WO2013128587A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2013128587A1
WO2013128587A1 PCT/JP2012/055004 JP2012055004W WO2013128587A1 WO 2013128587 A1 WO2013128587 A1 WO 2013128587A1 JP 2012055004 W JP2012055004 W JP 2012055004W WO 2013128587 A1 WO2013128587 A1 WO 2013128587A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
engine
electric motor
output
Prior art date
Application number
PCT/JP2012/055004
Other languages
English (en)
French (fr)
Inventor
田端 淳
松原 亨
弘一 奥田
健太 熊▲崎▼
達也 今村
恵太 今井
北畑 剛
春哉 加藤
康博 日浅
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014501891A priority Critical patent/JP5884891B2/ja
Priority to PCT/JP2012/055004 priority patent/WO2013128587A1/ja
Priority to US14/380,953 priority patent/US9944275B2/en
Priority to CN201280070711.5A priority patent/CN104136251B/zh
Publication of WO2013128587A1 publication Critical patent/WO2013128587A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device for a hybrid vehicle including an electric motor that outputs a running torque at the time of motor running and a starting torque at the time of starting an engine, and particularly relates to setting of a motor running region in consideration of engine starting. .
  • a hybrid vehicle equipped with an electric motor that outputs a running torque when the motor is running and a starting torque when the engine is started is well known.
  • this is the hybrid vehicle described in Patent Document 1.
  • a margin torque that is a difference between an upper limit torque that can be output by the electric motor and a current generated torque of the electric motor is required at the time of starting the engine. It has been proposed to start the engine when the motor torque (corresponding to the starting torque) or less is reached.
  • the starting torque for example, the deceleration torque transmitted to the drive wheels when the engine is started (that is, the drop in the driving torque accompanying the engine start) is compensated for the upper limit torque of the electric motor.
  • the torque value that leaves the starting compensation torque is set to an upper limit torque (referred to as motor travelable torque) that can be used as travel torque during motor travel. That is, a starting threshold value for starting the engine while the motor is running is set based on the starting torque.
  • setting the motor travelable torque by subtracting the starting torque from the upper limit torque of the electric motor means that the engine can be started even though the motor can travel in a torque range exceeding the motor travelable torque. This means that there is a possibility that fuel economy will deteriorate.
  • a large-capacity battery that is, a power storage device that exchanges electric power with an electric motor
  • the motor travel can be continued for a longer time. appear.
  • the motor running torque is set without considering the engine start, the motor torque will be turned to the running torque even for the starting torque by the motor. there's a possibility that.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a control device for a hybrid vehicle capable of achieving both improvement in fuel efficiency and suppression of engine start shock. .
  • the gist of the first invention for achieving the above object is (a) a hybrid vehicle control device including an electric motor that outputs a running torque during motor running and a starting torque during engine start. (B) In the state where the motor is running by using up to the starting torque, the driver is notified that it is in that state.
  • the power of the electric motor can be utilized to the maximum for motor driving.
  • the engine start shock may increase when the engine is started, but since the driver is informed that the motor is running using the starting torque, the engine start shock will increase. Even if it does, compared with the case where it does not alert
  • the gist of the second invention for achieving the above object is that (a) two electric motors that output traveling torque during motor traveling are provided, and at least one of the two electric motors is A control device for a hybrid vehicle that outputs a starting torque when starting an engine, wherein (b) when the motor is running in combination with output torques from the two electric motors, It is to inform the person.
  • the power of the two motors can be utilized to the maximum for motor travel.
  • the engine start shock may increase at the time of starting the engine.
  • the driver is informed of the motor running state using the output torque of the two electric motors, even if the engine start shock Even if it increases, compared with the case where it does not alert
  • the driver it is also conceivable for the driver to reduce the amount of drive required for the vehicle by notifying the driver, and the engine starting shock is suppressed or suppressed by suppressing or eliminating the starting torque used for motor travel. Avoided. Therefore, both improvement in fuel efficiency and suppression of engine start shock can be achieved.
  • the travel torque when the motor travels using electric power charged by an external power source, the travel torque and the When the motor travels within a torque range in which the starting torque can be output and the motor travels using electric power charged by power from the engine or driven force from the driving wheel side, the travel torque Is to run the motor in a torque range in which can be output.
  • the so-called plug-in hybrid method using electric power from an external power source for example, a relatively large amount of electric power that can be supplied to the electric motor is secured, so that the motor traveling can be continued for a relatively long time.
  • the motor travel area by adopting a method of performing motor travel in a torque range in which the traveling torque and the starting torque can be output.
  • the electric power that can be supplied to the motor is not secured as much as the plug-in hybrid method, and the motor drive cannot be continued so long. Therefore, it is useful to suppress or avoid an engine start shock at the time of starting the engine while the motor is running by adopting a method of running the motor in a torque range in which the running torque can be output.
  • the hybrid vehicle control device in the hybrid vehicle control device according to any one of the first to third aspects of the present invention, when the engine start is requested or the engine start is expected. In this case, the notification to the driver is started. In this way, it is possible to appropriately achieve both improvement in fuel consumption and suppression of engine start shock.
  • the notification of the driver is required for the motor travel. It is an operation that reduces the power of the electric motor. If it does in this way, it can expect that a driver reduces the amount of drive demands to vehicles by information to a driver.
  • each of the first electric motor, the second electric motor, and the engine as the electric motors.
  • a differential mechanism having a plurality of coupled rotating elements wherein the differential mechanism is a rotating element coupled to the first electric motor as the plurality of rotating elements, and an output coupled to a drive wheel so that power can be transmitted.
  • the second motor includes a rotating element that is a rotating member and a rotating element that is connected to a crankshaft of the engine, and the second electric motor is connected to a drive wheel so as to be able to transmit power, and rotates other than the rotating element connected to the electric motor.
  • a lock mechanism for connecting the element to the non-rotating member by a lock operation is further provided, and the output torque from the first motor and the second motor is used in a state where the lock mechanism is locked.
  • the locking mechanism is unlocked, the cranking torque for starting the engine is output by the first motor, and the cranking is performed by the second motor. It compensates the reaction torque of the ranking torque. If it does in this way, in order to prepare for engine starting, in addition to the need to run with the starting torque secured for the second motor, the first motor is driven when the engine is started to output the cranking torque.
  • the region where the torque cannot be output at all and the motor can travel is substantially the torque region where the traveling torque of the second electric motor can be output, which is the same as one electric motor even though there are two electric motors.
  • the power of the two motors can be utilized to the maximum for motor travel (that is, the power during motor travel can be extracted using the outputs of the two motors); It is possible to achieve both suppression of engine start shock.
  • a plurality of motors connected to the plurality of electric motors as the electric motor and the engine, respectively.
  • a differential mechanism having a rotating element, and a connecting / disconnecting clutch that connects and disconnects a power transmission path between the engine and a rotating element connected to any one of the plurality of electric motors.
  • a rotating element that is not connected to any of the motors is used as an output rotating member.
  • the hybrid vehicle control device according to any one of the first to fifth aspects of the present invention, wherein the power transmission path between the engine and the electric motor is connected / disconnected.
  • the starting torque is output by the electric motor while engaging the connecting clutch. Is. In this way, it is possible to achieve both improvement in fuel consumption and maximum suppression of engine start shock by utilizing the power of the electric motor to the maximum for motor travel (ie, expanding the motor travel range).
  • the hybrid vehicle includes an engine and an electric motor, and is a hybrid vehicle that can be driven by the electric motor, and a power storage device that is mounted on the vehicle from a charging stand, a household power source, etc.
  • This is a so-called plug-in hybrid vehicle or the like that can charge (a battery or the like).
  • this plug-in hybrid vehicle is considered to have a maximum input / output allowable value of the power storage device larger than that of the hybrid vehicle, and therefore, for example, a region where the motor can travel can be made to correspond to a higher required drive torque.
  • FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle 10 (hereinafter, referred to as a vehicle 10) to which the present invention is applied, and also illustrates a main part of a control system provided for controlling each part of the vehicle 10. It is a block diagram to do.
  • a vehicle 10 is provided in a power transmission path between an engine 12, a first electric motor MG ⁇ b> 1 and a second electric motor, which are driving power sources for traveling, and a pair of left and right drive wheels 14.
  • the first drive unit 16, the second drive unit 18, the differential gear device 20, and a pair of left and right axles 22 are configured.
  • the vehicle 10 is driven to rotate by the engine 12, thereby generating a hydraulic pressure that is a source pressure of the hydraulic control circuit 54 and supplying lubricating oil to the first drive unit 16, the second drive unit 18, and the like.
  • An oil pump 24 is provided.
  • the vehicle 10 also includes a meshing clutch (dog clutch) 46 as a lock mechanism that fixes the crankshaft 26 of the engine 12 to a housing 28 that is a non-rotating member.
  • the first drive unit 16 includes a planetary gear device 30 and an output gear 32.
  • the planetary gear device 30 includes a sun gear S that is a rotating element connected to the first electric motor MG1, a rotating element that is connected to the driving wheel 14 so as to be able to transmit power and is engaged with the sun gear S via the pinion gear P, and A known single pinion having a carrier CA, which is connected to the housing 28 by the engagement operation (lock operation) of the meshing clutch 46, and supports the pinion gear P so as to rotate and revolve as three rotation elements (rotating members).
  • This type of planetary gear device functions as a differential mechanism that generates a differential action.
  • the carrier CA is connected to a crankshaft 26 as an input shaft of the first drive unit 16, and the ring gear R is connected to an output gear 32.
  • the planetary gear device 30 is an input rotation member that is a carrier CA as the first rotation element RE1 coupled to the engine 12, the sun gear S as the second rotation element RE2, and a third rotation element that is an output rotation member.
  • a power distribution mechanism that includes a ring gear R as RE3 and distributes the power output from the engine 12 to the first electric motor MG1 and the output gear 32, and functions as an electric continuously variable transmission.
  • the output gear 32 is meshed with a large-diameter gear 36 that is provided integrally with an intermediate output shaft 34 that is parallel to the crankshaft 26. Further, a small diameter gear 38 provided integrally with the intermediate output shaft 34 is engaged with the differential input gear 40 of the differential gear device 20.
  • the second drive unit 18 includes a second output gear 44 connected to the MG2 output shaft 42 that is the output shaft of the second electric motor MG2.
  • the second output gear 44 is meshed with the large diameter gear 36.
  • the second electric motor MG2 is coupled to the drive wheels 14 so that power can be transmitted.
  • the first electric motor MG1 and the second electric motor MG2 are both motor generators that function as a motor (engine) that generates driving force and a generator (generator) that generates reaction force. At least a function as a generator is provided, and the second electric motor MG2 has at least a function as a motor.
  • the first electric motor MG1 and the second electric motor MG2 are connected to the power storage device 52 via the inverter unit 50, respectively.
  • the power from the engine 12 and the first electric motor MG1 in the first drive unit 16 is transmitted to the output gear 32 via the planetary gear device 30 and provided to the intermediate output shaft 34.
  • the differential gear is transmitted to the differential input gear 40 of the differential gear device 20 through the large gear 36 and the small gear 38.
  • the power from the second electric motor MG2 in the second drive unit 18 is transmitted to the large diameter gear 36 via the MG2 output shaft 42 and the second output gear 44, and is transmitted to the differential input gear 40 via the small diameter gear 38. Is done. That is, in the vehicle 10, any of the engine 12, the first electric motor MG1, and the second electric motor MG2 can be used as a driving source for traveling.
  • the meshing clutch 46 has a plurality of meshing teeth on the outer periphery, and is provided with an engine side member 46a provided so as to be integrally rotated about the same axis as the crankshaft 26, and a plurality of meshing teeth corresponding to the meshing teeth of the engine side member 46a.
  • the actuator 46d has a sleeve 46c corresponding to the brake hydraulic pressure Pb supplied from the hydraulic control circuit 54, and a spline provided on the inner peripheral side thereof meshed with the meshing teeth of both the engine side member 46a and the housing side member 46b. It is a hydraulic actuator that moves between a state and a state that meshes only with the meshing teeth of the housing side member 46b and does not mesh with the meshing teeth of the engine side member 46a.
  • the brake hydraulic pressure Pb supplied from the hydraulic control circuit 54 is reduced, and the sleeve 46c is engaged only with the meshing teeth of the housing side member 46b by the urging force of the return spring provided in the actuator 46d and the engine side member.
  • the state in which the crankshaft 26 is fixed to the housing 28 by the engagement clutch 46 is released, so that the crank The shaft 26 can rotate relative to the housing 28.
  • the configuration provided with the meshing clutch 46 as the lock mechanism there is an advantage that the occurrence of dragging of the crankshaft 26 with respect to the housing 28 can be suppressed.
  • the vehicle 10 is provided with an electronic control device 80 as a control device for controlling each part of the vehicle 10.
  • the electronic control unit 80 includes, for example, a so-called microcomputer provided with a CPU, RAM, ROM, input / output interface, etc., and the CPU performs signal processing according to a program stored in the ROM in advance using the temporary storage function of the RAM.
  • the electronic control unit 80 is configured to execute vehicle control such as hybrid drive control related to the engine 12, the first electric motor MG1, the second electric motor MG2, and the like. It is configured separately for output control of MG1 and MG2.
  • the electronic control unit 80 includes sensors provided in the vehicle 10 (for example, a crank position sensor 60, an output rotation speed sensor 62, a first motor rotation speed sensor 64 such as a resolver, and a second motor rotation speed sensor such as a resolver). 66, an oil temperature sensor 68, an accelerator opening sensor 70, a battery sensor 72, and the like, which are various signals based on the detected values (for example, the rotational speed of the output gear 32 corresponding to the engine rotational speed Ne, the crank angle Acr, and the vehicle speed V).
  • sensors provided in the vehicle 10 for example, a crank position sensor 60, an output rotation speed sensor 62, a first motor rotation speed sensor 64 such as a resolver, and a second motor rotation speed sensor such as a resolver.
