JP6597514B2 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP6597514B2
JP6597514B2 JP2016157032A JP2016157032A JP6597514B2 JP 6597514 B2 JP6597514 B2 JP 6597514B2 JP 2016157032 A JP2016157032 A JP 2016157032A JP 2016157032 A JP2016157032 A JP 2016157032A JP 6597514 B2 JP6597514 B2 JP 6597514B2
Authority
JP
Japan
Prior art keywords
engine
clutch
mode
power
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157032A
Other languages
English (en)
Other versions
JP2018024320A (ja
Inventor
達也 今村
淳 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016157032A priority Critical patent/JP6597514B2/ja
Publication of JP2018024320A publication Critical patent/JP2018024320A/ja
Application granted granted Critical
Publication of JP6597514B2 publication Critical patent/JP6597514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

本発明は、第1回転機の運転状態が制御されることにより差動状態が制御される第1差動部と、エンジンが動力伝達可能に連結された第2差動部とを備えた車両の制御装置に関するものである。
第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有して前記第1回転機の運転状態が制御されることにより差動状態が制御される第1差動部と、エンジンが動力伝達可能に連結された第4回転要素と第5回転要素と前記第1回転要素に連結された第6回転要素とを有する第2差動部とを備えた車両が良く知られている。例えば、特許文献1に記載された車両がそれである。この特許文献1には、前記駆動輪に動力伝達可能に連結された第2回転機と、前記第4回転要素と前記第5回転要素とを連結する第1係合装置と、前記第5回転要素を非回転部材に連結する第2係合装置とを備え、前記第1係合装置と前記第2係合装置との各作動状態(係合や解放などの状態)を制御することによって前記第2差動部はハイとローとの2段の切替えが為され、この第2差動部を介してエンジンの動力が前記第1差動部へ伝達され、その第1差動部を電気式無段変速機として作動させることが開示されている。
国際公開第2013/114594号
ところで、第1差動部における動力分割比とは異なる動力分割比にて作動する電気式無段変速機を構成する為に、前記第2回転要素及び前記第3回転要素のうちの何れか一方の回転要素と前記第5回転要素とを連結する第3係合装置とを更に備えることが考えられる。第1差動部及び第2差動部においては、前記第1回転要素と前記第6回転要素とが連結されていることに加え、更に、第1係合装置の解放且つ第2係合装置の解放且つ第3係合装置の係合によって前記第2回転要素及び前記第3回転要素のうちの何れか一方の回転要素と前記第5回転要素とが連結されることで、第1差動部と第2差動部との全体を、第1係合装置の係合且つ第2係合装置の解放且つ第3係合装置の解放である場合の第1差動部における動力分割比とは異なる動力分割比にて作動する電気式無段変速機として機能させることが可能となる。このような第1係合装置、第2係合装置、及び第3係合装置を備える車両において、運転停止中のエンジンを始動するときには、例えば第1係合装置、第2係合装置、及び第3係合装置のうちの何れかの係合装置の係合状態において第1回転機にてトルクを発生させることでエンジンを回転駆動してエンジンを点火することが考えられる。しかしながら、エンジンを始動するときに係合状態とされる係合装置と、エンジン始動後の走行において係合状態とされる係合装置との間で、エンジン始動後に係合状態の切替えを行う際、係合装置の組合せによっては、切替えショックや切替え遅れなどが生じ、エンジンの動力を用いた走行にスムーズに移行できない可能性がある。尚、上述したような課題は未公知である。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、エンジン始動後の係合装置の係合状態の切替えによるショックや切替え遅れを、抑制又は回避することができ、エンジンの動力を用いた走行にスムーズに移行することができる車両の制御装置を提供することにある。
第1の発明の要旨とするところは、(a) 第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有して前記第1回転機の運転状態が制御されることにより差動状態が制御される第1差動部と、エンジンが動力伝達可能に連結された第4回転要素と第5回転要素と前記第1回転要素に連結された第6回転要素とを有する第2差動部とを備えた車両の、制御装置であって、(b) 前記車両は、前記第4回転要素、前記第5回転要素、及び前記第6回転要素のうちの何れか2つの回転要素を連結する第1係合装置と、前記第5回転要素を非回転部材に連結する第2係合装置と、前記第2回転要素及び前記第3回転要素のうちの何れか一方の回転要素と前記第5回転要素とを連結する第3係合装置とを更に備えるものであり、(c) 運転停止中の前記エンジンを始動するときには、前記第1係合装置、前記第2係合装置、及び前記第3係合装置のうちの何れかの係合装置の係合状態において前記第1回転機にてトルクを発生させることで前記エンジンを回転駆動する始動制御部と、(d) 前記エンジンの始動後の走行において係合状態とされる係合装置である始動後係合装置が、前記第1係合装置、前記第2係合装置、及び前記第3係合装置のうちの何れの係合装置であるかを判断する始動後係合装置判断部と、(e) 前記エンジンが始動させられるときに、前記始動後係合装置が前記第2係合装置である場合には、前記第2係合装置を係合状態とする一方で、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、前記第1係合装置又は前記第3係合装置を係合状態とする始動時係合制御部とを、含むことにある。
前記第1の発明によれば、エンジン始動後に、第2係合装置の係合状態と、第1係合装置又は第3係合装置の係合状態とを切り替える際には、同期状態での切替えができない為、切替えショックが生じる可能性があったり、又、何れの係合装置をも一旦解放状態とした後に切り替える必要があって切替えに時間が掛かる可能性があったりすることに対して、始動後係合装置が第2係合装置の場合にはその第2係合装置の係合状態でエンジンが始動させられる一方で、始動後係合装置が第1係合装置及び第3係合装置のうちの少なくとも一方の係合装置の場合にはその第1係合装置又はその第3係合装置でエンジンが始動させられるので、エンジン始動後に、第2係合装置の係合状態と、第1係合装置又は第3係合装置の係合状態との切替えが生じない。そのような切替えが生じないので、切替えによるショックや切替え遅れが回避される。又、エンジン始動後に、第1係合装置の係合状態と第3係合装置の係合状態とを切り替える際には、同期状態での切替えができる為、切替えによるショックや切替え遅れが抑制される。よって、エンジン始動後の係合装置の係合状態の切替えによるショックや切替え遅れを、抑制又は回避することができ、エンジンの動力を用いた走行にスムーズに移行することができる。尚、上記同期状態は、係合状態を切り替える各係合装置における差回転速度が、ゼロとされた状態、又は略ゼロとされた状態、又は切替えショックが抑制される程度に所定値以下に抑制された状態である。
本発明が適用される車両の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。 各走行モードにおける各係合装置の各作動状態を示す図表である。 単独駆動EVモード時の共線図である。 両駆動EVモード時の共線図である。 HV走行モードのO/DHVモード時の前進走行での共線図である。 HV走行モードのU/DHVモード時の共線図である。 HV走行モードのO/DHVモード時の後進走行での共線図であり、エンジン逆転入力の場合である。 HV走行モードのO/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。 HV走行モードの固定段モード時の共線図であり、直結の場合である。 HV走行モードの固定段モード時の共線図であり、出力軸固定の場合である。 エンジントルクに対するMG1トルクのトルク比率、及びエンジントルクに対するMG2トルクのトルク比率の一例を示す図である。 エンジン回転速度に対するMG1回転速度の回転速度比率、及びエンジン回転速度に対するMG2回転速度の回転速度比率の一例を示す図である。 エンジンパワーに対するMG1パワーの出力比率、及びエンジンパワーに対するMG2パワーの出力比率の一例を示す図である。 エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図であって、充電容量を保持した状態で走行する場合である。 エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図であって、充電容量を消費しながら走行する場合である。 エンジン始動時におけるバッテリユニットのピークパワーを、O/DHVモードとU/DHVモードとで比較した一例を示す図である。 電子制御装置の制御作動の要部すなわちエンジン始動後の係合装置の係合状態の切替えによるショックや切替え遅れを抑制又は回避することができ、エンジンの動力を用いた走行にスムーズに移行する為の制御作動を説明するフローチャートである。 図17のフローチャートに示す制御作動を実行した場合のタイムチャートの一例を示す図である。 本発明が適用される車両の走行に関わる各部の概略構成を説明する図であって、図1の車両とは別の車両を説明する図である。 図19の車両において、各走行モードにおける各係合装置の各作動状態を示す図表である。 図19の車両において、単独駆動EVモード時の共線図である。 図19の車両において、両駆動EVモード時の共線図である。 図19の車両において、HV走行モードのO/DHVモード時の共線図である。 図19の車両において、HV走行モードのU/DHVモード時の前進走行での共線図である。 図19の車両において、HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン逆転入力の場合である。 図19の車両において、HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。 図19の車両において、HV走行モードの固定段モード時の共線図であり、直結の場合である。 図19の車両において、HV走行モードの固定段モード時の共線図であり、出力軸固定の場合である。
好適には、前記始動時係合制御部は、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、差回転速度が小さい方の係合装置を係合状態とすることにある。このようにすれば、差回転速度が小さい方の係合装置が係合状態とされることで、係合前に差回転速度を小さくするときに要する時間が比較的短くなり、早期のエンジン始動が可能となる。このような態様は、例えばエンジン始動の応答が優先されるような場合に有用である。
また、好適には、前記車両は、前記駆動輪に動力伝達可能に連結された第2回転機を備えており、前記エンジンを始動するときには、前記駆動輪における出力トルクの落ち込みが抑制されるように、前記第2回転機から補償トルクを出力するトルク補償制御部を更に含むものであり、前記始動時係合制御部は、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、前記エンジンを始動するときに必要な前記第2回転機の前記補償トルクが所定トルク以下となる係合装置を係合状態とすることにある。このようにすれば、運転停止中のエンジンの回転を引き上げることに伴うエンジンの負トルク(エンジン引き込みトルクともいう)に対するエンジン始動時の第1回転機のトルクを略同じとした場合に、第1係合装置及び第3係合装置のうちの何れの係合装置の係合状態にてエンジンを始動するかによって必要な第2回転機の補償トルクが相違することに対して、必要な第2回転機の補償トルクが所定トルク以下(換言すれば小さい方)の係合装置が係合状態とされることで、実際の第2回転機の補償トルクが不足してエンジン始動ショックが発生する可能性があることを抑制することができる。
また、好適には、前記始動時係合制御部は、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、前記エンジンを始動するときに前記第1差動部及び前記第2差動部における各回転要素の回転速度が各所定回転速度以下となる係合装置を係合状態とすることにある。このようにすれば、第1係合装置及び第3係合装置のうちの何れの係合装置の係合状態にてエンジンを始動するかによって各回転要素の回転速度が相違することに対して、各回転要素の回転速度が各所定回転速度以下となる係合装置が係合状態とされることで、各回転要素や回転機(例えば第1回転機)の耐久性を向上することができる。
また、好適には、前記車両は、前記第1回転機との間で電力を授受する蓄電装置を備えており、前記始動時係合制御部は、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、前記エンジンを始動するときに前記蓄電装置の入力電力が所定電力以下となる係合装置を係合状態とすることにある。このようにすれば、第1係合装置及び第3係合装置のうちの何れの係合装置の係合状態にてエンジンを始動するかによって第1回転機による発電電力が相違することに対して、蓄電装置の入力電力が所定電力以下となる係合装置が係合状態とされることで(すなわち蓄電装置の入力電力が過剰にならないようにすることで)、蓄電装置の耐久性を向上することができる。
また、好適には、前記始動後係合装置判断部は、後進走行が要求されているか、又は前進走行が要求されているかを判断することで、前記始動後係合装置が何れの係合装置であるかを判断するものであり、前記始動時係合制御部は、前記後進走行が要求されている場合には、前記第2係合装置を係合状態とする一方で、前記前進走行が要求されている場合には、前記第1係合装置又は前記第3係合装置を係合状態とすることにある。このようにすれば、エンジン始動後に、前後進の要求に依存した、係合装置の係合状態の切替えを行うことなく、エンジンの動力を用いた走行が可能となる。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。図1において、車両10は、走行用の駆動力源となり得る、エンジン(ENG)12、第1回転機MG1、及び第2回転機MG2と、第1回転機MG1及び第2回転機MG2を有する動力伝達装置14と、駆動輪16とを備えるハイブリッド車両である。
エンジン12は、例えばガソリンエンジンやディーゼルエンジン等、所定の燃料を燃焼させて動力を出力させる公知の内燃機関である。このエンジン12は、後述する電子制御装置80によってスロットル開度或いは吸入空気量、燃料供給量、点火時期等の運転状態が制御されることにより、エンジントルクTeが制御される。
第1回転機MG1及び第2回転機MG2は、駆動トルクを発生させる電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、インバータ部や平滑コンデンサなどを有する車両10に備えられた電力制御ユニット18を介して、各々電力を授受する蓄電装置としての車両10に備えられたバッテリユニット20に接続されており、後述する電子制御装置80によって電力制御ユニット18が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルク(力行トルク又は回生トルク)であるMG1トルクTg及びMG2トルクTmが制御される。
