配管、43 タンク用電磁弁、44 膨張タンク、45 分岐管、46 中間冷却用流量調整弁、47 接続回路、48 高圧圧力センサ、49 低圧圧力センサ、50 制御装置、60 制御装置、a 高温側循環回路、b 低温側循環回路、c 循環回路。

Claims (9)

  1. 高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とを有し、高温側冷媒が循環する高温側循環回路と、
    低温側圧縮機、前記カスケード熱交換器の低温側凝縮器及び受液器を有する低温側熱源回路と、第1流量調整弁及び低温側蒸発器が直列に接続されて構成された冷却ユニットとを、前記低温側熱源回路から前記冷却ユニットへ冷媒を流す液配管と前記冷却ユニットから前記低温側熱源回路に冷媒を流すガス配管とで連結して構成され、低温側冷媒が循環する低温側循環回路と、
    前記受液器の出口に設けられ、前記受液器を通過後の冷媒を減圧して気液2相として前記液配管に流すための第2流量調整弁と、
    前記低温側循環回路において前記低温側圧縮機の吸入側に、タンク用電磁弁を介して接続され、運転停止中の前記低温側循環回路内の圧力上昇を抑えるための膨張タンクと
    前記低温側圧縮機の吐出側の圧力を検出する低温側高圧圧力センサと、
    前記低温側圧縮機の吸入側の圧力を検出する低温側低圧圧力センサと、
    前記低温側高圧圧力センサ又は前記低温側低圧圧力センサにより検出された検出圧力に基づき前記タンク用電磁弁の開閉制御を行う制御装置とを備え
    前記制御装置は、
    運転停止中に前記検出圧力が前記低温側循環回路の設計圧力よりも低い所定圧力を超えると、前記タンク用電磁弁を開いて前記低温側循環回路内の冷媒が前記膨張タンクに流れるようにし、
    冷凍装置の起動時に前記低温側圧縮機と前記高温側圧縮機との両方を起動すると共に、その起動前の停止期間が予め設定した期間以上の場合、前記検出圧力が前記所定圧力を超えるか否かをチェックし、超える場合、前記タンク用電磁弁を開き、前記低温側蒸発器の蒸発温度を目標蒸発温度にするために必要な冷媒量、前記膨張タンク内の冷媒を前記低温側循環回路に回収してから前記タンク用電磁弁を閉じ、前記検出圧力が前記所定圧力を超えない場合、前記タンク用電磁弁を閉じることを特徴とする冷凍装置。
  2. 高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とを有し、高温側冷媒が循環する高温側循環回路と、
    低温側圧縮機、前記カスケード熱交換器の低温側凝縮器及び受液器を有する低温側熱源回路と、第1流量調整弁及び低温側蒸発器が直列に接続されて構成された冷却ユニットとを、前記低温側熱源回路から前記冷却ユニットへ冷媒を流す液配管と前記冷却ユニットから前記低温側熱源回路に冷媒を流すガス配管とで連結して構成され、低温側冷媒が循環する低温側循環回路と、
    前記受液器の出口に設けられ、前記受液器を通過後の冷媒を減圧して気液2相として前記液配管に流すための第2流量調整弁と、
    前記低温側循環回路において前記低温側圧縮機の吸入側に、タンク用電磁弁を介して接続され、運転停止中の前記低温側循環回路内の圧力上昇を抑えるための膨張タンクと、
    前記低温側圧縮機の吐出側の圧力を検出する低温側高圧圧力センサと、
    前記低温側圧縮機の吸入側の圧力を検出する低温側低圧圧力センサと、
    前記低温側高圧圧力センサ又は前記低温側低圧圧力センサにより検出された検出圧力に基づき前記タンク用電磁弁の開閉制御を行う制御装置とを備え、
    前記制御装置は、
    運転停止中に前記検出圧力が前記低温側循環回路の設計圧力よりも低い所定圧力を超えると、前記タンク用電磁弁を開いて前記低温側循環回路内の冷媒が前記膨張タンクに流れるようにし、
    冷凍装置の起動時に前記低温側圧縮機及び前記高温側圧縮機の両方を起動すると共に、その起動が、サーモオフからの起動の場合、前記タンク用電磁弁を開き、前記低温側蒸発器の蒸発温度を目標蒸発温度にするために必要な冷媒量、前記膨張タンク内の冷媒を前記低温側循環回路に回収してから前記タンク用電磁弁を閉じることを特徴とする冷凍装置。
  3. 高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とを有し、高温側冷媒が循環する高温側循環回路と、