  • 66 an oil temperature sensor 68, an accelerator opening sensor 70, a battery sensor 72, and the like, which are various signals based on the detected values (for example, the rotational speed of the output gear 32 corresponding to the engine rotational speed Ne, the crank angle Acr,
  • the rotation speed Nout the first motor rotation speed Nmg1, the second motor rotation speed Nmg2, the lubricating oil temperature THoil that is the temperature of the lubricating oil in the first drive unit 16, the accelerator opening Acc, the charging state of the power storage device 52 (charging capacity) ) SOC etc.
  • the electronic control device 80 sends various command signals (for example, an engine control command signal Se, an electric motor control command signal) to each device (for example, the engine 12, the indicator 49, the inverter 50, the hydraulic pressure control circuit 54, etc.) provided in the vehicle 10.
  • Sm, hydraulic control command signal Sp, etc. are supplied.
  • FIG. 2 is a functional block diagram for explaining the main part of the control function by the electronic control unit 80.
  • the hybrid control means that is, the hybrid control unit 82 outputs, for example, an engine control command signal Se for controlling the opening / closing of the electronic throttle valve, the fuel injection amount, the ignition timing, etc. to generate the target engine power Pe *.
  • the output control of the engine 12 is executed so that the target value of the engine torque Te is obtained.
  • the hybrid control unit 82 outputs an electric motor control command signal Sm for controlling the operation of the first electric motor MG1 and the second electric motor MG2 to the inverter 50, and the target values of the first electric motor torque Tmg1 and the second electric motor torque Tmg2 are set.
  • Output control of the 1st electric motor MG1 and the 2nd electric motor MG2 is performed so that it may be obtained.
  • the hybrid control unit 82 calculates a required drive torque as a required drive amount for the vehicle 10 based on the accelerator opening Acc and the vehicle speed V, and takes the charge request value (required charge power) into consideration.
  • a required drive torque is generated from at least one of the engine 12, the first electric motor MG1, and the second electric motor MG2 so that the operation is performed with low fuel consumption and low exhaust gas amount.
  • the hybrid control unit 82 stops the operation of the engine 12 and performs motor traveling (EV traveling) using only at least one of the first electric motor MG1 and the second electric motor MG2 as a driving source for traveling.
  • Driving mode is driven by transmitting the engine direct torque to the output gear 32 by taking the reaction force against the power of the engine 12 by the power generation of the first motor MG1, and driving the second motor MG2 by the generated power of the first motor MG1.
  • An engine travel mode (steady travel mode) for transmitting torque to the wheels 14 and running the engine using at least the engine 12 as a drive source for travel, and the second electric motor MG2 using electric power from the power storage device 52 in this engine travel mode Assisted driving mode (accelerated driving) for further driving Mode) or the like, selectively to establish in accordance with the running state.
  • the hybrid control unit 82 establishes the motor travel mode when the required drive torque is in a motor travel region that is smaller than a threshold that has been obtained experimentally or design in advance and stored (that is, predetermined). When the required drive torque is in an engine travel region that is equal to or greater than a predetermined threshold, the engine travel mode or the assist travel mode is established.
  • the required drive amount includes, in addition to the required drive torque in the drive wheel 14, the required drive force in the drive wheel 14, the required drive power in the drive wheel 14, and the driving power source for travel (engine 12, first electric motor MG 1, second The target torque of the electric motor MG2) can also be used. Further, the accelerator opening Acc, the throttle valve opening, the intake air amount, or the like can also be used as the required drive amount.
  • the hybrid control unit 82 When the motor traveling mode is established, the hybrid control unit 82 further sets the combined mode in which traveling can be performed using both the first motor torque Tmg1 and the second motor torque Tmg2, or the second motor torque. It is determined whether to use the single mode in which the vehicle can run using only Tmg2. For example, in the motor travel mode, the hybrid control unit 82 establishes the single mode when the required drive torque can be provided only by the second electric motor MG2, while the required drive torque cannot be provided only by the second electric motor MG2. Establishes the combined mode.
  • the hybrid control unit 82 is represented by the operating point of the second electric motor MG2 (for example, the second electric motor rotational speed Nmg2 and the second electric motor torque Tmg2) even when only the second electric motor MG2 can cover the required driving torque. If the operating point of the second motor) is within a predetermined region as an operating point that deteriorates the efficiency of the second motor MG2, in other words, it is more efficient to use the first motor MG1 and the second motor MG2 together. If it is good, the combined mode is established.
  • the operating point of the second motor MG2 for example, the second electric motor rotational speed Nmg2 and the second electric motor torque Tmg2
  • the hybrid control unit 82 When the combined mode is established in the motor travel mode, the hybrid control unit 82 requires the required drive torque in the first electric motor MG1 and the second electric motor MG2 based on the operation efficiency of the first electric motor MG1 and the second electric motor MG2. Share. For example, when the hybrid mode motor travels in the combined mode, the hybrid control unit 82 obtains a predetermined fuel sharing priority torque sharing rate based on the required driving torque at the vehicle speed V at that time, and based on the sharing rate, Each shared torque of the first electric motor MG1 and the second electric motor MG2 is obtained. Then, the hybrid control unit 82 controls the first electric motor MG1 and the second electric motor MG2 so as to output the respective shared torques, and causes the motor to travel.
  • Hybrid control unit 82 determines whether or not charging of power storage device 52 by engine 12 is necessary based on the charge capacity SOC of power storage device 52 based on the value detected by battery sensor 72 during motor travel. To do. For example, when the actual charge capacity SOC is smaller than the threshold value S ⁇ b> 1 set in advance as a charge capacity that is small enough to charge the power storage device 52 with the power of the engine 12 during motor running, the hybrid control unit 82. Determines that the engine 12 needs to be started (i.e., engine start is requested).
  • the lock mechanism operation control means controls the operation of the meshing clutch 46.
  • the lock mechanism operation control unit 84 controls the brake hydraulic pressure Pb supplied from the hydraulic control circuit 54 to the actuator 46d, whereby the engagement operation or the release operation of the meshing clutch 46, that is, the housing of the crankshaft 26. It controls the fixing to 28 or the releasing of the fixing.
  • the lock mechanism operation control unit 84 increases the brake hydraulic pressure Pb supplied from the hydraulic control circuit 58 to the actuator 46d, thereby causing the engagement clutch 46 to move.
  • the crankshaft 26 is fixed with respect to the housing 28 by engaging.
  • the lock mechanism operation control unit 84 releases the meshing clutch 46 by reducing the brake hydraulic pressure Pb when the hybrid control unit 82 performs engine traveling or motor traveling in the single mode.
  • the fixing to the housing 28 is released.
  • the first motor torque Tmg1 is input to the sun gear S with respect to the engine torque Te input to the carrier CA.
  • the control for setting the operating point of the engine 12 represented by the engine rotational speed Ne and the engine torque Te to the operating point with the best fuel efficiency can be executed by the power running control or reaction force control of the first electric motor MG1.
  • This type of hybrid type is called mechanical distribution type or split type.
  • the operation of the vehicle 10 in the motor travel mode in the single mode will be described.
  • the engine 12 is not driven (that is, the engine 12 is stopped), and the rotation speed is zero.
  • the power running torque of the second electric motor MG2 is transmitted to the drive wheels 14 as the driving force in the vehicle forward direction.
  • the first electric motor MG1 is in a no-load state (free).
  • the operation of the vehicle 10 in the motor travel mode in the combined mode will be described using the alignment chart of FIG. 3.
  • the engine 12 is not driven and the rotation speed is zero.
  • the engagement clutch 46 is engaged by the lock mechanism operation control unit 84, and the engine 12 is locked so as not to rotate.
  • the meshing clutch 46 In a state where the meshing clutch 46 is engaged, the power running torque of the second electric motor MG2 is transmitted to the drive wheels 14 as the driving force in the vehicle forward direction. Further, the reaction torque of the first electric motor MG1 is transmitted to the drive wheels 14 as a driving force in the vehicle forward direction.
  • the crankshaft 26 is locked by the meshing clutch 46, so that the first electric motor MG1 and the second electric motor MG2 can be used together as a driving source for traveling.
  • the capacity of the power storage device 52 is increased in a plug-in hybrid vehicle that employs a so-called plug-in hybrid system that can charge the power storage device 52 from an external power supply 48 (see FIG. 1) such as a charging stand or a household power source.
  • an external power supply 48 see FIG. 1
  • the meshing clutch is used for starting the engine. 46 needs to be released. Specifically, returning to FIG. 2, when the hybrid control unit 82 determines that the charge capacity SOC is smaller than the threshold value S1 while the motor is running, the lock mechanism operation control unit 84 is fixed by the meshing clutch 46. Control to release After the engagement clutch 46 is released, the hybrid control unit 82 causes the first electric motor MG1 to output a cranking torque for increasing the engine rotational speed Ne by increasing the first electric motor rotational speed Nmg1, as shown in FIG. .
  • the hybrid control unit 82 performs fuel injection to the engine 12 and ignition of the engine 12 when the engine rotation speed Ne increases beyond a predetermined engine rotation speed at which the engine 12 can operate independently or complete explosion is performed. Start.
  • the reaction force torque cranking reaction force torque, MG1 reaction force
  • the second motor MG2 outputs a start compensation torque for canceling (cancelling) the cranking reaction force torque when starting the engine.
  • cranking reaction force torque is a deceleration torque transmitted to the drive wheels 14 and causes a decrease in the drive torque, so that this deceleration torque is offset (that is, the decrease in the drive torque associated with engine start-up).
  • Start compensation torque is output from the second electric motor MG2.
  • the cranking torque and the start compensation torque are both start torques when starting the engine.
  • the first electric motor MG1 and the second electric motor MG2 are both electric motors that output a traveling torque (driving torque) during motor traveling and a starting torque during engine startup.
  • the torque value obtained by subtracting the start compensation torque from the upper limit torque that can be output by the electric motor is set as the engine start threshold value for determining the engine start, so that the motor torque Tmg is not deficient during cranking. It has been proposed as a known method (conventional example) to start the engine while avoiding or suppressing an engine start shock accompanying a drop in drive torque.
  • the first electric motor MG1 cannot output drive torque at all because it outputs cranking torque when the engine is started. Therefore, when the known method is employed, the second electric motor MG2 needs to travel while ensuring the start compensation torque in preparation for engine start, and the first electric motor MG1 needs to prepare for engine cranking.
  • the motor travel region is substantially a torque region that is equal to or less than the engine start threshold value obtained by subtracting the start compensation torque from the MG2 upper limit torque. It becomes the same as one electric motor.
  • the total upper limit torque region of the two electric motors MG1 and MG2 (the entire region in which torque can be output by the electric motors MG1 and MG2, that is, for traveling) is set as a motor travel region in which the motor can travel.
  • the power of the two electric motors MG1 and MG2 can be utilized to the maximum extent for motor travel.
  • the engine start shock may increase when the engine is started.
  • Both the two motors MG1 and MG2 are running the motor using the starting torque and the two motors MG1 and MG2 are actually using the output torque from the two motors MG1 and MG2 in combination.
  • the high load operation corresponding to the high drive request amount is performed by the two electric motors MG1 and MG2, and this state is referred to as a high load operation state by the electric motor MG.
  • the electronic control unit 80 notifies the driver that the motor MG is in the high load operation state. If the driver is informed that the motor MG is in a high load operation state, even if the engine start shock increases at the time of engine start, compared to the case where the driver is not notified, the engine start shock This is because a sense of incongruity will be suppressed. Alternatively, this also informs that there is a possibility that an engine start shock may occur at the time of starting the engine, and the discomfort with respect to the engine start shock is suppressed as compared with the case where the driver is not notified. You can also see it.
  • the driver reduces the required drive amount by returning the accelerator, and the engine start shock at the time of engine start is suppressed or suppressed by suppressing or eliminating the high load operation state by the electric motor MG. It can be expected to be avoided.
  • the technology for notifying the driver that the vehicle is in a high-load operation state is a technology that leads to suppression of engine start shock. Therefore, when engine start is requested, notification to the driver is started. Again. Further, it may be notified that the operation for reducing the requested drive amount is actively promoted so that the engine start shock is suppressed or avoided when the engine is started.
  • the electronic control unit 80 notifies the driver that the motor MG is in a high load operation state, and the operating range of the second motor MG2 is in response to a request for starting the engine.
  • the engine start (for example, an engine start command) may be delayed until the torque is within a torque region that can ensure the start compensation torque (for example, a motor travel region in the conventional example, see FIG. 5).
  • the motor traveling region is also used up to “the total upper limit torque region in the two electric motors MG1 and MG2; see FIG. 5”
  • the power storage device 52 capable of corresponding output is provided.
  • plug-in hybrid vehicles it is possible to drive the motor using the electric power charged from the external power supply 48 to the power storage device 52 by the plug-in hybrid method.
  • the motor can be driven using regenerative electric power charged by a normal hybrid method in which the power storage device 52 is charged by the driven force from the drive wheel 14 side.
  • the motor travels using the electric power charged by the plug-in hybrid system having a relatively large capacity and large output
  • the motor travels in the total upper limit torque region of the two electric motors MG1 and MG2. (Equivalent to the above new method) is desirable.
  • the second motor MG2 performs the motor travel within a torque range in which the travel torque can be output. (I.e., a known method in which a torque region below a set engine start threshold is used as a motor travel region) is desirable.
  • the power storage device 52 may include a battery A that is charged by the plug-in hybrid method and a battery B that is charged by the normal hybrid method. Thereby, which electric power is further clarified.
  • PV mode plug-in hybrid mode
  • HV mode hybrid mode
  • This mode switch includes a PHV mode in which the motor travels using the electric power charged by the external power supply 48, and an HV that travels in the motor using the electric power charged by the power from the engine 12 or the driven force from the drive wheel 14 side.
  • a switch for selecting a mode may be used.
  • the charge capacity SOC is smaller than the threshold value S1 and engine start is requested, if the engine start is delayed until the operating range of the second electric motor MG2 is within the torque range that can ensure the start compensation torque, the charging is performed.
  • the capacity SOC is further reduced.
  • the charge capacity SOC falls below a limit threshold value S2 that is smaller than the threshold value S1
  • the engine start-up torque is not ensured, so the engine starts. Even if the shock increases, it is desirable to start the engine. Therefore, when the engine start is delayed and the necessity for starting the engine further increases (for example, when the charge capacity SOC is lower than the limit threshold value S2), the electronic control unit 80 determines that the engine start is delayed. 12 is started.