動力伝達装置14は、エンジン12と駆動輪16との間の動力伝達経路に備えられている。動力伝達装置14は、車体に取り付けられる非回転部材であるケース22内に、第1動力伝達部24、第2動力伝達部26、第1動力伝達部24の出力回転部材であるドライブギヤ28と噛み合うドリブンギヤ30、ドリブンギヤ30を相対回転不能に固設するドリブン軸32、ドリブン軸32に相対回転不能に固設されたファイナルギヤ34(ドリブンギヤ30よりも小径のファイナルギヤ34)、デフリングギヤ36を介してファイナルギヤ34と噛み合うディファレンシャルギヤ38等を備えている。又、動力伝達装置14は、ディファレンシャルギヤ38に連結された車軸40等を備えている。
第1動力伝達部24は、第1動力伝達部24の入力回転部材である入力軸42と同軸心に配置されており、第1差動部44と第2差動部46とクラッチCRとを備えている。第1差動部44は、第1遊星歯車機構48及び第1回転機MG1を備えている。第2差動部46は、第2遊星歯車機構50、クラッチC1、及びブレーキB1を備えている。
第1遊星歯車機構48は、第1サンギヤS1、第1ピニオンギヤP1、第1ピニオンギヤP1を自転及び公転可能に支持する第1キャリヤCA1、第1ピニオンギヤP1を介して第1サンギヤS1と噛み合う第1リングギヤR1を有する公知のシングルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。又、第2遊星歯車機構50は、第2サンギヤS2、第2ピニオンギヤP2、第2ピニオンギヤP2を自転及び公転可能に支持する第2キャリヤCA2、第2ピニオンギヤP2を介して第2サンギヤS2と噛み合う第2リングギヤR2を有する公知のシングルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。
第1キャリヤCA1は、第2差動部46の出力回転部材(すなわち第2遊星歯車機構50の第2リングギヤR2)に連結された入力要素としての第1回転要素RE1であり、第1差動部44の入力回転部材として機能する。第1サンギヤS1は、第1回転機MG1のロータ軸52に一体的に連結されており、第1回転機MG1が動力伝達可能に連結された反力要素としての第2回転要素RE2である。第1リングギヤR1は、ドライブギヤ28に一体的に連結されており、駆動輪16に連結された出力要素としての第3回転要素RE3であり、第1差動部44の出力回転部材として機能する。
第2サンギヤS2は、入力軸42に一体的に連結され、その入力軸42を介してエンジン12が動力伝達可能に連結された第4回転要素RE4であり、第2差動部46の入力回転部材として機能する。第2キャリヤCA2は、ブレーキB1を介してケース22に選択的に連結される第5回転要素RE5である。第2リングギヤR2は、第1差動部44の入力回転部材(すなわち第1遊星歯車機構48の第1キャリヤCA1)に連結された第6回転要素RE6であり、第2差動部46の出力回転部材として機能する。又、第2キャリヤCA2と第2リングギヤR2とは、クラッチC1を介して選択的に連結される。又、第1リングギヤR1と第2キャリヤCA2とは、クラッチCRを介して選択的に連結される。よって、クラッチC1は、第5回転要素RE5と第6回転要素RE6とを選択的に連結する第1係合装置である。又、ブレーキB1は、第5回転要素RE5を非回転部材であるケース22に選択的に連結する第2係合装置である。又、クラッチCRは、第3回転要素RE3と第5回転要素RE5とを選択的に連結する第3係合装置である。
クラッチC1、ブレーキB1、及びクラッチCRは、好適には何れも湿式の摩擦係合装置であり、油圧アクチュエータによって係合制御される多板型の油圧式摩擦係合装置である。これらのクラッチC1、ブレーキB1、及びクラッチCRは、車両10に備えられた油圧制御回路54が後述する電子制御装置80によって制御されることにより、その油圧制御回路54から各々供給される油圧(例えばC1油圧Pc1、B1油圧Pb1、CR油圧Pcr)に応じて作動状態(係合や解放などの状態)が制御される。車両10には、機械式のオイルポンプ55(OP55ともいう)が備えられており、動力伝達装置14では、OP55により、クラッチC1、ブレーキB1、及びクラッチCRの各作動状態の切替えや各部の潤滑や各部の冷却に用いられる作動油(オイル)oilが供給される。OP55は、動力伝達装置14の何れかの回転部材(回転要素も同意)に連結されており、その回転部材の回転に応じて駆動される。本実施例では、OP55は、第1回転要素RE1(ここでは第6回転要素RE6も同意)に連結されている。又、OP55が連結される回転部材の回転停止時に作動油oilの供給が必要となるのであれば、例えばOP55に加えて、電動式のオイルポンプが備えられる。或いは、OP55に替えて、電動式のオイルポンプが備えられても良い。
第1遊星歯車機構48は、差動が許容される状態では、第1キャリヤCA1に入力されるエンジン12の動力を第1回転機MG1及び第1リングギヤR1へ分割(分配も同意)する動力分割機構として機能することが可能である。よって、車両10では、第1キャリヤCA1に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、第1リングギヤR1へ機械的に伝達される直達トルク(エンジン直達トルクともいう)と、第1回転機MG1に分割された動力による第1回転機MG1の発電電力で駆動される第2回転機MG2によるMG2トルクTmとでエンジン走行することが可能である。これにより、第1差動部44は、後述する電子制御装置80によって電力制御ユニット18が制御されて第1回転機MG1の運転状態が制御されることによりギヤ比(変速比)を制御する公知の電気式差動部(電気式無段変速機)として機能する。つまり、第1差動部44は、第1回転機MG1の運転状態が制御されることにより第1遊星歯車機構48の差動状態が制御される電気式変速機構である。
第2差動部46は、クラッチC1及びブレーキB1の各作動状態を切り替えることにより、直結状態、エンジン12の逆回転変速状態、ニュートラル状態(中立状態)、及び内部ロック状態の4つの状態を形成することが可能である。具体的には、第2差動部46は、クラッチC1の係合状態では、第2遊星歯車機構50の各回転要素が一体回転される直結状態とされる。又、第2差動部46は、ブレーキB1の係合状態では、エンジン回転速度Neの正回転に対して第2リングギヤR2(第2差動部46の出力回転部材)が負回転となるエンジン12の逆回転変速状態とされる。又、第2差動部46は、クラッチC1の解放状態且つブレーキB1の解放状態では、第2遊星歯車機構50の差動が許容されるニュートラル状態とされる。又、第2差動部46は、クラッチC1の係合状態且つブレーキB1の係合状態では、第2遊星歯車機構50の各回転要素が回転停止となる内部ロック状態とされる。
第1動力伝達部24では、第1差動部44における動力分割比とは異なる動力分割比にて作動する電気式無段変速機を構成することが可能である。すなわち、第1動力伝達部24では、第1キャリヤCA1(第1回転要素RE1)と第2リングギヤR2(第6回転要素RE6)とが連結されていることに加え、クラッチCRを係合状態とすることによって第1リングギヤR1(第3回転要素RE3)と第2キャリヤCA2(第5回転要素RE5)とが連結されることで、第1差動部44と第2差動部46とで1つの差動機構を構成し、第1差動部44と第2差動部46との全体を、第1差動部44単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機として機能させることが可能となる。
第1動力伝達部24では、上述した4つの状態が形成される第2差動部46と第1差動部44とが連結されており、車両10は、クラッチCRの作動状態の切替えと合わせて、後述する複数の走行モードを実現することが可能となる。
このように構成された第1動力伝達部24においては、エンジン12の動力や第1回転機MG1の動力はドライブギヤ28からドリブンギヤ30へ伝達される。従って、エンジン12及び第1回転機MG1は、第1動力伝達部24を介して駆動輪16に動力伝達可能に連結される。
第2動力伝達部26は、第2回転機MG2、入力軸42とは別にその入力軸42と平行に配置された、第2回転機MG2のロータ軸56、及びドリブンギヤ30と噛み合うと共にそのロータ軸56に連結されたリダクションギヤ58(ドリブンギヤ30よりも小径のリダクションギヤ58)を備えている。これにより、第2動力伝達部26においては、第2回転機MG2の動力は第1動力伝達部24を介すことなくドリブンギヤ30へ伝達される。従って、第2回転機MG2は、第1動力伝達部24を介さずに駆動輪16に動力伝達可能に連結される。つまり、第2回転機MG2は、第1動力伝達部24を介さずに動力伝達装置14の出力回転部材である車軸40に動力伝達可能に連結された回転機である。尚、動力伝達装置14の出力回転部材としては、車軸40の他に、ファイナルギヤ34やデフリングギヤ36も同意である。
このように構成された動力伝達装置14は、FF(フロントエンジン・フロントドライブ)方式の車両に好適に用いられる。又、動力伝達装置14では、エンジン12の動力や第1回転機MG1の動力や第2回転機MG2の動力は、ドリブンギヤ30へ伝達され、そのドリブンギヤ30から、ファイナルギヤ34、ディファレンシャルギヤ38、車軸40等を順次介して駆動輪16へ伝達される。又、車両10では、エンジン12、第1動力伝達部24、及び第1回転機MG1と、第2回転機MG2とが異なる軸心上に配置されることで、軸長が短縮化されている。又、ドリブンギヤ30とリダクションギヤ58とのギヤ対により、第2回転機MG2の減速比を大きくとることができる。
車両10は、走行に関わる各部を制御する制御装置を含む電子制御装置80を備えている。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置80は、エンジン12、第1回転機MG1、及び第2回転機MG2の各出力制御、後述する走行モードの切替制御等を実行するようになっており、必要に応じてエンジン制御用、回転機制御用、油圧制御用等に分けて構成される。
電子制御装置80には、車両10に設けられた各種センサ等(例えばエンジン回転速度センサ60、出力回転速度センサ62、レゾルバ等のMG1回転速度センサ64、レゾルバ等のMG2回転速度センサ66、アクセル開度センサ68、シフトポジションセンサ70、バッテリセンサ72、CR油圧センサ74、油温センサ76など)による検出値に基づく各種信号(例えばエンジン回転速度Ne、車速Vに対応するドライブギヤ28の回転速度である出力回転速度No、MG1回転速度Ng、MG2回転速度Nm、アクセル開度θacc、シフトレバーの操作位置POSsh、バッテリユニット20のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbat、CR油圧Pcr、作動油oilの温度である作動油温THoilなど)が供給される。又、電子制御装置80からは、車両10に備えられた各装置(例えばエンジン12、電力制御ユニット18、油圧制御回路54など)に各種指令信号(例えばエンジン制御指令信号Se、回転機制御指令信号Sm、油圧制御指令信号Spなど)が供給される。尚、電子制御装置80は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリユニット20の充電状態(充電容量)SOC(以下、バッテリ容量SOCという)を算出する。
電子制御装置80は、車両10における各種制御の為の制御機能を実現する為に、ハイブリッド制御手段すなわちハイブリッド制御部82、及び動力伝達切替手段すなわち動力伝達切替部84を備えている。
ハイブリッド制御部82は、電子スロットル弁を開閉制御し、燃料噴射量や噴射時期を制御し、点火時期を制御するエンジン制御指令信号Seを出力して、エンジントルクTeの目標トルクが得られるようにエンジン12の出力制御を実行する。又、ハイブリッド制御部82は、第1回転機MG1や第2回転機MG2の作動を制御する回転機制御指令信号Smを電力制御ユニット18へ出力して、MG1トルクTgやMG2トルクTmの目標トルクが得られるように第1回転機MG1や第2回転機MG2の出力制御を実行する。
ハイブリッド制御部82は、アクセル開度θaccからそのときの車速Vにて要求される駆動トルク(要求駆動トルク)を算出し、充電要求値(充電要求パワー)等を考慮して低燃費で排ガス量の少ない運転となるように、エンジン12、第1回転機MG1、及び第2回転機MG2の少なくとも1つから要求駆動トルクを発生させる。
ハイブリッド制御部82は、走行モードとして、モータ走行(EV走行)モード或いはハイブリッド走行(HV走行)モード(エンジン走行(ENG走行)モードともいう)を走行状態に応じて選択的に成立させる。EV走行モードは、エンジン12の運転を停止した状態で、第1回転機MG1及び第2回転機MG2のうちの少なくとも一方の回転機を走行用の駆動力源として走行するEV走行を可能とする制御様式である。HV走行モードは、少なくともエンジン12を走行用の駆動力源として走行する(すなわちエンジン12の動力を駆動輪16へ伝達して走行する)HV走行(エンジン走行)を可能とする制御様式である。尚、エンジン12の動力を第1回転機MG1の発電によって電力に変換し、専らその電力をバッテリユニット20に充電するモードのように、車両10の走行を前提としないモードであっても、エンジン12を運転した状態とするので、HV走行モードに含まれる。
動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードに基づいて、クラッチC1、ブレーキB1、及びクラッチCRの各係合作動(作動状態)を制御する。動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードにて走行する為の動力伝達が可能となるように、クラッチC1、ブレーキB1、及びクラッチCRを各々係合及び/又は解放させる油圧制御指令信号Spを油圧制御回路54へ出力する。
ここで、車両10にて実行可能な走行モードについて図2、及び図3−図10を用いて説明する。図2は、各走行モードにおけるクラッチC1、ブレーキB1、及びクラッチCRの各作動状態を示す図表である。図2の図表中の○印は係合装置(C1,B1,CR)の係合を示し、空欄は解放を示し、△印は運転停止状態のエンジン12を連れ回し状態とするエンジンブレーキ(エンブレともいう)の併用時に何れか一方を係合、又は両方を係合することを示している。又、「G」は回転機(MG1,MG2)を主にジェネレータとして機能させることを示し、「M」は回転機(MG1,MG2)を駆動時には主にモータとして機能させ、回生時には主にジェネレータとして機能させることを示している。図2に示すように、車両10は、走行モードとして、EV走行モード及びHV走行モードを選択的に実現することができる。EV走行モードは、第2回転機MG2を単独の駆動力源とするEV走行が可能な制御様式である単独駆動EVモードと、第1回転機及び第2回転機MG2を駆動力源とするEV走行が可能な制御様式である両駆動EVモードとの2つのモードを有している。HV走行モードは、オーバードライブ(O/D)インプットスプリットモード(以下、O/DHVモードという)と、アンダードライブ(U/D)インプットスプリットモード(以下、U/DHVモードという)と、固定段モードとの3つのモードを有している。
