JP5884891B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP5884891B2
JP5884891B2 JP2014501891A JP2014501891A JP5884891B2 JP 5884891 B2 JP5884891 B2 JP 5884891B2 JP 2014501891 A JP2014501891 A JP 2014501891A JP 2014501891 A JP2014501891 A JP 2014501891A JP 5884891 B2 JP5884891 B2 JP 5884891B2
Authority
JP
Japan
Prior art keywords
motor
torque
engine
running
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014501891A
Other languages
English (en)
Other versions
JPWO2013128587A1 (ja
Inventor
田端 淳
淳 田端
松原 亨
亨 松原
弘一 奥田
弘一 奥田
健太 熊▲崎▼
健太 熊▲崎▼
達也 今村
達也 今村
恵太 今井
恵太 今井
北畑 剛
剛 北畑
春哉 加藤
春哉 加藤
康博 日浅
康博 日浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013128587A1 publication Critical patent/JPWO2013128587A1/ja
Application granted granted Critical
Publication of JP5884891B2 publication Critical patent/JP5884891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置に係り、特に、エンジン始動を考慮したモータ走行領域の設定に関するものである。
モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両が良く知られている。例えば、特許文献1に記載されたハイブリッド車両がそれである。この特許文献1には、クラッチを介してエンジンに連結された電動機を備えるハイブリッド車両において、電動機が出力可能な上限トルクと現在の電動機の発生トルクとの差分である余裕トルクが、エンジン始動時に要するモータトルク(始動用トルクに相当)以下のときにエンジン始動を開始することが提案されている。つまり、特許文献1に記載の技術では、電動機の上限トルクに対して始動用トルク(例えばエンジン始動時に駆動輪へ伝達される減速トルク分(すなわちエンジン始動に伴う駆動トルクの落ち込み分)を補償する始動補償トルク)分を残したトルク値がモータ走行時の走行用トルクとして用いることができる上限トルク(モータ走行可能トルクと称する)に設定されている。すなわち、始動用トルク分に基づいてモータ走行中にエンジン始動する始動閾値が設定されている。これにより、特許文献1の車両では、例えば駆動トルクの落ち込みに伴うエンジン始動時のショック(エンジン始動ショック)の発生が回避されている。
特開2006−298079号公報
ところで、電動機の上限トルクから始動用トルクを減じてモータ走行可能トルクを設定するということは、実際にはそのモータ走行可能トルクを超えるトルク領域にてモータ走行できるにも拘わらず、エンジン始動が為されてしまうということであり、燃費が悪化する可能性がある。特に、大容量のバッテリ(すなわち電動機との間で電力を授受する蓄電装置)が搭載されている場合などは、モータ走行をより長く継続可能であるので、エンジン始動による燃費の悪化がより顕著に表れる。一方で、エンジン始動を考慮せずにモータ走行可能トルクを設定すると、電動機による始動用トルク分までも走行用トルクに回すことになり、エンジン始動時に駆動トルクに不足が生じ、エンジン始動ショックが増大する可能性がある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、燃費向上とエンジン始動ショックの抑制とを両立させることができるハイブリッド車両の制御装置を提供することにある。
前記目的を達成する為の第1の発明の要旨とするところは、(a) モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、(b) 前記始動用トルク分まで用いて前記モータ走行している状態であるときに、充電容量が第1所定値よりも小さい場合は前記状態にあることを運転者に報知し、充電容量が前記第1所定値よりも小さな第2所定値よりも小さい場合はエンジンを始動するものであり、(c) 外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、(d) 前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことにある。
このようにすれば、電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、始動用トルク分まで用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。又、外部電源による電力を用いた所謂プラグインハイブリッド方式での走行では、例えば電動機へ供給可能な電力が比較的多く確保されることによって比較的長くモータ走行を継続することができると考えられる為、走行用トルクと始動用トルクとを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行の領域を拡大することが有用となる。一方、エンジン動力或いは被駆動力による電力を用いた通常のハイブリッド方式での走行では、例えば電動機へ供給可能な電力が前記プラグインハイブリッド方式程確保されずそれ程長くモータ走行を継続することができないと考えられる為、走行用トルクを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行中におけるエンジン始動時にエンジン始動ショックを抑制乃至回避することが有用となる。
ここで、前記目的を達成する為の第2の発明の要旨とするところは、(a) モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、(b) 前記始動用トルク分まで用いて前記モータ走行している状態であるときに、充電容量が第1所定値よりも小さい場合は前記状態にあることを運転者に報知し、充電容量が前記第1所定値よりも小さな第2所定値よりも小さい場合はエンジンを始動するものであり、(c) 前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものである。
このようにすれば、電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、始動用トルク分まで用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。又、運転者への報知によって運転者が車両に対する駆動要求量を低減することが期待できる。
また、前記目的を達成する為の第3の発明の要旨とするところは、(a) モータ走行時の走行用トルクを出力する2つの電動機を備え、その2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、(b) 前記2つの電動機からの出力トルクを併用して前記モータ走行している状態が、その2つの電動機の出力トルクを前記少なくとも一方の電動機のみで賄うには前記始動用トルク分まで用いて前記モータ走行することになる状態では、その状態にあることを運転者に報知するものであり、(c) 外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、(d) 前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことにある。このようにすれば、2つの電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、2つの電動機の出力トルクを用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。又、外部電源による電力を用いた所謂プラグインハイブリッド方式での走行では、例えば電動機へ供給可能な電力が比較的多く確保されることによって比較的長くモータ走行を継続することができると考えられる為、走行用トルクと始動用トルクとを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行の領域を拡大することが有用となる。一方、エンジン動力或いは被駆動力による電力を用いた通常のハイブリッド方式での走行では、例えば電動機へ供給可能な電力が前記プラグインハイブリッド方式程確保されずそれ程長くモータ走行を継続することができないと考えられる為、走行用トルクを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行中におけるエンジン始動時にエンジン始動ショックを抑制乃至回避することが有用となる。
また、前記目的を達成する為の第4の発明の要旨とするところは、(a) モータ走行時の走行用トルクを出力する2つの電動機を備え、その2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、(b) 前記2つの電動機からの出力トルクを併用して前記モータ走行している状態が、その2つの電動機の出力トルクを前記少なくとも一方の電動機のみで賄うには前記始動用トルク分まで用いて前記モータ走行することになる状態では、その状態にあることを運転者に報知するものであり、(c) 前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものである。このようにすれば、2つの電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、2つの電動機の出力トルクを用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。又、運転者への報知によって運転者が車両に対する駆動要求量を低減することが期待できる。
また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記エンジン始動が要求された場合に或いはそのエンジン始動が予想される場合に、運転者への報知を開始することにある。このようにすれば、燃費向上とエンジン始動ショックの抑制とを適切に両立させることができる。
また、第6の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記電動機としての第1電動機及び第2電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構を備え、前記差動機構は、前記複数の回転要素として、前記第1電動機に連結された回転要素、駆動輪に動力伝達可能に連結された出力回転部材である回転要素、及び前記エンジンのクランク軸に連結された回転要素を有し、前記第2電動機は、駆動輪に動力伝達可能に連結され、前記電動機に連結された回転要素以外の回転要素をロック作動により非回転部材に連結するロック機構を更に備え、前記ロック機構をロック作動させた状態にて前記第1電動機及び前記第2電動機からの出力トルクを併用して走行するモータ走行中に前記エンジンを始動する際は、そのロック機構を非ロック作動させて、前記第1電動機にて前記エンジンを始動するクランキングトルクを出力すると共に前記第2電動機にてそのクランキングトルクの反力トルクを補償するものである。このようにすれば、エンジン始動に備えて第2電動機については始動用トルクを担保して走行する必要があることに加え、第1電動機についてはクランキングトルクを出力する為にエンジン始動時は駆動トルクを全く出力することができず、モータ走行できる領域は実質的に第2電動機の走行用トルクを出力可能なトルク領域となり、折角2つの電動機があるにも拘わらず1つの電動機と同じになってしまうことに対して、本発明を採用することで、2つの電動機の動力をモータ走行に最大限活用すること(すなわち、2つの電動機の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
