JP5861739B2 - 放電イオン化電流検出器 - Google Patents

放電イオン化電流検出器 Download PDF

Info

Publication number
JP5861739B2
JP5861739B2 JP2014100427A JP2014100427A JP5861739B2 JP 5861739 B2 JP5861739 B2 JP 5861739B2 JP 2014100427 A JP2014100427 A JP 2014100427A JP 2014100427 A JP2014100427 A JP 2014100427A JP 5861739 B2 JP5861739 B2 JP 5861739B2
Authority
JP
Japan
Prior art keywords
gas
plasma
discharge
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014100427A
Other languages
English (en)
Other versions
JP2014167488A (ja
Inventor
品田 恵
恵 品田
重吉 堀池
重吉 堀池
西本 尚弘
尚弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014100427A priority Critical patent/JP5861739B2/ja
Publication of JP2014167488A publication Critical patent/JP2014167488A/ja
Application granted granted Critical
Publication of JP5861739B2 publication Critical patent/JP5861739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0061Measuring currents of particle-beams, currents from electron multipliers, photocurrents, ion currents; Measuring in plasmas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、主としてガスクロマトグラフ(GC)用の検出器として好適な放電イオン化電流検出器に関し、更に詳しくは、低周波バリア放電を利用した放電イオン化電流検出器に関する。
GC用の検出器としては、熱伝導度検出器(TCD)、エレクトロンキャプチャ検出器(ECD)、水素炎イオン化検出器(FID)、炎光光度検出器(FPD)、フレームサーミオニック検出器(FTD)など、様々な方式の検出器が、従来から実用に供されている。こうした検出器の中で最も一般的に、特に有機物を検出するために使用されているのはFIDである。FIDは、水素炎により試料ガス中の試料成分をイオン化し、そのイオン電流を測定するものであり、6桁程度の広いダイナミックレンジを達成している。しかしながら、FIDは、(1)イオン化効率が低いため十分に低い最小検出量が得られない、(2)アルコール類、芳香族、塩素系物質に対するイオン化効率が低い、(3)危険性の高い水素を必要とするため防爆設備等の特別な設備を設置する必要があり、取扱いも面倒である、といった欠点を有している。
一方、無機物から低沸点有機化合物まで幅広い化合物を高い感度で検出可能な検出器として、パルス放電イオン化電流検出器(PDD:Pulsed Discharge Detector)が従来知られている(特許文献1など参照)。PDDでは、高電圧のパルス放電によってヘリウム分子などを励起し、その励起状態にある分子が基底状態に戻る際に発生する光エネルギを利用して分析対象の分子をイオン化する。そして、生成されたイオンによるイオン電流を検出し、分析対象の分子の量(濃度)に応じた検出信号を得る。
上記PDDでは一般的に、FIDよりも高いイオン化効率を達成することができる。一例を挙げると、プロパンに対するFIDのイオン化効率は0.0005%程度にすぎないのに対し、PDDでは0.07%程度のイオン化効率が得られている。しかしながら、それにも拘わらずPDDのダイナミックレンジはFIDに及ばず、1桁程度以上低いのが実状である。これが、PDDがFIDほど普及しない一つの原因である。
従来のPDDにおけるダイナミックレンジの制約要因は、イオン化のためのプラズマの不安定性やプラズマ状態の周期的変動であると考えられる。これに対し、プラズマ状態を安定化・定常化するために、低周波交流励起誘電体バリア放電(以下「低周波バリア放電」と称す)を利用した放電イオン化電流検出器が提案されている(特許文献2、3など参照)。低周波バリア放電では、表面が誘電体で被覆された電極が放電に用いられるため、金属電極を使用した場合のような熱電子や二次電子などの放出が少なく、プラズマの安定性が高いという特長を持つ。また、低周波高電圧によりへリウム等を励起することで、ガス温度の非常に低い(殆ど発熱がない)非平衡プラズマが生成されるため、ガス配管内壁材料の加熱による不純物ガスの発生が抑えられ、さらに高い安定性が得られる。プラズマの安定化はイオン化効率の安定化、さらにはイオン化電流出力の低ノイズ化をもたらすので、低周波バリア放電によるイオン化電流検出器は高いS/Nを実現することができる。