図3−図10は、第1遊星歯車機構48及び第2遊星歯車機構50の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図である。この共線図において、各回転要素の回転速度を表す縦線Y1−Y4は紙面向かって左から順に、縦線Y1が第1回転機MG1に連結された第2回転要素RE2である第1サンギヤS1の回転速度を、縦線Y2が相互に連結された、第1回転要素RE1である第1キャリヤCA1の回転速度及び第6回転要素RE6である第2リングギヤR2の回転速度を、縦線Y3がドライブギヤ28に連結された第3回転要素RE3である第1リングギヤR1の回転速度、及びブレーキB1を介してケース22に選択的に連結される第5回転要素RE5である第2キャリヤCA2の回転速度を、縦線Y4がエンジン12に連結された第4回転要素RE4である第2サンギヤS2の回転速度をそれぞれ示している。又、白四角印(□)における矢印はMG1トルクTgを、白丸印(○)における矢印はエンジントルクTeを、黒丸印(●)における矢印はMG2トルクTmをそれぞれ示している。又、第2キャリヤCA2と第2リングギヤR2を選択的に連結するクラッチC1が白抜きで表されたものはクラッチC1の解放状態を、クラッチC1がハッチング(斜線)で表されたものはクラッチC1の係合状態をそれぞれ示している。又、第2キャリヤCA2をケース22に選択的に連結するブレーキB1における白菱形印(◇)はブレーキB1の解放状態を、黒菱形印(◆)はブレーキB1の係合状態をそれぞれ示している。又、第1リングギヤR1と第2キャリヤCA2とを選択的に連結するクラッチCRにおける白菱形印(◇)はクラッチCRの解放状態を、黒菱形印(◆)はクラッチCRの係合状態をそれぞれ示している。又、第1遊星歯車機構48に関する回転速度を相対的に表す直線は実線で示され、第2遊星歯車機構50に関する回転速度を相対的に表す直線は破線で示されている。尚、黒丸印(●)における矢印は、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力で駆動される第2回転機MG2によるMG2トルクTmであり、エンジン直達トルク分は含まれていない。又、クラッチCRにおける黒菱形印(◆)は、黒丸印(●)と重なっている為、図中では表されていない。
図3は、単独駆動EVモード時の共線図である。単独駆動EVモードは、図2に示すように、クラッチC1、ブレーキB1、及びクラッチCRを共に解放した状態で実現される。単独駆動EVモードでは、クラッチC1及びブレーキB1が解放されており、第2遊星歯車機構50の差動が許容され、第2差動部46はニュートラル状態とされる。ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第2回転機MG2から走行用のMG2トルクTmを出力させる。図3は、第2回転機MG2が正回転(すなわち車両10の前進時における第1リングギヤR1の回転方向)にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第2回転機MG2を逆回転させる。車両走行中には、第2回転機MG2の回転(ここでは駆動輪16の回転も同意)に連動してドライブギヤ28に連結された第1リングギヤR1が回転させられる。単独駆動EVモードでは、更に、クラッチCRが解放されているので、エンジン12及び第1回転機MG1は各々連れ回されず、エンジン回転速度Ne及びMG1回転速度Ngをゼロとすることができる。これにより、エンジン12及び第1回転機MG1における各々の引き摺り損失を低減して電費を向上する(すなわち電力消費を抑制する)ことができる。ハイブリッド制御部82は、フィードバック制御によりMG1回転速度Ngをゼロに維持する。或いは、ハイブリッド制御部82は、第1回転機MG1の回転が固定されるように第1回転機MG1に電流を流す制御(d軸ロック制御)を実行して、MG1回転速度Ngをゼロに維持する。或いは、MG1トルクTgをゼロとしても第1回転機MG1のコギングトルクによりMG1回転速度Ngをゼロに維持できるときはMG1トルクTgを加える必要はない。尚、MG1回転速度Ngをゼロに維持する制御を行っても、第1動力伝達部24はMG1トルクTgの反力を取れない中立状態であるので、駆動トルクに影響を与えない。又、単独駆動EVモードでは、第1回転機MG1を無負荷として空転させても良い。
単独駆動EVモードでは、運転が停止されたエンジン12は連れ回されずゼロ回転で停止状態とされるので、単独駆動EVモードでの走行中に第2回転機MG2にて回生制御を行う場合、回生量を大きく取ることができる。単独駆動EVモードでの走行時に、バッテリユニット20が満充電状態となり回生エネルギーが取れない場合、エンジンブレーキを併用することが考えられる。エンジンブレーキを併用する場合は、図2に示すように、クラッチC1又はクラッチCRが係合される(単独駆動EVモードのエンブレ併用を参照)。クラッチC1又はクラッチCRが係合されると、エンジン12は連れ回し状態とされる。この状態で、第1回転機MG1によってエンジン回転速度Neを上昇させると、エンジンブレーキを作用させることができる。尚、エンジン12の連れ回し状態においてもエンジン回転速度Neをゼロとすることは可能であり、この場合には、エンジンブレーキを作用させずにEV走行することができる。又、ブレーキB1の係合によってもエンジンブレーキを作用させることは可能である。
図4は、両駆動EVモード時の共線図である。両駆動EVモードは、図2に示すように、クラッチC1及びブレーキB1を係合した状態、且つクラッチCRを解放した状態で実現される。両駆動EVモードでは、クラッチC1及びブレーキB1が係合されており、第2遊星歯車機構50の差動が規制され、第2キャリヤCA2の回転が停止させられる。その為、第2遊星歯車機構50は何れの回転要素も回転が停止させられ、第2差動部46は内部ロック状態とされる。これによって、エンジン12はゼロ回転で停止状態とされ、又、第2リングギヤR2に連結された第1キャリヤCA1もゼロ回転で固定される。第1キャリヤCA1が回転不能に固定されると、第1キャリヤCA1にてMG1トルクTgの反力トルクが取れる為、MG1トルクTgに基づくトルクを第1リングギヤR1から機械的に出力させて駆動輪16へ伝達することができる。ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第1回転機MG1及び第2回転機MG2から各々走行用のMG1トルクTg及びMG2トルクTmを出力させる。図4は、第2回転機MG2が正回転にて正トルクを出力し且つ第1回転機MG1が負回転にて負トルクを出力している前進時の場合である。後進時は、前進時に対して第1回転機MG1及び第2回転機MG2を逆回転させる。
図3,図4を用いた説明で示したように、単独駆動EVモードは第2回転機MG2のみにて車両10を駆動し、両駆動EVモードは第1回転機MG1及び第2回転機MG2にて車両10を駆動することが可能である。従って、EV走行する場合、低負荷時は、単独駆動EVモードが成立されて第2回転機MG2による単独走行とされ、高負荷時は、両駆動EVモードが成立されて第1回転機MG1及び第2回転機MG2による両駆動とされる。尚、HV走行を含め、車両減速中の回生は、主に第2回転機MG2にて実行される。
図5は、HV走行モードのO/DHVモード時の前進走行での共線図である。O/DHVモードの前進走行(以下、O/DHVモード(前進)という)は、図2に示すように、クラッチC1を係合した状態、且つブレーキB1及びクラッチCRを解放した状態で実現される。O/DHVモード(前進)では、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部46は直結状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1キャリヤCA1に直接的に伝達される。加えて、O/DHVモード(前進)では、クラッチCRが解放されており、第1差動部44単独にて電気式無段変速機が構成される。これによって、第1動力伝達部24では、第1キャリヤCA1に入力されるエンジン12の動力を第1サンギヤS1と第1リングギヤR1とに分割することができる。すなわち、第1動力伝達部24では、第1キャリヤCA1に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第1リングギヤR1へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図5は、第2回転機MG2が正回転にて正トルクを出力して前進走行している場合である。
図6は、HV走行モードのU/DHVモード時の共線図である。U/DHVモードは、図2に示すように、クラッチC1及びブレーキB1を解放した状態、且つクラッチCRを係合した状態で実現される。U/DHVモードでは、クラッチCRが係合されており、第1差動部44と第2差動部46とで1つの差動機構が構成される。加えて、U/DHVモードでは、クラッチC1及びブレーキB1が解放されており、第1差動部44と第2差動部46との全体にて、第1差動部44単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機が構成される。これによって、第1動力伝達部24では、第2サンギヤS2に入力されるエンジン12の動力を第1サンギヤS1と第1リングギヤR1とに分割することができる。すなわち、第1動力伝達部24では、第2サンギヤS2に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第1リングギヤR1へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図5は、第2回転機MG2が正回転にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第2回転機MG2を逆回転させる。この後進時では、電気式無段変速機としての機能を達成している構成に対して、エンジン12の回転とトルクとが正値のまま入力される、エンジン正転入力となる。
図7は、HV走行モードのO/DHVモード時の後進走行での共線図であり、電気式無段変速機としての機能を達成している構成に対して、エンジン12の回転とトルクとが負値に逆転して入力される、エンジン逆転入力の場合である。O/DHVモードのエンジン逆転入力での後進走行(以下、O/DHVモード逆転入力(後進)という)は、図2に示すように、ブレーキB1を係合した状態、且つクラッチC1及びクラッチCRを解放した状態で実現される。O/DHVモード逆転入力(後進)では、クラッチC1が解放され且つブレーキB1が係合されており、第2差動部46はエンジン12の逆回転変速状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1キャリヤCA1に負回転及び負トルクにて伝達される。加えて、O/DHVモード逆転入力(後進)では、クラッチCRが解放されており、第1差動部44単独にて電気式無段変速機が構成される。これによって、第1動力伝達部24では、第1キャリヤCA1に逆転して入力されるエンジン12の動力を第1サンギヤS1と第1リングギヤR1とに分割することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図7は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。
図8は、HV走行モードのO/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。O/DHVモードのエンジン正転入力での後進走行(以下、O/DHVモード正転入力(後進)という)は、図2に示すように、クラッチC1を係合した状態、且つブレーキB1及びクラッチCRを解放した状態で実現される。O/DHVモード正転入力(後進)では、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部46は直結状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1キャリヤCA1に直接的に伝達される。加えて、O/DHVモード正転入力(後進)では、クラッチCRが解放されており、第1差動部44単独にて電気式無段変速機が構成される。これによって、第1動力伝達部24では、第1キャリヤCA1に入力されるエンジン12の動力を第1サンギヤS1と第1リングギヤR1とに分割することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図8は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。
図5−図8を用いた説明で示したように、O/DHVモードとU/DHVモードとでは、電気式無段変速機としての機能を達成している構成に対して、エンジン12の動力が入力される回転要素が異なっており、第1動力伝達部24を電気式無段変速機として機能させるときの動力分割比が異なる。すなわち、O/DHVモードとU/DHVモードとで、エンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率が変えられる。クラッチCRは、エンジン走行中のエンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率を変更する為に、作動状態が切り替えられる。
O/DHVモード(前進)でのエンジン直達トルクは、エンジントルクTeに対して減少される。一方で、U/DHVモードでのエンジン直達トルクは、エンジントルクTeに対して増大される。本実施例において、第1差動部44単独では、O/DHVモードにて電気式無段変速機が構成される(図5参照)。よって、第1差動部44は、クラッチC1の係合状態且つクラッチCRの解放状態で、第1回転機MG1の運転状態が制御されることにより差動状態が制御されるときには、エンジントルクTeよりも減少されたトルクが第1リングギヤR1に機械的に伝達される。
又、MG1回転速度Ngがゼロとされてエンジン12の動力が電気パス(第1回転機MG1や第2回転機MG2の電力授受に関わる電気経路である電気的な動力伝達経路)を介することなく全て機械的に第1リングギヤR1へ伝達される状態となる所謂メカニカルポイントの状態のときに、エンジン12の回転が増速されて第1リングギヤR1から出力されるオーバードライブ状態となる場合がO/DHVモードであり、又、エンジン12の回転が減速されて第1リングギヤR1から出力されるアンダードライブ状態となる場合がU/DHVモードである。
図9は、HV走行モードの固定段モード時の共線図であり、第1差動部44及び第2差動部46の各回転要素が一体回転される、直結の場合である。固定段モードの直結(以下、直結固定段モードという)は、図2に示すように、クラッチC1及びクラッチCRを係合した状態、且つブレーキB1を解放した状態で実現される。直結固定段モードでは、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部46は直結状態とされる。加えて、直結固定段モードでは、クラッチCRが係合されており、第1差動部44及び第2差動部46の各回転要素が一体回転させられる。これによって、第1動力伝達部24では、エンジン12の動力を直接的に第1リングギヤR1から出力することができる。ハイブリッド制御部82は、エンジン12から走行用のエンジントルクTeを出力させる。この直結固定段モードでは、バッテリユニット20からの電力にて第1回転機MG1を駆動して、第1回転機MG1の動力を直接的に第1リングギヤR1から出力することもできる。又、この直結固定段モードでは、バッテリユニット20からの電力にて第2回転機MG2を駆動して、第2回転機MG2の動力を駆動輪16へ伝達することもできる。よって、ハイブリッド制御部82は、エンジントルクTeを出力させることに加えて、第1回転機MG1及び第2回転機MG2の少なくとも一方の回転機から走行用のトルクを出力させても良い。つまり、直結固定段モードでは、エンジン12のみで車両10を駆動しても良いし、又、第1回転機MG1及び/又は第2回転機MG2でトルクアシストしても良い。
図10は、HV走行モードの固定段モード時の共線図であり、第1リングギヤR1が回転不能に固定される、出力軸固定の場合である。固定段モードの出力軸固定(以下、出力軸固定段モードという)は、図2に示すように、ブレーキB1及びクラッチCRを係合した状態、且つクラッチC1を解放した状態で実現される。出力軸固定段モードでは、クラッチCRが係合されており、第1差動部44と第2差動部46とで1つの差動機構が構成される。加えて、出力軸固定段モードでは、ブレーキB1が係合され且つクラッチC1が解放されており、第1リングギヤR1が回転不能に固定される。これによって、第1動力伝達部24では、第2サンギヤS2に入力されるエンジン12の動力の反力を第1回転機MG1にて取ることができる。従って、出力軸固定段モードでは、エンジン12の動力による第1回転機MG1の発電電力をバッテリユニット20に充電することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、第1回転機MG1の発電によってエンジン12の動力に対する反力を取り、第1回転機MG1の発電電力を電力制御ユニット18を介してバッテリユニット20に充電する。この出力軸固定段モードは、第1リングギヤR1が回転不能に固定される為、車両10の停止時にバッテリユニット20を専ら充電するモードである。図9,図10を用いた説明で示したように、HV走行モードの直結固定段モードや出力軸固定段モードのときには、クラッチCRが係合される。