また、第7の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記電動機としての複数の電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構と、前記エンジンと前記複数の電動機のうちの何れかの電動機に連結された回転要素との間の動力伝達経路を断接する断接クラッチとを備え、前記複数の電動機のうちの何れの電動機も連結されていない回転要素を出力回転部材とするものであり、前記断接クラッチを解放して走行する前記モータ走行中に前記エンジンを始動する際は、その断接クラッチを係合させつつその断接クラッチに連結された前記電動機にて前記始動用トルクを出力するものである。このようにすれば、差動機構を介した複数の電動機でモータ走行する場合、エンジン始動に備えて始動用トルクを担保して走行する必要があることに加え、複数の電動機の出力トルクが釣り合った状態で走行する必要がある為に始動用トルクを出力する電動機以外の電動機においてもその始動用トルクに対応するトルクを使用不可トルクとして担保して走行する必要があり、それらの担保分に相当するトルク領域をモータ走行に用いることができないことに対して、本発明を採用することで、始動用トルクと使用不可トルクとを担保する必要がなくなる為、複数の電動機の動力をモータ走行に最大限活用すること(すなわち、複数の電動機の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
また、第8の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記エンジンと前記電動機との間の動力伝達経路を断接する断接クラッチを備え、前記断接クラッチを解放して前記電動機のみで走行するモータ走行中に前記エンジンを始動する際は、その断接クラッチを係合させつつ前記電動機にて前記始動用トルクを出力するものである。このようにすれば、電動機の動力をモータ走行に最大限活用すること(すなわちモータ走行領域が拡大すること)による燃費向上と、エンジン始動ショックの抑制とを両立させることができる。
また、前記目的を達成する為の第9の発明の要旨とするところは、(a) モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、(b) 前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知するものであり、(c) 外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、(d) 前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことにある。
また、前記目的を達成する為の第10の発明の要旨とするところは、(a) モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、(b) 前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知するものであり、(c) 前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものであることにある。
本発明が適用される車両の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明するブロック線図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 遊星歯車装置における各回転要素の回転速度を相対的に表すことができる共線図であり、噛合クラッチ係合時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図3と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 走行状態の違いにより高負荷運転状態を解消する状態が異なることを説明する為に用いた電動機の駆動時特性図の一例である。 電子制御装置の制御作動の要部すなわち燃費向上とエンジン始動ショックの抑制とを両立させる為の制御作動を説明するフローチャートである。 図7のフローチャートに示す制御作動を実行した場合のタイムチャートである。 本発明が適用される他のハイブリッド車両を説明する図である。 各回転要素の回転速度を相対的に表すことができる共線図であり、モータ走行時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図10と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 本発明が適用される他のハイブリッド車両を説明する図である。 各回転要素の回転速度を相対的に表すことができる共線図であり、モータ走行時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図14と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 ロック機構の他の一例であるブレーキを示す図である。
本発明において、好適には、前記ハイブリッド車両は、エンジン及び電動機を備え、電動機により走行することができるハイブリッド車両、そのハイブリッド車両ではあるが充電スタンドや家庭用電源などから車両に搭載された蓄電装置(バッテリ等)への充電が可能な所謂プラグインハイブリッド車両などである。特に、このプラグインハイブリッド車両は、ハイブリッド車両よりも蓄電装置の最大入出力許容値が大きくされると考えられる為、例えばモータ走行が可能な領域をより高い要求駆動トルクまで対応させることができる。また、例えば複数の電動機を備えている場合には、高い要求駆動トルクまで対応させる為に電動機を大きくするのではなく、複数の電動機を走行用の駆動力源として使用できるようにすることで、電動機の大型化を抑制することができる。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用されるハイブリッド車両10(以下、車両10という)の概略構成を説明する図であると共に、車両10の各部を制御する為に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10は、走行用の駆動力源である、エンジン12、第1電動機MG1、及び第2電動機と、左右1対の駆動輪14との間の動力伝達経路に設けられた、第1駆動部16、第2駆動部18、差動歯車装置20、及び左右1対の車軸22などとを備えて構成されている。また、車両10には、エンジン12により回転駆動されることで、油圧制御回路54の元圧となる油圧を発生すると共に、第1駆動部16や第2駆動部18等に潤滑油を供給するオイルポンプ24が備えられている。また、車両10は、エンジン12のクランク軸26を非回転部材であるハウジング28に対して固定するロック機構としての噛合クラッチ(ドッグクラッチ)46を備えている。
第1駆動部16は、遊星歯車装置30及び出力歯車32を備えて構成されている。遊星歯車装置30は、第1電動機MG1に連結された回転要素であるサンギヤS、駆動輪14に動力伝達可能に連結された回転要素であってピニオンギヤPを介してサンギヤSと噛み合うリングギヤR、及び噛合クラッチ46の係合作動(ロック作動)によりハウジング28に連結された回転要素であってピニオンギヤPを自転及び公転可能に支持するキャリヤCAを3つの回転要素(回転部材)として有する公知のシングルピニオン型の遊星歯車装置であり、差動作用を生じる差動機構として機能する。キャリアCAは第1駆動部16の入力軸としてのクランク軸26に連結され、リングギヤRは出力歯車32に連結されている。すなわち、遊星歯車装置30は、入力回転部材であってエンジン12に連結された第1回転要素RE1としてのキャリアCA、第2回転要素RE2としてのサンギヤS、及び出力回転部材である第3回転要素RE3としてのリングギヤRを備え、エンジン12から出力される動力を第1電動機MG1及び出力歯車32へ分配する動力分配機構であって、電気的無段変速機として機能する。出力歯車32は、クランク軸26と平行を成す中間出力軸34と一体的に設けられた大径歯車36と噛み合わされている。また、中間出力軸34と一体的に設けられた小径歯車38が、差動歯車装置20のデフ入力歯車40と噛み合わされている。
第2駆動部18は、第2電動機MG2の出力軸であるMG2出力軸42に連結された第2出力歯車44を備えて構成されている。第2出力歯車44は、大径歯車36と噛み合わされている。これにより、第2電動機MG2は、駆動輪14に動力伝達可能に連結される。
第1電動機MG1及び第2電動機MG2は、何れも駆動力を発生させるモータ(発動機)及び反力を発生させるジェネレータ(発電機)としての機能を有するモータジェネレータであるが、第1電動機MG1は少なくともジェネレータとしての機能を備え、第2電動機MG2は少なくともモータとしての機能を備える。第1電動機MG1及び第2電動機MG2は、それぞれインバータユニット50を介して蓄電装置52に接続されている。
以上のように構成された車両10において、第1駆動部16におけるエンジン12や第1電動機MG1からの動力は、遊星歯車装置30を介して出力歯車32に伝達され、中間出力軸34に設けられた大径歯車36及び小径歯車38を介して差動歯車装置20のデフ入力歯車40に伝達される。また、第2駆動部18における第2電動機MG2からの動力は、MG2出力軸42及び第2出力歯車44を介して大径歯車36に伝達され、小径歯車38を介してデフ入力歯車40に伝達される。すなわち、車両10においては、エンジン12、第1電動機MG1、及び第2電動機MG2の何れもが走行用の駆動源として用いられ得る。
噛合クラッチ46は、外周に複数の噛合歯を備え、クランク軸26と同じ軸心まわりに一体回転させられるように設けられたエンジン側部材46aと、そのエンジン側部材46aの噛合歯に対応する複数の噛合歯を備え、ハウジング28に固設されたハウジング側部材46bと、エンジン側部材46a及びハウジング側部材46bの噛合歯に噛み合わされるスプラインを内周側に備え、斯かるスプラインがエンジン側部材46a及びハウジング側部材46bの噛合歯に噛み合わされた状態でそれらエンジン側部材46a及びハウジング側部材46bに対して軸心方向の移動(摺動)可能に設けられたスリーブ46cと、そのスリーブ46cを軸心方向に駆動するアクチュエータ46dとを、備えて構成されている。このアクチュエータ46dは、油圧制御回路54から供給されるブレーキ油圧Pbに応じてスリーブ46cを、その内周側に設けられたスプラインがエンジン側部材46a及びハウジング側部材46b両方の噛合歯に噛み合わされた状態と、ハウジング側部材46bの噛合歯にのみ噛み合わされ且つエンジン側部材46aの噛合歯には噛み合わされない状態との間で移動させる油圧アクチュエータである。