  • the indicator control means determines that the actual charge capacity SOC is smaller than the threshold value S1 by the hybrid control unit 82 during motor driving in the combined mode.
  • the driver is notified so as to suppress or eliminate the high-load operation state by the electric motor MG.
  • the indicator control unit 86 lights or blinks the indicator 49 (see FIG. 1), makes a sound or sound from a buzzer or a speaker, vibrates the driver's seat, or the like alone or in combination. Then, the driver is notified. More specifically, in order to facilitate the driver, the driver may be notified so as to indicate a method for suppressing or eliminating the high-load driving state.
  • a state in which the high-load operation state is canceled due to a difference in traveling state for example, point A, point B, point C in the figure) (arrow in the figure)
  • a voice prompting to return the accelerator for example, “return the accelerator”
  • a buzzer sound is emitted or the indicator 49 blinks at a relatively long interval.
  • a sound for urging the vehicle speed V to be reduced for example, “Please reduce the vehicle speed” or an intermittent buzzer sound at relatively short intervals may be generated.
  • the indicator 49 is blinked at a relatively short interval.
  • the accelerator is returned and a voice prompting to reduce the vehicle speed V (for example, “return the accelerator and reduce the vehicle speed”) or a continuous buzzer is issued. A sound is produced or the indicator 49 is turned on.
  • an operation for canceling the auto-cruise control may be urged, or the auto-cruise control may be canceled to make it easy to decrease the vehicle speed V.
  • the drive request amount determination unit determines that the drive request amount is greater than a predetermined request amount. It is determined whether or not it is smaller.
  • the predetermined request amount is, for example, the maximum drive request amount that can be output within a range in which the second electric motor MG2 can guarantee the start compensation torque, and is a drive request amount corresponding to the engine start threshold value.
  • the predetermined request amount is the start compensation torque
  • the accelerator opening Acc is used as the drive request amount
  • the predetermined request amount is the predetermined accelerator opening corresponding to the start compensation torque.
  • the predetermined required amount is the predetermined required output P1 corresponding to the start compensation torque.
  • the hybrid control unit 82 uses the cranking torque of the first motor MG1 while taking a reaction force with the second motor MG2.
  • a series of engine start control is executed by controlling the rotational speed of the first electric motor MG1 to increase the engine rotational speed Ne and ignite the engine 12.
  • the hybrid control unit 82 determines whether or not the actual charge capacity SOC is smaller than the limit threshold value S2. judge. When it is determined that the actual charge capacity SOC is smaller than the limit threshold value S2, the hybrid control unit 82 executes a series of engine start controls based on the rotation speed control of the first electric motor MG1.
  • FIG. 7 is a flowchart for explaining a main part of the control operation of the electronic control unit 80, that is, a control operation for achieving both improvement in fuel consumption and suppression of engine start shock, for example, an extremely short cycle of about several milliseconds to several tens of milliseconds. It is executed repeatedly in time.
  • the flowchart of FIG. 7 is based on the assumption that the motor is running in the combined mode.
  • FIG. 8 is a time chart when the control operation shown in the flowchart of FIG. 7 is executed.
  • step (hereinafter, step is omitted) S10 corresponding to the hybrid control unit 82 it is determined whether or not the actual charge capacity SOC is smaller than the threshold value S1, for example, during motor running in the combined mode. Is done. That is, it is determined whether or not the engine 12 needs to be started to charge the power storage device 52. During traveling in a high-load operation state by the electric motor MG, it is predicted whether the charging capacity SOC will decrease and traveling using the two electric motors MG1 and MG2 will not be possible.
  • the drive request amount (for example, request drive torque, accelerator opening Acc, request output, etc.) is a predetermined request amount (engine start threshold, predetermined accelerator opening ⁇ 1, predetermined request output). It is determined whether it is smaller than P1 or the like. If the determination in S30 is affirmative (at time t3 in FIG.
  • the brake hydraulic pressure Pb supplied to the actuator 46d is reduced in S40 corresponding to the lock mechanism operation control unit 84 and the hybrid control unit 82, and the meshing clutch. 46 is released, and after the engagement clutch 46 is released, a series of engine start control is performed by the rotational speed control of the first electric motor MG1 (from time t3 to time t4 in FIG. 8).
  • S30 determines whether the actual charge capacity SOC is smaller than the limit threshold value S2. If the determination in S50 is negative, the process returns to S20.
  • the indicator 49 is turned on (time t1 in FIG. 8) so that the high load operation state by the electric motor MG is suppressed or eliminated when the charge capacity SOC is lower than the threshold value S1.
  • the engine is kept on standby until the drive request amount is made smaller than the predetermined request amount by the operation of the driver.
  • the accelerator opening Acc is reduced below the predetermined accelerator opening ⁇ 1 (at time t3 in FIG. 8) by the driver's accelerator lowering operation (after time t2 in FIG. 8)
  • the brake hydraulic pressure Pb is reduced.
  • the mesh clutch 46 is released, and a series of engine start control is executed by the rotational speed control of the first electric motor MG1 (from time t3 to time t4 in FIG.
  • the start compensation torque for canceling the cranking reaction force torque and the torque corresponding to the running torque output by the first motor MG1 so far are the second motor torque at time t3 in FIG. It is added to Tmg2 and output by the second electric motor MG2.
  • the indicator 49 is turned off (after time t4 in FIG. 8).
  • the power of the two electric motors MG1 and MG2 can be utilized to the maximum for motor travel.
  • the engine start shock may increase when the engine is started, but since the driver is informed that the engine is in a high load operation state, even if the engine start shock increases, the driver Compared with the case where no notification is given to the engine, it is possible to suppress a sense of discomfort with respect to the engine start shock. It is also conceivable that the driver reduces the amount of drive demand by notifying the driver, and the engine start shock is suppressed or avoided by suppressing or eliminating the starting torque used for motor travel. The Therefore, both improvement in fuel efficiency and suppression of engine start shock can be achieved.
  • the new method when the motor travels using the electric power charged by the external power supply 48, the new method is executed, and the power from the engine 12 or the driven from the driving wheel 14 side is executed.
  • the above-mentioned known method is executed, so that a relatively large amount of power that can be supplied to, for example, the electric motor MG is secured in the so-called plug-in hybrid system. Therefore, it is considered that the motor travel can be continued for a relatively long time, so that it is useful to expand the motor travel region by adopting the new method.
  • the electric power that can be supplied to the electric motor MG is not secured as much as the plug-in hybrid system, and it is considered that the motor driving cannot be continued so long.
  • it is useful to suppress or avoid engine start shock when starting the engine while the motor is running.
  • the starter compensation torque is secured for the second electric motor MG2 in preparation for engine start.
  • the first motor MG1 cannot output any driving torque when starting the engine in order to output the cranking torque, and the motor travel region is substantially the same as that of the second motor MG2.
  • the two electric motors MG1 are in a torque region in which the running torque can be output and become the same as one electric motor MG2 even though there are two electric motors MG1, MG2.
  • the notification to the driver is started, so that it is possible to appropriately achieve both improvement in fuel consumption and suppression of engine start shock.
  • notifying the driver prompts an operation for reducing the power of the electric motor MG required for motor travel. Can be expected to be reduced.
  • FIG. 9 is a diagram illustrating a schematic configuration of another hybrid vehicle 100 (hereinafter referred to as the vehicle 100) to which the present invention is applied.
  • the vehicle 100 includes a planetary gear device 102 as a differential mechanism in the same manner as the vehicle 10.
  • the engine 12 and the first electric motor MG1 are indirectly coupled via the clutch C1 and are coupled to the same rotating element (ring gear R) of the planetary gear device 102.
  • a rotating element (carrier CA) of the planetary gear device 102 to which any of the plurality of electric motors MG1, MG2 is not connected is connected to the output gear 32 as an output rotating member.
  • Clutch C1 functions as a connection / disconnection clutch that connects / disconnects a power transmission path between engine 12 and first electric motor MG1.
  • a motor A traveling mode and an engine traveling mode are possible.
  • the electronic control unit 80 increases the engine rotation speed Ne by engaging the clutch C1, and starts the engine.
  • the torque that increases the engine rotational speed Ne is the first electric motor torque Tmg1 that is transmitted to the engine 12 according to the torque capacity of the clutch C1, so that it becomes a deceleration torque that is transmitted to the drive wheels 14 and the drive torque drops. Cause it to occur. Accordingly, a start compensation torque for canceling out this deceleration torque is output from the first electric motor MG1.
  • the first electric motor MG1 is an electric motor that outputs a running torque during motor running and a starting torque during engine startup.
  • the vehicle 100 needs to travel in a state where the first electric motor MG1 and the second electric motor MG2 are balanced (balanced). Therefore, when the known method is adopted, the first electric motor MG1 needs to travel while ensuring the start compensation torque in preparation for the engine start, and the second electric motor MG2 has a torque amount commensurate with the start compensation torque portion. Since it is automatically limited as an unusable torque, as shown in FIG. 12 (especially, refer to the conventional example), the motor travel region has a start compensation torque and an unusable torque from the total upper limit torque in the two electric motors MG1, MG2. The torque range is less than the reduced engine start threshold.
  • the electronic control unit 80 notifies the driver that the motor MG is in a high load operation state.
  • the start compensation torque and the unusable torque are secured against the fact that it is necessary to travel while securing the torque, and the torque region corresponding to the secured amount cannot be used for the motor travel. Since there is no need to perform this, the power of the two electric motors MG1 and MG2 is utilized to the maximum for motor running and the engine start shock is suppressed. It is possible to achieve both and.
  • FIG. 13 is a diagram illustrating a schematic configuration of another hybrid vehicle 200 (hereinafter referred to as a vehicle 200) to which the present invention is applied.
  • the vehicle 200 constitutes a part of a power transmission path between the motor MG and the drive wheel 14, and a connection / disconnection clutch K0 that connects and disconnects the power transmission path between the engine 12 and the electric motor MG.
  • An automatic transmission 202 is provided.
  • the vehicle 200 is capable of motor traveling that travels using only the electric motor MG as a driving power source for traveling in a state where the connection / disconnection clutch K0 is released (motor traveling mode). Further, it is possible to perform engine traveling that travels with at least the engine 12 as a driving power source for traveling with the connection / disconnection clutch K0 engaged (engine traveling mode).
  • the electronic control unit 80 increases the engine rotational speed Ne by engaging the connection / disconnection clutch K0, and starts the engine.
  • the torque that increases the engine rotational speed Ne is the motor torque Tmg that is transmitted to the engine 12 according to the torque capacity of the connection / disconnection clutch K0. Cause it to occur. Therefore, the starting compensation torque for canceling out this deceleration torque is output from the electric motor MG.
  • the electric motor MG is an electric motor that outputs a running torque during motor running and a starting torque during engine startup.
  • the vehicle 200 of the present embodiment as shown in FIG. 16, a new method is adopted in which the upper limit torque region of the electric motor MG (the entire region where torque can be output by the electric motor MG) is used as the motor traveling region. .
  • the power of the electric motor MG can be utilized to the maximum for motor travel.
  • the electronic control unit 80 in a high-load operation state by the electric motor MG (that is, a state where the motor travels using up to the start compensation torque), there is a possibility that the engine start shock increases when the engine is started. Therefore, the electronic control unit 80 according to the present embodiment notifies the driver that the motor MG is in a high load operation state.
  • the meshing clutch 46 is exemplified as the lock mechanism, but the present invention is not limited thereto.
  • the lock mechanism includes, for example, a one-way clutch that allows the crankshaft 26 to rotate in the positive rotation direction and prevents rotation in the negative rotation direction, a multi-plate hydraulic friction engagement device that is controlled by a hydraulic actuator, and a dry engagement mechanism.
  • An electromagnetic friction engagement device (electromagnetic clutch), a magnetic powder clutch, or the like whose engagement state is controlled by a combination device, an electromagnetic actuator, or the like may be used.
  • FIG. 17 is a view showing a brake B which is a hydraulic friction engagement device. In FIG.
  • the engagement state of the brake B is controlled between engagement and release according to the brake oil pressure Pb supplied from the oil pressure control circuit 54, for example. Further, slip engagement may be performed as necessary.
  • the brake B is released, the crankshaft 26 of the engine 12 is allowed to rotate relative to the housing 28.
  • the brake B is engaged, the crankshaft 26 is fixed (locked) to the housing 28.
  • the brake B may be a clutch that selectively connects the housing 28 and the crankshaft 26, for example.
  • the vehicle 10 of the first embodiment described above includes the lock mechanism and can run the motor with the two electric motors MG1 and MG2, but it is not always necessary to include the lock mechanism.
  • the lock mechanism is not provided, for example, the second electric motor MG2 performs motor travel, but by applying the present invention, it can be used for motor travel up to the start compensation torque.
  • the vehicle to which the present invention is applied is not limited to a plug-in hybrid vehicle.
  • the present invention is not limited to this. For example, it may be determined that the engine 12 needs to be started when an engine start is expected or when an engine start is expected to be requested.
  • the charge capacity SOC is predicted to be smaller than the threshold value S1 based on, for example, the rate of decrease of the charge capacity SOC of the power storage device 52 and the difference between the actual charge capacity SOC and the threshold value S1. This is the case.
  • the case where the engine start is requested is exemplified as the case where the charge capacity SOC becomes smaller than the threshold value S1, but the present invention is not limited to this. For example, when the requested amount of driving further increases. There may be.
  • the driver when the charge capacity SOC is smaller than the threshold value S1, the driver is notified to cancel the high-load operation state by the electric motor MG. Not limited to. For example, when the engine is started soon, the notification to the driver may be started, or when the high-load operation state by the electric motor MG is entered, the driver may be notified of the state.
  • a series of engine start control is started on the condition that the drive request amount is made smaller than the predetermined request amount.
  • the engine start control may be started on the condition that the second motor torque Tmg2 is made smaller than a predetermined torque corresponding to the predetermined required amount.
  • each of the three rotating elements of the differential mechanism is connected to the engine 12, the first electric motor MG1, and the second electric motor MG2.