米国特許第5394092号明細書 国際公開第2009/119050号パンフレット 特開2010−60354号公報
しかしながら、低周波バリア放電によるイオン化電流検出器には次のような問題がある。
即ち、放電イオン化電流検出器では、試料ガスを流さない状態、つまり検出器にキャリアガス及びプラズマガスのみが流れている状態においても、一般にベースライン電流又はバックグラウンド電流と呼ばれる定常電流(以下、該電流を「ベースライン電流」という)が検出される。ベースライン電流の原因はいろいろ考えられるが、キャリアガス及びプラズマガス中に含まれる不純物のイオン化による電流が主原因と考えられる。ベースライン電流は定常的な電流であるのでクロマトグラムピークには影響を与えない。しかしながら、ベースライン電流が大きい、つまりガス中不純物量が多いと、(1)温度等の周囲環境変化の影響を受けてベースライン電流が変動した場合に、これがノイズとして観測されてS/Nが劣化する、(2)不純物がガス配管内壁などから放出されている場合、長時間ドリフトの原因となる、といった問題が起こるおそれがある。こうしたことから、できるだけベースライン電流を小さくするように、高純度のキャリアガスやプラズマガスを使用したり清浄なガス配管を使用したりすることが望ましいが、そうした対策にはコストが掛かる上に、そうした配慮をしてもベースライン電流を十分に抑えることは難しい。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、従来装置に比べてベースライン電流を抑えることにより、測定精度や測定感度を向上させることができる放電イオン化電流検出器を提供することである。
従来装置において低周波バリア放電により発せられるプラズマ光の発光スペクトルを観測すると、励起種であるヘリウムの発光以外に、H(水素原子)の発光(約656nm)やO(酸素原子)の発光(777nm)なども見られる。一般に放電イオン化電流検出器において試料成分のイオン化に寄与するのは紫外波長領域の光であるため、上述のような赤色〜近赤外波長領域の光の影響は殆どないと考えられていた。これに対し、本願発明者は各種実験等により、HやOの存在自体がベースライン電流の増加に影響を与えていること、さらには、プラズマガスに晒されている、電極を被覆する誘電体自体がHやOの供給元となっていることを見いだした。一般に石英ガラス等の誘電体には水酸基(OH)が含まれるため、使用初期において或る程度HやOが放出されることは想定されるものの、低周波バリア放電を用いた放電イオン化電流検出器では、誘電体が直接的にプラズマに晒され続けるため、誘電体表面のごく浅い範囲だけでなく、少し深い部分からもOHが表面に移動してきて、比較的長期間に亘ってHやOが放出され続けるものと推測できる。
本発明に係る第1の態様の放電イオン化電流検出器は、上記のような知見に基づいてなされたものであり、プラズマガスが流通するガス流路中に露出するように配設された、表面が誘電体で被覆された放電用電極と、前記ガス流路中に誘電体バリア放電を生起させて前記プラズマガスからプラズマを生成するべく前記放電用電極に低周波交流電圧を印加する交流電圧印加手段と、前記ガス流路中にあって前記プラズマの作用によってイオン化された試料ガス中の試料成分によるイオン電流を検出する電流検出手段と、を備え、
前記誘電体として水酸基含有量が5ppm以下である石英ガラスを用いることを特徴としている。
半導体製造プロセス用治具や各種光学装置等に利用されている石英ガラスには、大別して溶融石英ガラスと合成石英ガラスとがあるが、いずれにしても水酸基含有量が5ppm以下である石英ガラスは、水酸基による光吸収が問題となるような高精度赤外域光学部材などに使用されるものである。
また本発明に係る第2の態様は、第1の態様の放電イオン化電流検出器における誘電体に代えて、水酸基含有量の上限が5ppmを超えている石英ガラスに対し所定の不活性ガス雰囲気中で500℃以上の熱処理を施したものを用いることを特徴としている。
水酸基含有量が約200ppmである高純度石英ガラスに対しN2雰囲気中で1000℃以上、8時間程度の熱処理を実施すると、表面から2μm程度の深さまでの範囲で水酸基含有量が5ppm以下となる。この程度の深さの範囲で水酸基含有量が5ppm以下となるような熱処理の条件(温度及び時間)が、第2の態様における熱処理の要件である。
また第1の態様の放電イオン化電流検出器における低水酸基含有石英ガラスである誘電体に代えて、サファイアや高純度アルミナを用いてもよい。