例えば油圧制御回路54から供給されるブレーキ油圧Pbが増加させられ、アクチュエータ46dによりスリーブ46cがエンジン側部材46a及びハウジング側部材46b両方の噛合歯に噛み合わされる状態に移動させられると、すなわち係合作動(ロック作動)させられると、クランク軸26が噛合クラッチ46を介してハウジング28に固定されることで、そのクランク軸26はハウジング28に対して相対回転不能な状態とされる。すなわち、噛合クラッチ46の係合作動により、クランク軸26はハウジング28に固定(ロック)される。一方、例えば油圧制御回路54から供給されるブレーキ油圧Pbが減少させられ、アクチュエータ46dに備えられたリターンスプリングの付勢力等によりスリーブ46cがハウジング側部材46bの噛合歯にのみ噛み合わされ且つエンジン側部材46aには噛み合わされない状態に移動させられると、すなわち解放作動(非ロック作動)させられると、噛合クラッチ46によりクランク軸26がハウジング28に対して固定された状態が解除されることで、そのクランク軸26はハウジング28に対して相対回転可能な状態とされる。また、ロック機構として噛合クラッチ46を備えた構成においては、クランク軸26のハウジング28に対する引き摺りの発生を抑制できるという利点がある。
また、車両10には、車両10の各部を制御する制御装置としての電子制御装置80が備えられている。この電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んでおり、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置80は、エンジン12、第1電動機MG1、第2電動機MG2などに関するハイブリッド駆動制御等の車両制御を実行するようになっており、必要に応じてエンジン12の出力制御用や電動機MG1,MG2の出力制御用等に分けて構成される。また、電子制御装置80には、車両10に設けられた各センサ(例えばクランクポジションセンサ60、出力回転速度センサ62、レゾルバ等の第1電動機回転速度センサ64、レゾルバ等の第2電動機回転速度センサ66、油温センサ68、アクセル開度センサ70、バッテリセンサ72など)による検出値に基づく各種信号(例えばエンジン回転速度Ne及びクランク角度Acr、車速Vに対応する出力歯車32の回転速度である出力回転速度Nout、第1電動機回転速度Nmg1、第2電動機回転速度Nmg2、第1駆動部16等の潤滑油の温度である潤滑油温THoil、アクセル開度Acc、蓄電装置52の充電状態(充電容量)SOCなど)が供給される。また、電子制御装置80からは、車両10に設けられた各装置(例えばエンジン12、インジケータ49、インバータ50、油圧制御回路54など)に各種指令信号(例えばエンジン制御指令信号Se、電動機制御指令信号Sm、油圧制御指令信号Spなど)が供給される。
図2は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図2において、ハイブリッド制御手段すなわちハイブリッド制御部82は、例えば電子スロットル弁の開閉、燃料噴射量、点火時期等を制御するエンジン制御指令信号Seを出力し、目標エンジンパワーPeを発生する為のエンジントルクTeの目標値が得られるようにエンジン12の出力制御を実行する。また、ハイブリッド制御部82は、第1電動機MG1や第2電動機MG2の作動を制御する電動機制御指令信号Smをインバータ50に出力して、第1電動機トルクTmg1や第2電動機トルクTmg2の目標値が得られるように第1電動機MG1や第2電動機MG2の出力制御を実行する。
具体的には、ハイブリッド制御部82は、アクセル開度Accや車速Vに基づいて車両10に対する駆動要求量としての要求駆動トルクを算出し、充電要求値(充電要求パワー)等を考慮して低燃費で排ガス量の少ない運転となるように、エンジン12、第1電動機MG1、及び第2電動機MG2の少なくとも1つから要求駆動トルクを発生させる。例えば、ハイブリッド制御部82は、エンジン12の運転を停止させると共に第1電動機MG1及び第2電動機MG2のうちの少なくとも一方の電動機のみを走行用の駆動源としてモータ走行(EV走行)する為のモータ走行モード、エンジン12の動力に対する反力を第1電動機MG1の発電により受け持つことで出力歯車32にエンジン直達トルクを伝達すると共に第1電動機MG1の発電電力により第2電動機MG2を駆動することで駆動輪14にトルクを伝達して少なくともエンジン12を走行用の駆動源としてエンジン走行する為のエンジン走行モード(定常走行モード)、このエンジン走行モードにおいて蓄電装置52からの電力を用いた第2電動機MG2の駆動トルクを更に付加して走行する為のアシスト走行モード(加速走行モード)等を、走行状態に応じて選択的に成立させる。ハイブリッド制御部82は、要求駆動トルクが予め実験的或いは設計的に求められて記憶された(すなわち予め定められた)閾値よりも小さなモータ走行領域にある場合には、モータ走行モードを成立させる一方、要求駆動トルクが予め定められた閾値以上となるエンジン走行領域にある場合には、エンジン走行モード乃至アシスト走行モードを成立させる。前記駆動要求量としては、駆動輪14における要求駆動トルクの他に、駆動輪14における要求駆動力、駆動輪14における要求駆動パワー、走行用駆動力源(エンジン12、第1電動機MG1、第2電動機MG2)の目標トルク等を用いることもできる。また、駆動要求量として、単にアクセル開度Accやスロットル弁開度や吸入空気量等を用いることもできる。
ハイブリッド制御部82は、モータ走行モードを成立させた場合には、更に、第1電動機トルクTmg1及び第2電動機トルクTmg2を併用して走行することができる併用モードとするか、或いは第2電動機トルクTmg2のみを用いて走行することができる単独モードとするかを判断する。例えば、ハイブリッド制御部82は、モータ走行モードにおいて、第2電動機MG2のみで要求駆動トルクを賄える場合には単独モードを成立させる一方で、第2電動機MG2のみでは要求駆動トルクを賄えない場合には併用モードを成立させる。但し、ハイブリッド制御部82は、第2電動機MG2のみで要求駆動トルクを賄えるときであっても、第2電動機MG2の動作点(例えば第2電動機回転速度Nmg2及び第2電動機トルクTmg2で表される第2電動機の運転点)が第2電動機MG2の効率を悪化させる動作点として予め定められた領域内にある場合には、換言すれば第1電動機MG1及び第2電動機MG2を併用した方が効率が良い場合には、併用モードを成立させる。
ハイブリッド制御部82は、モータ走行モードにおいて併用モードを成立させた場合には、第1電動機MG1及び第2電動機MG2の運転効率に基づいて、第1電動機MG1及び第2電動機MG2にて要求駆動トルクを分担させる。例えば、ハイブリッド制御部82は、併用モードのモータ走行時には、そのときの車速Vにおける要求駆動トルクに基づいて予め定められた燃費優先のトルク分担率を求め、その分担率に基づいて要求駆動トルクに対する第1電動機MG1及び第2電動機MG2の各分担トルクを求める。そして、ハイブリッド制御部82は、その各分担トルクを出力するように第1電動機MG1及び第2電動機MG2を制御してモータ走行させる。
また、ハイブリッド制御部82は、モータ走行中には、バッテリセンサ72による検出値に基づく蓄電装置52の充電容量SOCに基づいて、エンジン12による蓄電装置52の充電が必要であるか否かを判断する。例えば、ハイブリッド制御部82は、モータ走行中において、エンジン12の動力により蓄電装置52を充電する必要がある程の小さな充電容量として予め定められた閾値S1よりも実際の充電容量SOCが小さい場合には、エンジン12を始動する必要がある(すなわちエンジン始動が要求された)と判断する。
ロック機構作動制御手段すなわちロック機構作動制御部84は、噛合クラッチ46の作動を制御する。具体的には、ロック機構作動制御部84は、油圧制御回路54からアクチュエータ46dに供給されるブレーキ油圧Pbを制御することで、噛合クラッチ46の係合作動乃至解放作動、すなわちクランク軸26のハウジング28に対する固定乃至その固定の解除を制御する。例えば、ロック機構作動制御部84は、ハイブリッド制御部82による併用モードのモータ走行が行われる場合には、油圧制御回路58からアクチュエータ46dに供給されるブレーキ油圧Pbを増加させることで噛合クラッチ46を係合作動させて、クランク軸26をハウジング28に対して固定する。ロック機構作動制御部84は、ハイブリッド制御部82によるエンジン走行或いは単独モードのモータ走行が行われる場合には、そのブレーキ油圧Pbを減少させることで噛合クラッチ46を解放作動させて、クランク軸26のハウジング28に対する固定を解除する。
エンジン走行モードにおける車両10の作動について説明すると、キャリアCAに入力されるエンジントルクTeに対して、第1電動機トルクTmg1がサンギヤSに入力される。この際、例えばエンジン回転速度Ne及びエンジントルクTeで表されるエンジン12の運転点を燃費が最も良い動作点に設定する制御を、第1電動機MG1の力行制御乃至反力制御により実行することができる。この種のハイブリッド形式は、機械分配式あるいはスプリットタイプと称される。また、単独モードでのモータ走行モードにおける車両10の作動について説明すると、エンジン12の駆動は行われず(すなわちエンジン12が運転停止状態とされ)、その回転速度は零とされる。この状態においては、第2電動機MG2の力行トルクが車両前進方向の駆動力として駆動輪14へ伝達される。また、第1電動機MG1は無負荷状態(フリー)とされている。
また、図3の共線図を用いて併用モードでのモータ走行モードにおける車両10の作動について説明すると、エンジン12の駆動は行われず、その回転速度は零とされる。また、ロック機構作動制御部84により噛合クラッチ46が係合作動させられ、エンジン12が回転不能にロックされる。噛合クラッチ46が係合作動された状態においては、第2電動機MG2の力行トルクが車両前進方向の駆動力として駆動輪14へ伝達される。また、第1電動機MG1の反力トルクが車両前進方向の駆動力として駆動輪14へ伝達される。すなわち、車両10においては、クランク軸26が噛合クラッチ46によりロックされることで、第1電動機MG1及び第2電動機MG2を走行用の駆動源として併用することができる。これにより、充電スタンドや家庭用電源などの外部電源48(図1参照)から蓄電装置52への充電が可能な所謂プラグインハイブリッド方式を採用するプラグインハイブリッド車両において、蓄電装置52が大容量化(高出力化)される場合、第2電動機MG2の大型化を抑制しつつモータ走行の高出力化を実現することができる。
ここで、併用モードのモータ走行中に、エンジン始動が行われる場合、例えば充電容量SOCが閾値S1よりも小さくなったことでエンジン始動が要求された場合、エンジン始動の為に先ずは、噛合クラッチ46を解放作動させる必要がある。具体的には、図2に戻り、ロック機構作動制御部84は、モータ走行中に、ハイブリッド制御部82により充電容量SOCが閾値S1よりも小さいと判定された場合には、噛合クラッチ46による固定を解除する制御を行う。ハイブリッド制御部82は、噛合クラッチ46が解放された後に、図4に示すように、第1電動機回転速度Nmg1の上昇によってエンジン回転速度Neを引き上げる為のクランキングトルクを第1電動機MG1から出力させる。ハイブリッド制御部82は、エンジン12が自立運転可能乃至完爆可能な所定エンジン回転速度以上にエンジン回転速度Neが上昇したら、エンジン12への燃料噴射を行うと共にエンジン12の点火を行ってエンジン12を始動する。このようなエンジン始動制御では、図4に示すように、第1電動機MG1によるクランキングトルクに対する反力トルク(クランキング反力トルク、MG1反力)が出力歯車32側に現れる為、ハイブリッド制御部82は、エンジン始動に際してクランキング反力トルクを打ち消す(相殺する)為の始動補償トルクを第2電動機MG2から出力させる。つまり、クランキング反力トルクは、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせることから、この減速トルク分を相殺する(すなわちエンジン始動に伴う駆動トルクの落ち込み分を補償する)為の始動補償トルクを第2電動機MG2から出力させる。上記クランキングトルク及び始動補償トルクは、何れもエンジン始動時の始動用トルクである。このように、第1電動機MG1及び第2電動機MG2は、共に、モータ走行時の走行用トルク(駆動トルク)とエンジン始動時の始動用トルクとを出力する電動機である。