  • the present invention is not limited to this.
  • the present invention can be applied even to a differential mechanism having four or more rotating elements by connecting a plurality of planetary gear devices to each other.
  • the differential mechanism has four rotating elements
  • the rotating elements connected to the engine 12 or the engine 12 which are rotating elements other than the rotating elements connected to the first electric motor MG1 and the second electric motor MG2 are also included.
  • the rotating elements that are not connected are stopped by the lock mechanism.
  • the electric motor may be provided in addition to the first electric motor MG1 and the second electric motor MG2.
  • the engine 12 and the plurality of electric motors are coupled to the rotating elements of the differential mechanism directly or indirectly via a gear mechanism or the like.
  • the second electric motor MG2 is connected to the output gear 32, the intermediate output shaft 34, the drive wheel 14 or the like directly or indirectly via a gear mechanism or the like. It may be directly or indirectly connected to another pair of wheels. If the second electric motor MG2 is thus connected to another pair of wheels, the other pair of wheels is also included in the drive wheels. In short, the drive wheels driven by the power from the engine 12 and the drive wheels driven by the power from the second electric motor MG2 may be separate wheels.
  • the planetary gear devices 30 and 102 may be double planetary planetary gear devices. Further, the planetary gear devices 30 and 102 may be differential gear devices having a pair of bevel gears meshing with a pinion, for example.
  • Hybrid vehicle 12 Engine 14: Drive wheel 26: Crankshaft 28: Housing (non-rotating member) 30, 102: Planetary gear device (differential mechanism) 46: meshing clutch (locking mechanism) 48: External power supply 49: Indicator 80: Electronic control device (control device) 82: Hybrid control unit 86: Indicator control unit B: Brake (lock mechanism) MG: Electric motor MG1: First electric motor (electric motor) MG2: Second electric motor (electric motor)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 燃費向上とエンジン始動ショックの抑制とを両立させることができるハイブリッド車両の制御装置を提供する。 電動機MGの動力をモータ走行に最大限活用できる背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、高負荷運転状態にあることを運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。

Description

ハイブリッド車両の制御装置
 本発明は、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置に係り、特に、エンジン始動を考慮したモータ走行領域の設定に関するものである。
 モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両が良く知られている。例えば、特許文献1に記載されたハイブリッド車両がそれである。この特許文献1には、クラッチを介してエンジンに連結された電動機を備えるハイブリッド車両において、電動機が出力可能な上限トルクと現在の電動機の発生トルクとの差分である余裕トルクが、エンジン始動時に要するモータトルク(始動用トルクに相当)以下のときにエンジン始動を開始することが提案されている。つまり、特許文献1に記載の技術では、電動機の上限トルクに対して始動用トルク(例えばエンジン始動時に駆動輪へ伝達される減速トルク分(すなわちエンジン始動に伴う駆動トルクの落ち込み分)を補償する始動補償トルク)分を残したトルク値がモータ走行時の走行用トルクとして用いることができる上限トルク(モータ走行可能トルクと称する)に設定されている。すなわち、始動用トルク分に基づいてモータ走行中にエンジン始動する始動閾値が設定されている。これにより、特許文献1の車両では、例えば駆動トルクの落ち込みに伴うエンジン始動時のショック(エンジン始動ショック)の発生が回避されている。
特開2006-298079号公報
 ところで、電動機の上限トルクから始動用トルクを減じてモータ走行可能トルクを設定するということは、実際にはそのモータ走行可能トルクを超えるトルク領域にてモータ走行できるにも拘わらず、エンジン始動が為されてしまうということであり、燃費が悪化する可能性がある。特に、大容量のバッテリ(すなわち電動機との間で電力を授受する蓄電装置)が搭載されている場合などは、モータ走行をより長く継続可能であるので、エンジン始動による燃費の悪化がより顕著に表れる。一方で、エンジン始動を考慮せずにモータ走行可能トルクを設定すると、電動機による始動用トルク分までも走行用トルクに回すことになり、エンジン始動時に駆動トルクに不足が生じ、エンジン始動ショックが増大する可能性がある。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、燃費向上とエンジン始動ショックの抑制とを両立させることができるハイブリッド車両の制御装置を提供することにある。
 前記目的を達成する為の第1の発明の要旨とするところは、(a) モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、(b) 前記始動用トルク分まで用いて前記モータ走行している状態では、その状態にあることを運転者に報知することにある。
 このようにすれば、電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、始動用トルク分まで用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。
 ここで、前記目的を達成する為の第2の発明の要旨とするところは、(a) モータ走行時の走行用トルクを出力する2つの電動機を備え、その2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、(b) 前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知することにある。
 このようにすれば、2つの電動機の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、2つの電動機の出力トルクを用いてモータ走行している状態を運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が車両に対する駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。
 また、第3の発明は、前記第1の発明又は第2の発明に記載のハイブリッド車両の制御装置において、外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとを出力可能なトルク範囲にて前記モータ走行を行い、前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことにある。このようにすれば、外部電源による電力を用いた所謂プラグインハイブリッド方式での走行では、例えば電動機へ供給可能な電力が比較的多く確保されることによって比較的長くモータ走行を継続することができると考えられる為、走行用トルクと始動用トルクとを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行の領域を拡大することが有用となる。一方、エンジン動力或いは被駆動力による電力を用いた通常のハイブリッド方式での走行では、例えば電動機へ供給可能な電力が前記プラグインハイブリッド方式程確保されずそれ程長くモータ走行を継続することができないと考えられる為、走行用トルクを出力可能なトルク範囲にてモータ走行を行うという手法を採用してモータ走行中におけるエンジン始動時にエンジン始動ショックを抑制乃至回避することが有用となる。
 また、第4の発明は、前記第1の発明乃至第3の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記エンジン始動が要求された場合に或いはそのエンジン始動が予想される場合に、運転者への報知を開始することにある。このようにすれば、燃費向上とエンジン始動ショックの抑制とを適切に両立させることができる。
 また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものである。このようにすれば、運転者への報知によって運転者が車両に対する駆動要求量を低減することが期待できる。
 また、第6の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記電動機としての第1電動機及び第2電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構を備え、前記差動機構は、前記複数の回転要素として、前記第1電動機に連結された回転要素、駆動輪に動力伝達可能に連結された出力回転部材である回転要素、及び前記エンジンのクランク軸に連結された回転要素を有し、前記第2電動機は、駆動輪に動力伝達可能に連結され、前記電動機に連結された回転要素以外の回転要素をロック作動により非回転部材に連結するロック機構を更に備え、前記ロック機構をロック作動させた状態にて前記第1電動機及び前記第2電動機からの出力トルクを併用して走行するモータ走行中に前記エンジンを始動する際は、そのロック機構を非ロック作動させて、前記第1電動機にて前記エンジンを始動するクランキングトルクを出力すると共に前記第2電動機にてそのクランキングトルクの反力トルクを補償するものである。このようにすれば、エンジン始動に備えて第2電動機については始動用トルクを担保して走行する必要があることに加え、第1電動機についてはクランキングトルクを出力する為にエンジン始動時は駆動トルクを全く出力することができず、モータ走行できる領域は実質的に第2電動機の走行用トルクを出力可能なトルク領域となり、折角2つの電動機があるにも拘わらず1つの電動機と同じになってしまうことに対して、本発明を採用することで、2つの電動機の動力をモータ走行に最大限活用すること(すなわち、2つの電動機の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
 また、第7の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記電動機としての複数の電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構と、前記エンジンと前記複数の電動機のうちの何れかの電動機に連結された回転要素との間の動力伝達経路を断接する断接クラッチとを備え、前記複数の電動機のうちの何れの電動機も連結されていない回転要素を出力回転部材とするものであり、前記断接クラッチを解放して走行する前記モータ走行中に前記エンジンを始動する際は、その断接クラッチを係合させつつその断接クラッチに連結された前記電動機にて前記始動用トルクを出力するものである。このようにすれば、差動機構を介した複数の電動機でモータ走行する場合、エンジン始動に備えて始動用トルクを担保して走行する必要があることに加え、複数の電動機の出力トルクが釣り合った状態で走行する必要がある為に始動用トルクを出力する電動機以外の電動機においてもその始動用トルクに対応するトルクを使用不可トルクとして担保して走行する必要があり、それらの担保分に相当するトルク領域をモータ走行に用いることができないことに対して、本発明を採用することで、始動用トルクと使用不可トルクとを担保する必要がなくなる為、複数の電動機の動力をモータ走行に最大限活用すること(すなわち、複数の電動機の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
 また、第8の発明は、前記第1の発明乃至第5の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記エンジンと前記電動機との間の動力伝達経路を断接する断接クラッチを備え、前記断接クラッチを解放して前記電動機のみで走行するモータ走行中に前記エンジンを始動する際は、その断接クラッチを係合させつつ前記電動機にて前記始動用トルクを出力するものである。このようにすれば、電動機の動力をモータ走行に最大限活用すること(すなわちモータ走行領域が拡大すること)による燃費向上と、エンジン始動ショックの抑制とを両立させることができる。
本発明が適用される車両の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明するブロック線図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 遊星歯車装置における各回転要素の回転速度を相対的に表すことができる共線図であり、噛合クラッチ係合時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図3と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 走行状態の違いにより高負荷運転状態を解消する状態が異なることを説明する為に用いた電動機の駆動時特性図の一例である。 電子制御装置の制御作動の要部すなわち燃費向上とエンジン始動ショックの抑制とを両立させる為の制御作動を説明するフローチャートである。 図7のフローチャートに示す制御作動を実行した場合のタイムチャートである。 本発明が適用される他のハイブリッド車両を説明する図である。 各回転要素の回転速度を相対的に表すことができる共線図であり、モータ走行時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図10と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 本発明が適用される他のハイブリッド車両を説明する図である。 各回転要素の回転速度を相対的に表すことができる共線図であり、モータ走行時の走行状態を示している。 エンジン始動における各トルクの状態の一例を、図14と同様の共線図上に示す図である。 本実施例でのモータ走行領域を従来例との比較で説明する図である。 ロック機構の他の一例であるブレーキを示す図である。
 本発明において、好適には、前記ハイブリッド車両は、エンジン及び電動機を備え、電動機により走行することができるハイブリッド車両、そのハイブリッド車両ではあるが充電スタンドや家庭用電源などから車両に搭載された蓄電装置(バッテリ等)への充電が可能な所謂プラグインハイブリッド車両などである。特に、このプラグインハイブリッド車両は、ハイブリッド車両よりも蓄電装置の最大入出力許容値が大きくされると考えられる為、例えばモータ走行が可能な領域をより高い要求駆動トルクまで対応させることができる。また、例えば複数の電動機を備えている場合には、高い要求駆動トルクまで対応させる為に電動機を大きくするのではなく、複数の電動機を走行用の駆動力源として使用できるようにすることで、電動機の大型化を抑制することができる。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用されるハイブリッド車両10(以下、車両10という)の概略構成を説明する図であると共に、車両10の各部を制御する為に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10は、走行用の駆動力源である、エンジン12、第1電動機MG1、及び第2電動機と、左右1対の駆動輪14との間の動力伝達経路に設けられた、第1駆動部16、第2駆動部18、差動歯車装置20、及び左右1対の車軸22などとを備えて構成されている。また、車両10には、エンジン12により回転駆動されることで、油圧制御回路54の元圧となる油圧を発生すると共に、第1駆動部16や第2駆動部18等に潤滑油を供給するオイルポンプ24が備えられている。また、車両10は、エンジン12のクランク軸26を非回転部材であるハウジング28に対して固定するロック機構としての噛合クラッチ(ドッグクラッチ)46を備えている。