図11は、前進走行でのエンジン走行中における、エンジントルクTeに対するMG1トルクTgのトルク比率(Tg/Te)、及びエンジントルクTeに対するMG2トルクTmのトルク比率(Tm/Te)の一例を示す図である。このMG2トルクTmは、エンジン12の動力による第1回転機MG1の発電電力で駆動される第2回転機MG2によるMG2トルクTmである。図11において、第1動力伝達部24の減速比I(=Ne/No)が比較的大きな領域では、U/DHVモードの方がO/DHVモードよりもトルク比率(Tm/Te)が小さくされる。従って、減速比Iが比較的大きな領域では、U/DHVモードを成立させることで、エンジントルクTeに対する第2回転機MG2の負担を少なくすることができる。例えば、比較的大きな減速比Iを用いるエンジン12の高負荷時にU/DHVモードを成立させれば、MG2トルクTmを低く抑えられる。このことは、U/DHVモードの方がO/DHVモードよりも、MG2トルクTmの最大値にて大きな減速比Iまで対応可能ということであり、HV走行モードの領域を拡げられるということである。一方で、減速比Iが「1」よりも小さいような比較的小さな領域では、U/DHVモードの方がO/DHVモードよりもトルク比率(Tm/Te)の絶対値が大きくされる。又、トルク比率(Tm/Te)が負値となる状態は、第2回転機MG2が発電し、その発電電力が第1回転機MG1に供給される動力循環状態である。この動力循環状態となることは、できるだけ回避又は抑制されることが望ましい。その為、減速比Iが比較的小さな領域では、O/DHVモードを成立させることで、動力循環パワーを低減することができる。減速比Iに応じてU/DHVモードとO/DHVモードとを切り替えることで、より低トルクの第2回転機MG2でエンジンパワーを伝達することができる。
図12は、前進走行でのエンジン走行中における、エンジン回転速度Neに対するMG1回転速度Ngの回転速度比率(Ng/Ne)、及びエンジン回転速度Neに対するMG2回転速度Nmの回転速度比率(Nm/Ne)の一例を示す図である。図12において、第1動力伝達部24の減速比Iが「1」よりも大きいような比較的大きな領域では、U/DHVモードの方がO/DHVモードよりも回転速度比率(Ng/Ne)の絶対値が小さくされる。従って、減速比Iが比較的大きな領域では、U/DHVモードを成立させることで、MG1回転速度Ngの増大を抑制することができる。例えば、比較的大きな減速比Iを用いる発進時にU/DHVモードを成立させれば、MG1回転速度Ngを低く抑えられる。一方で、減速比Iが「1」よりも小さいような比較的小さな領域では、U/DHVモードの方がO/DHVモードよりも回転速度比率(Ng/Ne)の絶対値が大きくされる。その為、減速比Iが比較的小さな領域では、O/DHVモードを成立させることで、MG1回転速度Ngの増大を抑制することができる。減速比Iに応じてU/DHVモードとO/DHVモードとを切り替えることで、より低回転速度の第1回転機MG1でエンジンパワーを伝達することができる。
図13は、前進走行でのエンジン走行中における、エンジンパワーPeに対するMG1パワーPgの出力比率(Pg/Pe)、及びエンジンパワーPeに対するMG2パワーPmの出力比率(Pm/Pe)の一例を示す図である。図13において、第1動力伝達部24の減速比Iが比較的大きな領域では、U/DHVモードの方がO/DHVモードよりも、出力比率(Pg/Pe)及び出力比率(Pm/Pe)の各絶対値が小さくされる。従って、減速比Iが比較的大きな領域では、U/DHVモードを成立させることで、MG1パワーPgの増大及びMG2パワーPmの増大を各々抑制することができる。一方で、減速比Iが「1」よりも小さいような比較的小さな領域では、U/DHVモードの方がO/DHVモードよりも、出力比率(Pg/Pe)及び出力比率(Pm/Pe)の各絶対値が大きくされる。又、出力比率(Pm/Pe)が負値となる状態(すなわち出力比率(Pg/Pe)が正値となる状態)は、動力循環状態である。その為、減速比Iが比較的小さな領域では、O/DHVモードを成立させることで、動力循環パワーを低減することができる。減速比Iに応じてU/DHVモードとO/DHVモードとを切り替えることで、より低出力(低パワー)の回転機MG1,MG2でエンジンパワーを伝達することができる。
図11−図13を用いた説明で示したように、比較的大きな減速比Iを用いるエンジン12の高負荷時にU/DHVモードを成立させ、比較的小さな減速比Iを用いるエンジン12の低負荷時又は高車速時にO/DHVモードを成立させるように、U/DHVモードとO/DHVモードとを使い分けることで、回転機MG1,MG2の各トルクや各回転速度の増加が防止又は抑制され、高車速時には動力循環パワーが低減される。このことは、電気パスにおけるエネルギ変換損失が減り、燃費の向上につながる。又は、回転機MG1,MG2の小型化につながる。
U/DHVモードとO/DHVモードとは、どちらも第1動力伝達部24が電気式無段変速機として機能させられる。又、第1動力伝達部24の減速比Iが「1」となる状態は、クラッチC1及びクラッチCRが共に係合された直結固定段モードの状態(図9参照)と同等の状態である。従って、好適には、ハイブリッド制御部82は、クラッチC1が係合されたO/DHVモード(前進)と、クラッチCRが係合されたU/DHVモードとの切替えを、減速比Iが「1」(又は略「1」)の同期状態のときに、クラッチC1とクラッチCRとの各作動状態を切り替えることで実行する。
図14及び図15は、各々、エンジン走行とモータ走行との切替制御に用いる走行モード切替マップの一例を示す図である。これらの走行モード切替マップは、各々、車速Vと車両10の走行負荷(以下、車両負荷という)(例えば要求駆動トルク)とを変数としてエンジン走行領域とモータ走行領域との境界線を有する予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)関係である。図14は、バッテリ容量SOCを保持した状態で走行するCS(Charge Sustain)走行での動力伝達装置14の状態遷移(つまり車両10の走行モードの切替え)を示している。この図14は、車両10が、例えばバッテリ容量SOCが元々比較的少なく設定されたハイブリッド車両等である場合に用いられる。又は、この図14は、車両10が、例えばバッテリ容量SOCが元々比較的多く設定されたプラグインハイブリッド車両、レンジエクステンデッド車両等においてバッテリ容量SOCを保持するモードが成立された場合に用いられる。一方で、図15は、バッテリ容量SOCを消費しながら走行するCD(Charge Depleting)走行での動力伝達装置14の状態遷移(つまり車両10の走行モードの切替え)を示している。この図15は、車両10が、例えばバッテリ容量SOCが元々比較的多く設定されたプラグインハイブリッド車両やレンジエクステンデッド車両等においてバッテリ容量SOCを消費するモードが成立された場合に用いられる。車両10が、例えばバッテリ容量SOCが元々比較的少なく設定されたハイブリッド車両等である場合には、この図15を用いないことが好ましい。
図14において、高負荷時にはU/DHVモードが成立され、低負荷時又は高車速時にはO/DHVモードが成立され易いように、車速V及び車両負荷等の走行状態に応じた各走行モードの領域が設定されている。又、直結固定段モードは、回転機MG1,MG2を介した動力伝達が無い為、機械エネルギーと電気エネルギーとの変換に伴う熱損失が無くなる。よって、燃費向上や発熱回避に有利である。その為、トーイング等の高負荷時や高車速時は、積極的に直結固定段モードが成立されるように、直結固定段モードの領域が設定されている。又、バッテリユニット20の電力持ち出しが可能である場合(或いはエンジン12の暖機やエンジン12の運転による各装置の暖機が完了している場合)、エンジン12の運転効率が悪くなる領域では、EV走行において第2回転機MG2の力行を行う。その為、破線に示すような低車速且つ低負荷となる領域で、単独駆動EVモードの領域が設定されている。又、車両負荷が負の場合、U/DHVモード又はO/DHVモードにおいて、エンジン12の負トルクを用いたエンジンブレーキを作用させる減速走行が行われる。バッテリユニット20の電力受け入れが可能である場合、EV走行において第2回転機MG2の回生を行う。その為、一点鎖線に示すような車両負荷が負となる領域で、単独駆動EVモードの領域が設定されている。このように設定されたCS走行での走行モード切替マップでは、例えば発進時は、前後進走行共にU/DHVモードが成立される。これにより、エンジンパワーPeをより有効に使える為、発進加速性能が向上する。前進走行で車速Vの上昇と共に、第1動力伝達部24の減速比Iが「1」付近になる。この状態で、直結固定段モードに移行させる。低車速走行では、エンジン回転速度Neが極低回転となる為、U/DHVモードから直接O/DHVモードに移行させる。尚、EV走行を選択するスイッチが運転者によって操作されてEV走行が選択されているときには、破線に示すような領域で単独駆動EVモードが成立される。
図15において、車両負荷が低い領域では単独駆動EVモードが成立され、車両負荷が高い領域では両駆動EVモードが成立されるように、車速V及び車両負荷等の走行状態に応じた各走行モードの領域が設定されている。両駆動EVモードでは、第1回転機MG1及び第2回転機MG2の運転効率に基づいて(例えば電費向上、回転機MG1,MG2の温度低下、電力制御ユニット18の温度低下等を目的として)、第1回転機MG1と第2回転機MG2とのパワー分担割合が決められる。又、回転機MG1,MG2の最大出力によっては、又は、EV走行時における車速Vの上昇による動力伝達装置14の何れかの回転要素の回転速度の上昇がエンジン12を運転することで緩和されるような場合には、図15に示すように、高負荷領域や高車速領域にてHV走行モードの領域が設定されて、エンジン12を走行用の駆動力源とした状態に移行させても良い。又、車両負荷が負となる領域では、EV走行において第2回転機MG2の回生が行われるように、単独駆動EVモードの領域が設定されている。又、単独駆動EVモードでは、第1回転機MG1とエンジン12とが切り離される(つまり第1回転機MG1とエンジン12との相互間の動力伝達が遮断される)為、図15に示すように、単独駆動EVモードの高車速側の領域を両駆動EVモードよりも高車速側に広げても良い。このように設定されたCD走行での走行モード切替マップでは、例えば車速Vが上昇すると、回転機MG1,MG2、遊星歯車機構48,50等の各要素の回転速度が増大する為、CS走行での走行モード切替マップで設定されたようなHV走行モードに移行させて、各要素の回転速度が制限内とされるように制御される。尚、車両負荷が負となる領域での回生は、単独駆動EVモードに替えて、両駆動EVモードとしても良い。又、駆動トルクや車速Vに上限を設けて、エンジン12が始動しないようにして、燃料消費しないようにしても良い。
ハイブリッド制御部82は、図14又は図15に示すような走行モード切替マップに車速V及び車両負荷(例えば要求駆動トルク)を適用することで、成立させる走行モードが何れの走行モードであるかを判断する。ハイブリッド制御部82は、判断した走行モードが現在の走行モードである場合には、現在の走行モードをそのまま成立させる一方で、判断した走行モードが現在の走行モードとは異なる場合には、現在の走行モードに替えてその判断した走行モードを成立させる。
ハイブリッド制御部82は、単独駆動EVモードを成立させた場合には、第2回転機MG2のみを走行用の駆動力源とするEV走行を可能とする。ハイブリッド制御部82は、両駆動EVモードを成立させた場合には、第1回転機MG1及び第2回転機MG2の両方を走行用の駆動力源とするEV走行を可能とする。
ハイブリッド制御部82は、O/DHVモード又はU/DHVモードを成立させた場合には、エンジン12の動力に対する反力を第1回転機MG1の発電により受け持つことで第1リングギヤR1にエンジン直達トルクを伝達すると共に第1回転機MG1の発電電力により第2回転機MG2を駆動することで駆動輪16にトルクを伝達して走行するエンジン走行を可能とする。ハイブリッド制御部82は、O/DHVモード又はU/DHVモードでは、公知のエンジン12の最適燃費線を考慮したエンジン動作点(すなわちエンジン回転速度NeとエンジントルクTeとで表されるエンジン動作点)にてエンジン12を作動させる。尚、このO/DHVモード又はU/DHVモードでは、第1回転機MG1の発電電力にバッテリユニット20からの電力を加えて第2回転機MG2を駆動することも可能である。
ハイブリッド制御部82は、直結固定段モードを成立させた場合には、エンジン12の動力を直接的に第1リングギヤR1から出力して走行するエンジン走行を可能とする。ハイブリッド制御部82は、直結固定段モードでは、エンジン12の動力に加えて、バッテリユニット20からの電力にて第1回転機MG1を駆動して、第1回転機MG1の動力を直接的に第1リングギヤR1から出力したり、バッテリユニット20からの電力にて第2回転機MG2を駆動して、第2回転機MG2の動力を駆動輪16に伝達して走行することも可能である。
ハイブリッド制御部82は、車両停止時に、バッテリ容量SOCが充電の必要があると判断される予め定められた所定容量以下の場合には、出力軸固定段モードを成立させる。ハイブリッド制御部82は、出力軸固定段モードを成立させた場合には、エンジン12の動力に対する反力を第1回転機MG1の発電により受け持つと共に第1回転機MG1の発電電力を電力制御ユニット18を介してバッテリユニット20に充電する。
ここで、上述したように、単独駆動EVモードでは、クラッチC1又はクラッチCR又はブレーキB1を係合することで、エンジン12が連れ回し状態とされ、この状態で、第1回転機MG1によってエンジン回転速度Neを上昇させることができる。両駆動EVモードでは、クラッチC1又はブレーキB1を解放することで、単独駆動EVモードと同様に、エンジン12が連れ回し状態とされる。よって、電子制御装置80は、運転停止中のエンジン12を始動するときには、クラッチC1、ブレーキB1、及びクラッチCRのうちの何れかの係合装置の係合状態において第1回転機MG1にてトルクを発生させることでエンジン12を回転駆動する、始動制御手段すなわち始動制御部86を機能的に備えている。つまり、始動制御部86は、クラッチC1又はクラッチCR又はブレーキB1の係合状態で必要に応じて第1回転機MG1によりエンジン回転速度Neを引き上げて点火する。尚、両駆動EVモードからのエンジン始動では、一旦単独駆動EVモードに切り替えてからエンジン12を始動しても良い。
ところで、エンジン12を始動するときに係合状態とされる係合装置(始動時係合装置と称す)と、エンジン12の始動後の走行において係合状態とされる係合装置(始動後係合装置と称する)との間で、エンジン始動後に係合状態の切替えを行う際、係合装置の組合せによっては、切替えショックや切替え遅れなどが生じる可能性がある。エンジン始動後に、クラッチC1の係合状態とクラッチCRの係合状態とを切り替える際には、前述した、U/DHVモードとO/DHVモードとを切り替える態様で示したように、減速比Iが「1」(又は略「1」)の同期状態で行うことができる。一方で、エンジン始動後に、ブレーキB1の係合状態と、クラッチC1又はクラッチCRの係合状態とを切り替える際には、上記のような同期状態での切替えができない為、切替えショックが生じる可能性があったり、又、何れの係合装置をも一旦解放状態とした後に切り替える必要があってその切替えに時間が掛かる可能性がある。尚、上記同期状態は、係合状態を切り替える各係合装置における差回転速度ΔNcが、ゼロとされた状態、又は略ゼロとされた状態、又は切替えショックが抑制される程度に所定値以下に抑制された状態である。又、差回転速度ΔNcは、係合装置が連結する回転部材のうちの一方の回転部材の回転速度と他方の回転部材の回転速度との回転速度差である。