ところで、電動機が出力可能な上限トルクから始動補償トルク分を減じたトルク値を、エンジン始動を判断する為のエンジン始動閾値に設定することで、クランキング時に電動機トルクTmgに不足を生じさせず、駆動トルクの落ち込みに伴うエンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法(従来例)として提案されている。
一方、本実施例の車両10では、図4に示すように、構成上、第1電動機MG1は、エンジン始動時にはクランキングトルクを出力する為に駆動トルクを全く出力することができない。その為、前記公知の手法を採用すると、第2電動機MG2はエンジン始動に備えて始動補償トルクを担保して走行する必要があると共に、第1電動機MG1はエンジンのクランキングに備える必要があることから、図5(特に従来例参照)に示すように、モータ走行領域は実質的にMG2上限トルクから始動補償トルクを減じたエンジン始動閾値以下のトルク領域となり、折角2つの電動機があるにも拘わらず1つの電動機と同じになってしまう。
これに対して、本実施例の車両10では、図5に示すように、2つの電動機MG1,MG2における合計の上限トルクの領域(電動機MG1,MG2にてトルクを出力可能な全域、すなわち走行用トルクと始動用トルクとを出力可能なトルク範囲)をモータ走行が可能なモータ走行領域とする、新しい手法を採用する。このような新しい手法を採用することで、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その反面、2つの電動機MG1,MG2にて始動用トルク分まで用いてモータ走行している状態では、見方を換えれば2つの電動機MG1,MG2からの出力トルクを実際に併用してモータ走行している状態では、エンジン始動時に前記エンジン始動ショックが増大してしまう可能性がある。上記2つの電動機MG1,MG2にて始動用トルク分まで用いてモータ走行している状態、及び上記2つの電動機MG1,MG2からの出力トルクを実際に併用してモータ走行している状態は、共に、高い駆動要求量に応じた高負荷運転を2つの電動機MG1,MG2により行っている状態であり、この状態を電動機MGによる高負荷運転状態と称する。
そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。これは、電動機MGによる高負荷運転状態にあることを運転者に報知しておけば、エンジン始動時にエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、エンジン始動ショックに対する違和感が抑制されるであろうという観点からである。或いは、これは、エンジン始動時にエンジン始動ショックが発生する可能性があることを報知していることにもなり、運転者に報知してない場合と比べ、エンジン始動ショックに対する違和感が抑制されると見ることもできる。或いは、これによって、運転者がアクセルを戻すなどして駆動要求量を低減することが考えられ、電動機MGによる高負荷運転状態が抑制乃至解消されることでエンジン始動時のエンジン始動ショックが抑制乃至回避されることが期待できる。
高負荷運転状態にあることを運転者に報知する技術は、結果的に、エンジン始動ショックの抑制に繋がる技術であるので、エンジン始動が要求された場合に、運転者への報知を開始するようにしても良い。また、エンジン始動時にエンジン始動ショックが抑制乃至回避されるように、駆動要求量を低減する操作を積極的に促すように報知しても良い。
また、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知すると共に、エンジン始動の要求に対して、第2電動機MG2の作動領域が始動補償トルクを担保できるトルク領域(例えば従来例におけるモータ走行領域、図5参照)内とされるまでエンジン始動(例えばエンジン始動指令)を遅延させても良い。
「2つの電動機MG1,MG2における合計の上限トルクの領域;図5参照」までもモータ走行領域とする場合、相応の出力が可能な蓄電装置52が備えられていることが望ましい為、上記新しい手法はプラグインハイブリッド車両にて採用することが有用である。このプラグインハイブリッド車両では、プラグインハイブリッド方式にて外部電源48から蓄電装置52へ充電された電力を用いてモータ走行することが可能であるが、これに限らず、例えばエンジン12からの動力或いは駆動輪14側からの被駆動力により蓄電装置52を充電する通常のハイブリッド方式にて充電された回生電力を用いてモータ走行することが可能である。その為、比較的大容量大出力となるプラグインハイブリッド方式にて充電された電力を用いてモータ走行する場合は、2つの電動機MG1,MG2における合計の上限トルクの領域にてモータ走行を行うこと(上記新しい手法に相当)が望ましい。一方で、比較的小容量小出力となる通常のハイブリッド方式にて充電された電力を用いてモータ走行する場合は、第2電動機MG2が走行用トルクを出力可能なトルク範囲にてモータ走行を行うこと(すなわち設定されたエンジン始動閾値以下のトルク領域をモータ走行領域とする公知の手法)が望ましい。
蓄電装置52における電力の入出力を監視することで、プラグインハイブリッド方式にて充電された電力か通常のハイブリッド方式にて充電された電力かが明確とされる。蓄電装置52は、プラグインハイブリッド方式にて電力が充電されるバッテリAと通常のハイブリッド方式にて電力が充電されるバッテリBとを備えて構成されても良い。これにより、何れの電力かが一層明確とされる。車両10にモードスイッチを備え、プラグインハイブリッドモード(PHVモード)が選択された場合には上記新しい手法を実行し、ハイブリッドモード(HVモード)が選択された場合には上記公知の手法を実行しても良い。このモードスイッチは、外部電源48により充電された電力を用いてモータ走行するPHVモードと、エンジン12からの動力或いは駆動輪14側からの被駆動力により充電された電力を用いてモータ走行するHVモードとを選択するスイッチであっても良い。
充電容量SOCが閾値S1よりも小さくなってエンジン始動が要求された際に、第2電動機MG2の作動領域が始動補償トルクを担保できるトルク領域内とされるまでエンジン始動が遅延させられると、充電容量SOCは更に低下させられる。比較的大容量の蓄電装置52では、ある程度の低下は許容されると考えられるが、閾値S1よりも更に小さな限界閾値S2を充電容量SOCが下回ったときには、始動補償トルクが担保されない為にエンジン始動ショックが増大するような状態であったとしてもエンジン始動することが望ましい。そこで、電子制御装置80は、エンジン始動が遅延させられているときに、エンジン始動の必要性が更に増大した場合には(例えば充電容量SOCが限界閾値S2よりも低下した場合には)、エンジン12を始動させる。
より具体的には、図2に戻り、インジケート制御手段すなわちインジケート制御部86は、併用モードでのモータ走行時に、ハイブリッド制御部82により実際の充電容量SOCが閾値S1よりも小さいと判定された場合には、電動機MGによる高負荷運転状態を抑制乃至解消するように運転者に報知する。インジケート制御部86は、例えばインジケータ49(図1参照)を点灯乃至点滅させること、ブザーやスピーカ等から音乃至音声を出すこと、運転席等を振動させること等を単独で行うことで或いは組み合わせることで、運転者に報知する。より具体的には、運転者が対応し易くなる為に、高負荷運転状態を抑制乃至解消する方法を示すように運転者に報知しても良い。例えば、図6の電動機の駆動時特性図上に示すように、走行状態(例えば図中の点A、点B、点C)の違いにより、高負荷運転状態を解消する状態(図中の矢印)が異なるので、それぞれに応じた報知を行う。比較的低車速となる点Aや比較的中車速となる点Bの走行状態では、アクセルを戻すように促す音声(例えば「アクセルを戻して下さい」)を出したり、比較的長い間隔で間欠するブザー音を出したり、或いはインジケータ49を比較的長い間隔で点滅させたりする。或いは、比較的中車速となる点Bの走行状態では、車速Vを低下させるように促す音声(例えば「車速を落として下さい」)を出したり、比較的短い間隔で間欠するブザー音を出したり、或いはインジケータ49を比較的短い間隔で点滅させたりする。また、比較的高車速となる点Cの走行状態では、アクセルを戻し、車速Vを低下させるように促す音声(例えば「アクセルを戻して、車速を落として下さい」)を出したり、連続したブザー音を出したり、或いはインジケータ49を点灯させたりする。また、公知のオートクルーズ制御にて走行中の場合には、そのオートクルーズ制御を解除する操作を促したり、そのオートクルーズ制御を解除し、車速Vを低下させ易くしても良い。
駆動要求量判定手段すなわち駆動要求量判定部88は、ハイブリッド制御部82により実際の充電容量SOCが閾値S1よりも小さいと判定された場合には、駆動要求量が予め定められた所定要求量よりも小さいか否かを判定する。所定要求量は、例えば第2電動機MG2が始動補償トルクを担保できる範囲で出力可能な最大の駆動要求量であり、エンジン始動閾値に相当する駆動要求量である。例えば、駆動要求量として要求駆動トルクを用いる場合には所定要求量は始動補償トルクであり、駆動要求量としてアクセル開度Accを用いる場合には所定要求量は始動補償トルクに対応する所定アクセル開度θ1であり、駆動要求量として要求駆動パワー(要求出力)を用いる場合には所定要求量は始動補償トルクに対応する所定要求出力P1である。
ハイブリッド制御部82は、駆動要求量判定部88により駆動要求量が所定要求量よりも小さいと判定された場合には、第2電動機MG2で反力をとりつつ第1電動機MG1のクランキングトルクによりエンジン回転速度Neを上昇させてエンジン12を点火するという第1電動機MG1の回転速度制御による一連のエンジン始動制御を実行する。一方で、ハイブリッド制御部82は、駆動要求量判定部88により駆動要求量が所定要求量以上であると判定された場合には、実際の充電容量SOCが限界閾値S2よりも小さいか否かを判定する。ハイブリッド制御部82は、実際の充電容量SOCが限界閾値S2よりも小さいと判定した場合には、第1電動機MG1の回転速度制御による一連のエンジン始動制御を実行する。
図7は、電子制御装置80の制御作動の要部すなわち燃費向上とエンジン始動ショックの抑制とを両立させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図7のフローチャートは、併用モードでのモータ走行中であることが前提とされている。図8は、図7のフローチャートに示す制御作動を実行した場合のタイムチャートである。