また第1の態様の放電イオン化電流検出器における低水酸基含有石英ガラスである誘電体に代えて、プラズマに接触する表面から2μmの深さの範囲に、水酸基含有量が5ppm以下である誘電体の薄膜層が形成された誘電体を用いてもよい。
本発明に係る放電イオン化電流検出器において、プラズマガスとしては、ヘリウム、アルゴン、窒素、ネオン、キセノンのいずれか1つ、又はそれらの混合ガスなどを用いることができる。また、試料ガスを希釈する必要がある場合に、その希釈ガスも上記プラズマガスと同じガスを用いることができる。また、上記低周波交流電圧の周波数は1[kHz]〜100[kHz]の範囲とすることができる。
本発明に係る放電イオン化電流検出器では、金属等の導体である電極本体を被覆する誘電体として、その材料自体の水酸基含有量が低い誘電体が使用されるか、或いは、少なくともプラズマに接触する表面から所定深さの範囲で水酸基含有量が低くなるような処理が施された誘電体が使用される。それによって、一般的な石英ガラスなどの誘電体を用いた場合と比較して、放電用電極からプラズマガス中に放出されるHやOを主体とする不純物濃度が下がる。特に、長期間の使用により放電用電極の表面を被覆している誘電体がプラズマに晒され続けても、プラズマガス中に放出される不純物濃度の低い状態が維持される。そのため、ベースライン電流が抑制され、周囲環境の変化等に起因するベースライン電流変動も抑えられる。その結果、ノイズが減少してS/Nが改善される。それによって、検出限界も向上させることができ、現在GC用検出器として広く一般に使われているFID並み、又はそれを超える検出限界を達成することができる。さらにまた、本発明に係る放電イオン化電流検出器によれば、ガス配管中に放出される不純物量がもともと少なくその変動も小さいので、検出信号の長時間ドリフトも低減することができる。
本発明の一実施例による放電イオン化電流検出器の概略構成図。 OH含有量200ppmのガラス材に対して1000℃、8時間の熱処理を実施した場合のOH含有量深さ分布を示す図であり(a)はリニア目盛り、(b)は対数目盛りのグラフ。 OH含有量が20ppmの石英ガラスに対して約640℃、5時間の熱処理を行った場合のOH含有量の深さ方向分布を示す図。
本発明の一実施例による放電イオン化電流検出器について図1を参照して説明する。図1は本実施例による放電イオン化電流検出器の概略構成図である。
本実施例の放電イオン化電流検出器では、誘電体から成る円筒管2の内部が第1ガス流路3となっており、この円筒管2の外壁面に、それぞれ所定距離離して、金属(例えばSUS、銅など)製の環状のプラズマ生成用電極4、5、6が周設されている。プラズマ生成用電極4、5、6と第1ガス流路3との間には円筒管2の壁面が存在するから、誘電体であるこの壁面自体がプラズマ生成用電極4、5、6の表面を被覆する誘電体被覆層として機能し、誘電体バリア放電を可能としている。円筒管2の上端にはガス供給管7が接続され、このガス供給管7を通して第1ガス流路3中に希釈ガスを兼ねるプラズマガスが流される。
3個のプラズマ生成用電極4、5、6のうち、中央のプラズマ生成用電極4には励起用高圧電源10が接続され、このプラズマ生成用電極4の上下に配置されたプラズマ生成用電極5、6はいずれも接地されている。このように高電圧が印加されるプラズマ生成用電極4を2つの接地したプラズマ生成用電極5、6で挟む構造とすることにより、放電で発生したプラズマがガス上流側(図1の下方)及び下流側(図1の上方)に拡がるのを抑え、実質的なプラズマ生成領域をプラズマ生成用電極5、6の間に制限することができる。励起用高圧電源10は低周波の高圧交流電圧を発生するものであり、その周波数は1[kHz]〜100[kHz]の範囲、さらに好ましくは5[kHz]〜50[kHz]の範囲とするとよい。また、交流電圧の波形形状は、正弦波、矩形波、三角波、鋸歯状などのいずれでもよい。
円筒管2の下部には、反跳電極12、バイアス電極16、及びイオン収集電極17が、アルミナ、PTFE樹脂などの絶縁体15を間に介挿して配置されている。これらはいずれも同一内径の円筒形状体であり、それらの内側には円筒管2中の第1ガス流路3に連続した第2ガス流路11が形成されるから、反跳電極12、バイアス電極16、及びイオン収集電極17はこの第2ガス流路11中のガスに直接晒される。第1ガス流路3と第2ガス流路11との接続部に位置する反跳電極12は接地されており、プラズマ中の荷電粒子がイオン収集電極17に到達することを防止する。これによって、ノイズを低減し、S/Nを改善することができる。バイアス電極16はイオン電流検出部20に含まれるバイアス直流電源21に接続され、イオン収集電極17は同じくイオン電流検出部20に含まれる電流アンプ22に接続されている。第2ガス流路11中でバイアス電極16とイオン収集電極17の内側及びその間が実質的な電流検出領域である。