そこで、電子制御装置80は、始動後係合装置がブレーキB1の場合には、ブレーキB1を始動時係合装置とする一方で、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置の場合には、クラッチC1又はクラッチCRを始動時係合装置とする。
電子制御装置80は、上述したエンジン始動時の制御を実現する為に、始動後係合装置判断手段すなわち始動後係合装置判断部87、及び始動時係合制御手段すなわち始動時係合制御部88を更に備えている。
始動後係合装置判断部87は、始動後係合装置が、クラッチC1、ブレーキB1、及びクラッチCRのうちの何れの係合装置であるかを判断する。
始動時係合制御部88は、始動制御部86によりエンジン12が始動させられるときに、始動後係合装置判断部87により始動後係合装置がブレーキB1であると判断された場合には、ブレーキB1を係合状態とする一方で、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、クラッチC1又はクラッチCRを係合状態とする。始動時係合制御部88は、始動時係合装置を係合状態とする際には、その係合に先立って、第1回転機MG1により始動時係合装置を差回転速度ΔNcが抑制された同期状態とする。
具体的には、エンジン12が始動完了した後、HV走行モードにおいては、図2に示すように、前進走行では、クラッチC1及びクラッチCRのうちの少なくとも一方の係合装置が係合状態とされる。又、ブレーキB1の係合状態では、前進走行はできず、後進走行のみが可能である。このようなことから、始動後係合装置判断部87は、後進走行が要求されているか、又は前進走行が要求されているかを判断することで、始動後係合装置が何れの係合装置であるかを判断する。始動後係合装置判断部87は、シフトレバーの操作位置POSshがRポジション以外の操作位置であるか否かを判定することで、前進走行が要求されているか否かを判断する。操作位置POSshがRポジションであると判断されたことは、始動後係合装置がブレーキB1であると判断されたということである。又、操作位置POSshがRポジション以外の操作位置であると判断されたことは、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断されたということである。尚、Rポジションは、後進を意図する操作位置(すなわち後進走行を要求する為の操作位置)である。Rポジション以外の操作位置は、前進を意図する操作位置であって、例えば自動変速制御による前進走行を要求する為のDポジション、前進走行においてエンジンブレーキが作用され易くする為のBポジション、前進走行において手動変速を可能とする為のS(又はM)ポジション、前進走行において低車速側のギヤ段に固定する為のL(又は2)ポジション等である。又、Rポジション以外の操作位置には、動力伝達装置14の動力伝達状態をニュートラル状態とする為のNポジション、及び、動力伝達装置14の動力伝達状態をニュートラル状態とし且つ例えばドライブギヤ28を回転不能に固定する為のPポジションを含んでも良い。
始動時係合制御部88は、始動後係合装置判断部87により操作位置POSshがRポジションであると判定された場合(すなわち後進走行が要求されていると判定された場合)には、ブレーキB1を係合状態とする。一方で、始動時係合制御部88は、始動後係合装置判断部87により操作位置POSshがRポジション以外の操作位置であると判定された場合(すなわち前進走行が要求されていると判定された場合)には、クラッチC1又はクラッチCRを係合状態とする。これにより、エンジン始動後に、前後進の要求に依存した、係合装置の係合状態の切替えを行うことなく、エンジン12の動力を用いた走行が可能となる。
以下に、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置である場合に、クラッチC1及びクラッチCRのうちの何れを始動時係合装置とするかについて、詳細に説明する。
ハイブリッド制御部82は、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、図14又は図15に示すような走行モード切替マップに車速V及び車両負荷を適用することで、エンジン始動後に用いる走行モードが何れの走行モードであるかを判断し、その判断したエンジン始動後に用いる走行モードがU/DHVモードであるか否かを判定する。始動時係合制御部88は、ハイブリッド制御部82によりエンジン始動後に用いる走行モードがU/DHVモードでないと判定された場合には、始動時係合装置としてクラッチC1を選択し、そのクラッチC1を係合状態とする。一方で、始動時係合制御部88は、ハイブリッド制御部82によりエンジン始動後に用いる走行モードがU/DHVモードであると判定された場合には、始動時係合装置としてクラッチCRを選択し、そのクラッチCRを係合状態とする。
始動時係合制御部88は、クラッチC1及びクラッチCRのうちの何れを始動時係合装置とするかを、ハイブリッド制御部82によるU/DHVモードか否かの判定に基づいて選択することとは別に、クラッチC1とクラッチCRとの各差回転速度ΔNcに基づいて選択しても良い。差回転速度ΔNcが小さな方が同期状態とするときの時間が短くされる。従って、始動時係合制御部88は、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、クラッチC1及びクラッチCRのうちで差回転速度ΔNcが小さい方の係合装置を係合状態とする。具体的には、始動時係合制御部88は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいか否かを判定する。始動時係合制御部88は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいと判定した場合には、始動時係合装置としてクラッチCRを選択し、そのクラッチCRを係合状態とする。一方で、始動時係合制御部88は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さくないと判定した場合には、始動時係合装置としてクラッチC1を選択し、そのクラッチC1を係合状態とする。これにより、差回転速度ΔNcが小さい方の係合装置が係合状態とされることで、係合前に差回転速度ΔNcを小さくするときに要する時間が比較的短くなり、早期のエンジン始動が可能となる。このような態様は、例えばエンジン始動の応答が優先されるような場合に有用である。その為、エンジン始動の応答が優先されるような場合には、ハイブリッド制御部82によるU/DHVモードか否かの判定に基づいて始動時係合装置を選択することに優先して、差回転速度ΔNcに基づいて始動時係合装置を選択することを実行することが好適である。始動時係合制御部88は、エンジン始動を素早く行うことが優先されているか否かを判定し、エンジン始動を素早く行うことが優先されていると判定した場合には、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいか否かを判定する。始動時係合制御部88は、例えばアクセル開度θaccの変化速度が所定変化速度よりも大きいか否かに基づいて、エンジン始動を素早く行うことが優先されているか否かを判定する。
クラッチC1又はクラッチCRを係合させた状態でMG1トルクTgを発生させることで、エンジン回転速度Neを上昇させてエンジン12を始動する場合、駆動輪16に連結された第1リングギヤR1には、エンジン回転速度Neを上昇させる為の反力として、運転停止中のエンジン12の回転を引き上げることに伴うエンジン12の負トルク(エンジン引き込みトルクともいう)に対応したトルクが伝達される為、駆動トルクの落ち込みが生じる。その為、電子制御装置80は、エンジン12を始動するときには、駆動輪16における出力トルクである駆動トルクの落ち込みが抑制されるように、第2回転機MG2から駆動トルクの落ち込みを補償するトルク(補償トルクともいう)を出力する、トルク補償制御手段すなわちトルク補償制御部89を機能的に備えている。つまり、トルク補償制御部89は、始動制御部86によりクラッチC1又はクラッチCRを係合させた状態でエンジン12が始動されるときには、補償トルクを第2回転機MG2により出力して、エンジン始動時のショックを抑制する。すなわち、トルク補償制御部89は、このようなエンジン始動では、第2回転機MG2に反力キャンセルトルクとしての補償トルクを追加で出力させる。
エンジン引き込みトルクに対するエンジン始動時の第1回転機MG1の分担トルクを、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)とで略同じとした場合、クラッチC1及びクラッチCRのうちの何れの係合装置の係合状態にてエンジン12を始動するかによって必要な第2回転機MG2の補償トルクが相違する。この補償トルクは第2回転機MG2のトルク増加分である為、第2回転機MG2の出力可能な最大のMG2トルクTmmaxから、既にEV走行用に出力されているMG2トルクTm分を減算した残りのMG2トルク(残余MG2トルクTmreという)(=Tmmax−Tm)が補償トルクに対して不足すると、エンジン始動時のショックを抑制できないおそれがある。その為、始動時係合制御部88は、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、エンジン12を始動するときに必要な第2回転機MG2の補償トルクが所定トルク(例えば残余MG2トルクTmre)以下となる係合装置を係合状態とする。これにより、必要な第2回転機MG2の補償トルクが所定トルク以下(換言すれば小さい方)の係合装置が係合状態とされることで、実際の第2回転機MG2の補償トルクが不足してエンジン始動ショックが発生する可能性があることを抑制することができる。尚、エンジン引き込みトルクは、例えば排気ガスの浄化要件に基づくエンジン始動時の回転上昇加速度などに基づいて電子制御装置80により算出され、第2回転機MG2の補償トルクは、そのエンジン引き込みトルクに基づいて電子制御装置80により算出される。
但し、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)との何れも、各補償トルクが所定トルク以下となる場合や各補償トルクが所定トルクを超える場合が考えられる。一方で、O/DHVモードでの補償トルクは、エンジン引き込みトルクの絶対値よりも小さな値のトルクとなり、U/DHVモードでの補償トルクは、エンジン引き込みトルクの絶対値よりも大きな値のトルクとなる。これは、前述した、O/DHVモード(前進)でのエンジン直達トルクは、エンジントルクTeに対して減少され、又、U/DHVモード(前進)でのエンジン直達トルクは、エンジントルクTeに対して増大される、ということと同じ原理である。このように、第2回転機MG2の補償トルクは、U/DHVモードの方が大きくなる。従って、始動時係合制御部88は、U/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下であるか否かを判定し、U/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下でないと判定した場合には、O/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下であるか否かを判定することなく、クラッチC1を係合状態とする。すなわち、始動時係合制御部88は、ハイブリッド制御部82によりエンジン始動後に用いる走行モードがU/DHVモードであると判定された場合には、又は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいと判定した場合には、U/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下であるか否かを判定する。始動時係合制御部88は、U/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下であると判定した場合には、始動時係合装置としてクラッチCRを選択し、そのクラッチCRを係合状態とする。一方で、始動時係合制御部88は、U/DHVモードでの第2回転機MG2の補償トルクが所定トルク以下でないと判定した場合には、始動時係合装置としてクラッチC1を選択し、そのクラッチC1を係合状態とする。
クラッチC1及びクラッチCRのうちの何れの係合装置の係合状態にてエンジン12を始動するかによって第1動力伝達部24における各回転要素の回転速度が相違する。例えば、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)とでは、始動時係合装置を係合状態とすることに先立って行われる、第1回転機MG1により始動時係合装置を同期状態とする際のMG1回転速度Ngの絶対値が相違する。各回転要素の回転速度が高回転となると耐久性が低下するおそれがある。その為、始動時係合制御部88は、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、エンジン12を始動するときに第1差動部44及び第2差動部46における各回転要素の回転速度の絶対値が各所定回転速度以下となる係合装置を係合状態とする。この所定回転速度は、例えば第1回転機MG1や第1ピニオンギヤP1や第2ピニオンギヤP2等の各部材の耐久性の低下が抑制される為の予め定められた閾値である。これにより、各回転要素の回転速度の絶対値が各所定回転速度以下となる係合装置が係合状態とされることで、各回転要素や回転機(例えば第1回転機MG1)の耐久性を向上することができる。
但し、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)との何れも、MG1回転速度Ngの絶対値が所定回転速度以下となる場合やMG1回転速度Ngの絶対値が所定回転速度を超える場合が考えられる。一方で、MG1回転速度Ngの絶対値は、U/DHVモードの方がO/DHVモードより高くなる。従って、始動時係合制御部88は、U/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下であるか否かを判定し、U/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下でないと判定した場合には、O/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下であるか否かを判定することなく、クラッチC1を係合状態とする。すなわち、始動時係合制御部88は、ハイブリッド制御部82によりエンジン始動後に用いる走行モードがU/DHVモードであると判定された場合には、又は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいと判定した場合には、U/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下であるか否かを判定する。始動時係合制御部88は、U/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下であると判定した場合には、始動時係合装置としてクラッチCRを選択し、そのクラッチCRを係合状態とする。一方で、始動時係合制御部88は、U/DHVモードでのMG1回転速度Ngの絶対値が所定回転速度以下でないと判定した場合には、始動時係合装置としてクラッチC1を選択し、そのクラッチC1を係合状態とする。