図7において、先ず、ハイブリッド制御部82に対応するステップ(以下、ステップを省略する)S10において、例えば併用モードでのモータ走行中に実際の充電容量SOCが閾値S1よりも小さいか否かが判定される。つまり、蓄電装置52を充電する為にエンジン12を始動する必要があるか否かが判定される。電動機MGによる高負荷運転状態での走行中に、充電容量SOCが減少してきて、2つの電動機MG1,MG2を用いた走行ができなくなるかを予測している。このS10の判断が肯定される場合はインジケート制御部86に対応するS20において、電動機MGによる高負荷運転状態を解消(停止)するように運転者に報知される(図8のt1時点)。次いで、駆動要求量判定部88に対応するS30において、駆動要求量(例えば要求駆動トルク,アクセル開度Acc,要求出力等)が所定要求量(エンジン始動閾値,所定アクセル開度θ1,所定要求出力P1等)よりも小さいか否かが判定される。このS30の判断が肯定される場合(図8のt3時点)はロック機構作動制御部84及びハイブリッド制御部82に対応するS40において、アクチュエータ46dに供給されるブレーキ油圧Pbが低下させられて噛合クラッチ46が解放されると共に、噛合クラッチ46の解放後に、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される(図8のt3時点乃至t4時点)。一方で、上記S30の判断が否定される場合はハイブリッド制御部82に対応するS50において、例えば実際の充電容量SOCが限界閾値S2よりも小さいか否かが判定される。このS50の判断が否定される場合は上記S20に戻されるが肯定される場合はロック機構作動制御部84及びハイブリッド制御部82に対応するS60において、上記S40と同様に、噛合クラッチ46が解放させられ、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される。他方で、上記S10の判断が否定される場合はハイブリッド制御部82に対応するS70において、2つの電動機MG1,MG2を併用したモータ走行モードがそのまま継続される。
図8に示されるように、充電容量SOCが閾値S1よりも低下したことで、電動機MGによる高負荷運転状態を抑制乃至解消するように、インジケータ49が点灯させられる(図8のt1時点)。この時点では、運転者の操作により駆動要求量が所定要求量より小さくされるまでエンジン始動が待機させられる。その後、運転者によるアクセルの低下操作(図8のt2時点以降)によりアクセル開度Accが所定アクセル開度θ1よりも低下させられると(図8のt3時点)、ブレーキ油圧Pbが低下させられて噛合クラッチ46が解放されると共に、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される(図8のt3時点乃至t4時点)。この間は、クランキング反力トルクを打ち消す為の始動補償トルク及び第1電動機MG1がそれまでに出力していた走行用トルク分に対応するトルク分が、図8のt3時点での第2電動機トルクTmg2に上乗せされて第2電動機MG2により出力される。エンジン12が始動させられると(図8のt4時点)、インジケータ49が消灯させられる(図8のt4時点以降)。
上述のように、本実施例によれば、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、高負荷運転状態にあることを運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。
また、本実施例によれば、外部電源48により充電された電力を用いてモータ走行する場合は、前記新しい手法を実行するものであり、エンジン12からの動力或いは駆動輪14側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記公知の手法を実行するので、所謂プラグインハイブリッド方式での走行では、例えば電動機MGへ供給可能な電力が比較的多く確保されることによって比較的長くモータ走行を継続することができると考えられる為、前記新しい手法を採用してモータ走行領域を拡大することが有用となる。一方、通常のハイブリッド方式での走行では、例えば電動機MGへ供給可能な電力がプラグインハイブリッド方式程確保されずそれ程長くモータ走行を継続することができないと考えられる為、前記公知の手法を採用してモータ走行中におけるエンジン始動時にエンジン始動ショックを抑制乃至回避することが有用となる。
また、噛合クラッチ46をロック作動させた状態にて2つの電動機MG1,MG2でモータ走行する場合、前記公知の手法を採用するとエンジン始動に備えて第2電動機MG2については始動補償トルクを担保して走行する必要があることに加え、第1電動機MG1についてはクランキングトルクを出力する為にエンジン始動時は駆動トルクを全く出力することができず、モータ走行領域は実質的に第2電動機MG2の走行用トルクを出力可能なトルク領域となり、折角2つの電動機MG1,MG2があるにも拘わらず1つの電動機MG2と同じになってしまうことに対して、本実施例によれば、2つの電動機MG1,MG2の動力をモータ走行に最大限活用すること(すなわち、2つの電動機MG1,MG2の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
また、本実施例によれば、エンジン始動が要求された場合に、運転者への報知を開始するので、燃費向上とエンジン始動ショックの抑制とを適切に両立させることができる。
また、本実施例によれば、運転者に報知することは、モータ走行に要求される電動機MGのパワーを低下させる操作を促すものであるので、運転者への報知によって運転者が駆動要求量を低減することが期待できる。
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
図9は、本発明が適用される他のハイブリッド車両100(以下、車両100という)の概略構成を説明する図である。この図9に示すように、車両100は、車両10と同様に差動機構としての遊星歯車装置102を備えているが、遊星歯車装置102に対するエンジン12、第1電動機MG1、及び第2電動機MG2の連結関係が車両10と相違する。特には、エンジン12と第1電動機MG1とは、クラッチC1を介して間接的に連結されると共に、遊星歯車装置102の同じ回転要素(リングギヤR)に連結されている。複数の電動機MG1,MG2のうちの何れの電動機も連結されていない遊星歯車装置102の回転要素(キャリヤCA)が出力回転部材として出力歯車32と連結されている。クラッチC1は、エンジン12と第1電動機MG1との間の動力伝達経路を断接する断接クラッチとして機能する。そして、この車両100においては、クラッチC1、クラッチC2、及びブレーキB1の各係合状態を切り換えると共に、エンジン12、第1電動機MG1、及び第2電動機MG2の各作動状態を切り換えることで、例えばモータ走行モード、エンジン走行モード(例えばシリーズハイブリッド走行モード、パラレルハイブリッド走行モード)が可能である。特には、クラッチC1及びブレーキB1を解放すると共にクラッチC2を係合することで、図10の共線図に示すように、クラッチC1を解放した状態で複数の電動機(第1電動機MG1及び第2電動機MG2)のみを走行用の駆動力源として走行するモータ走行が可能である(モータ走行モードにおける併用モードに相当)。
ここで、併用モードでのモータ走行中に、エンジン始動が要求された場合について検討する。このような場合、電子制御装置80は、図11に示すように、クラッチC1を係合させることによってエンジン回転速度Neを引き上げてエンジン始動を行う。エンジン回転速度Neを引き上げるトルクは、クラッチC1のトルク容量に応じてエンジン12側へ伝達される第1電動機トルクTmg1である為、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせる。従って、この減速トルク分を相殺する為の始動補償トルクを第1電動機MG1から出力させる。このように、第1電動機MG1は、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機である。
ところで、電動機が出力可能な上限トルクから始動補償トルク分を減じたトルク値をエンジン始動閾値に設定することで、エンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法として提案されている。一方、本実施例の車両100では、図10に示すように、構成上、第1電動機MG1と第2電動機MG2とが釣り合った(バランスした)状態で走行する必要がある。その為、前記公知の手法を採用すると、第1電動機MG1はエンジン始動に備えて始動補償トルクを担保して走行する必要があると共に、第2電動機MG2はその始動補償トルク分と釣り合うトルク分が自動的に使用不可トルクとして制限を受けることから、図12(特に従来例参照)に示すように、モータ走行領域は2つの電動機MG1,MG2における合計の上限トルクから始動補償トルク及び使用不可トルクを減じたエンジン始動閾値以下のトルク領域となってしまう。
これに対して、本実施例の車両100では、図12に示すように、2つの電動機MG1,MG2における合計の上限トルクの領域をモータ走行領域とする新しい手法を採用する。このような新しい手法を採用することで、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その反面、電動機MGによる高負荷運転状態では、エンジン始動時にエンジン始動ショックが増大してしまう可能性がある。そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。
本実施例においても、前述の実施例と同様に、燃費向上とエンジン始動ショックの抑制とを両立させることができる。具体的には、遊星歯車装置102を介した2つの電動機MG1,MG2でモータ走行する場合、前記公知の手法を採用するとエンジン始動に備えて始動補償トルクを担保して走行する必要があることに加え、2つの電動機MG1,MG2の出力トルクが釣り合った状態で走行する必要がある為に始動補償トルクを出力する第1電動機MG1以外の第2電動機MG2においてもその始動補償トルクに対応する使用不可トルクを担保して走行する必要があり、それらの担保分に相当するトルク領域をモータ走行に用いることができないことに対して、本実施例によれば、始動補償トルクと使用不可トルクとを担保する必要がなくなる為、2つの電動機MG1,MG2の動力をモータ走行に最大限活用すること及びエンジン始動ショックを抑制することを両立させることができる。
図13は、本発明が適用される他のハイブリッド車両200(以下、車両200という)の概略構成を説明する図である。この図13に示すように、車両200は、エンジン12と電動機MGとの間の動力伝達経路を断接する断接クラッチK0、電動機MGと駆動輪14との間の動力伝達経路の一部を構成する自動変速機202を備えている。この車両200では、図14の共線図に示すように、断接クラッチK0を解放した状態で電動機MGのみを走行用の駆動力源として走行するモータ走行が可能である(モータ走行モード)。また、断接クラッチK0を係合した状態で少なくともエンジン12を走行用の駆動力源として走行するエンジン走行とが可能である(エンジン走行モード)。
ここで、モータ走行モードでの走行中に、エンジン始動が要求された場合について検討する。このような場合、電子制御装置80は、図15に示すように、断接クラッチK0を係合させることによってエンジン回転速度Neを引き上げてエンジン始動を行う。エンジン回転速度Neを引き上げるトルクは、断接クラッチK0のトルク容量に応じてエンジン12側へ伝達される電動機トルクTmgである為、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせる。従って、この減速トルク分を相殺する為の始動補償トルクを電動機MGから出力させる。このように、電動機MGは、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機である。