円筒管2の上端、つまりガス供給管7の接続部を第1ガス流路3の始端とした場合の該ガス流路3の終端には、第1ガス排出管8が接続され、第1ガス排出管8には第1流量調節器9が設けられている。他方、第1ガス排出管8の接続部を第2ガス流路11の始端とした場合の該ガス流路11の終端には、第2ガス排出管13が接続され、第2ガス排出管13には第2流量調節器14が設けられている。さらに、第2ガス流路11中には細径の試料導入管18が挿入されており、試料導入管18を通して測定対象である試料成分を含む試料ガスが、第2ガス流路11中で第1ガス排出管8の接続部に近い位置に供給される。
この放電イオン化電流検出器による検出動作を説明する。
図1中に矢印で示すように、ガス供給管7を通して第1ガス流路3中にプラズマガスが供給される。プラズマガスは電離され易いガスであり、例えばヘリウム、アルゴン、窒素、ネオン、キセノンなどのうちの1種又はそれらを2種以上混合したガスを用いることができる。第1流量調節器9及び第2流量調節器14の流量は、予め深さ方向にそれぞれ適宜の値に設定される。いま、第1流量調節器9により調節される第1ガス排出管8を通したガス流量がL1、第2流量調節器14により調節される第2ガス排出管13を通したガス流量がL2であるとすると、ガス供給管7を通して供給されるガス流量はL1+L2である。
図1中に示すように、プラズマガスは第1ガス流路3中を下向きに流れ、プラズマ生成領域を通過し、一部(ガス流量L1)は第1ガス排出管8を通して外部に排出される。その残り(ガス流量L2)は希釈ガスとして第2ガス流路11中を下向きに流れ、試料導入管18を通して供給される試料ガスと合流して電流検出領域を通過し、最終的に第2ガス排出管13を通して外部に排出される。
上述したようにプラズマガスが第1ガス流路3中に流通している状態で、励起用高圧電源10は駆動され、励起用高圧電源10は低周波の高圧交流電圧を一つのプラズマ生成用電極4と他の二つのプラズマ生成用電極5、6との間に印加する。これにより、第1ガス流路3中でプラズマ生成用電極5及び6で挟まれるプラズマ生成領域に放電が起こる。この放電は誘電体被覆層(円筒管2)を通して行われるため誘電体バリア放電である。この誘電体バリア放電によって、第1ガス流路3中を流れるプラズマガスが広く電離されてプラズマ(大気圧非平衡マイクロプラズマ)が発生する。
大気圧非平衡マイクロプラズマから放出された励起光は、第1ガス流路3及び第2ガス流路11中を通って試料ガスが存在する部位まで到達し、その試料ガス中の試料成分分子(又は原子)をイオン化する。こうして生成された試料イオンは、バイアス電極16に印加されているバイアス直流電圧の作用により、イオン収集電極17で電子を授受する。これにより、生成された試料イオンの量、つまりは試料成分の量に応じたイオン電流が電流アンプ22に入力され、電流アンプ22はこれを増幅して検出信号として出力する。このようにして、この放電イオン化電流検出器では、導入された試料ガスに含まれる試料成分の量(濃度)に応じた検出信号が出力される。
第2ガス流路11中を流れる希釈ガスの流量L2は、測定対象の試料濃度範囲に応じて適宜の希釈率になるように定めておけばよい。特に、試料濃度が低い場合にガス流量L2を小さくすれば、試料ガスはあまり希釈されない状態で電流検出領域を通過するので、高い感度で微量成分を検出することができる。即ち、プラズマの安定性を確保し高いイオン化効率を達成しつつ、高感度の検出を行うことができる。一方、ガス流量L1は、プラズマが安定し且つイオン化効率が良好になるように、プラズマ生成領域を流れるガス流量L1+L2が或る程度大きくなるように定めておけばよい。
本実施例の放電イオン化電流検出器では、プラズマ生成用電極4、5、6の表面を被覆する誘電体被覆層として機能する、外径がφ4mm、内径がφ2mm(管壁厚:1mm)である円筒管2を、特にOH含有量の少ない石英ガラスから成るものとしている。具体的には、高精度赤外域光学材料として比較的入手が容易である、OH含有量が5ppm以下(カタログ値)である石英ガラスを使用している。これは、分析実行中における円筒管2からのH、Oの放出をできるだけ少なく抑えるためである。
ここで、円筒管2として各種石英ガラスのほか、別の誘電体材料を用いた場合の、感度、ベースライン電流値等の実測結果について説明する。実測に使用した誘電体材料は次の通りである。
(1) 標準的な石英(OH含有量200ppm以下、米国モメンティブ・パフォーマンス・マテリアルズ社製)
(2) 低OH含有石英(OH含有量5ppm以下、米国モメンティブ・パフォーマンス・マテリアルズ社製)
(3) 標準的な石英(OH含有量200ppm)に対し、窒素ガス雰囲気中で、1050℃、8時間の熱処理を行ったもの
(4) サファイア
(5) アルミナ(材質:TA010、京セラ製)