クラッチC1及びクラッチCRのうちの何れの係合装置の係合状態にてエンジン12を始動するかによって第1回転機MG1による発電電力が相違する。例えば、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)とでは、第1回転機MG1により始動時係合装置を同期状態とする際のMG1回転速度Ngの絶対値が相違する為、始動時係合装置の係合状態で第1回転機MG1にて同じトルクを発生させてエンジン始動するときの第1回転機MG1による発電電力が相違する。第1回転機MG1による発電電力に伴うバッテリユニット20の入力電力(すなわち充電電力)がバッテリユニット20の入力制限を超えると、バッテリユニット20の耐久性が低下するおそれがある。その為、始動時係合制御部88は、始動後係合装置判断部87により始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置であると判断された場合には、エンジン12を始動するときにバッテリユニット20の入力電力が所定電力(例えば入力制限)以下となる係合装置を係合状態とする。これにより、バッテリユニット20の入力電力が所定電力以下となる係合装置が係合状態とされることで(すなわちバッテリユニット20の入力電力が過剰にならないようにすることで)、バッテリユニット20の耐久性を向上することができる。尚、バッテリユニット20の入力電力は、バッテリユニット20の電力(バッテリ電力又はバッテリパワーともいう)の負側電力(すなわちバッテリ充電電力)である。又、バッテリユニット20の入力制限は、バッテリユニット20のバッテリ温度THbatやバッテリ容量SOCに基づいて電子制御装置80により算出される。
但し、O/DHVモード(クラッチC1の係合状態)とU/DHVモード(クラッチCRの係合状態)との何れも、バッテリユニット20の入力電力が所定電力以下となる場合やバッテリユニット20の入力電力が所定電力を超える場合が考えられる。一方で、第1回転機MG1により始動時係合装置を同期状態とする際のMG1回転速度Ngの絶対値は、U/DHVモードの方がO/DHVモードより高くなる為、第1回転機MG1による発電電力もU/DHVモードの方が大きくなる。そうすると、図16に示すように、バッテリユニット20の入力電力の絶対値の最大値(ピークパワー)は、U/DHVモードの方がO/DHVモードよりも大きくなり、又、車速Vが高い程MG1回転速度Ngの絶対値が高くなることで大きくなる。その為、U/DHVモードの方がO/DHVモードよりもバッテリユニット20の入力電力が入力制限を超え易い。従って、始動時係合制御部88は、U/DHVモードでのバッテリユニット20の入力電力が所定電力以下であるか否かを判定し、U/DHVモードでのバッテリユニット20の入力電力が所定電力以下でないと判定した場合には、O/DHVモードでのバッテリユニット20の入力電力が所定電力以下であるか否かを判定することなく、クラッチC1を係合状態とする。すなわち、始動時係合制御部88は、ハイブリッド制御部82によりエンジン始動後に用いる走行モードがU/DHVモードであると判定された場合には、又は、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいと判定した場合には、U/DHVモードでのバッテリユニット20の入力電力が所定電力以下であるか否かを判定する。始動時係合制御部88は、U/DHVモードでのバッテリユニット20の入力電力が所定電力以下であると判定した場合には、始動時係合装置としてクラッチCRを選択し、そのクラッチCRを係合状態とする。一方で、始動時係合制御部88は、U/DHVモードでのバッテリユニット20の入力電力が所定電力以下でないと判定した場合には、始動時係合装置としてクラッチC1を選択し、そのクラッチC1を係合状態とする。
図17は、電子制御装置80の制御作動の要部すなわちエンジン始動後の係合装置の係合状態の切替えによるショックや切替え遅れを抑制又は回避することができ、エンジン12の動力を用いた走行にスムーズに移行する為の制御作動を説明するフローチャートであり、例えばEV走行中に実行される。図18は、図17のフローチャートに示す制御作動を実行した場合のタイムチャートの一例を示す図である。
図17において、先ず、始動後係合装置判断部87の機能に対応するステップ(以下、ステップを省略する)S10において、シフトレバーの操作位置POSshがRポジション以外の操作位置であるか否かが判定される。このS10の判断が肯定される場合は始動時係合制御部88の機能に対応するS20において、エンジン始動を素早く行うことが優先されているか否か(すなわちエンジン始動の応答が優先されているか否か)が判定される。このS20の判断が否定される場合はハイブリッド制御部82の機能に対応するS30において、図14又は図15に示すような走行モード切替マップを用いてエンジン始動後に用いる走行モードが何れの走行モードであるかが判断され、その判断されたエンジン始動後に用いる走行モードがU/DHVモードであるか否かが判定される。上記S20の判断が肯定される場合は始動時係合制御部88の機能に対応するS40において、クラッチCRの方がクラッチC1よりも差回転速度ΔNcが小さいか否かが判定される。上記S30の判断が肯定される場合は、又は、上記S40の判断が肯定される場合は始動時係合制御部88の機能に対応するS50において、U/DHVモード(クラッチCRの係合状態)時のMG1回転速度Ngの絶対値が所定回転速度以下(ここでは未満も同意、以下同じ)であるか否かが判定される。このS50の判断が肯定される場合は始動時係合制御部88の機能に対応するS60において、U/DHVモード(クラッチCRの係合状態)時のバッテリユニット20の入力電力(ここではバッテリパワーの絶対値も同意)が所定電力以下であるか否かが判定される。このS60の判断が肯定される場合は始動時係合制御部88の機能に対応するS70において、U/DHVモード(クラッチCRの係合状態)時の第2回転機MG2の補償トルクの絶対値が所定トルク以下であるか否かが判定される。このS70の判断が肯定される場合は始動時係合制御部88の機能に対応するS80において、始動時係合装置としてクラッチCRが選択される。一方で、上記S30,S40,S50,S60,及びS70の各判断のうちの何れか1つでも否定される場合は始動時係合制御部88の機能に対応するS90において、始動時係合装置としてクラッチC1が選択される。他方で、上記S10の判断が否定される場合は始動時係合制御部88の機能に対応するS100において、始動時係合装置としてブレーキB1が選択される。
図18は、シフトレバーにおいてDポジションが選択され、第2回転機MG2単独(力行)によるEV走行中に(図3の状態参照)、アクセル一定からアクセルペダルが踏み増しされて、図14に示すような走行モード切替マップにてU/DHVモード(U/Dインプットスプリットモード)領域が判断された場面の一例を示している。この場面では、U/DHVモード(クラッチCRの係合状態)の為にクラッチCRが同期状態とされると、MG1回転速度Ngの絶対値が所定回転速度を超える程に高くされる為、一旦、クラッチC1が同期状態とされた(図4においてクラッチC1及びブレーキB1を共に解放した状態参照)後に係合されて、O/DHVモードにてエンジン12が始動されてから、U/DHVモードに移行されている。図18において、アクセル一定のEV走行中にアクセルペダルの踏み増しによってアクセル開度θaccが増大していくことに応じてMG2トルクTmが増加させられる。このアクセル開度θaccの増大中に、エンジン始動開始が判断される(t1時点参照)。このEV走行では、エンジン12及び第1回転機MG1は各々連れ回されないので、当初、エンジン12と第1回転機MG1とは共に回転速度がゼロとされている。エンジン始動開始判断のタイミングで第1回転機MG1を用いてクラッチC1を同期状態とする制御が開始され、MG1トルクTgが負トルクとされて、MG1回転速度Ngが低下させられる(t1時点−t2時点参照)。この間、クラッチC1を係合するスタンバイ(準備)の為の油圧指示が開始され、実行される。又、この間も、第2回転機MG2にて駆動トルクが出し続けられる。クラッチC1を同期状態とする制御の完了後、クラッチC1を完全に係合する為の油圧が指示される(t2時点参照)。油圧の応答遅れを考慮して、少し時間がおかれ、クラッチC1のトルク容量が十分と判断され得たら、第1回転機MG1によるエンジン12の回転駆動(モータリング)が開始される(t3時点参照)。このエンジン12のモータリング中には、第2回転機MG2によって反力キャンセルトルクとしての補償トルクが追加で出力される(t3時点−t4時点参照)。又、このエンジン12のモータリング中、MG1回転速度Ngは当初負回転であるので、バッテリ充電電力が一気に増加する。エンジン12のモータリングによってエンジン回転速度Neが所定の始動可能回転速度を上回ったら、エンジン12が点火される(t4時点参照)。エンジン12の点火開始後は、燃焼が安定するまで少し時間がおかれる。この間、クラッチCRを係合するスタンバイの為の油圧指示が開始され、実行される(t4時点−t5時点参照)。エンジン12の燃焼が安定したら、U/DHVモードに移行する為に、第1動力伝達部24における動力分割比の切替え(レシオ切替えとも称す)が開始される(t5時点参照)。このレシオ切替えは同期状態で行われる。本実施例では、エンジン回転速度Neが同期回転速度よりも高くなっているので、第1回転機MG1にてエンジン回転速度Neが少し下げられて、差回転速度ΔNcがゼロとされるようにクラッチCRが同期状態とされる(t5時点−t6時点参照)。クラッチCRの同期完了後、クラッチC1とクラッチCRとの間でトルクの受け渡しが行われ、この間にMG1トルクTgの正負が反転される(t6時点−t7時点参照)。トルクの受け渡しが完了したら(t7時点参照)、エンジントルクTeが増加させられ(t7時点以降参照)、アクセル開度θaccに応じた駆動トルクが出力される(t8時点以降参照)。ここでは、レゾルバ等のMG1回転速度センサ64やMG2回転速度センサ66で回転速度が検知されて、クラッチCRのトルク容量が足りているかが判断されながらトルクの受け渡しが行われるので、クラッチC1の係合のとき程、時間がおかれずに、エンジントルクTeが増加させられ、応答遅れが短縮される。
上述のように、本実施例によれば、始動後係合装置がブレーキB1の場合にはブレーキB1の係合状態でエンジン12が始動させられる一方で、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置の場合にはクラッチC1又はクラッチCRでエンジン12が始動させられるので、エンジン始動後に、ブレーキB1の係合状態と、クラッチC1又はクラッチCRの係合状態との切替えが生じない。そのような切替えが生じないので、切替えによるショックや切替え遅れが回避される。又、エンジン始動後に、クラッチC1の係合状態とクラッチCRの係合状態とを切り替える際には、同期状態での切替えができる為、切替えによるショックや切替え遅れが抑制される。よって、エンジン始動後の係合装置の係合状態の切替えによるショックや切替え遅れを、抑制又は回避することができ、エンジン12の動力を用いた走行にスムーズに移行することができる。
次に、本発明の他の実施例を説明する。尚、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
図19は、本発明が適用される車両100の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。図19において、車両100は、走行用の駆動力源となり得る、エンジン12、第1回転機MG1、及び第2回転機MG2と、第1回転機MG1及び第2回転機MG2を有する動力伝達装置102と、駆動輪16とを備えるハイブリッド車両である。
動力伝達装置102は、エンジン12と駆動輪16との間の動力伝達経路に備えられている。動力伝達装置102は、ケース22内に、第1動力伝達部104、第2動力伝達部26、第1動力伝達部104の出力回転部材であるドライブギヤ28と噛み合うドリブンギヤ30、ドリブンギヤ30を相対回転不能に固設するドリブン軸32、ドリブン軸32に相対回転不能に固設されたファイナルギヤ34(ドリブンギヤ30よりも小径のファイナルギヤ34)、デフリングギヤ36を介してファイナルギヤ34と噛み合うディファレンシャルギヤ38等を備えている。又、動力伝達装置102は、ディファレンシャルギヤ38に連結された車軸40等を備えている。
第1動力伝達部104は、第1動力伝達部104の入力回転部材である入力軸42と同軸心に配置されており、第1差動部106と第2差動部108とクラッチCRとを備えている。第1差動部106は、第1遊星歯車機構48及び第1回転機MG1を備えている。第2差動部108は、第2遊星歯車機構50、クラッチC1、及びブレーキB1を備えている。
第1差動部106において、第1リングギヤR1は、第2差動部108の出力回転部材(すなわち第2遊星歯車機構50の第2リングギヤR2)に連結された入力要素としての第1回転要素RE1であり、第1差動部106の入力回転部材として機能する。第1サンギヤS1は、第1回転機MG1のロータ軸52に一体的に連結されており、第1回転機MG1が動力伝達可能に連結された反力要素としての第2回転要素RE2である。第1キャリヤCA1は、ドライブギヤ28に一体的に連結されており、駆動輪16に連結された出力要素としての第3回転要素RE3であり、第1差動部106の出力回転部材として機能する。
第2差動部108において、第2サンギヤS2は、入力軸42に一体的に連結され、その入力軸42を介してエンジン12が動力伝達可能に連結された第4回転要素RE4であり、第2差動部108の入力回転部材として機能する。第2キャリヤCA2は、ブレーキB1を介してケース22に選択的に連結される第5回転要素RE5である。第2リングギヤR2は、第1差動部106の入力回転部材(すなわち第1遊星歯車機構48の第1リングギヤR1)に連結された第6回転要素RE6であり、第2差動部108の出力回転部材として機能する。又、第2サンギヤS2と第2キャリヤCA2とは、クラッチC1を介して選択的に連結される。又、第1キャリヤCA1と第2キャリヤCA2とは、クラッチCRを介して選択的に連結される。よって、クラッチC1は、第4回転要素RE4と第5回転要素RE5とを選択的に連結する第1係合装置である。又、ブレーキB1は、第5回転要素RE5を非回転部材であるケース22に選択的に連結する第2係合装置である。又、クラッチCRは、第3回転要素RE3と第5回転要素RE5とを選択的に連結する第3係合装置である。
車両100には、電動式のオイルポンプ110(EOP110ともいう)が備えられており、動力伝達装置102では、EOP110により、クラッチC1、ブレーキB1、及びクラッチCRの各作動状態の切替えや各部の潤滑や各部の冷却に用いられる作動油(オイル)oilが供給される。又、EOP110に加えて、機械式のオイルポンプが備えられても良い。
第1差動部106において、第1遊星歯車機構48は、差動が許容される状態では、第1リングギヤR1に入力されるエンジン12の動力を第1回転機MG1及び第1キャリヤCA1へ分割する動力分割機構として機能することが可能である。よって、車両100では、第1リングギヤR1に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、第1キャリヤCA1へ機械的に伝達される直達トルクと、第1回転機MG1に分割された動力による第1回転機MG1の発電電力で駆動される第2回転機MG2によるMG2トルクTmとでエンジン走行することが可能である。これにより、第1差動部106は、公知の電気式差動部(電気式無段変速機)として機能する。
第2差動部108は、クラッチC1及びブレーキB1の各作動状態を切り替えることにより、直結状態、エンジン12の逆回転変速状態、ニュートラル状態(中立状態)、及び内部ロック状態の4つの状態を形成することが可能である。
第1動力伝達部104では、第1差動部106における動力分割比とは異なる動力分割比にて作動する電気式無段変速機を構成することが可能である。すなわち、第1動力伝達部104では、第1リングギヤR1(第1回転要素RE1)と第2リングギヤR2(第6回転要素RE6)とが連結されていることに加え、クラッチCRを係合状態とすることによって第1キャリヤCA1(第3回転要素RE3)と第2キャリヤCA2(第5回転要素RE5)とが連結されることで、第1差動部106と第2差動部108とで1つの差動機構を構成し、第1差動部106と第2差動部108との全体を、第1差動部106単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機として機能させることが可能となる。
第1動力伝達部104では、上述した4つの状態が形成される第2差動部108と第1差動部106とが連結されており、車両100は、クラッチCRの作動状態の切替えと合わせて、複数の走行モードを実現することが可能となる。