ところで、電動機MGが出力可能な上限トルクから始動補償トルク分を減じたトルク値をエンジン始動閾値に設定することで、エンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法として提案されている。一方、この公知の手法を採用すると、電動機MGはエンジン始動に備えて始動補償トルクを担保して走行する必要があることから、図16(特に従来例参照)に示すように、モータ走行領域は電動機MGにおけるMG上限トルクから始動補償トルクを減じたエンジン始動閾値以下のトルク領域となってしまう。
これに対して、本実施例の車両200では、図16に示すように、電動機MGの上限トルクの領域(電動機MGにてトルクを出力可能な全域)をモータ走行領域とする新しい手法を採用する。このような新しい手法を採用することで、電動機MGの動力をモータ走行に最大限活用できる。その反面、電動機MGによる高負荷運転状態(すなわち始動補償トルク分まで用いてモータ走行している状態)では、エンジン始動時にエンジン始動ショックが増大してしまう可能性がある。そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。
本実施例においても、前述の実施例と同様に、電動機MGの動力をモータ走行に最大限活用すること(すなわちモータ走行領域が拡大すること)による燃費向上と、エンジン始動ショックの抑制とを両立させることができる。
以上、本発明の実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、その他の態様においても適用される。
例えば、前述の実施例1では、ロック機構として噛合クラッチ46を例示したが、これに限らない。ロック機構は、例えばクランク軸26の正回転方向の回転を許容し且つ負回転方向の回転を阻止するワンウェイクラッチ、油圧アクチュエータによって係合制御される多板式の油圧式摩擦係合装置、乾式の係合装置、電磁アクチュエータによってその係合状態が制御される電磁式摩擦係合装置(電磁クラッチ)、磁粉式クラッチなどであっても良い。図17は、油圧式摩擦係合装置であるブレーキBを示す図である。図17において、ブレーキBは、例えば油圧制御回路54から供給されるブレーキ油圧Pbに応じてその係合状態が係合乃至解放の間で制御される。また、必要に応じてスリップ係合させられても良い。ブレーキBの解放時には、エンジン12のクランク軸26はハウジング28に対して相対回転可能な状態とされる。一方、ブレーキBの係合時には、クランク軸26はハウジング28に固定(ロック)される。尚、このブレーキBは、例えばハウジング28とクランク軸26とを選択的に連結するクラッチでも良い。
また、前述の実施例1の車両10は、ロック機構を備え、2つの電動機MG1,MG2にてモータ走行が可能であったが、必ずしもロック機構を備える必要はない。ロック機構を備えない場合には、例えば第2電動機MG2にてモータ走行することになるが、本発明を適用することで、始動補償トルク分までモータ走行に用いることができる。また、本発明が適用される車両は、プラグインハイブリッド車両に限定されない。
また、前述の実施例では、エンジン始動が要求された場合に、エンジン12を始動する必要があると判断したが、これに限らない。例えば、エンジン始動が予想される場合、或いはエンジン始動が要求されると予想される場合に、エンジン12を始動する必要があると判断しても良い。上記予想される場合は、例えば蓄電装置52の充電容量SOCの低下速度、及び実際の充電容量SOCと閾値S1との差などに基づいて、充電容量SOCが閾値S1よりも小さくなることが予測された場合である。また、前述の実施例では、エンジン始動が要求された場合として、充電容量SOCが閾値S1よりも小さくなった場合を例示したが、これに限らず、例えば駆動要求量が更に増大した場合などであっても良い。
また、前述の実施例(特に図7のフローチャート)では、充電容量SOCが閾値S1よりも小さくなった場合に、電動機MGによる高負荷運転状態を解消するように運転者に報知されたが、これに限らない。例えば、まもなくエンジン始動が行われる場合に、運転者への報知を開始しても良いし、電動機MGによる高負荷運転状態になった場合に、その状態を運転者に報知するだけでも良い。また、前述の実施例では、充電容量SOCが閾値S1よりも小さくなった場合に、駆動要求量が所定要求量よりも小さくされたことを条件として一連のエンジン始動制御を開始したが、実際の第2電動機トルクTmg2が所定要求量に対応する所定トルクよりも小さくされたことを条件としてそのエンジン始動制御を開始しても良い。
また、前述の実施例の車両10では、差動機構の3つの回転要素の各々がエンジン12、第1電動機MG1、及び第2電動機MG2に連結される構成であったが、これに限らない。例えば、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても本発明は適用され得る。例えば、差動機構が4つの回転要素を有する場合には、第1電動機MG1及び第2電動機MG2に連結された回転要素以外の回転要素である、エンジン12に連結された回転要素或いはエンジン12も連結されていない回転要素がロック機構により回転停止させられる。また、電動機は、第1電動機MG1及び第2電動機MG2以外に備えられていても良い。また、エンジン12や複数の電動機は、直接的に或いは歯車機構等を介して間接的に差動機構の各回転要素に連結される。
また、前述の実施例において、第2電動機MG2は、直接的に或いは歯車機構等を介して間接的に出力歯車32や中間出力軸34や駆動輪14等に連結されたり、駆動輪14とは別の一対の車輪に直接的に又は間接的に連結されたりしても良い。そのように第2電動機MG2が別の一対の車輪に連結されておればその別の一対の車輪も駆動輪に含まれる。要するに、エンジン12からの動力で駆動される駆動輪と第2電動機MG2からの動力で駆動される駆動輪とは、別個の車輪であっても差し支えないということである。
また、前述の実施例において、遊星歯車装置30,102は、ダブルプラネタリの遊星歯車装置であっても良い。また、遊星歯車装置30,102は、例えばピニオンに噛み合う一対のかさ歯車を有する差動歯車装置であっても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10,100,200:ハイブリッド車両
12:エンジン
14:駆動輪
26:クランク軸
28:ハウジング(非回転部材)
30,102:遊星歯車装置(差動機構)
46:噛合クラッチ(ロック機構)
48:外部電源
49:インジケータ
80:電子制御装置(制御装置)
82:ハイブリッド制御部
86:インジケート制御部
B:ブレーキ(ロック機構)
MG:電動機
MG1:第1電動機(電動機)
MG2:第2電動機(電動機)

Claims (10)

  1. モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、
    前記始動用トルク分まで用いて前記モータ走行している状態であるときに、充電容量が第1所定値よりも小さい場合は前記状態にあることを運転者に報知し、充電容量が前記第1所定値よりも小さな第2所定値よりも小さい場合はエンジンを始動するものであり、
    外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、
    前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことを特徴とするハイブリッド車両の制御装置。
  2. モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、
    前記始動用トルク分まで用いて前記モータ走行している状態であるときに、充電容量が第1所定値よりも小さい場合は前記状態にあることを運転者に報知し、充電容量が前記第1所定値よりも小さな第2所定値よりも小さい場合はエンジンを始動するものであり、
    前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものであることを特徴とするハイブリッド車両の制御装置。
  3. モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、
    前記2つの電動機からの出力トルクを併用して前記モータ走行している状態が、該2つの電動機の出力トルクを前記少なくとも一方の電動機のみで賄うには前記始動用トルク分まで用いて前記モータ走行することになる状態では、その状態にあることを運転者に報知するものであり、
    外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、
    前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことを特徴とするハイブリッド車両の制御装置。
  4. モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、
    前記2つの電動機からの出力トルクを併用して前記モータ走行している状態が、該2つの電動機の出力トルクを前記少なくとも一方の電動機のみで賄うには前記始動用トルク分まで用いて前記モータ走行することになる状態では、その状態にあることを運転者に報知するものであり、
    前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものであることを特徴とするハイブリッド車両の制御装置。
  5. 前記エンジン始動が要求された場合に或いは該エンジン始動が予想される場合に、運転者への報知を開始することを特徴とする請求項1乃至の何れか1項に記載のハイブリッド車両の制御装置。
  6. 前記電動機としての第1電動機及び第2電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構を備え、
    前記差動機構は、前記複数の回転要素として、前記第1電動機に連結された回転要素、駆動輪に動力伝達可能に連結された出力回転部材である回転要素、及び前記エンジンのクランク軸に連結された回転要素を有し、
    前記第2電動機は、駆動輪に動力伝達可能に連結され、
    前記電動機に連結された回転要素以外の回転要素をロック作動により非回転部材に連結するロック機構を更に備え、
    前記ロック機構をロック作動させた状態にて前記第1電動機及び前記第2電動機からの出力トルクを併用して走行するモータ走行中に前記エンジンを始動する際は、該ロック機構を非ロック作動させて、前記第1電動機にて前記エンジンを始動するクランキングトルクを出力すると共に前記第2電動機にて該クランキングトルクの反力トルクを補償するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
  7. 前記電動機としての複数の電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構と、
    前記エンジンと前記複数の電動機のうちの何れかの電動機に連結された回転要素との間の動力伝達経路を断接する断接クラッチとを備え、
    前記複数の電動機のうちの何れの電動機も連結されていない回転要素を出力回転部材とするものであり、
    前記断接クラッチを解放して走行する前記モータ走行中に前記エンジンを始動する際は、該断接クラッチを係合させつつ該断接クラッチに連結された前記電動機にて前記始動用トルクを出力するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
  8. 前記エンジンと前記電動機との間の動力伝達経路を断接する断接クラッチを備え、