上記(3)で実施される熱処理は一般的に行われているアニーリングの温度(最高でも数百℃程度)に比べて遙かに高温である。文献(西本、ほか5名、「エバリュエイション・オブ・シラノール・コンセントレイション・オン・クォーツ・グラス・サーフェス・フォー・イーオーエフ・スタビリティ・オブ・シーイー・チップ(Evaluation of Silanol Concentration on Quartz Glass Surface for EOF Stability of CE Chip)」、マイクロ・トータル・アナリシス・システムズ(Micro Total Analysis Systems) 2001年、pp.595-596)によれば、上記のような高温で加熱処理された石英ガラスは、表面から深さ数十μmの範囲にOH含有量が大きく低下する領域が形成されるとされている。このような熱処理によって形成されたOH含有量の深さ方向分布は、フィック(Fick)の拡散式から求めることができ、(3)のようにバルクのOH含有量が200ppmである石英ガラスを熱処理した場合のOH含有量深さ分布を計算すると図2に示すようになる。図2において(a)はリニア目盛りのグラフ、(b)は対数目盛りのグラフであって、カーブ自体は同じである。図2から、表面から約2μmの深さ範囲で、(2)の石英と同様に、OH含有量が5ppm以下となることが分かる。
上記(1)〜(5)の5種類の誘電体材料から成る円筒管を使用し、標準試料(試料:ドデカン、溶媒:ヘキサン)を用い、感度とベースライン電流値とを実測した。そして、(1)〜(3)については、ノイズの測定値から検出限界を計算した。材料や構造などの相違によって感度にばらつきがあるため、ベースライン電流値を感度で除することで、等価的な不純物流量を計算した。実測結果及びそれに基づく計算結果を次の表1に示す。
Figure 0005861739
表1から明らかなように、(2)〜(5)のOH含有量の少ない誘電体材料を用いることで、ベースライン電流値が減少し、等価不純物流量を減らすことができる。また、検出限界についても等価不純物流量の減少に応じて改善されている。現在GC用検出器として広く一般に使われているFIDでは検出限界は>1.5pgC/sec程度であるが、(2)又は(3)を用いることで、FIDを超える検出限界を達成していることが確認できる。
即ち、円筒管2として低OH含有の石英ガラスを用いた上記実施例の放電イオン化電流検出器によれば、ベースライン電流を従来の放電イオン化電流検出器に比べて低減させ、それによって検出限界をFID並み又はそれを超える程度まで改善することができる。また、低OH含有の石英ガラスを用いる代わりに、(3)〜(5)の誘電体材料を用いてもよい。
また、特に(3)に対する結果を見れば、円筒管2の管壁厚1mmに対し、OH含有量が5ppm以下であるのはプラズマに接触する表面から深さ2μm程度の範囲であることが分かる。したがって、必ずしも円筒管全体が低OH含有誘電体でなくても、この程度の深さの範囲が(2)、(4)〜(5)のような低OH含有材料からなる被覆層でありさえすれば、同程度の効果、つまり低いベースライン電流値、及びそれに起因する十分に低い検出限界が得られることが期待できる。
(3)における熱処理条件はバルク材料のOH含有量に応じて変更することができる。例えばバルク材料のOH含有量が20ppmの石英ガラスに対し、約640℃、5時間の熱処理を行った場合のOH含有量の深さ方向分布を算出すると、図3に示すようになる。この図から、OH含有量が5ppm以下である領域を表面から深さ2μmの範囲に形成できることが分かり、(3)に示したものと同等の性能が期待できる。同様に、OH含有量10ppmの材料に対しては、500℃、12時間以上の熱処理を行えばよい。
また、円筒管の管壁材料の熱処理によって低OH含有領域を生成するのではなく、管壁を厚さ2μm以上の低OH含有材料で被覆することでも、同様の効果が期待できることは明らかである。低OH含有誘電体材料として、例えばシリカガラス、窒化珪素、アルミナ、ダイヤモンドライクカーボンなどを用い、スパッタリング、CVDなどの製膜方法により円筒管2の表面に厚さが2μm以上の被膜層を形成すればよい。
なお、プラズマの発生によって円筒管2の内壁が高温になる場合には、(3)に示した材料のようにOH含有量に深さ方向の勾配があると、使用期間が長くなるに伴い表面付近のOH含有量が増加してくる可能性が考えられる。これに対し、低周波交流励起誘電体バリア放電では殆ど発熱がないため、装置設置時の初期ベーキング処理などを含めても、プラズマ形成領域の温度が150℃を超えることがない。そのため、OHの拡散係数は1000℃の場合の〜1E-9[cm2/sec](500℃では〜1E-13)に対し<1E-18[cm2/sec]まで低下する。このため、500℃以上の熱処理で確定したOH含有量の深さ分布は通常の時間スケールでは全く変化せず、長期間に亘り十分に安定した性能を得ることができる。
また、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願請求の範囲に包含されることは当然である。
2…円筒管
3…第1ガス流路
4、5、6…プラズマ生成用電極
7…ガス供給管
8…第1ガス排出管
9…第1流量調節器
10…励起用高圧電源
11…第2ガス流路
12…反跳電極
13…第2ガス排出管
14…第2流量調節器
15…絶縁体
16…バイアス電極
17…イオン収集電極
18…試料導入管
20…イオン電流検出部
21…バイアス直流電源
22…電流アンプ