    低温側圧縮機、前記カスケード熱交換器の低温側凝縮器及び受液器を有する低温側熱源回路と、第1流量調整弁及び低温側蒸発器が直列に接続されて構成された冷却ユニットとを、前記低温側熱源回路から前記冷却ユニットへ冷媒を流す液配管と前記冷却ユニットから前記低温側熱源回路に冷媒を流すガス配管とで連結して構成され、低温側冷媒が循環する低温側循環回路と、
    前記受液器の出口に設けられ、前記受液器を通過後の冷媒を減圧して気液2相として前記液配管に流すための第2流量調整弁と、
    前記低温側循環回路において前記低温側圧縮機の吸入側に、タンク用電磁弁を介して接続され、運転停止中の前記低温側循環回路内の圧力上昇を抑えるための膨張タンクとを備え
    前記低温側冷媒にCO冷媒を使用し、前記低温側循環回路の前記ガス配管の径を、前記低温側循環回路にHFC冷媒を使用する場合の圧損を考慮して設定される径と同等としたことを特徴とする冷凍装置。
  4. 前記タンク用電磁弁は、通電時に閉となる電磁弁であることを特徴とする請求項1乃至請求項3の何れか一項に記載の冷凍装置。
  5. 前記低温側冷媒をCO冷媒としたことを特徴とする請求項1乃至請求項4の何れか一項に記載の冷凍装置。
  6. 低段側圧縮機及び高段側圧縮機を有する二段式圧縮機、ガスクーラー及び中間冷却器を有する熱源回路と、第1流量調整弁及び蒸発器が直列に接続されて構成された冷却ユニットとを、前記熱源回路から前記冷却ユニットに冷媒を流す液配管と前記冷却ユニットから前記熱源回路に冷媒を流すガス管とで連結して構成され、CO冷媒が循環する循環回路と、
    前記ガスクーラーと前記中間冷却器との間から分岐した冷媒を前記中間冷却器に流入させる分岐管と、
    前記分岐管に設けられた中間冷却用流量調整弁と、
    前記低段側圧縮機の吐出側と前記高段側圧縮機の吸入側とを前記中間冷却器に接続する接続回路と、
    前記循環回路において前記中間冷却器を通過後の冷媒を減圧して気液2相として前記液配管に流すための第2流量調整弁と、
    前記循環回路において前記低段側圧縮機の吸入側に、タンク用電磁弁を介して接続され、運転停止中の前記循環回路内の圧力上昇を抑えるための膨張タンクと
    を備えたことを特徴とする冷凍装置。
  7. 前記低段側圧縮機の吐出側の圧力を検出する高圧圧力センサと、
    前記低段側圧縮機の吸入側の圧力を検出する低圧圧力センサと、
    前記高圧圧力センサ又は前記低圧圧力センサにより検出された検出圧力に基づき前記タンク用電磁弁の開閉制御を行う制御装置とを備え、
    前記制御装置は、
    運転停止中に前記検出圧力が前記循環回路の設計圧力よりも低い所定圧力を超えると、前記タンク用電磁弁を開いて前記循環回路内の冷媒が前記膨張タンクに流れるようにし、
    冷凍装置の起動時に前記二段式圧縮機を起動すると共に、その起動前の停止期間が予め設定した期間以上の場合、前記検出圧力が前記所定圧力を超えるか否かをチェックし、超える場合、前記タンク用電磁弁を開き、前記蒸発器の蒸発温度を目標蒸発温度にするために必要な冷媒量、前記膨張タンク内の冷媒を前記循環回路に回収してから前記タンク用電磁弁を閉じ、前記検出圧力が前記所定圧力を超えない場合、前記タンク用電磁弁を閉じることを特徴とする請求項記載の冷凍装置。
  8. 前記低段側圧縮機の吐出側の圧力を検出する高圧圧力センサと、
    前記低段側圧縮機の吸入側の圧力を検出する低圧圧力センサと、
    前記高圧圧力センサ又は前記低圧圧力センサにより検出された検出圧力に基づき前記タンク用電磁弁の開閉制御を行う制御装置とを備え、
    前記制御装置は、
    運転停止中に前記検出圧力が前記循環回路の設計圧力よりも低い所定圧力を超えると、前記タンク用電磁弁を開いて前記循環回路内の冷媒が前記膨張タンクに流れるようにし、
    冷凍装置の起動時に前記二段式圧縮機を起動すると共に、その起動が、サーモオフからの起動の場合、前記タンク用電磁弁を開き、前記蒸発器の蒸発温度を目標蒸発温度にするために必要な冷媒量、前記膨張タンク内の冷媒を前記循環回路に回収してから前記タンク用電磁弁を閉じることを特徴とする請求項記載の冷凍装置。
  9. 前記タンク用電磁弁は、通電時に閉となる電磁弁であることを特徴とする請求項乃至請求項の何れか一項に記載の冷凍装置。
JP2014531399A 2012-08-20 2012-08-20 冷凍装置 Active JP5901774B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070969 WO2014030198A1 (ja) 2012-08-20 2012-08-20 冷凍装置