 第1駆動部16は、遊星歯車装置30及び出力歯車32を備えて構成されている。遊星歯車装置30は、第1電動機MG1に連結された回転要素であるサンギヤS、駆動輪14に動力伝達可能に連結された回転要素であってピニオンギヤPを介してサンギヤSと噛み合うリングギヤR、及び噛合クラッチ46の係合作動(ロック作動)によりハウジング28に連結された回転要素であってピニオンギヤPを自転及び公転可能に支持するキャリヤCAを3つの回転要素(回転部材)として有する公知のシングルピニオン型の遊星歯車装置であり、差動作用を生じる差動機構として機能する。キャリアCAは第1駆動部16の入力軸としてのクランク軸26に連結され、リングギヤRは出力歯車32に連結されている。すなわち、遊星歯車装置30は、入力回転部材であってエンジン12に連結された第1回転要素RE1としてのキャリアCA、第2回転要素RE2としてのサンギヤS、及び出力回転部材である第3回転要素RE3としてのリングギヤRを備え、エンジン12から出力される動力を第1電動機MG1及び出力歯車32へ分配する動力分配機構であって、電気的無段変速機として機能する。出力歯車32は、クランク軸26と平行を成す中間出力軸34と一体的に設けられた大径歯車36と噛み合わされている。また、中間出力軸34と一体的に設けられた小径歯車38が、差動歯車装置20のデフ入力歯車40と噛み合わされている。
 第2駆動部18は、第2電動機MG2の出力軸であるMG2出力軸42に連結された第2出力歯車44を備えて構成されている。第2出力歯車44は、大径歯車36と噛み合わされている。これにより、第2電動機MG2は、駆動輪14に動力伝達可能に連結される。
 第1電動機MG1及び第2電動機MG2は、何れも駆動力を発生させるモータ(発動機)及び反力を発生させるジェネレータ(発電機)としての機能を有するモータジェネレータであるが、第1電動機MG1は少なくともジェネレータとしての機能を備え、第2電動機MG2は少なくともモータとしての機能を備える。第1電動機MG1及び第2電動機MG2は、それぞれインバータユニット50を介して蓄電装置52に接続されている。
 以上のように構成された車両10において、第1駆動部16におけるエンジン12や第1電動機MG1からの動力は、遊星歯車装置30を介して出力歯車32に伝達され、中間出力軸34に設けられた大径歯車36及び小径歯車38を介して差動歯車装置20のデフ入力歯車40に伝達される。また、第2駆動部18における第2電動機MG2からの動力は、MG2出力軸42及び第2出力歯車44を介して大径歯車36に伝達され、小径歯車38を介してデフ入力歯車40に伝達される。すなわち、車両10においては、エンジン12、第1電動機MG1、及び第2電動機MG2の何れもが走行用の駆動源として用いられ得る。
 噛合クラッチ46は、外周に複数の噛合歯を備え、クランク軸26と同じ軸心まわりに一体回転させられるように設けられたエンジン側部材46aと、そのエンジン側部材46aの噛合歯に対応する複数の噛合歯を備え、ハウジング28に固設されたハウジング側部材46bと、エンジン側部材46a及びハウジング側部材46bの噛合歯に噛み合わされるスプラインを内周側に備え、斯かるスプラインがエンジン側部材46a及びハウジング側部材46bの噛合歯に噛み合わされた状態でそれらエンジン側部材46a及びハウジング側部材46bに対して軸心方向の移動(摺動)可能に設けられたスリーブ46cと、そのスリーブ46cを軸心方向に駆動するアクチュエータ46dとを、備えて構成されている。このアクチュエータ46dは、油圧制御回路54から供給されるブレーキ油圧Pbに応じてスリーブ46cを、その内周側に設けられたスプラインがエンジン側部材46a及びハウジング側部材46b両方の噛合歯に噛み合わされた状態と、ハウジング側部材46bの噛合歯にのみ噛み合わされ且つエンジン側部材46aの噛合歯には噛み合わされない状態との間で移動させる油圧アクチュエータである。
 例えば油圧制御回路54から供給されるブレーキ油圧Pbが増加させられ、アクチュエータ46dによりスリーブ46cがエンジン側部材46a及びハウジング側部材46b両方の噛合歯に噛み合わされる状態に移動させられると、すなわち係合作動(ロック作動)させられると、クランク軸26が噛合クラッチ46を介してハウジング28に固定されることで、そのクランク軸26はハウジング28に対して相対回転不能な状態とされる。すなわち、噛合クラッチ46の係合作動により、クランク軸26はハウジング28に固定(ロック)される。一方、例えば油圧制御回路54から供給されるブレーキ油圧Pbが減少させられ、アクチュエータ46dに備えられたリターンスプリングの付勢力等によりスリーブ46cがハウジング側部材46bの噛合歯にのみ噛み合わされ且つエンジン側部材46aには噛み合わされない状態に移動させられると、すなわち解放作動(非ロック作動)させられると、噛合クラッチ46によりクランク軸26がハウジング28に対して固定された状態が解除されることで、そのクランク軸26はハウジング28に対して相対回転可能な状態とされる。また、ロック機構として噛合クラッチ46を備えた構成においては、クランク軸26のハウジング28に対する引き摺りの発生を抑制できるという利点がある。
 また、車両10には、車両10の各部を制御する制御装置としての電子制御装置80が備えられている。この電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んでおり、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置80は、エンジン12、第1電動機MG1、第2電動機MG2などに関するハイブリッド駆動制御等の車両制御を実行するようになっており、必要に応じてエンジン12の出力制御用や電動機MG1,MG2の出力制御用等に分けて構成される。また、電子制御装置80には、車両10に設けられた各センサ(例えばクランクポジションセンサ60、出力回転速度センサ62、レゾルバ等の第1電動機回転速度センサ64、レゾルバ等の第2電動機回転速度センサ66、油温センサ68、アクセル開度センサ70、バッテリセンサ72など)による検出値に基づく各種信号(例えばエンジン回転速度Ne及びクランク角度Acr、車速Vに対応する出力歯車32の回転速度である出力回転速度Nout、第1電動機回転速度Nmg1、第2電動機回転速度Nmg2、第1駆動部16等の潤滑油の温度である潤滑油温THoil、アクセル開度Acc、蓄電装置52の充電状態(充電容量)SOCなど)が供給される。また、電子制御装置80からは、車両10に設けられた各装置(例えばエンジン12、インジケータ49、インバータ50、油圧制御回路54など)に各種指令信号(例えばエンジン制御指令信号Se、電動機制御指令信号Sm、油圧制御指令信号Spなど)が供給される。
 図2は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図2において、ハイブリッド制御手段すなわちハイブリッド制御部82は、例えば電子スロットル弁の開閉、燃料噴射量、点火時期等を制御するエンジン制御指令信号Seを出力し、目標エンジンパワーPeを発生する為のエンジントルクTeの目標値が得られるようにエンジン12の出力制御を実行する。また、ハイブリッド制御部82は、第1電動機MG1や第2電動機MG2の作動を制御する電動機制御指令信号Smをインバータ50に出力して、第1電動機トルクTmg1や第2電動機トルクTmg2の目標値が得られるように第1電動機MG1や第2電動機MG2の出力制御を実行する。
 具体的には、ハイブリッド制御部82は、アクセル開度Accや車速Vに基づいて車両10に対する駆動要求量としての要求駆動トルクを算出し、充電要求値(充電要求パワー)等を考慮して低燃費で排ガス量の少ない運転となるように、エンジン12、第1電動機MG1、及び第2電動機MG2の少なくとも1つから要求駆動トルクを発生させる。例えば、ハイブリッド制御部82は、エンジン12の運転を停止させると共に第1電動機MG1及び第2電動機MG2のうちの少なくとも一方の電動機のみを走行用の駆動源としてモータ走行(EV走行)する為のモータ走行モード、エンジン12の動力に対する反力を第1電動機MG1の発電により受け持つことで出力歯車32にエンジン直達トルクを伝達すると共に第1電動機MG1の発電電力により第2電動機MG2を駆動することで駆動輪14にトルクを伝達して少なくともエンジン12を走行用の駆動源としてエンジン走行する為のエンジン走行モード(定常走行モード)、このエンジン走行モードにおいて蓄電装置52からの電力を用いた第2電動機MG2の駆動トルクを更に付加して走行する為のアシスト走行モード(加速走行モード)等を、走行状態に応じて選択的に成立させる。ハイブリッド制御部82は、要求駆動トルクが予め実験的或いは設計的に求められて記憶された(すなわち予め定められた)閾値よりも小さなモータ走行領域にある場合には、モータ走行モードを成立させる一方、要求駆動トルクが予め定められた閾値以上となるエンジン走行領域にある場合には、エンジン走行モード乃至アシスト走行モードを成立させる。前記駆動要求量としては、駆動輪14における要求駆動トルクの他に、駆動輪14における要求駆動力、駆動輪14における要求駆動パワー、走行用駆動力源(エンジン12、第1電動機MG1、第2電動機MG2)の目標トルク等を用いることもできる。また、駆動要求量として、単にアクセル開度Accやスロットル弁開度や吸入空気量等を用いることもできる。
 ハイブリッド制御部82は、モータ走行モードを成立させた場合には、更に、第1電動機トルクTmg1及び第2電動機トルクTmg2を併用して走行することができる併用モードとするか、或いは第2電動機トルクTmg2のみを用いて走行することができる単独モードとするかを判断する。例えば、ハイブリッド制御部82は、モータ走行モードにおいて、第2電動機MG2のみで要求駆動トルクを賄える場合には単独モードを成立させる一方で、第2電動機MG2のみでは要求駆動トルクを賄えない場合には併用モードを成立させる。但し、ハイブリッド制御部82は、第2電動機MG2のみで要求駆動トルクを賄えるときであっても、第2電動機MG2の動作点(例えば第2電動機回転速度Nmg2及び第2電動機トルクTmg2で表される第2電動機の運転点)が第2電動機MG2の効率を悪化させる動作点として予め定められた領域内にある場合には、換言すれば第1電動機MG1及び第2電動機MG2を併用した方が効率が良い場合には、併用モードを成立させる。
 ハイブリッド制御部82は、モータ走行モードにおいて併用モードを成立させた場合には、第1電動機MG1及び第2電動機MG2の運転効率に基づいて、第1電動機MG1及び第2電動機MG2にて要求駆動トルクを分担させる。例えば、ハイブリッド制御部82は、併用モードのモータ走行時には、そのときの車速Vにおける要求駆動トルクに基づいて予め定められた燃費優先のトルク分担率を求め、その分担率に基づいて要求駆動トルクに対する第1電動機MG1及び第2電動機MG2の各分担トルクを求める。そして、ハイブリッド制御部82は、その各分担トルクを出力するように第1電動機MG1及び第2電動機MG2を制御してモータ走行させる。
 また、ハイブリッド制御部82は、モータ走行中には、バッテリセンサ72による検出値に基づく蓄電装置52の充電容量SOCに基づいて、エンジン12による蓄電装置52の充電が必要であるか否かを判断する。例えば、ハイブリッド制御部82は、モータ走行中において、エンジン12の動力により蓄電装置52を充電する必要がある程の小さな充電容量として予め定められた閾値S1よりも実際の充電容量SOCが小さい場合には、エンジン12を始動する必要がある(すなわちエンジン始動が要求された)と判断する。
 ロック機構作動制御手段すなわちロック機構作動制御部84は、噛合クラッチ46の作動を制御する。具体的には、ロック機構作動制御部84は、油圧制御回路54からアクチュエータ46dに供給されるブレーキ油圧Pbを制御することで、噛合クラッチ46の係合作動乃至解放作動、すなわちクランク軸26のハウジング28に対する固定乃至その固定の解除を制御する。例えば、ロック機構作動制御部84は、ハイブリッド制御部82による併用モードのモータ走行が行われる場合には、油圧制御回路58からアクチュエータ46dに供給されるブレーキ油圧Pbを増加させることで噛合クラッチ46を係合作動させて、クランク軸26をハウジング28に対して固定する。ロック機構作動制御部84は、ハイブリッド制御部82によるエンジン走行或いは単独モードのモータ走行が行われる場合には、そのブレーキ油圧Pbを減少させることで噛合クラッチ46を解放作動させて、クランク軸26のハウジング28に対する固定を解除する。
 エンジン走行モードにおける車両10の作動について説明すると、キャリアCAに入力されるエンジントルクTeに対して、第1電動機トルクTmg1がサンギヤSに入力される。この際、例えばエンジン回転速度Ne及びエンジントルクTeで表されるエンジン12の運転点を燃費が最も良い動作点に設定する制御を、第1電動機MG1の力行制御乃至反力制御により実行することができる。この種のハイブリッド形式は、機械分配式あるいはスプリットタイプと称される。また、単独モードでのモータ走行モードにおける車両10の作動について説明すると、エンジン12の駆動は行われず(すなわちエンジン12が運転停止状態とされ)、その回転速度は零とされる。この状態においては、第2電動機MG2の力行トルクが車両前進方向の駆動力として駆動輪14へ伝達される。また、第1電動機MG1は無負荷状態(フリー)とされている。
 また、図3の共線図を用いて併用モードでのモータ走行モードにおける車両10の作動について説明すると、エンジン12の駆動は行われず、その回転速度は零とされる。また、ロック機構作動制御部84により噛合クラッチ46が係合作動させられ、エンジン12が回転不能にロックされる。噛合クラッチ46が係合作動された状態においては、第2電動機MG2の力行トルクが車両前進方向の駆動力として駆動輪14へ伝達される。また、第1電動機MG1の反力トルクが車両前進方向の駆動力として駆動輪14へ伝達される。すなわち、車両10においては、クランク軸26が噛合クラッチ46によりロックされることで、第1電動機MG1及び第2電動機MG2を走行用の駆動源として併用することができる。これにより、充電スタンドや家庭用電源などの外部電源48(図1参照)から蓄電装置52への充電が可能な所謂プラグインハイブリッド方式を採用するプラグインハイブリッド車両において、蓄電装置52が大容量化(高出力化)される場合、第2電動機MG2の大型化を抑制しつつモータ走行の高出力化を実現することができる。
 ここで、併用モードのモータ走行中に、エンジン始動が行われる場合、例えば充電容量SOCが閾値S1よりも小さくなったことでエンジン始動が要求された場合、エンジン始動の為に先ずは、噛合クラッチ46を解放作動させる必要がある。具体的には、図2に戻り、ロック機構作動制御部84は、モータ走行中に、ハイブリッド制御部82により充電容量SOCが閾値S1よりも小さいと判定された場合には、噛合クラッチ46による固定を解除する制御を行う。ハイブリッド制御部82は、噛合クラッチ46が解放された後に、図4に示すように、第1電動機回転速度Nmg1の上昇によってエンジン回転速度Neを引き上げる為のクランキングトルクを第1電動機MG1から出力させる。ハイブリッド制御部82は、エンジン12が自立運転可能乃至完爆可能な所定エンジン回転速度以上にエンジン回転速度Neが上昇したら、エンジン12への燃料噴射を行うと共にエンジン12の点火を行ってエンジン12を始動する。このようなエンジン始動制御では、図4に示すように、第1電動機MG1によるクランキングトルクに対する反力トルク(クランキング反力トルク、MG1反力)が出力歯車32側に現れる為、ハイブリッド制御部82は、エンジン始動に際してクランキング反力トルクを打ち消す(相殺する)為の始動補償トルクを第2電動機MG2から出力させる。つまり、クランキング反力トルクは、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせることから、この減速トルク分を相殺する(すなわちエンジン始動に伴う駆動トルクの落ち込み分を補償する)為の始動補償トルクを第2電動機MG2から出力させる。上記クランキングトルク及び始動補償トルクは、何れもエンジン始動時の始動用トルクである。このように、第1電動機MG1及び第2電動機MG2は、共に、モータ走行時の走行用トルク(駆動トルク)とエンジン始動時の始動用トルクとを出力する電動機である。
 ところで、電動機が出力可能な上限トルクから始動補償トルク分を減じたトルク値を、エンジン始動を判断する為のエンジン始動閾値に設定することで、クランキング時に電動機トルクTmgに不足を生じさせず、駆動トルクの落ち込みに伴うエンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法(従来例)として提案されている。
 一方、本実施例の車両10では、図4に示すように、構成上、第1電動機MG1は、エンジン始動時にはクランキングトルクを出力する為に駆動トルクを全く出力することができない。その為、前記公知の手法を採用すると、第2電動機MG2はエンジン始動に備えて始動補償トルクを担保して走行する必要があると共に、第1電動機MG1はエンジンのクランキングに備える必要があることから、図5(特に従来例参照)に示すように、モータ走行領域は実質的にMG2上限トルクから始動補償トルクを減じたエンジン始動閾値以下のトルク領域となり、折角2つの電動機があるにも拘わらず1つの電動機と同じになってしまう。
 これに対して、本実施例の車両10では、図5に示すように、2つの電動機MG1,MG2における合計の上限トルクの領域(電動機MG1,MG2にてトルクを出力可能な全域、すなわち走行用トルクと始動用トルクとを出力可能なトルク範囲)をモータ走行が可能なモータ走行領域とする、新しい手法を採用する。このような新しい手法を採用することで、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その反面、2つの電動機MG1,MG2にて始動用トルク分まで用いてモータ走行している状態では、見方を換えれば2つの電動機MG1,MG2からの出力トルクを実際に併用してモータ走行している状態では、エンジン始動時に前記エンジン始動ショックが増大してしまう可能性がある。上記2つの電動機MG1,MG2にて始動用トルク分まで用いてモータ走行している状態、及び上記2つの電動機MG1,MG2からの出力トルクを実際に併用してモータ走行している状態は、共に、高い駆動要求量に応じた高負荷運転を2つの電動機MG1,MG2により行っている状態であり、この状態を電動機MGによる高負荷運転状態と称する。
 そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。これは、電動機MGによる高負荷運転状態にあることを運転者に報知しておけば、エンジン始動時にエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、エンジン始動ショックに対する違和感が抑制されるであろうという観点からである。或いは、これは、エンジン始動時にエンジン始動ショックが発生する可能性があることを報知していることにもなり、運転者に報知してない場合と比べ、エンジン始動ショックに対する違和感が抑制されると見ることもできる。或いは、これによって、運転者がアクセルを戻すなどして駆動要求量を低減することが考えられ、電動機MGによる高負荷運転状態が抑制乃至解消されることでエンジン始動時のエンジン始動ショックが抑制乃至回避されることが期待できる。
 高負荷運転状態にあることを運転者に報知する技術は、結果的に、エンジン始動ショックの抑制に繋がる技術であるので、エンジン始動が要求された場合に、運転者への報知を開始するようにしても良い。また、エンジン始動時にエンジン始動ショックが抑制乃至回避されるように、駆動要求量を低減する操作を積極的に促すように報知しても良い。
 また、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知すると共に、エンジン始動の要求に対して、第2電動機MG2の作動領域が始動補償トルクを担保できるトルク領域(例えば従来例におけるモータ走行領域、図5参照)内とされるまでエンジン始動(例えばエンジン始動指令)を遅延させても良い。
 「2つの電動機MG1,MG2における合計の上限トルクの領域;図5参照」までもモータ走行領域とする場合、相応の出力が可能な蓄電装置52が備えられていることが望ましい為、上記新しい手法はプラグインハイブリッド車両にて採用することが有用である。このプラグインハイブリッド車両では、プラグインハイブリッド方式にて外部電源48から蓄電装置52へ充電された電力を用いてモータ走行することが可能であるが、これに限らず、例えばエンジン12からの動力或いは駆動輪14側からの被駆動力により蓄電装置52を充電する通常のハイブリッド方式にて充電された回生電力を用いてモータ走行することが可能である。その為、比較的大容量大出力となるプラグインハイブリッド方式にて充電された電力を用いてモータ走行する場合は、2つの電動機MG1,MG2における合計の上限トルクの領域にてモータ走行を行うこと(上記新しい手法に相当)が望ましい。一方で、比較的小容量小出力となる通常のハイブリッド方式にて充電された電力を用いてモータ走行する場合は、第2電動機MG2が走行用トルクを出力可能なトルク範囲にてモータ走行を行うこと(すなわち設定されたエンジン始動閾値以下のトルク領域をモータ走行領域とする公知の手法)が望ましい。
 蓄電装置52における電力の入出力を監視することで、プラグインハイブリッド方式にて充電された電力か通常のハイブリッド方式にて充電された電力かが明確とされる。蓄電装置52は、プラグインハイブリッド方式にて電力が充電されるバッテリAと通常のハイブリッド方式にて電力が充電されるバッテリBとを備えて構成されても良い。これにより、何れの電力かが一層明確とされる。車両10にモードスイッチを備え、プラグインハイブリッドモード(PHVモード)が選択された場合には上記新しい手法を実行し、ハイブリッドモード(HVモード)が選択された場合には上記公知の手法を実行しても良い。このモードスイッチは、外部電源48により充電された電力を用いてモータ走行するPHVモードと、エンジン12からの動力或いは駆動輪14側からの被駆動力により充電された電力を用いてモータ走行するHVモードとを選択するスイッチであっても良い。
 充電容量SOCが閾値S1よりも小さくなってエンジン始動が要求された際に、第2電動機MG2の作動領域が始動補償トルクを担保できるトルク領域内とされるまでエンジン始動が遅延させられると、充電容量SOCは更に低下させられる。比較的大容量の蓄電装置52では、ある程度の低下は許容されると考えられるが、閾値S1よりも更に小さな限界閾値S2を充電容量SOCが下回ったときには、始動補償トルクが担保されない為にエンジン始動ショックが増大するような状態であったとしてもエンジン始動することが望ましい。そこで、電子制御装置80は、エンジン始動が遅延させられているときに、エンジン始動の必要性が更に増大した場合には(例えば充電容量SOCが限界閾値S2よりも低下した場合には)、エンジン12を始動させる。
 より具体的には、図2に戻り、インジケート制御手段すなわちインジケート制御部86は、併用モードでのモータ走行時に、ハイブリッド制御部82により実際の充電容量SOCが閾値S1よりも小さいと判定された場合には、電動機MGによる高負荷運転状態を抑制乃至解消するように運転者に報知する。インジケート制御部86は、例えばインジケータ49(図1参照)を点灯乃至点滅させること、ブザーやスピーカ等から音乃至音声を出すこと、運転席等を振動させること等を単独で行うことで或いは組み合わせることで、運転者に報知する。より具体的には、運転者が対応し易くなる為に、高負荷運転状態を抑制乃至解消する方法を示すように運転者に報知しても良い。例えば、図6の電動機の駆動時特性図上に示すように、走行状態(例えば図中の点A、点B、点C)の違いにより、高負荷運転状態を解消する状態(図中の矢印)が異なるので、それぞれに応じた報知を行う。比較的低車速となる点Aや比較的中車速となる点Bの走行状態では、アクセルを戻すように促す音声(例えば「アクセルを戻して下さい」)を出したり、比較的長い間隔で間欠するブザー音を出したり、或いはインジケータ49を比較的長い間隔で点滅させたりする。或いは、比較的中車速となる点Bの走行状態では、車速Vを低下させるように促す音声(例えば「車速を落として下さい」)を出したり、比較的短い間隔で間欠するブザー音を出したり、或いはインジケータ49を比較的短い間隔で点滅させたりする。また、比較的高車速となる点Cの走行状態では、アクセルを戻し、車速Vを低下させるように促す音声(例えば「アクセルを戻して、車速を落として下さい」)を出したり、連続したブザー音を出したり、或いはインジケータ49を点灯させたりする。また、公知のオートクルーズ制御にて走行中の場合には、そのオートクルーズ制御を解除する操作を促したり、そのオートクルーズ制御を解除し、車速Vを低下させ易くしても良い。
 駆動要求量判定手段すなわち駆動要求量判定部88は、ハイブリッド制御部82により実際の充電容量SOCが閾値S1よりも小さいと判定された場合には、駆動要求量が予め定められた所定要求量よりも小さいか否かを判定する。所定要求量は、例えば第2電動機MG2が始動補償トルクを担保できる範囲で出力可能な最大の駆動要求量であり、エンジン始動閾値に相当する駆動要求量である。例えば、駆動要求量として要求駆動トルクを用いる場合には所定要求量は始動補償トルクであり、駆動要求量としてアクセル開度Accを用いる場合には所定要求量は始動補償トルクに対応する所定アクセル開度θ1であり、駆動要求量として要求駆動パワー(要求出力)を用いる場合には所定要求量は始動補償トルクに対応する所定要求出力P1である。
 ハイブリッド制御部82は、駆動要求量判定部88により駆動要求量が所定要求量よりも小さいと判定された場合には、第2電動機MG2で反力をとりつつ第1電動機MG1のクランキングトルクによりエンジン回転速度Neを上昇させてエンジン12を点火するという第1電動機MG1の回転速度制御による一連のエンジン始動制御を実行する。一方で、ハイブリッド制御部82は、駆動要求量判定部88により駆動要求量が所定要求量以上であると判定された場合には、実際の充電容量SOCが限界閾値S2よりも小さいか否かを判定する。ハイブリッド制御部82は、実際の充電容量SOCが限界閾値S2よりも小さいと判定した場合には、第1電動機MG1の回転速度制御による一連のエンジン始動制御を実行する。
 図7は、電子制御装置80の制御作動の要部すなわち燃費向上とエンジン始動ショックの抑制とを両立させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図7のフローチャートは、併用モードでのモータ走行中であることが前提とされている。図8は、図7のフローチャートに示す制御作動を実行した場合のタイムチャートである。
 図7において、先ず、ハイブリッド制御部82に対応するステップ(以下、ステップを省略する)S10において、例えば併用モードでのモータ走行中に実際の充電容量SOCが閾値S1よりも小さいか否かが判定される。つまり、蓄電装置52を充電する為にエンジン12を始動する必要があるか否かが判定される。電動機MGによる高負荷運転状態での走行中に、充電容量SOCが減少してきて、2つの電動機MG1,MG2を用いた走行ができなくなるかを予測している。このS10の判断が肯定される場合はインジケート制御部86に対応するS20において、電動機MGによる高負荷運転状態を解消(停止)するように運転者に報知される(図8のt1時点)。次いで、駆動要求量判定部88に対応するS30において、駆動要求量(例えば要求駆動トルク,アクセル開度Acc,要求出力等)が所定要求量(エンジン始動閾値,所定アクセル開度θ1,所定要求出力P1等)よりも小さいか否かが判定される。このS30の判断が肯定される場合(図8のt3時点)はロック機構作動制御部84及びハイブリッド制御部82に対応するS40において、アクチュエータ46dに供給されるブレーキ油圧Pbが低下させられて噛合クラッチ46が解放されると共に、噛合クラッチ46の解放後に、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される(図8のt3時点乃至t4時点)。一方で、上記S30の判断が否定される場合はハイブリッド制御部82に対応するS50において、例えば実際の充電容量SOCが限界閾値S2よりも小さいか否かが判定される。このS50の判断が否定される場合は上記S20に戻されるが肯定される場合はロック機構作動制御部84及びハイブリッド制御部82に対応するS60において、上記S40と同様に、噛合クラッチ46が解放させられ、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される。他方で、上記S10の判断が否定される場合はハイブリッド制御部82に対応するS70において、2つの電動機MG1,MG2を併用したモータ走行モードがそのまま継続される。
 図8に示されるように、充電容量SOCが閾値S1よりも低下したことで、電動機MGによる高負荷運転状態を抑制乃至解消するように、インジケータ49が点灯させられる(図8のt1時点)。この時点では、運転者の操作により駆動要求量が所定要求量より小さくされるまでエンジン始動が待機させられる。その後、運転者によるアクセルの低下操作(図8のt2時点以降)によりアクセル開度Accが所定アクセル開度θ1よりも低下させられると(図8のt3時点)、ブレーキ油圧Pbが低下させられて噛合クラッチ46が解放されると共に、第1電動機MG1の回転速度制御による一連のエンジン始動制御が実行される(図8のt3時点乃至t4時点)。この間は、クランキング反力トルクを打ち消す為の始動補償トルク及び第1電動機MG1がそれまでに出力していた走行用トルク分に対応するトルク分が、図8のt3時点での第2電動機トルクTmg2に上乗せされて第2電動機MG2により出力される。エンジン12が始動させられると(図8のt4時点)、インジケータ49が消灯させられる(図8のt4時点以降)。
 上述のように、本実施例によれば、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その背反として、エンジン始動時にエンジン始動ショックが増大してしまう可能性があるが、高負荷運転状態にあることを運転者に報知してあるので、たとえエンジン始動ショックが増大したとしても、運転者に報知してない場合と比べ、そのエンジン始動ショックに対する違和感を抑制することができる。また、運転者への報知によって運転者が駆動要求量を低減することも考えられ、モータ走行に用いられる始動用トルク分が抑制されたり或いは無くされたりすることでエンジン始動ショックが抑制乃至回避される。よって、燃費向上とエンジン始動ショックの抑制とを両立させることができる。
 また、本実施例によれば、外部電源48により充電された電力を用いてモータ走行する場合は、前記新しい手法を実行するものであり、エンジン12からの動力或いは駆動輪14側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記公知の手法を実行するので、所謂プラグインハイブリッド方式での走行では、例えば電動機MGへ供給可能な電力が比較的多く確保されることによって比較的長くモータ走行を継続することができると考えられる為、前記新しい手法を採用してモータ走行領域を拡大することが有用となる。一方、通常のハイブリッド方式での走行では、例えば電動機MGへ供給可能な電力がプラグインハイブリッド方式程確保されずそれ程長くモータ走行を継続することができないと考えられる為、前記公知の手法を採用してモータ走行中におけるエンジン始動時にエンジン始動ショックを抑制乃至回避することが有用となる。
 また、噛合クラッチ46をロック作動させた状態にて2つの電動機MG1,MG2でモータ走行する場合、前記公知の手法を採用するとエンジン始動に備えて第2電動機MG2については始動補償トルクを担保して走行する必要があることに加え、第1電動機MG1についてはクランキングトルクを出力する為にエンジン始動時は駆動トルクを全く出力することができず、モータ走行領域は実質的に第2電動機MG2の走行用トルクを出力可能なトルク領域となり、折角2つの電動機MG1,MG2があるにも拘わらず1つの電動機MG2と同じになってしまうことに対して、本実施例によれば、2つの電動機MG1,MG2の動力をモータ走行に最大限活用すること(すなわち、2つの電動機MG1,MG2の出力を用いてモータ走行時のパワーを引き出すこと)及びエンジン始動ショックを抑制することを両立させることができる。
 また、本実施例によれば、エンジン始動が要求された場合に、運転者への報知を開始するので、燃費向上とエンジン始動ショックの抑制とを適切に両立させることができる。
 また、本実施例によれば、運転者に報知することは、モータ走行に要求される電動機MGのパワーを低下させる操作を促すものであるので、運転者への報知によって運転者が駆動要求量を低減することが期待できる。
 次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
 図9は、本発明が適用される他のハイブリッド車両100(以下、車両100という)の概略構成を説明する図である。この図9に示すように、車両100は、車両10と同様に差動機構としての遊星歯車装置102を備えているが、遊星歯車装置102に対するエンジン12、第1電動機MG1、及び第2電動機MG2の連結関係が車両10と相違する。特には、エンジン12と第1電動機MG1とは、クラッチC1を介して間接的に連結されると共に、遊星歯車装置102の同じ回転要素(リングギヤR)に連結されている。複数の電動機MG1,MG2のうちの何れの電動機も連結されていない遊星歯車装置102の回転要素(キャリヤCA)が出力回転部材として出力歯車32と連結されている。クラッチC1は、エンジン12と第1電動機MG1との間の動力伝達経路を断接する断接クラッチとして機能する。そして、この車両100においては、クラッチC1、クラッチC2、及びブレーキB1の各係合状態を切り換えると共に、エンジン12、第1電動機MG1、及び第2電動機MG2の各作動状態を切り換えることで、例えばモータ走行モード、エンジン走行モード(例えばシリーズハイブリッド走行モード、パラレルハイブリッド走行モード)が可能である。特には、クラッチC1及びブレーキB1を解放すると共にクラッチC2を係合することで、図10の共線図に示すように、クラッチC1を解放した状態で複数の電動機(第1電動機MG1及び第2電動機MG2)のみを走行用の駆動力源として走行するモータ走行が可能である(モータ走行モードにおける併用モードに相当)。
 ここで、併用モードでのモータ走行中に、エンジン始動が要求された場合について検討する。このような場合、電子制御装置80は、図11に示すように、クラッチC1を係合させることによってエンジン回転速度Neを引き上げてエンジン始動を行う。エンジン回転速度Neを引き上げるトルクは、クラッチC1のトルク容量に応じてエンジン12側へ伝達される第1電動機トルクTmg1である為、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせる。従って、この減速トルク分を相殺する為の始動補償トルクを第1電動機MG1から出力させる。このように、第1電動機MG1は、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機である。
 ところで、電動機が出力可能な上限トルクから始動補償トルク分を減じたトルク値をエンジン始動閾値に設定することで、エンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法として提案されている。一方、本実施例の車両100では、図10に示すように、構成上、第1電動機MG1と第2電動機MG2とが釣り合った(バランスした)状態で走行する必要がある。その為、前記公知の手法を採用すると、第1電動機MG1はエンジン始動に備えて始動補償トルクを担保して走行する必要があると共に、第2電動機MG2はその始動補償トルク分と釣り合うトルク分が自動的に使用不可トルクとして制限を受けることから、図12(特に従来例参照)に示すように、モータ走行領域は2つの電動機MG1,MG2における合計の上限トルクから始動補償トルク及び使用不可トルクを減じたエンジン始動閾値以下のトルク領域となってしまう。
 これに対して、本実施例の車両100では、図12に示すように、2つの電動機MG1,MG2における合計の上限トルクの領域をモータ走行領域とする新しい手法を採用する。このような新しい手法を採用することで、2つの電動機MG1,MG2の動力をモータ走行に最大限活用できる。その反面、電動機MGによる高負荷運転状態では、エンジン始動時にエンジン始動ショックが増大してしまう可能性がある。そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。