Claims (2)

  1. プラズマガスが流通するガス流路中に露出するように配設された、表面が誘電体で被覆された放電用電極と、前記ガス流路中に誘電体バリア放電を生起させて前記プラズマガスからプラズマを生成するべく前記放電用電極に低周波交流電圧を印加する交流電圧印加手段と、前記ガス流路中にあって前記プラズマの作用によってイオン化された試料ガス中の試料成分によるイオン電流を検出する電流検出手段と、を備え、
    前記誘電体としてサファイアを用いることにより、前記放電用電極からプラズマガス中に放出されるHおよびOを主体とする不純物の濃度を低下させることを特徴とする放電イオン化電流検出器。
  2. プラズマガスが流通するガス流路中に露出するように配設された、表面が誘電体で被覆された放電用電極と、前記ガス流路中に誘電体バリア放電を生起させて前記プラズマガスからプラズマを生成するべく前記放電用電極に低周波交流電圧を印加する交流電圧印加手段と、前記ガス流路中にあって前記プラズマの作用によってイオン化された試料ガス中の試料成分によるイオン電流を検出する電流検出手段と、を備え、
    前記誘電体として高純度アルミナを用いることにより、前記放電用電極からプラズマガス中に放出されるHおよびOを主体とする不純物の濃度を低下させることを特徴とする放電イオン化電流検出器。
JP2014100427A 2011-06-07 2014-05-14 放電イオン化電流検出器 Active JP5861739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100427A JP5861739B2 (ja) 2011-06-07 2014-05-14 放電イオン化電流検出器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011126895 2011-06-07
JP2011126895 2011-06-07
JP2014100427A JP5861739B2 (ja) 2011-06-07 2014-05-14 放電イオン化電流検出器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013519457A Division JP5605506B2 (ja) 2011-06-07 2012-05-31 放電イオン化電流検出器