    前記断接クラッチを解放して前記電動機のみで走行するモータ走行中に前記エンジンを始動する際は、該断接クラッチを係合させつつ前記電動機にて前記始動用トルクを出力するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
  9. モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、
    前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知するものであり、
    外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとの合計のトルクを出力可能なトルク範囲にて前記モータ走行を行い、
    前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことを特徴とするハイブリッド車両の制御装置。
  10. モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、
    前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知するものであり、
    前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものであることを特徴とするハイブリッド車両の制御装置。
JP2014501891A 2012-02-28 2012-02-28 ハイブリッド車両の制御装置 Active JP5884891B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055004 WO2013128587A1 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JPWO2013128587A1 JPWO2013128587A1 (ja) 2015-07-30
JP5884891B2 true JP5884891B2 (ja) 2016-03-15

Family

ID=49081837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014501891A Active JP5884891B2 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置

Country Status (4)

Country Link
US (1) US9944275B2 (ja)
JP (1) JP5884891B2 (ja)
CN (1) CN104136251B (ja)
WO (1) WO2013128587A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128587A1 (ja) * 2012-02-28 2013-09-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5991375B2 (ja) 2012-07-05 2016-09-14 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5915744B2 (ja) * 2012-07-05 2016-05-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
JP6160453B2 (ja) * 2013-11-19 2017-07-12 トヨタ自動車株式会社 ハイブリッド車のエンジン始動制御装置
JP2015116967A (ja) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 ハイブリッド車両
US10670124B2 (en) 2013-12-31 2020-06-02 Deere & Company Multi-mode infinitely variable transmission
US10655710B2 (en) 2013-12-31 2020-05-19 Deere & Company Multi-mode infinitely variable transmission that provides seamless shifting
US9981665B2 (en) 2013-12-31 2018-05-29 Deere & Company Energy storage and delivery for power trains of work vehicles
US9206885B2 (en) * 2013-12-31 2015-12-08 Deere & Company Multi-mode infinitely variable transmission
US10119598B2 (en) 2013-12-31 2018-11-06 Deere & Company Multi-mode infinitely variable transmission
US10738868B2 (en) 2014-04-09 2020-08-11 Deere & Company Multi-mode powertrains
US10647193B2 (en) 2014-04-09 2020-05-12 Deere & Company Multi-mode power trains
US9651101B2 (en) * 2014-08-08 2017-05-16 GM Global Technology Operations LLC Method of controlling a selectable one way lutch of a transmission
JP2016055759A (ja) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102014220066A1 (de) * 2014-10-02 2016-06-09 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zum Betreiben eines Antriebsstrangs
JP6376036B2 (ja) * 2015-04-30 2018-08-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101646467B1 (ko) * 2015-06-18 2016-08-05 현대자동차주식회사 친환경자동차의 모터 감자 진단 방법
KR101704220B1 (ko) * 2015-06-22 2017-02-07 현대자동차주식회사 하이브리드 차량의 엔진 전부하 모드 진입 제어 방법
JP6288055B2 (ja) * 2015-11-30 2018-03-07 トヨタ自動車株式会社 ハイブリッド自動車
JP6365566B2 (ja) 2016-02-23 2018-08-01 トヨタ自動車株式会社 車両の制御装置
JP6458770B2 (ja) * 2016-05-18 2019-01-30 トヨタ自動車株式会社 ハイブリッド自動車
JP6569620B2 (ja) * 2016-07-29 2019-09-04 トヨタ自動車株式会社 ハイブリッド車の制御装置
US10619711B2 (en) 2017-04-12 2020-04-14 Deere & Company Infinitely variable transmission with power reverser
US11052747B2 (en) 2018-05-04 2021-07-06 Deere & Company Multi-mode powertrains
US11091018B2 (en) 2018-05-11 2021-08-17 Deere & Company Powertrain with variable vertical drop distance
JP2020166581A (ja) * 2019-03-29 2020-10-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh モータサイクルの動作を制御する制御装置及び制御方法
US10975959B2 (en) 2019-04-01 2021-04-13 Deere & Company Transmission clutch braking control system
US11137052B2 (en) 2019-08-29 2021-10-05 Deere & Company Transmission assembly with integrated CVP
US11351983B2 (en) 2019-10-31 2022-06-07 Deere & Company Power control system with transmission transient boost function
US11846085B2 (en) 2020-02-17 2023-12-19 Deere & Company Energy management system for a hybrid vehicle with an electrically powered hydraulic system
US11325459B2 (en) 2020-10-09 2022-05-10 Deere & Company Low profile transmission assembly with integrated CVP
US11613246B2 (en) 2021-01-21 2023-03-28 Deere & Company Power control system with engine throttle shift function
US11628822B2 (en) 2021-02-09 2023-04-18 Deere & Company Power control system with stall prevention clutch modulation function
US11299141B1 (en) 2021-02-10 2022-04-12 Deere & Company System for multi-layer braking and retardation in a work vehicle
US11820361B2 (en) 2021-11-30 2023-11-21 Deere & Company Transmission assembly with electrical machine unit for improved shift quality
US11607948B1 (en) 2021-12-22 2023-03-21 Deere & Company Electronically-variable power shift transmission for work vehicles
US11585412B1 (en) 2021-12-22 2023-02-21 Deere & Company Electronically-variable, dual-path power shift transmission for work vehicles
US11913528B1 (en) 2022-10-28 2024-02-27 Deere & Company Multi-mode continuously variable transmission assembly with drop set arrangement

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166928U (ja) 1981-04-17 1982-10-21