 本実施例においても、前述の実施例と同様に、燃費向上とエンジン始動ショックの抑制とを両立させることができる。具体的には、遊星歯車装置102を介した2つの電動機MG1,MG2でモータ走行する場合、前記公知の手法を採用するとエンジン始動に備えて始動補償トルクを担保して走行する必要があることに加え、2つの電動機MG1,MG2の出力トルクが釣り合った状態で走行する必要がある為に始動補償トルクを出力する第1電動機MG1以外の第2電動機MG2においてもその始動補償トルクに対応する使用不可トルクを担保して走行する必要があり、それらの担保分に相当するトルク領域をモータ走行に用いることができないことに対して、本実施例によれば、始動補償トルクと使用不可トルクとを担保する必要がなくなる為、2つの電動機MG1,MG2の動力をモータ走行に最大限活用すること及びエンジン始動ショックを抑制することを両立させることができる。
 図13は、本発明が適用される他のハイブリッド車両200(以下、車両200という)の概略構成を説明する図である。この図13に示すように、車両200は、エンジン12と電動機MGとの間の動力伝達経路を断接する断接クラッチK0、電動機MGと駆動輪14との間の動力伝達経路の一部を構成する自動変速機202を備えている。この車両200では、図14の共線図に示すように、断接クラッチK0を解放した状態で電動機MGのみを走行用の駆動力源として走行するモータ走行が可能である(モータ走行モード)。また、断接クラッチK0を係合した状態で少なくともエンジン12を走行用の駆動力源として走行するエンジン走行とが可能である(エンジン走行モード)。
 ここで、モータ走行モードでの走行中に、エンジン始動が要求された場合について検討する。このような場合、電子制御装置80は、図15に示すように、断接クラッチK0を係合させることによってエンジン回転速度Neを引き上げてエンジン始動を行う。エンジン回転速度Neを引き上げるトルクは、断接クラッチK0のトルク容量に応じてエンジン12側へ伝達される電動機トルクTmgである為、駆動輪14へ伝達される減速トルクとなって駆動トルクの落ち込みを生じさせる。従って、この減速トルク分を相殺する為の始動補償トルクを電動機MGから出力させる。このように、電動機MGは、モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機である。
 ところで、電動機MGが出力可能な上限トルクから始動補償トルク分を減じたトルク値をエンジン始動閾値に設定することで、エンジン始動ショックを回避乃至抑制しつつエンジン始動することが公知の手法として提案されている。一方、この公知の手法を採用すると、電動機MGはエンジン始動に備えて始動補償トルクを担保して走行する必要があることから、図16(特に従来例参照)に示すように、モータ走行領域は電動機MGにおけるMG上限トルクから始動補償トルクを減じたエンジン始動閾値以下のトルク領域となってしまう。
 これに対して、本実施例の車両200では、図16に示すように、電動機MGの上限トルクの領域(電動機MGにてトルクを出力可能な全域)をモータ走行領域とする新しい手法を採用する。このような新しい手法を採用することで、電動機MGの動力をモータ走行に最大限活用できる。その反面、電動機MGによる高負荷運転状態(すなわち始動補償トルク分まで用いてモータ走行している状態)では、エンジン始動時にエンジン始動ショックが増大してしまう可能性がある。そこで、本実施例の電子制御装置80は、電動機MGによる高負荷運転状態では、その状態にあることを運転者に報知する。
 本実施例においても、前述の実施例と同様に、電動機MGの動力をモータ走行に最大限活用すること(すなわちモータ走行領域が拡大すること)による燃費向上と、エンジン始動ショックの抑制とを両立させることができる。
 以上、本発明の実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、その他の態様においても適用される。
 例えば、前述の実施例1では、ロック機構として噛合クラッチ46を例示したが、これに限らない。ロック機構は、例えばクランク軸26の正回転方向の回転を許容し且つ負回転方向の回転を阻止するワンウェイクラッチ、油圧アクチュエータによって係合制御される多板式の油圧式摩擦係合装置、乾式の係合装置、電磁アクチュエータによってその係合状態が制御される電磁式摩擦係合装置(電磁クラッチ)、磁粉式クラッチなどであっても良い。図17は、油圧式摩擦係合装置であるブレーキBを示す図である。図17において、ブレーキBは、例えば油圧制御回路54から供給されるブレーキ油圧Pbに応じてその係合状態が係合乃至解放の間で制御される。また、必要に応じてスリップ係合させられても良い。ブレーキBの解放時には、エンジン12のクランク軸26はハウジング28に対して相対回転可能な状態とされる。一方、ブレーキBの係合時には、クランク軸26はハウジング28に固定(ロック)される。尚、このブレーキBは、例えばハウジング28とクランク軸26とを選択的に連結するクラッチでも良い。
 また、前述の実施例1の車両10は、ロック機構を備え、2つの電動機MG1,MG2にてモータ走行が可能であったが、必ずしもロック機構を備える必要はない。ロック機構を備えない場合には、例えば第2電動機MG2にてモータ走行することになるが、本発明を適用することで、始動補償トルク分までモータ走行に用いることができる。また、本発明が適用される車両は、プラグインハイブリッド車両に限定されない。
 また、前述の実施例では、エンジン始動が要求された場合に、エンジン12を始動する必要があると判断したが、これに限らない。例えば、エンジン始動が予想される場合、或いはエンジン始動が要求されると予想される場合に、エンジン12を始動する必要があると判断しても良い。上記予想される場合は、例えば蓄電装置52の充電容量SOCの低下速度、及び実際の充電容量SOCと閾値S1との差などに基づいて、充電容量SOCが閾値S1よりも小さくなることが予測された場合である。また、前述の実施例では、エンジン始動が要求された場合として、充電容量SOCが閾値S1よりも小さくなった場合を例示したが、これに限らず、例えば駆動要求量が更に増大した場合などであっても良い。
 また、前述の実施例(特に図7のフローチャート)では、充電容量SOCが閾値S1よりも小さくなった場合に、電動機MGによる高負荷運転状態を解消するように運転者に報知されたが、これに限らない。例えば、まもなくエンジン始動が行われる場合に、運転者への報知を開始しても良いし、電動機MGによる高負荷運転状態になった場合に、その状態を運転者に報知するだけでも良い。また、前述の実施例では、充電容量SOCが閾値S1よりも小さくなった場合に、駆動要求量が所定要求量よりも小さくされたことを条件として一連のエンジン始動制御を開始したが、実際の第2電動機トルクTmg2が所定要求量に対応する所定トルクよりも小さくされたことを条件としてそのエンジン始動制御を開始しても良い。
 また、前述の実施例の車両10では、差動機構の3つの回転要素の各々がエンジン12、第1電動機MG1、及び第2電動機MG2に連結される構成であったが、これに限らない。例えば、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても本発明は適用され得る。例えば、差動機構が4つの回転要素を有する場合には、第1電動機MG1及び第2電動機MG2に連結された回転要素以外の回転要素である、エンジン12に連結された回転要素或いはエンジン12も連結されていない回転要素がロック機構により回転停止させられる。また、電動機は、第1電動機MG1及び第2電動機MG2以外に備えられていても良い。また、エンジン12や複数の電動機は、直接的に或いは歯車機構等を介して間接的に差動機構の各回転要素に連結される。
 また、前述の実施例において、第2電動機MG2は、直接的に或いは歯車機構等を介して間接的に出力歯車32や中間出力軸34や駆動輪14等に連結されたり、駆動輪14とは別の一対の車輪に直接的に又は間接的に連結されたりしても良い。そのように第2電動機MG2が別の一対の車輪に連結されておればその別の一対の車輪も駆動輪に含まれる。要するに、エンジン12からの動力で駆動される駆動輪と第2電動機MG2からの動力で駆動される駆動輪とは、別個の車輪であっても差し支えないということである。
 また、前述の実施例において、遊星歯車装置30,102は、ダブルプラネタリの遊星歯車装置であっても良い。また、遊星歯車装置30,102は、例えばピニオンに噛み合う一対のかさ歯車を有する差動歯車装置であっても良い。
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10,100,200:ハイブリッド車両
12:エンジン
14:駆動輪
26:クランク軸
28:ハウジング(非回転部材)
30,102:遊星歯車装置(差動機構)
46:噛合クラッチ(ロック機構)
48:外部電源
49:インジケータ
80:電子制御装置(制御装置)
82:ハイブリッド制御部
86:インジケート制御部
B:ブレーキ(ロック機構)
MG:電動機
MG1:第1電動機(電動機)
MG2:第2電動機(電動機)

Claims (8)

  1.  モータ走行時の走行用トルクとエンジン始動時の始動用トルクとを出力する電動機を備えるハイブリッド車両の制御装置であって、
     前記始動用トルク分まで用いて前記モータ走行している状態では、その状態にあることを運転者に報知することを特徴とするハイブリッド車両の制御装置。
  2.  モータ走行時の走行用トルクを出力する2つの電動機を備え、該2つの電動機の少なくとも一方の電動機はエンジン始動時の始動用トルクを出力するハイブリッド車両の制御装置であって、
     前記2つの電動機からの出力トルクを併用して前記モータ走行している状態では、その状態にあることを運転者に報知することを特徴とするハイブリッド車両の制御装置。
  3.  外部電源により充電された電力を用いてモータ走行する場合は、前記走行用トルクと前記始動用トルクとを出力可能なトルク範囲にて前記モータ走行を行い、
     前記エンジンからの動力或いは駆動輪側からの被駆動力により充電された電力を用いてモータ走行する場合は、前記走行用トルクを出力可能なトルク範囲にて前記モータ走行を行うことを特徴とする請求項1又は2に記載のハイブリッド車両の制御装置。
  4.  前記エンジン始動が要求された場合に或いは該エンジン始動が予想される場合に、運転者への報知を開始することを特徴とする請求項1乃至3の何れか1項に記載のハイブリッド車両の制御装置。
  5.  前記運転者に報知することは、前記モータ走行に要求される前記電動機のパワーを低下させる操作を促すものであることを特徴とする請求項1乃至4の何れか1項に記載のハイブリッド車両の制御装置。
  6.  前記電動機としての第1電動機及び第2電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構を備え、
     前記差動機構は、前記複数の回転要素として、前記第1電動機に連結された回転要素、駆動輪に動力伝達可能に連結された出力回転部材である回転要素、及び前記エンジンのクランク軸に連結された回転要素を有し、
     前記第2電動機は、駆動輪に動力伝達可能に連結され、
     前記電動機に連結された回転要素以外の回転要素をロック作動により非回転部材に連結するロック機構を更に備え、
     前記ロック機構をロック作動させた状態にて前記第1電動機及び前記第2電動機からの出力トルクを併用して走行するモータ走行中に前記エンジンを始動する際は、該ロック機構を非ロック作動させて、前記第1電動機にて前記エンジンを始動するクランキングトルクを出力すると共に前記第2電動機にて該クランキングトルクの反力トルクを補償するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
  7.  前記電動機としての複数の電動機と前記エンジンとにそれぞれ連結された複数の回転要素を有する差動機構と、
     前記エンジンと前記複数の電動機のうちの何れかの電動機に連結された回転要素との間の動力伝達経路を断接する断接クラッチとを備え、
     前記複数の電動機のうちの何れの電動機も連結されていない回転要素を出力回転部材とするものであり、
     前記断接クラッチを解放して走行する前記モータ走行中に前記エンジンを始動する際は、該断接クラッチを係合させつつ該断接クラッチに連結された前記電動機にて前記始動用トルクを出力するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
  8.  前記エンジンと前記電動機との間の動力伝達経路を断接する断接クラッチを備え、
     前記断接クラッチを解放して前記電動機のみで走行するモータ走行中に前記エンジンを始動する際は、該断接クラッチを係合させつつ前記電動機にて前記始動用トルクを出力するものであることを特徴とする請求項1乃至5の何れか1項に記載のハイブリッド車両の制御装置。
PCT/JP2012/055004 2012-02-28 2012-02-28 ハイブリッド車両の制御装置 WO2013128587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014501891A JP5884891B2 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置
PCT/JP2012/055004 WO2013128587A1 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置
US14/380,953 US9944275B2 (en) 2012-02-28 2012-02-28 Control device for hybrid vehicle
CN201280070711.5A CN104136251B (zh) 2012-02-28 2012-02-28 混合动力车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055004 WO2013128587A1 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2013128587A1 true WO2013128587A1 (ja) 2013-09-06

Family

ID=49081837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055004 WO2013128587A1 (ja) 2012-02-28 2012-02-28 ハイブリッド車両の制御装置

Country Status (4)

Country Link
US (1) US9944275B2 (ja)
JP (1) JP5884891B2 (ja)
CN (1) CN104136251B (ja)
WO (1) WO2013128587A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098255A (ja) * 2013-11-19 2015-05-28 トヨタ自動車株式会社 ハイブリッド車のエンジン始動制御装置
JP2016055759A (ja) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2016210221A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2017100524A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 ハイブリッド自動車
JP2017149210A (ja) * 2016-02-23 2017-08-31 トヨタ自動車株式会社 車両の制御装置
US10220834B2 (en) 2016-07-29 2019-03-05 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128587A1 (ja) * 2012-02-28 2013-09-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9604632B2 (en) 2012-07-05 2017-03-28 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle
US9440641B2 (en) * 2012-07-05 2016-09-13 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
JP2015116967A (ja) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 ハイブリッド車両
US10670124B2 (en) 2013-12-31 2020-06-02 Deere & Company Multi-mode infinitely variable transmission
US9206885B2 (en) * 2013-12-31 2015-12-08 Deere & Company Multi-mode infinitely variable transmission
US10119598B2 (en) 2013-12-31 2018-11-06 Deere & Company Multi-mode infinitely variable transmission
US10655710B2 (en) 2013-12-31 2020-05-19 Deere & Company Multi-mode infinitely variable transmission that provides seamless shifting
US9981665B2 (en) 2013-12-31 2018-05-29 Deere & Company Energy storage and delivery for power trains of work vehicles
US10738868B2 (en) 2014-04-09 2020-08-11 Deere & Company Multi-mode powertrains
US10647193B2 (en) 2014-04-09 2020-05-12 Deere & Company Multi-mode power trains
US9651101B2 (en) * 2014-08-08 2017-05-16 GM Global Technology Operations LLC Method of controlling a selectable one way lutch of a transmission
DE102014220066A1 (de) * 2014-10-02 2016-06-09 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zum Betreiben eines Antriebsstrangs
KR101646467B1 (ko) * 2015-06-18 2016-08-05 현대자동차주식회사 친환경자동차의 모터 감자 진단 방법