Publications (2)

Publication Number Publication Date
JP2014167488A JP2014167488A (ja) 2014-09-11
JP5861739B2 true JP5861739B2 (ja) 2016-02-16

Family

ID=47295985

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013519457A Active JP5605506B2 (ja) 2011-06-07 2012-05-31 放電イオン化電流検出器
JP2014100427A Active JP5861739B2 (ja) 2011-06-07 2014-05-14 放電イオン化電流検出器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013519457A Active JP5605506B2 (ja) 2011-06-07 2012-05-31 放電イオン化電流検出器

Country Status (4)

Country Link
US (1) US9791410B2 (ja)
JP (2) JP5605506B2 (ja)
CN (2) CN105651855B (ja)
WO (1) WO2012169419A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125610A1 (ja) * 2013-02-15 2014-08-21 株式会社島津製作所 放電イオン化電流検出器及びその調整方法
CN104995504B (zh) 2013-02-15 2017-10-13 株式会社岛津制作所 放电离子化电流检测器
JP6005110B2 (ja) 2013-10-29 2016-10-12 株式会社シマノ 自転車用制御装置
CN103635004A (zh) * 2013-12-13 2014-03-12 南开大学 一种等离子体中离子种类与数量密度分布的测量方法
JP6303610B2 (ja) * 2014-03-04 2018-04-04 株式会社島津製作所 誘電体バリア放電イオン化検出器及びその調整方法
WO2016052181A1 (ja) 2014-09-30 2016-04-07 キョーラク株式会社 電子レンジ用容器
US10197532B1 (en) 2015-01-12 2019-02-05 National Technology & Engineering Solutions Of Sandia, Llc Miniaturized pulsed discharge ionization detector, non-radioactive ionization sources, and methods thereof
EP3968007B1 (en) * 2015-03-06 2023-11-01 Mécanique Analytique Inc. Plasma-based optical emission method for detecting impurities in a gas
JP2018513357A (ja) * 2015-03-06 2018-05-24 メカニック・アナリティック・インコーポレーテッド ガスクロマトグラフィーシステムと共に使用するための放電式光イオン化検出器
JP6350391B2 (ja) * 2015-05-22 2018-07-04 株式会社島津製作所 放電イオン化検出器
CN104865435A (zh) * 2015-06-01 2015-08-26 中国计量科学研究院 电离电流的测量装置和测量方法
JP6626406B2 (ja) * 2016-05-24 2019-12-25 日本特殊陶業株式会社 微粒子センサ
JP6743599B2 (ja) 2016-09-08 2020-08-19 株式会社島津製作所 誘電体バリア放電イオン化検出器
JP6775141B2 (ja) * 2016-09-08 2020-10-28 株式会社島津製作所 誘電体バリア放電イオン化検出器
JP6747198B2 (ja) 2016-09-08 2020-08-26 株式会社島津製作所 誘電体バリア放電イオン化検出器
JP6747197B2 (ja) * 2016-09-08 2020-08-26 株式会社島津製作所 誘電体バリア放電イオン化検出器
JP6675709B2 (ja) * 2016-09-08 2020-04-01 株式会社島津製作所 誘電体バリア放電イオン化検出器
WO2020111815A1 (ko) * 2018-11-29 2020-06-04 (주)바이브도시 저주파 전자기장 발생 장치
KR102384197B1 (ko) * 2018-11-29 2022-04-08 (주)바이브도시 저주파 전자기장 발생 장치
CN110333382B (zh) * 2019-07-31 2021-08-10 国网陕西省电力公司电力科学研究院 一种测量绝缘材料电离电流特性的三层试样结构及方法
JP7318608B2 (ja) * 2020-07-31 2023-08-01 株式会社島津製作所 放電イオン化検出器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130086A (en) * 1978-03-31 1979-10-09 Hitachi Ltd Gas detector
US5394092A (en) * 1991-02-28 1995-02-28 Valco Instruments Co., Inc. System for identifying and quantifying selected constituents of gas samples using selective photoionization
US5889404A (en) * 1997-08-29 1999-03-30 Hewlett-Packard Company Discharge ionization detector having efficient transfer of metastables for ionization of sample molecules
US6333632B1 (en) * 1999-09-16 2001-12-25 Rae Systems, Inc. Alternating current discharge ionization detector
JP2008153147A (ja) 2006-12-20 2008-07-03 Seiko Epson Corp プラズマ処理装置
US7768267B2 (en) * 2007-07-11 2010-08-03 Brooks Automation, Inc. Ionization gauge with a cold electron source
US20090031785A1 (en) * 2007-07-31 2009-02-05 Caviton, Inc. Capacitively coupled dielectric barrier discharge detector
US8172547B2 (en) 2008-01-31 2012-05-08 The Boeing Company Dielectric barrier discharge pump apparatus and method
JP4936492B2 (ja) 2008-03-25 2012-05-23 国立大学法人大阪大学 放電イオン化電流検出器
JP2009302134A (ja) * 2008-06-10 2009-12-24 Sekisui Chem Co Ltd 放電処理装置の誘電体部材及びその製造方法
JP5136300B2 (ja) 2008-09-02 2013-02-06 株式会社島津製作所 放電イオン化電流検出器
JP5894798B2 (ja) * 2009-03-04 2016-03-30 ユニバーサル ナノセンサー テクノロジーズ インコーポレーテッド 検出器システム及び方法
JP2011117854A (ja) * 2009-12-04 2011-06-16 Osaka Univ 放電イオン化電流検出器
JP5423439B2 (ja) * 2010-02-01 2014-02-19 株式会社島津製作所 放電イオン化電流検出器
US9188570B2 (en) * 2012-11-13 2015-11-17 Valco Instruments Company, L.P. Photo ionization detector for gas chromatography having at least two separately ionizing sources