JP3385724B2 (ja) * 1994-05-27 2003-03-10 株式会社エクォス・リサーチ ハイブリッド車両用表示装置
JP2982746B2 (ja) * 1997-06-06 1999-11-29 トヨタ自動車株式会社 ハイブリッド車両の内燃機関制御装置
JP3956489B2 (ja) * 1998-07-02 2007-08-08 株式会社エクォス・リサーチ ハイブリッド型車両
TW419842B (en) * 1999-05-25 2001-01-21 Acer Comm & Multimedia Inc Low voltage detection circuit
JP3940284B2 (ja) * 2001-10-24 2007-07-04 ヤマハマリン株式会社 推進用エンジンを備えた船舶のバッテリ充電残量維持装置
JP3894143B2 (ja) * 2002-04-09 2007-03-14 トヨタ自動車株式会社 動力出力装置およびこれを備える自動車
JP3873843B2 (ja) 2002-08-05 2007-01-31 トヨタ自動車株式会社 エンジン自動停止始動機能付車両の情報報知装置
US7429804B2 (en) * 2004-09-24 2008-09-30 International Truck Intellectual Property Company, Llc Lift gate power control system
DE112005002717B4 (de) * 2004-10-27 2019-07-18 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Fahrzeugantriebssystem
JP2006298079A (ja) 2005-04-19 2006-11-02 Nissan Motor Co Ltd ハイブリッド車のモード遷移制御装置およびモード遷移制御方法
CN1903604A (zh) * 2005-07-28 2007-01-31 爱信艾达株式会社 车辆驱动控制装置及车辆驱动控制方法
JP4458020B2 (ja) * 2005-11-01 2010-04-28 トヨタ自動車株式会社 ハイブリッド車両の運転者支援システム。
JP2007168637A (ja) * 2005-12-22 2007-07-05 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
DE102007011410A1 (de) * 2006-03-14 2007-11-08 Mitsubishi Fuso Truck and Bus Corp., Kawasaki Steuergerät für ein elektrisches Hybridfahrzeug
US7722497B2 (en) * 2006-06-13 2010-05-25 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus
JP4197013B2 (ja) * 2006-06-28 2008-12-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4100440B2 (ja) * 2006-09-26 2008-06-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2008137543A (ja) * 2006-12-04 2008-06-19 Toyota Motor Corp 車両およびその制御方法
JP4197038B2 (ja) * 2007-03-27 2008-12-17 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
CN101878142B (zh) * 2007-11-30 2014-03-12 博世株式会社 混合动力系统控制方法
US8020652B2 (en) * 2007-12-04 2011-09-20 Ford Global Technologies, Llc Generator power-based cold start strategy
JP2009137553A (ja) * 2007-12-11 2009-06-25 Fujitsu Ten Ltd 制御装置及び制御方法
US8478466B2 (en) * 2007-12-27 2013-07-02 Byd Co. Ltd. Hybrid vehicle having multi-mode controller
US7986055B2 (en) * 2008-01-22 2011-07-26 Honda Motor Co., Ltd. Adjustment of control strategy based on temperature
JP4529097B2 (ja) * 2008-03-24 2010-08-25 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5019133B2 (ja) * 2008-07-31 2012-09-05 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP5298960B2 (ja) * 2009-03-04 2013-09-25 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2010100748A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
JP5232125B2 (ja) 2009-11-05 2013-07-10 本田技研工業株式会社 アイドルストップ装置
WO2011092858A1 (ja) * 2010-01-30 2011-08-04 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2011189889A (ja) 2010-03-16 2011-09-29 Honda Motor Co Ltd ハイブリッド車両
JP5316466B2 (ja) * 2010-04-05 2013-10-16 三菱自動車工業株式会社 表示装置
JP5530813B2 (ja) * 2010-06-04 2014-06-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置
US8565949B2 (en) * 2010-09-14 2013-10-22 GM Global Technology Operations LLC Method of controlling a hybrid powertrain to ensure battery power and torque reserve for an engine start and hybrid powertrain with control system
AU2011318923B2 (en) * 2010-10-21 2015-12-17 Hino Motors, Ltd. Start control method, start control device, hybrid automobile, and program
US8536834B2 (en) * 2010-12-23 2013-09-17 Thermo King Corporation Mobile environment-controlled unit and method of operating a mobile environment-controlled unit
JP5708797B2 (ja) * 2011-05-16 2015-04-30 トヨタ自動車株式会社 電動車両
WO2013128587A1 (ja) * 2012-02-28 2013-09-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5991375B2 (ja) * 2012-07-05 2016-09-14 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5915744B2 (ja) * 2012-07-05 2016-05-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US20160352120A1 (en) * 2015-05-26 2016-12-01 Ford Global Technologies, Llc Electric vehicle high-voltage system alert
US9994120B2 (en) * 2015-09-29 2018-06-12 Ford Global Technologies, Llc Electrified vehicle method and system for charging during a non-drive cycle

Also Published As

Publication number Publication date
CN104136251A (zh) 2014-11-05
CN104136251B (zh) 2017-03-08
WO2013128587A1 (ja) 2013-09-06
US20150142232A1 (en) 2015-05-21
US9944275B2 (en) 2018-04-17
JPWO2013128587A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5884891B2 (ja) ハイブリッド車両の制御装置
JP5786960B2 (ja) 車両の制御装置
JP5817920B2 (ja) 車両の制御装置
JP6394654B2 (ja) 車両
JP6024691B2 (ja) ハイブリッド車両用駆動装置の制御装置
WO2013140546A1 (ja) ハイブリッド車両の駆動制御装置
JP5949731B2 (ja) ハイブリッド車両
JP5874812B2 (ja) ハイブリッド車両の駆動制御装置
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
JPWO2013057831A1 (ja) 車両の制御装置
JP6264273B2 (ja) 車両用動力伝達装置の制御装置
JP6119530B2 (ja) 車両の制御装置
JPWO2013088578A1 (ja) ハイブリッド車両の駆動制御装置
JP2015081074A (ja) 車両の制御装置
JP2015182662A (ja) エンジン停止制御装置
JP5825132B2 (ja) ハイブリッド車両の制御装置
JP2013169852A (ja) 車両の制御装置
JP6048154B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP2019055712A (ja) 車両の制御装置
JP6146296B2 (ja) 車両の制御装置
JP6561978B2 (ja) ハイブリッド車両およびその制御方法
JP2013043570A (ja) ハイブリッド車両の制御装置
JP6946889B2 (ja) 車両用動力伝達装置の制御装置
JP6421704B2 (ja) 車両の制御装置
JP6579058B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5884891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151