KR101704220B1 (ko) * 2015-06-22 2017-02-07 현대자동차주식회사 하이브리드 차량의 엔진 전부하 모드 진입 제어 방법
JP6458770B2 (ja) * 2016-05-18 2019-01-30 トヨタ自動車株式会社 ハイブリッド自動車
US10619711B2 (en) 2017-04-12 2020-04-14 Deere & Company Infinitely variable transmission with power reverser
US11052747B2 (en) 2018-05-04 2021-07-06 Deere & Company Multi-mode powertrains
US11091018B2 (en) 2018-05-11 2021-08-17 Deere & Company Powertrain with variable vertical drop distance
US10975959B2 (en) 2019-04-01 2021-04-13 Deere & Company Transmission clutch braking control system
US11137052B2 (en) 2019-08-29 2021-10-05 Deere & Company Transmission assembly with integrated CVP
US11351983B2 (en) 2019-10-31 2022-06-07 Deere & Company Power control system with transmission transient boost function
US11846085B2 (en) 2020-02-17 2023-12-19 Deere & Company Energy management system for a hybrid vehicle with an electrically powered hydraulic system
US11325459B2 (en) 2020-10-09 2022-05-10 Deere & Company Low profile transmission assembly with integrated CVP
US11613246B2 (en) 2021-01-21 2023-03-28 Deere & Company Power control system with engine throttle shift function
US11628822B2 (en) 2021-02-09 2023-04-18 Deere & Company Power control system with stall prevention clutch modulation function
US11299141B1 (en) 2021-02-10 2022-04-12 Deere & Company System for multi-layer braking and retardation in a work vehicle
US11820361B2 (en) 2021-11-30 2023-11-21 Deere & Company Transmission assembly with electrical machine unit for improved shift quality
US11585412B1 (en) 2021-12-22 2023-02-21 Deere & Company Electronically-variable, dual-path power shift transmission for work vehicles
US11607948B1 (en) 2021-12-22 2023-03-21 Deere & Company Electronically-variable power shift transmission for work vehicles
US11913528B1 (en) 2022-10-28 2024-02-27 Deere & Company Multi-mode continuously variable transmission assembly with drop set arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166928U (ja) * 1981-04-17 1982-10-21
JPH07315078A (ja) * 1994-05-27 1995-12-05 Aqueous Res:Kk ハイブリッド車両用表示装置
JP2000023310A (ja) * 1998-07-02 2000-01-21 Aqueous Reserch:Kk ハイブリッド型車両
JP2009137553A (ja) * 2007-12-11 2009-06-25 Fujitsu Ten Ltd 制御装置及び制御方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982746B2 (ja) * 1997-06-06 1999-11-29 トヨタ自動車株式会社 ハイブリッド車両の内燃機関制御装置
TW419842B (en) * 1999-05-25 2001-01-21 Acer Comm & Multimedia Inc Low voltage detection circuit
JP3940284B2 (ja) * 2001-10-24 2007-07-04 ヤマハマリン株式会社 推進用エンジンを備えた船舶のバッテリ充電残量維持装置
JP3894143B2 (ja) * 2002-04-09 2007-03-14 トヨタ自動車株式会社 動力出力装置およびこれを備える自動車
JP3873843B2 (ja) 2002-08-05 2007-01-31 トヨタ自動車株式会社 エンジン自動停止始動機能付車両の情報報知装置
US7429804B2 (en) * 2004-09-24 2008-09-30 International Truck Intellectual Property Company, Llc Lift gate power control system
US7935021B2 (en) * 2004-10-27 2011-05-03 Toyota Jidosha Kabushiki Kaisha Controller apparatus for vehicular device system
JP2006298079A (ja) 2005-04-19 2006-11-02 Nissan Motor Co Ltd ハイブリッド車のモード遷移制御装置およびモード遷移制御方法
CN1903604A (zh) * 2005-07-28 2007-01-31 爱信艾达株式会社 车辆驱动控制装置及车辆驱动控制方法
JP4458020B2 (ja) * 2005-11-01 2010-04-28 トヨタ自動車株式会社 ハイブリッド車両の運転者支援システム。
JP2007168637A (ja) * 2005-12-22 2007-07-05 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
DE102007011410A1 (de) * 2006-03-14 2007-11-08 Mitsubishi Fuso Truck and Bus Corp., Kawasaki Steuergerät für ein elektrisches Hybridfahrzeug
US7722497B2 (en) * 2006-06-13 2010-05-25 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus
JP4197013B2 (ja) * 2006-06-28 2008-12-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4100440B2 (ja) * 2006-09-26 2008-06-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2008137543A (ja) * 2006-12-04 2008-06-19 Toyota Motor Corp 車両およびその制御方法
JP4197038B2 (ja) * 2007-03-27 2008-12-17 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
CN101878142B (zh) * 2007-11-30 2014-03-12 博世株式会社 混合动力系统控制方法
US8020652B2 (en) * 2007-12-04 2011-09-20 Ford Global Technologies, Llc Generator power-based cold start strategy
US8478466B2 (en) * 2007-12-27 2013-07-02 Byd Co. Ltd. Hybrid vehicle having multi-mode controller
US7986055B2 (en) * 2008-01-22 2011-07-26 Honda Motor Co., Ltd. Adjustment of control strategy based on temperature
JP4529097B2 (ja) * 2008-03-24 2010-08-25 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5019133B2 (ja) * 2008-07-31 2012-09-05 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP5298960B2 (ja) * 2009-03-04 2013-09-25 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2010100748A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
JP5232125B2 (ja) 2009-11-05 2013-07-10 本田技研工業株式会社 アイドルストップ装置
US8738209B2 (en) * 2010-01-30 2014-05-27 Toyota Jidosha Kabushiki Kaisha Control device of vehicle drive apparatus
JP2011189889A (ja) 2010-03-16 2011-09-29 Honda Motor Co Ltd ハイブリッド車両
JP5316466B2 (ja) * 2010-04-05 2013-10-16 三菱自動車工業株式会社 表示装置
JP5530813B2 (ja) * 2010-06-04 2014-06-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置
US8565949B2 (en) * 2010-09-14 2013-10-22 GM Global Technology Operations LLC Method of controlling a hybrid powertrain to ensure battery power and torque reserve for an engine start and hybrid powertrain with control system
EP2631145B1 (en) * 2010-10-21 2017-06-07 Hino Motors Ltd. Start control method, start control device, hybrid automobile, and program
US8536834B2 (en) * 2010-12-23 2013-09-17 Thermo King Corporation Mobile environment-controlled unit and method of operating a mobile environment-controlled unit
US9242644B2 (en) * 2011-05-16 2016-01-26 Toyota Jidosha Kabushiki Kaisha Electrically-powered vehicle
WO2013128587A1 (ja) * 2012-02-28 2013-09-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9440641B2 (en) * 2012-07-05 2016-09-13 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
US9604632B2 (en) * 2012-07-05 2017-03-28 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle
US20160352120A1 (en) * 2015-05-26 2016-12-01 Ford Global Technologies, Llc Electric vehicle high-voltage system alert
US9994120B2 (en) * 2015-09-29 2018-06-12 Ford Global Technologies, Llc Electrified vehicle method and system for charging during a non-drive cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166928U (ja) * 1981-04-17 1982-10-21
JPH07315078A (ja) * 1994-05-27 1995-12-05 Aqueous Res:Kk ハイブリッド車両用表示装置
JP2000023310A (ja) * 1998-07-02 2000-01-21 Aqueous Reserch:Kk ハイブリッド型車両
JP2009137553A (ja) * 2007-12-11 2009-06-25 Fujitsu Ten Ltd 制御装置及び制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098255A (ja) * 2013-11-19 2015-05-28 トヨタ自動車株式会社 ハイブリッド車のエンジン始動制御装置
JP2016055759A (ja) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN106687321A (zh) * 2014-09-09 2017-05-17 丰田自动车株式会社 用于混合动力车辆的控制系统
JP2016210221A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2017100524A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 ハイブリッド自動車
JP2017149210A (ja) * 2016-02-23 2017-08-31 トヨタ自動車株式会社 車両の制御装置
US10023180B2 (en) 2016-02-23 2018-07-17 Toyota Jidosha Kabushiki Kaisha Control device and control method for vehicle
US10220834B2 (en) 2016-07-29 2019-03-05 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle

Also Published As

Publication number Publication date
JP5884891B2 (ja) 2016-03-15
JPWO2013128587A1 (ja) 2015-07-30
CN104136251A (zh) 2014-11-05
US20150142232A1 (en) 2015-05-21
US9944275B2 (en) 2018-04-17
CN104136251B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5884891B2 (ja) ハイブリッド車両の制御装置
JP5786960B2 (ja) 車両の制御装置
JP5817920B2 (ja) 車両の制御装置
JP6394654B2 (ja) 車両
WO2013140546A1 (ja) ハイブリッド車両の駆動制御装置
JP6024691B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP5949731B2 (ja) ハイブリッド車両
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
JPWO2013057831A1 (ja) 車両の制御装置
EP3049301B1 (en) Control system and control method
JPWO2013088578A1 (ja) ハイブリッド車両の駆動制御装置
JPWO2013140543A1 (ja) ハイブリッド車両の駆動制御装置
JP2015081074A (ja) 車両の制御装置
JP5825132B2 (ja) ハイブリッド車両の制御装置
JP2015182662A (ja) エンジン停止制御装置
JP2013169852A (ja) 車両の制御装置
JP6048154B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
US10676076B2 (en) Control device of vehicle
JP2014046860A (ja) ハイブリッドシステム
JP6146296B2 (ja) 車両の制御装置
WO2013183164A1 (ja) ハイブリッド車両の制御装置
JP6946889B2 (ja) 車両用動力伝達装置の制御装置
JP6421704B2 (ja) 車両の制御装置
JP6579058B2 (ja) 車両の制御装置
JP6597514B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501891

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869852

Country of ref document: EP

Kind code of ref document: A1