Publications (2)

Publication Number Publication Date
JP5901774B2 true JP5901774B2 (ja) 2016-04-13
JPWO2014030198A1 JPWO2014030198A1 (ja) 2016-07-28

Family

ID=50149536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014531399A Active JP5901774B2 (ja) 2012-08-20 2012-08-20 冷凍装置

Country Status (5)

Country Link
US (2) US10132539B2 (ja)
EP (1) EP2886976B1 (ja)
JP (1) JP5901774B2 (ja)
CN (1) CN104321598B (ja)
WO (1) WO2014030198A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016005606T5 (de) * 2015-12-08 2018-09-13 Trane International Inc. Verwenden von Wärme, die aus einer Wärmequelle gewonnen wurde, um Heisswasser zu erhalten
CN107036344B (zh) * 2016-02-03 2021-06-15 开利公司 制冷系统、复叠式制冷系统及其控制方法
US11262096B2 (en) * 2016-04-07 2022-03-01 Carrier Corporation Air cooled chiller hydronic kit
WO2017179088A1 (ja) * 2016-04-11 2017-10-19 三菱電機株式会社 冷凍装置および冷凍装置の制御方法
MA39325A1 (fr) * 2016-09-05 2018-03-30 Univ Internationale De Rabat Uir Système de climatisation utilisant l’énergie thermique solaire
WO2018193498A1 (ja) * 2017-04-17 2018-10-25 三菱電機株式会社 冷凍サイクル装置
CN106949683B (zh) * 2017-04-27 2022-10-21 华南理工大学 一种混合工质低温制冷降温的柔性控压系统及其运行方法
CN107504706B (zh) * 2017-08-03 2021-04-20 青岛海尔空调电子有限公司 空调器及其快速制冷方法
CN107683891B (zh) * 2017-08-29 2021-07-20 华南理工大学 一种液态二氧化碳高压冷冻生鲜食品的方法及设备
CN108036534B (zh) * 2017-12-05 2020-09-25 中科美菱低温科技股份有限公司 一种防冻结超低温制冷系统及其使用方法
CN110285643A (zh) * 2019-06-12 2019-09-27 宁波普锐明汽车零部件有限公司 集热暖模设备及其工作方法和模具的预热方法
JP7482438B2 (ja) 2020-02-28 2024-05-14 パナソニックIpマネジメント株式会社 冷凍装置
JP2022020088A (ja) * 2020-06-26 2022-02-01 キヤノン株式会社 冷却装置、半導体製造装置および半導体製造方法
CN112254365A (zh) * 2020-10-20 2021-01-22 英诺绿能技术(河南)有限公司 一种能调节制冷剂灌注量的复叠式制冷系统
WO2023214309A1 (en) * 2022-05-02 2023-11-09 Angelantoni Test Technologies S.R.L. - In Breve Att S.R.L. Environmental simulation chamber and respective method of operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279202A (ja) * 2002-03-26 2003-10-02 Mayekawa Mfg Co Ltd 低元冷凍サイクルの冷媒ガスの回収方法とその装置
JP2004279014A (ja) * 2003-03-19 2004-10-07 Mayekawa Mfg Co Ltd Co2冷凍サイクル
JP2006290042A (ja) * 2005-04-06 2006-10-26 Calsonic Kansei Corp 車両用空調装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
WO2012128229A1 (ja) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 二元冷凍サイクル装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268459A (ja) * 1988-09-02 1990-03-07 Ulvac Corp 2段圧縮冷凍機