このように構成された第1動力伝達部104においては、エンジン12の動力や第1回転機MG1の動力はドライブギヤ28からドリブンギヤ30へ伝達される。従って、エンジン12及び第1回転機MG1は、第1動力伝達部104を介して駆動輪16に動力伝達可能に連結される。
第2動力伝達部26は、第2回転機MG2、入力軸42とは別にその入力軸42と平行に配置された、第2回転機MG2のロータ軸56、及びドリブンギヤ30と噛み合うと共にそのロータ軸56に連結されたリダクションギヤ58(ドリブンギヤ30よりも小径のリダクションギヤ58)を備えている。これにより、第2動力伝達部26においては、第2回転機MG2の動力は第1動力伝達部104を介すことなくドリブンギヤ30へ伝達される。従って、第2回転機MG2は、第1動力伝達部104を介さずに駆動輪16に動力伝達可能に連結される。
このように構成された動力伝達装置102は、FF方式の車両に好適に用いられる。又、動力伝達装置102では、エンジン12の動力や第1回転機MG1の動力や第2回転機MG2の動力は、ドリブンギヤ30へ伝達され、そのドリブンギヤ30から、ファイナルギヤ34、ディファレンシャルギヤ38、車軸40等を順次介して駆動輪16へ伝達される。又、車両100では、エンジン12、第1動力伝達部104、及び第1回転機MG1と、第2回転機MG2とが異なる軸心上に配置されることで、軸長が短縮化されている。又、ドリブンギヤ30とリダクションギヤ58とのギヤ対により、第2回転機MG2の減速比を大きくとることができる。又、動力伝達装置102では、前述の実施例1の動力伝達装置14と比較して、第1回転機MG1の内周側の軸が2軸で済む有利な点がある。
車両100は、走行に関わる各部を制御する制御装置を含む電子制御装置80を備えている。又、車両100は、電力制御ユニット18、バッテリユニット20、油圧制御回路54、EOP110などを備えている。
ここで、車両100にて実行可能な走行モードについて図20、及び図21−図28を用いて説明する。図20は、各走行モードにおけるクラッチC1、ブレーキB1、及びクラッチCRの各作動状態を示す図表である。図20の図表中の○印、空欄、△印、「G」、「M」は、前述の実施例1の図2と同じであるので、説明を省略する。図20に示すように、車両100は、走行モードとして、EV走行モード及びHV走行モードを選択的に実現することができる。
図21−図28は、第1遊星歯車機構48及び第2遊星歯車機構50の各々における各回転要素RE1−RE6の回転速度を相対的に表すことができる共線図である。この共線図において、各回転要素の回転速度を表す縦線Y1−Y4は紙面向かって左から順に、縦線Y1が第1回転機MG1に連結された第2回転要素RE2である第1サンギヤS1の回転速度を、縦線Y2がエンジン12に連結された第4回転要素RE4である第2サンギヤS2の回転速度を、縦線Y3がドライブギヤ28に連結された第3回転要素RE3である第1キャリヤCA1の回転速度、及びブレーキB1を介してケース22に選択的に連結される第5回転要素RE5である第2キャリヤCA2の回転速度を、縦線Y4が相互に連結された、第1回転要素RE1である第1リングギヤR1の回転速度及び第6回転要素RE6である第2リングギヤR2の回転速度をそれぞれ示している。又、各種の印(□)、印(○)、印(◇)、印(●)、印(◆)、矢印、クラッチC1、実線、破線は、前述の実施例1の図3−図10と同じであるので、説明を省略する。
図21は、単独駆動EVモード時の共線図である。単独駆動EVモードは、図20に示すように、クラッチC1、ブレーキB1、及びクラッチCRを共に解放した状態で実現される。単独駆動EVモードでは、クラッチC1及びブレーキB1が解放されており、第2遊星歯車機構50の差動が許容され、第2差動部108はニュートラル状態とされる。ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第2回転機MG2から走行用のMG2トルクTmを出力させる。図21は、第2回転機MG2が正回転(すなわち車両100の前進時における第1キャリヤCA1の回転方向)にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第2回転機MG2を逆回転させる。車両走行中には、第2回転機MG2の回転(ここでは駆動輪16の回転も同意)に連動してドライブギヤ28に連結された第1キャリヤCA1が回転させられる。単独駆動EVモードでは、更に、クラッチCRが解放されているので、エンジン12及び第1回転機MG1は各々連れ回されず、エンジン回転速度Ne及びMG1回転速度Ngをゼロとすることができる。これにより、エンジン12及び第1回転機MG1における各々の引き摺り損失を低減して電費を向上する(すなわち電力消費を抑制する)ことができる。
単独駆動EVモードでの走行時に、エンジンブレーキを併用する場合は、図20に示すように、クラッチC1又はクラッチCRが係合される(単独駆動EVモードのエンブレ併用を参照)。クラッチC1又はクラッチCRが係合されると、エンジン12は連れ回し状態とされる。この状態で、第1回転機MG1によってエンジン回転速度Neを上昇させると、エンジンブレーキを作用させることができる。尚、エンジン12の連れ回し状態においてもエンジン回転速度Neをゼロとすることは可能であり、この場合には、エンジンブレーキを作用させずにEV走行することができる。又、ブレーキB1の係合によってもエンジンブレーキを作用させることは可能である。
図22は、両駆動EVモード時の共線図である。両駆動EVモードは、図20に示すように、クラッチC1及びブレーキB1を係合した状態、且つクラッチCRを解放した状態で実現される。両駆動EVモードでは、クラッチC1及びブレーキB1が係合されており、第2遊星歯車機構50の差動が規制され、第2キャリヤCA2の回転が停止させられる。その為、第2遊星歯車機構50は何れの回転要素も回転が停止させられ、第2差動部108は内部ロック状態とされる。これによって、エンジン12はゼロ回転で停止状態とされ、又、第2リングギヤR2に連結された第1リングギヤR1もゼロ回転で固定される。第1リングギヤR1が回転不能に固定されると、第1リングギヤR1にてMG1トルクTgの反力トルクが取れる為、MG1トルクTgに基づくトルクを第1キャリヤCA1から機械的に出力させて駆動輪16へ伝達することができる。ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第1回転機MG1及び第2回転機MG2から各々走行用のMG1トルクTg及びMG2トルクTmを出力させる。図22は、第1回転機MG1及び第2回転機MG2が共に正回転にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第1回転機MG1及び第2回転機MG2を逆回転させる。
図23は、HV走行モードのO/DHVモード時の共線図である。O/DHVモードは、図20に示すように、クラッチC1及びブレーキB1を解放した状態、且つクラッチCRを係合した状態で実現される。O/DHVモードでは、クラッチCRが係合されており、第1差動部106と第2差動部108とで1つの差動機構が構成される。加えて、O/DHVモードでは、クラッチC1及びブレーキB1が解放されており、第1差動部106と第2差動部108との全体にて、第1差動部106単独での動力分割比とは異なる動力分割比にて作動する電気式無段変速機が構成される。これによって、第1動力伝達部104では、第2サンギヤS2に入力されるエンジン12の動力を第1サンギヤS1と第1キャリヤCA1とに分割することができる。すなわち、第1動力伝達部104では、第2サンギヤS2に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第1キャリヤCA1へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図23は、第2回転機MG2が正回転にて正トルクを出力している前進時の場合である。後進時は、前進時に対して第2回転機MG2を逆回転させる。この後進時では、電気式無段変速機としての機能を達成している構成に対して、エンジン12の回転とトルクとが正値のまま入力される、エンジン正転入力となる。
図24は、HV走行モードのU/DHVモード時の前進走行での共線図である。U/DHVモードの前進走行(以下、U/DHVモード(前進)という)は、図20に示すように、クラッチC1を係合した状態、且つブレーキB1及びクラッチCRを解放した状態で実現される。U/DHVモード(前進)では、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部108は直結状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1リングギヤR1に直接的に伝達される。加えて、U/DHVモード(前進)では、クラッチCRが解放されており、第1差動部106単独にて電気式無段変速機が構成される。これによって、第1動力伝達部104では、第1リングギヤR1に入力されるエンジン12の動力を第1サンギヤS1と第1キャリヤCA1とに分割することができる。すなわち、第1動力伝達部104では、第1リングギヤR1に入力されるエンジントルクTeの反力を第1回転機MG1にて取ることにより、エンジン直達トルクが第1キャリヤCA1へ機械的に伝達されると共に、第1回転機MG1に分割されたエンジン12の動力による第1回転機MG1の発電電力が所定の電気経路を介して第2回転機MG2に伝達される。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図24は、第2回転機MG2が正回転にて正トルクを出力して前進走行している場合である。
図25は、HV走行モードのU/DHVモード時の後進走行での共線図であり、電気式無段変速機としての機能を達成している構成に対して、エンジン12の回転とトルクとが負値に逆転して入力される、エンジン逆転入力の場合である。U/DHVモードのエンジン逆転入力での後進走行(以下、U/DHVモード逆転入力(後進)という)は、図20に示すように、ブレーキB1を係合した状態、且つクラッチC1及びクラッチCRを解放した状態で実現される。U/DHVモード逆転入力(後進)では、クラッチC1が解放され且つブレーキB1が係合されており、第2差動部108はエンジン12の逆回転変速状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1リングギヤR1に負回転及び負トルクにて伝達される。加えて、U/DHVモード逆転入力(後進)では、クラッチCRが解放されており、第1差動部106単独にて電気式無段変速機が構成される。これによって、第1動力伝達部104では、第1リングギヤR1に逆転して入力されるエンジン12の動力を第1サンギヤS1と第1キャリヤCA1とに分割することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。尚、図25に示した一例では、負トルクを出力する第1回転機MG1が負回転領域に位置させられているので、第1回転機MG1の力行に用いる電力を発電する為に、第2回転機MG2が負回転にて正トルクを出力しているが、負トルクとなるエンジン直達トルク(不図示)の方がMG2トルクTmよりも絶対値が大きくなることから後進走行が可能である。
図26は、HV走行モードのU/DHVモード時の後進走行での共線図であり、エンジン正転入力の場合である。U/DHVモードのエンジン正転入力での後進走行(以下、U/DHVモード正転入力(後進)という)は、図20に示すように、クラッチC1を係合した状態、且つブレーキB1及びクラッチCRを解放した状態で実現される。U/DHVモード正転入力(後進)では、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部108は直結状態とされるので、エンジン12の動力は、第2リングギヤR2に連結された第1リングギヤR1に直接的に伝達される。加えて、U/DHVモード正転入力(後進)では、クラッチCRが解放されており、第1差動部106単独にて電気式無段変速機が構成される。これによって、第1動力伝達部104では、第1リングギヤR1に入力されるエンジン12の動力を第1サンギヤS1と第1キャリヤCA1とに分割することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTgを第1回転機MG1の発電により出力させ、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmを出力させる。図26は、第2回転機MG2が負回転にて負トルクを出力して後進走行している場合である。
図23−図26を用いた説明で示したように、O/DHVモードとU/DHVモードとでは、電気式無段変速機としての機能を達成している構成に対して、エンジン12の動力が入力される回転要素が異なっており、第1動力伝達部104を電気式無段変速機として機能させるときの動力分割比が異なる。すなわち、O/DHVモードとU/DHVモードとで、エンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率が変えられる。クラッチCRは、エンジン走行中のエンジン12に対する、回転機MG1,MG2の各出力トルクや各回転速度の比率を変更する為に、作動状態が切り替えられる。
O/DHVモードでのエンジン直達トルクは、エンジントルクTeに対して減少される。一方で、U/DHVモード(前進)でのエンジン直達トルクは、エンジントルクTeに対して増大される。本実施例において、第1差動部106単独では、U/DHVモードにて電気式無段変速機が構成される(図24参照)。よって、第1差動部106は、クラッチC1の係合状態且つクラッチCRの解放状態で、第1回転機MG1の運転状態が制御されることにより差動状態が制御されるときには、エンジントルクTeよりも増大されたトルクが第1キャリヤCA1に機械的に伝達される。
又、MG1回転速度Ngがゼロとされてエンジン12の動力が電気パス(第1回転機MG1や第2回転機MG2の電力授受に関わる電気経路である電気的な動力伝達経路)を介することなく全て機械的に第1キャリヤCA1へ伝達される状態となる所謂メカニカルポイントの状態のときに、エンジン12の回転が増速されて第1キャリヤCA1から出力されるオーバードライブ状態となる場合がO/DHVモードであり、又、エンジン12の回転が減速されて第1キャリヤCA1から出力されるアンダードライブ状態となる場合がU/DHVモードである。
図27は、HV走行モードの固定段モード時の共線図であり、第1差動部106及び第2差動部108の各回転要素が一体回転される、直結の場合である。固定段モードの直結(以下、直結固定段モードという)は、図20に示すように、クラッチC1及びクラッチCRを係合した状態、且つブレーキB1を解放した状態で実現される。直結固定段モードでは、クラッチC1が係合され且つブレーキB1が解放されており、第2差動部108は直結状態とされる。加えて、直結固定段モードでは、クラッチCRが係合されており、第1差動部106及び第2差動部108の各回転要素が一体回転させられる。これによって、第1動力伝達部104では、エンジン12の動力を直接的に第1キャリヤCA1から出力することができる。ハイブリッド制御部82は、エンジン12から走行用のエンジントルクTeを出力させる。この直結固定段モードでは、バッテリユニット20からの電力にて第1回転機MG1を駆動して、第1回転機MG1の動力を直接的に第1キャリヤCA1から出力することもできる。又、この直結固定段モードでは、バッテリユニット20からの電力にて第2回転機MG2を駆動して、第2回転機MG2の動力を駆動輪16へ伝達することもできる。よって、ハイブリッド制御部82は、エンジントルクTeを出力させることに加えて、第1回転機MG1及び第2回転機MG2の少なくとも一方の回転機から走行用のトルクを出力させても良い。つまり、直結固定段モードでは、エンジン12のみで車両100を駆動しても良いし、又、第1回転機MG1及び/又は第2回転機MG2でトルクアシストしても良い。