Also Published As

Publication number Publication date
CN105651855B (zh) 2018-08-14
US9791410B2 (en) 2017-10-17
JPWO2012169419A1 (ja) 2015-02-23
CN103403536B (zh) 2016-03-09
WO2012169419A1 (ja) 2012-12-13
JP5605506B2 (ja) 2014-10-15
US20140145724A1 (en) 2014-05-29
CN105651855A (zh) 2016-06-08
CN103403536A (zh) 2013-11-20
JP2014167488A (ja) 2014-09-11

Similar Documents

Publication Publication Date Title
JP5861739B2 (ja) 放電イオン化電流検出器
JP4936492B2 (ja) 放電イオン化電流検出器
US8829913B2 (en) Discharge ionization current detector
JP5136300B2 (ja) 放電イオン化電流検出器
US8970221B2 (en) Discharge ionization current detector
JP5445353B2 (ja) 放電イオン化電流検出器
JP5987968B2 (ja) 放電イオン化電流検出器及びその調整方法
JP5448549B2 (ja) 光イオン化検出器及び光イオン化検出方法
US20110260732A1 (en) Discharge Ionization Current Detector
JP6303610B2 (ja) 誘電体バリア放電イオン化検出器及びその調整方法
JP2011117854A (ja) 放電イオン化電流検出器
WO2006046663A1 (ja) 電子捕獲検出器及び非放射線型電子捕獲検出器
JP2018040721A (ja) 誘電体バリア放電イオン化検出器
JP6350391B2 (ja) 放電イオン化検出器
JP5773061B2 (ja) 放電イオン化電流検出器及びそのエージング処理方法
JP5614379B2 (ja) 放電イオン化電流検出器及びガスクロマトグラフ装置
US20150042354A1 (en) Analysis device provided with discharge ionization current detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R151 Written notification of patent or utility model registration

Ref document number: 5861739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151