US5477697A (en) * 1994-09-02 1995-12-26 Forma Scientific, Inc. Apparatus for limiting compressor discharge temperatures
JP3331102B2 (ja) * 1995-08-16 2002-10-07 株式会社日立製作所 冷凍サイクルの容量制御装置
JP3270706B2 (ja) 1997-03-24 2002-04-02 三菱電機株式会社 多元冷凍装置
JP2003074999A (ja) * 2001-08-31 2003-03-12 Daikin Ind Ltd 冷凍機
US6539735B1 (en) 2001-12-03 2003-04-01 Thermo Forma Inc. Refrigerant expansion tank
US6557361B1 (en) * 2002-03-26 2003-05-06 Praxair Technology Inc. Method for operating a cascade refrigeration system
JP4326209B2 (ja) * 2002-11-29 2009-09-02 三洋電機株式会社 二元冷凍装置
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
EP2257748B1 (en) * 2008-02-19 2017-12-27 Carrier Corporation Refrigerant vapor compression system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279202A (ja) * 2002-03-26 2003-10-02 Mayekawa Mfg Co Ltd 低元冷凍サイクルの冷媒ガスの回収方法とその装置
JP2004279014A (ja) * 2003-03-19 2004-10-07 Mayekawa Mfg Co Ltd Co2冷凍サイクル
JP2006290042A (ja) * 2005-04-06 2006-10-26 Calsonic Kansei Corp 車両用空調装置
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
WO2012128229A1 (ja) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 二元冷凍サイクル装置

Also Published As

Publication number Publication date
US20150135752A1 (en) 2015-05-21
EP2886976B1 (en) 2020-10-07
CN104321598B (zh) 2016-05-18
EP2886976A1 (en) 2015-06-24
EP2886976A4 (en) 2016-06-15
US10132539B2 (en) 2018-11-20
CN104321598A (zh) 2015-01-28
JPWO2014030198A1 (ja) 2016-07-28
US20180106514A1 (en) 2018-04-19
WO2014030198A1 (ja) 2014-02-27
US10247454B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP5901774B2 (ja) 冷凍装置
EP2910870B1 (en) Refrigeration device and method for controlling same
JP6292480B2 (ja) 冷凍装置
JP5502459B2 (ja) 冷凍装置
JP2010525292A (ja) 遷臨界動作における冷媒蒸気圧縮システムおよびその方法
JP5819006B2 (ja) 冷凍装置
JP5484890B2 (ja) 冷凍装置
WO2015125219A1 (ja) 空気調和装置
JP2011133204A (ja) 冷凍装置
JP5449266B2 (ja) 冷凍サイクル装置
JP5496645B2 (ja) 冷凍装置
JP5759076B2 (ja) 冷凍装置
JP6388260B2 (ja) 冷凍装置
JP5523817B2 (ja) 冷凍装置
JP2013155972A (ja) 冷凍装置
JP5502460B2 (ja) 冷凍装置
JP2011133206A (ja) 冷凍装置
JP6653463B2 (ja) 冷凍装置
JP5901775B2 (ja) 冷凍装置
JP2011133208A (ja) 冷凍装置
JP2014159950A (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
JP2011137556A (ja) 冷凍装置
JP2019082294A (ja) カスケード式冷凍装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250