図28は、HV走行モードの固定段モード時の共線図であり、第1キャリヤCA1が回転不能に固定される、出力軸固定の場合である。固定段モードの出力軸固定(以下、出力軸固定段モードという)は、図20に示すように、ブレーキB1及びクラッチCRを係合した状態、且つクラッチC1を解放した状態で実現される。出力軸固定段モードでは、クラッチCRが係合されており、第1差動部106と第2差動部108とで1つの差動機構が構成される。加えて、出力軸固定段モードでは、ブレーキB1が係合され且つクラッチC1が解放されており、第1キャリヤCA1が回転不能に固定される。これによって、第1動力伝達部104では、第2サンギヤS2に入力されるエンジン12の動力の反力を第1回転機MG1にて取ることができる。従って、出力軸固定段モードでは、エンジン12の動力による第1回転機MG1の発電電力をバッテリユニット20に充電することができる。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、第1回転機MG1の発電によってエンジン12の動力に対する反力を取り、第1回転機MG1の発電電力を電力制御ユニット18を介してバッテリユニット20に充電する。この出力軸固定段モードは、第1キャリヤCA1が回転不能に固定される為、車両100の停止時にバッテリユニット20を専ら充電するモードである。図27,図28を用いた説明で示したように、HV走行モードの直結固定段モードや出力軸固定段モードのときには、クラッチCRが係合される。
U/DHVモードとO/DHVモードとは、どちらも第1動力伝達部104が電気式無段変速機として機能させられる。又、第1動力伝達部104の減速比Iが「1」となる状態は、クラッチC1及びクラッチCRが共に係合された直結固定段モードの状態(図27参照)と同等の状態である。従って、好適には、ハイブリッド制御部82は、クラッチC1が係合されたU/DHVモード(前進)と、クラッチCRが係合されたO/DHVモードとの切替えを、減速比Iが「1」の同期状態のときに、クラッチC1とクラッチCRとの各作動状態を切り替えることで実行する。
ハイブリッド制御部82は、前述の実施例1の図14又は図15に示すような走行モード切替マップに車速V及び車両負荷(例えば要求駆動トルク)を適用することで、成立させる走行モードが何れの走行モードであるかを判断する。ハイブリッド制御部82は、判断した走行モードが現在の走行モードである場合には、現在の走行モードをそのまま成立させる一方で、判断した走行モードが現在の走行モードとは異なる場合には、現在の走行モードに替えてその判断した走行モードを成立させる。
動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードに基づいて、クラッチC1、ブレーキB1、及びクラッチCRの各係合作動(作動状態)を制御する。動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードにて走行する為の動力伝達が可能となるように、クラッチC1、ブレーキB1、及びクラッチCRを各々係合及び/又は解放させる油圧制御指令信号Spを油圧制御回路54へ出力する。
始動制御部86は、運転停止中のエンジン12を始動するときには、クラッチC1、ブレーキB1、及びクラッチCRのうちの何れかの係合装置の係合状態において第1回転機MG1にてトルクを発生させることでエンジン12を回転駆動する。つまり、始動制御部86は、クラッチC1又はクラッチCR又はブレーキB1の係合状態で必要に応じて第1回転機MG1によりエンジン回転速度Neを引き上げて点火する。
ところで、車両100においても、前述の実施例1の車両10と同様に、エンジン始動後に、ブレーキB1の係合状態と、クラッチC1又はクラッチCRの係合状態とを切り替える際には、同期状態での切替えができない為、切替えショックが生じる可能性があったり、又、何れの係合装置をも一旦解放状態とした後に切り替える必要があってその切替えに時間が掛かる可能性がある。そこで、本実施例においても、前述の実施例1と同様に、電子制御装置80は、始動後係合装置がブレーキB1の場合には、ブレーキB1を始動時係合装置とする一方で、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置の場合には、クラッチC1又はクラッチCRを始動時係合装置とする。
但し、前述の実施例1の車両10では、クラッチC1の係合によってO/DHVモードが成立させられ、又、クラッチCRの係合によってU/DHVモードが成立させられることに対して、本実施例の車両100では、クラッチC1の係合によってU/DHVモードが成立させられ、又、クラッチCRの係合によってO/DHVモードが成立させられる。その為、始動後係合装置がクラッチC1及びクラッチCRのうちの少なくとも一方の係合装置である場合に、クラッチC1及びクラッチCRのうちの何れを始動時係合装置とするかについての実施態様では、本実施例は、前述の実施例1とは、クラッチC1とクラッチCRとの選択が逆の実施態様となる。
このことを、前述の実施例1の図17のフローチャートを参照して相違する点を主に説明する。本実施例では、始動時係合制御部88の機能に対応するS40において、クラッチC1の方がクラッチCRよりも差回転速度ΔNcが小さいか否かが判定される。又、始動時係合制御部88の機能に対応するS50において、U/DHVモード(クラッチC1の係合状態)時のMG1回転速度Ngの絶対値が所定回転速度以下であるか否かが判定される。又、始動時係合制御部88の機能に対応するS60において、U/DHVモード(クラッチC1の係合状態)時のバッテリユニット20の入力電力が所定電力以下であるか否かが判定される。又、始動時係合制御部88の機能に対応するS70において、U/DHVモード(クラッチC1の係合状態)時の第2回転機MG2の補償トルクの絶対値が所定トルク以下であるか否かが判定される。又、始動時係合制御部88の機能に対応するS80において、始動時係合装置としてクラッチC1が選択される。又、始動時係合制御部88の機能に対応するS90において、始動時係合装置としてクラッチCRが選択される。
上述のように、本実施例によれば、前述の実施例1と同様の効果を得ることができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例における図17のフローチャートは、この態様に限らない。例えば、図17のフローチャートでは、S10の判断が肯定される場合に始動時係合装置としてクラッチC1又はクラッチCRが選択されるようにしても良い。この場合、S20−S70の各ステップは必要ないし、S80,S90が1つのステップとなり、そのステップではクラッチC1又はクラッチCRが選択される。又は、S60では、バッテリパワーの絶対値が所定電力以下であるか否かが判定されたが、第1回転機MG1による発電電力が所定電力(入力制限)に対応した閾値以下であるか否かが判定されても良い。このように、図17のフローチャートにおける各ステップは適宜変更され得る。
また、前述の実施例の第1差動部44では、第1係合装置は、第5回転要素RE5と第6回転要素RE6とを選択的に連結するクラッチC1であり、第1差動部106では、第4回転要素RE4と第5回転要素RE5とを選択的に連結するクラッチC1であったが、この態様に限らない。例えば、第1差動部44では、第1係合装置は、第4回転要素RE4と第5回転要素RE5とを選択的に連結するクラッチでも良いし、第4回転要素RE4と第6回転要素RE6とを選択的に連結するクラッチでも良い。要は、第1係合装置は、第4回転要素RE4、第5回転要素RE5、及び第6回転要素RE6のうちの何れか2つの回転要素を連結するクラッチであれば良い。又、第1差動部44,106では、第3係合装置は、第3回転要素RE3と第5回転要素RE5とを選択的に連結するクラッチCRであったが、この態様に限らない。例えば、第3係合装置は、第2回転要素RE2と第5回転要素RE5とを選択的に連結するクラッチでも良い。又、第1差動部44,106は、シングルピニオン型の第1遊星歯車機構48及びシングルピニオン型の第2遊星歯車機構50を備えていたが、この態様に限らない。例えば、第1差動部44,106は、シングルピニオン型の第1遊星歯車機構48に替えて、ダブルピニオン型の遊星歯車機構を備えていても良い。又、クラッチC1、ブレーキB1、及びクラッチCRは、湿式の油圧式摩擦係合装置であったが、電気動力によって作動状態を切り替える係合装置であっても良い。
また、前述の実施例では、車両10,100は、第2回転機MG2が第1動力伝達部24,104の軸心とは別の軸心上に配置されるような連結関係のギヤトレーンであったが、例えば第2回転機MG2が第1動力伝達部24,104の軸心と同じ軸心上に配置されるような連結関係のギヤトレーンなどであっても良い。要は、エンジン12と、第1差動部44,106と、第2差動部46,108とを備えた車両であれば、本発明を適用することができる。又、第2回転機MG2が動力伝達可能に連結される駆動輪Wは、第1差動部44,106の第3回転要素が動力伝達可能に連結される駆動輪16と必ずしも同じでなくても良い。例えば、前輪及び後輪のうちの一方が駆動輪16であり、他方が駆動輪Wであっても良い。このような場合、駆動輪16と駆動輪Wとが駆動輪であり、第3回転要素と第2回転機MG2とは共にその駆動輪に動力伝達可能に連結される。又、FF方式の車両10,100に好適に用いられる動力伝達装置14,102を用いて発明を説明したが、本発明は、例えばFR方式、RR方式など他の方式の車両に用いられる動力伝達装置においても適宜適用することができる。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
12:エンジン
16:駆動輪
22:ケース(非回転部材)
44:第1差動部
CA1:第1キャリヤ(第1回転要素)
S1:第1サンギヤ(第2回転要素)
R1:第1リングギヤ(第3回転要素)
46:第2差動部
S2:第2サンギヤ(第4回転要素)
CA2:第2キャリヤ(第5回転要素)
R2:第2リングギヤ(第6回転要素)
80:電子制御装置(制御装置)
86:始動制御部
87:始動後係合装置判断部
88:始動時係合制御部
106:第1差動部
R1:第1リングギヤ(第1回転要素)
S1:第1サンギヤ(第2回転要素)
CA1:第1キャリヤ(第3回転要素)
108:第2差動部
S2:第2サンギヤ(第4回転要素)
CA2:第2キャリヤ(第5回転要素)
R2:第2リングギヤ(第6回転要素)
C1:クラッチ(第1係合装置)
B1:ブレーキ(第2係合装置)
CR:クラッチ(第3係合装置)
MG1:第1回転機

Claims (1)

  1. 第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有して前記第1回転機の運転状態が制御されることにより差動状態が制御される第1差動部と、エンジンが動力伝達可能に連結された第4回転要素と第5回転要素と前記第1回転要素に連結された第6回転要素とを有する第2差動部とを備えた車両の、制御装置であって、
    前記車両は、前記第4回転要素、前記第5回転要素、及び前記第6回転要素のうちの何れか2つの回転要素を連結する第1係合装置と、前記第5回転要素を非回転部材に連結する第2係合装置と、前記第2回転要素及び前記第3回転要素のうちの何れか一方の回転要素と前記第5回転要素とを連結する第3係合装置とを更に備えるものであり、
    運転停止中の前記エンジンを始動するときには、前記第1係合装置、前記第2係合装置、及び前記第3係合装置のうちの何れかの係合装置の係合状態において前記第1回転機にてトルクを発生させることで前記エンジンを回転駆動する始動制御部と、
    前記エンジンの始動後の走行において係合状態とされる係合装置である始動後係合装置が、前記第1係合装置、前記第2係合装置、及び前記第3係合装置のうちの何れの係合装置であるかを判断する始動後係合装置判断部と、
    前記エンジンが始動させられるときに、前記始動後係合装置が前記第2係合装置である場合には、前記第2係合装置を係合状態とする一方で、前記始動後係合装置が前記第1係合装置及び前記第3係合装置のうちの少なくとも一方の係合装置である場合には、前記第1係合装置又は前記第3係合装置を係合状態とする始動時係合制御部と
    を、含むことを特徴とする車両の制御装置。
JP2016157032A 2016-08-09 2016-08-09 車両の制御装置 Active JP6597514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157032A JP6597514B2 (ja) 2016-08-09 2016-08-09 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157032A JP6597514B2 (ja) 2016-08-09 2016-08-09 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2018024320A JP2018024320A (ja) 2018-02-15
JP6597514B2 true JP6597514B2 (ja) 2019-10-30

Family

ID=61194871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157032A Active JP6597514B2 (ja) 2016-08-09 2016-08-09 車両の制御装置

Country Status (1)

Country Link
JP (1) JP6597514B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093207B2 (ja) * 2004-05-20 2008-06-04 トヨタ自動車株式会社 ハイブリッド車の駆動装置
JP4333618B2 (ja) * 2005-04-01 2009-09-16 トヨタ自動車株式会社 ハイブリッド駆動装置
JP2011156997A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp ハイブリッド車両の制御装置
JP6015410B2 (ja) * 2012-12-14 2016-10-26 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置及びハイブリッドシステム

Also Published As

Publication number Publication date
JP2018024320A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6801617B2 (ja) 車両の制御装置
JP6394654B2 (ja) 車両
JP6075376B2 (ja) ハイブリッド車両用駆動装置
JP6888497B2 (ja) 車両用動力伝達装置の制御装置
JP2019055706A (ja) 車両用動力伝達装置の制御装置
JP6891748B2 (ja) 車両の制御装置
JP6946889B2 (ja) 車両用動力伝達装置の制御装置
JP6421789B2 (ja) 車両の制御装置
JP6597514B2 (ja) 車両の制御装置
JP2019055709A (ja) 車両用動力伝達装置の制御装置
JP6579058B2 (ja) 車両の制御装置
JP6421790B2 (ja) 車両の制御装置
JP6825523B2 (ja) 車両用動力伝達装置の制御装置
JP6911667B2 (ja) 車両用動力伝達装置の制御装置
JP6801614B2 (ja) 車両の制御装置
JP6863197B2 (ja) 車両の制御装置
JP6915471B2 (ja) 車両用動力伝達装置の制御装置
JP6809424B2 (ja) 車両用動力伝達装置の制御装置
JP6881183B2 (ja) 車両の動力伝達装置
JP6801615B2 (ja) 車両用動力伝達装置の油圧制御回路
JP6870549B2 (ja) 車両用動力伝達装置の制御装置
JP6825524B2 (ja) 車両用動力伝達装置の制御装置
JP2017218022A (ja) 車両の制御装置
JP6900860B2 (ja) 車両の制御装置
JP2019055716A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6597514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151