JP5841869B2 - 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 - Google Patents
自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 Download PDFInfo
- Publication number
- JP5841869B2 JP5841869B2 JP2012065058A JP2012065058A JP5841869B2 JP 5841869 B2 JP5841869 B2 JP 5841869B2 JP 2012065058 A JP2012065058 A JP 2012065058A JP 2012065058 A JP2012065058 A JP 2012065058A JP 5841869 B2 JP5841869 B2 JP 5841869B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- polyethylene
- molding
- base material
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
Description
例えば、低密度ポリエチレンは、その分子鎖に適度な長さの長鎖分岐を有しているため、分子鎖同士の絡み合いによって溶融時の溶融粘度が比較的高い。また、融点付近における結晶性の変化についても、他のエチレン系樹脂に比して緩やかである。このため、低密度ポリエチレンは、融点付近の狭い温度領域内に温度を調整する必要はあるものの、他のエチレン系樹脂に比して比較的容易に発泡させることができる。
また、自動車用内装材としては、耐熱性が要求され、しかも軽量化を阻害しないこと、および、内装材として安全で且つ適度のこしの強さを失わないことなどが必要とされる。
しかし、高密度ポリエチレンは、その分子鎖に分岐が少ないために溶融時における溶融粘度が非常に低い上、結晶性が高く、結晶化する速度も速い。このため、発泡に適した溶融粘度を調整する必要があり、高密度ポリエチレンを発泡化させて独立気泡率の高い発泡成形体を製造することを困難なものにしていた。
また、本実施の形態の自動車内装材成形用基材は、独立気泡率が70%以上であり、好ましくは80%以上、より好ましくは90%以上である。独立気泡率が70%以上であれば、気泡の均一性、表面の外観性が良好な自動車内装材成形用基材を得ることができる。独立気泡率は、以下の実施例に記載の方法により測定することができる。
更に、本実施の形態の自動車内装材成形用基材は、厚さが1.0〜5.0mmであることが好ましく、より好ましくは1.5〜4.0mm、さらに好ましくは2.0〜3.5mmである。
ポリエチレン系樹脂組成物の昇温測定における吸熱曲線は、後述の直鎖状ポリエチレン(α)についての測定方法と同様の方法により、得ることができる。
通常直鎖状ポリエチレンと高圧法低密度ポリエチレンは相溶性が低いが、例えば分子量分布の狭い直鎖状ポリエチレン(α)を用いることにより融点ピークが一つである樹脂組成物を得ることができる。分子量分布の狭い直鎖状ポリエチレン(α)を用いることにより両者の相溶性が高められるものと考えられる。
本発明で用いられるポリエチレン系樹脂組成物は、伸長粘度の測定においてひずみ硬化性を有し、かつ、ひずみ硬化度(λmax)が2.0〜30である。ひずみ硬化度のより好ましい範囲は、5.0〜25であり、さらに好ましくは8.0〜20である。
溶融張力は、樹脂の分子量を大きくする(メルトフローレートを小さくする)ことで改善されるが、従来のポリエチレン樹脂では、一軸伸長流動におけるひずみ硬化性は発現せず、両者を同一視することはできない。本発明は、発泡成形では、樹脂の変形に伴う粘度の急激な上昇、いわゆるひずみ硬化現象が重要となる、との発見に基づく。
すなわち、樹脂の発泡成形加工性の指標の一つとして、伸張粘度の測定から得られるひずみ硬化性が有効であることが見出された。このひずみ硬化性は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、一般的に分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、ひずみ硬化性は大きくなる。
ここで、ひずみ硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られるが、例えば、測定方法及び測定機器の詳細は、公知文献:Polymer 42(2001)8663に記載の方法があるが、好ましい測定方法及び測定機器として、以下を挙げることができる。
(測定方法)
装置:ティー・エー・インスツルメント社製 ARES
冶具:ティー・エー・インスツルメント社製 Extentional Viscosity Fixture(EVF)伸長粘度測定用治具
測定温度:134℃
ひずみ速度:0.5/sec
試験片の作製:プレス成形して18mm×10mm、厚み0.7mmのシートを作製する。
(算出方法)
ひずみ速度:0.5/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上でひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度ηEの急激な立ち上がり現象をひずみ硬化性の有無の指標とする。また、伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。ηmax/ηlinを、ひずみ硬化度(λmax)と定義し、ひずみ硬化性の程度の指標とする。
このような特性を有するポリエチレン系樹脂組成物は、例えば、分子量分布(Mw/Mn)が狭い直鎖状ポリエチレン(α)とゲルパーミエーションクロマトグラフにより求められる高分子量成分の占有率が多く、一般に分岐状側鎖がより数多く存在する高圧法低密度ポリエチレン(β)を配合することで得る事ができる。
ポリエチレン系樹脂組成物の溶融張力は、後述の実施例に記載の方法により、測定することができる。
本発明で用いられるポリエチレン系樹脂組成物に好ましく用いられる直鎖状ポリエチレン(α)は、エチレン単独重合体又はエチレンから導かれる繰り返し単位と1又は2種以上の炭素数3〜20のα−オレフィンから導かれる繰り返し単位とからなる共重合体であることが好ましい。なお、「直鎖状」ポリエチレンとは、従来の高圧法低密度ポリエチレンを除外する趣旨であり、それ以外のいかなるポリエチレンをも包含する概念である。
本実施の形態において、密度は、以下の実施例に記載の方法により測定することができる。また、樹脂組成物中の直鎖状ポリエチレン(α)の密度は、クロス分別クロマトグラフ法(CFC法)などの方法により直鎖状ポリエチレンを分取することにより測定することができる。
本実施の形態において、MFRは、以下の実施例に記載の方法により測定することができる。また、樹脂組成物中の直鎖状ポリエチレン(α)のMFRは、樹脂組成物のMFRと直鎖状ポリエチレンの配合割合から求めることができる。
本発明で用いる直鎖状ポリエチレン(α)の吸熱曲線の融点ピーク及び発熱曲線のピークである結晶化温度は、それぞれ示差走査型熱量計による昇温測定及び降温測定において求めることができる。
直鎖状ポリエチレン(α)の示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つであることが好ましい。これによって直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)を相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、独立気泡率が高く、気泡の均一性、表面の外観性が良好であるなど、発泡状態が良好な自動車内装材成形用基材を得ることができると推定される。
直鎖状ポリエチレン(α)の示差走査型熱量計による降温測定において得られる発熱曲線のピークである結晶化温度が、110℃〜130℃であることが好ましく、より好ましくは115℃〜125℃であることが望ましい。結晶化温度が110℃以上であり、結晶化温度が130℃以下であれば、柔軟性かつ剛性に優れた自動車内装材成形用基材を得ることができる。
示差走査型熱量計による測定は、示差走査熱量計(パーキンエルマー社製DSC−7型装置)を用い、以下の条件で測定することができる。1)ポリマー試料約5mgをアルミパンに詰め200℃/分で200℃まで昇温し、200℃で5分間保持する。2)次いで、200℃から10℃/分の降温速度で50℃まで降温し、降温完了後5分間保持する。3)次いで、50℃から10℃/分の昇温速度で200℃まで昇温する。この2)の過程で観察される発熱曲線より発熱ピーク位置の最高温度を結晶化温度(℃)として求めることができる。また、この3)の過程で観察される吸熱曲線より融解ピーク位置の最高温度を融点ピーク(℃)として求めることができる。
この製造方法で得られる直鎖状ポリエチレン(α)は、ゲルパーミエーションクロマトグラフィー法により求められるMw/Mn、分子量分布が狭いことを特徴としている。
直鎖状ポリエチレン(α)の製造方法として好ましいのは、α−オレフィンを単段重合してポリオレフィンを製造する方法であり、この重合に使用される触媒が固体触媒[A]と有機金属化合物[B]からなり、固体触媒[A]が、下記一般式(1)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物(a−1)と下記一般式(2)で表される塩素化剤(a−2)との反応により調製された担体(A−1)に、アルコール(A−2)を反応させ、次に下記一般式(3)で表される有機金属化合物(A−3)を反応させ、次に下記一般式(4)で表されるチタン化合物(A−4)を担持することにより調製されたものであり、有機金属化合物[B]が下記一般式(5)で示される有機アルミニウム化合物及び下記一般式(6)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物からなる群に属することを特徴とする、ポリオレフィンの製造方法、である。
(M1)α(Mg)β(R1)a(R2)b(OR3)c −(1)
(式中、M1は周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R1、R2及びR3はそれぞれ炭素数2以上20以下の炭化水素基であり、α、β、a、b及びcは次の関係を満たす実数である。0≦α、0<β、0≦a、0≦b、0<c、0<a+b、0<c/(α+β)≦2、kα+2β=a+b+c(但し、kはM1の原子価))
HdSiCleR4 (4−(d+e)) −(2)
(式中、R4は炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
M2R5 fQ(h−f) −(3)
(式中M2は周期律表第I〜III族に属する金属原子、R5は炭素数1以上20以下の炭化水素基であり、QはOR6、OSiR7R8R9、NR10R11、SR12及びハロゲンからなる群に属する基を表し、R6、R7、R8、R9、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはM2の原子価である)
Ti(OR13)iX(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
R14 (3−j)AlQ’j −(5)
(式中、R14は炭素数1以上12以下の炭化水素基であり、Q’は水素原子、ハロゲン原子、及びOR15からなる群に属する基であり、R15は炭素数1以上20以下の炭化水素基であり、jは0以上2以下の実数である)
(M3)γ(Mg)δ(R15)m(R16)n −(6)
(式中、M3は周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R15及びR16はそれぞれ炭素数2以上20以下の炭化水素基であり、γ、δ、m及びnは次の関係を満たす実数である。0≦γ、0<δ、0≦k、0≦m、pγ+2δ=m+n(但し、pはM3の原子価))
(M1)α(Mg)β(R1)a(R2)b(OR3)c −(1)
(式中、M1は周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R1、R2及びR3はそれぞれ炭素数2以上20以下の炭化水素基であり、α、β、a、b及びcは次の関係を満たす実数である。0≦α、0<β、0≦a、0≦b、0<c、0<a+b、0<c/(α+β)≦2、kα+2β=a+b+c(但し、kはM1の原子価))
HdSiCleR4 (4−(d+e)) −(2)
(式中、R4は炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
M2R5 fQ(h−f) −(3)
(式中M2は周期律表第I〜III族に属する金属原子、R5は炭素数1以上20以下の炭化水素基であり、QはOR6、OSiR7R8R9、NR10R11、SR12及びハロゲンからなる群に属する基を表し、R6、R7、R8、R9、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはM2の原子価である)
Ti(OR13)iX(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
(2)R1とR2とが炭素原子数の互いに相異なるアルキル基であること、好ましくはR1が炭素原子数2又は3のアルキル基であり、R1が炭素原子数4以上のアルキル基であること。
(3)R1、R2の少なくとも一方が炭素原子数6以上の炭化水素基であること、好ましくはR1、R2に含まれる炭素原子数を加算すると12以上になるアルキル基であること。
(A−1)を合成する際に好ましく使用される塩素化剤は下記の一般式(2)で示される、少なくとも一つはSi−H結合を有する塩化珪素化合物である。
HdSiCleR4 (4−(d+e)) −(2)
(式中、R4は炭素数1以上12以下の炭化水素基であり、dとeは次の関係を満たす数である。1≦d、1≦e、2≦d+e≦4)
上記の式(2)において、R4で表される炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基であり、たとえば、メチル、エチル、プロピル、1−メチルエチル、ブチル、ペンチル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられ、炭素数1以上10以下のアルキル基が好ましく、メチル、エチル、プロピル、1−メチルエチル基等の炭素数1〜3のアルキル基が特に好ましい。また、d及びeは2≦d+e≦4の関係を満たす1以上の実数であり、eが2以上であることが特に好ましい。
(i)無機酸化物
(ii)無機炭酸塩、珪酸塩、硫酸塩
(iii)無機水酸化物
(iv)無機ハロゲン化物
(v)(i)〜(iv)なる複塩、固溶体ないし混合物
この有機金属化合物(A−3)は下記の一般式(3)で表される。
M2R5 fQ(h−f) −(3)
(式中M2は周期律表第I〜III族に属する金属原子、R5は炭素数1以上20以下の炭化水素基であり、QはOR6、OSiR7R8R9、NR10R11、SR12及びハロゲンからなる群に属する基を表し、R6、R7、R8、R9、R10、R11、R12は水素原子又は炭化水素基であり、fは0より大きな実数であり、hはM2の原子価である)
チタン化合物(A−4)として下記の一般式(4)で表されるチタン化合物が使用される。
Ti(OR13)iX(4−i) −(4)
(式中、iは0以上4以下の実数であり、R13は炭素数1以上20以下の炭化水素基であり、Xはハロゲン原子である。)
R13で表される炭化水素基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、2−エチルヘキシル、ヘプチル、オクチル、デシル、アリル基等の脂肪族炭化水素基、シクロヘキシル、2−メチルシクロヘキシル、シクロペンチル基等の脂環式炭化水素基、フェニル、ナフチル基等の芳香族炭化水素基等が挙げられるが、脂肪族炭化水素基が好ましい。Xで表されるハロゲン原子としては、塩素、臭素、ヨウ素が挙げられるが、塩素が好ましい。具体的には、四塩化チタンが好ましい。上記から選ばれたチタン化合物(A−4)を、2種以上混合して使用することが可能である。
M2R5 fQ(h−f) −(3)
R14 (3−j)AlQ’j −(5)
(式中、R14は炭素数1以上12以下の炭化水素基であり、Q’は水素原子、ハロゲン原子、及びOR15からなる群に属する基であり、R15は炭素数1以上20以下の炭化水素基であり、jは0以上2以下の実数である)
R14の例としては、メチル基、エチル基、プロピル基、ブチル基、2−メチルプロピル基、ペンチル基、3−メチルブチル基、ヘキシル基、オクチル基、デシル基、フェニル基、トリル基等が挙げられ、中でもエチル基、2−メチルプロピル基が特に好ましい。これらの炭化水素基は二種類以上含まれていてもよい。hは0.05以上1.5以下であることが好ましく、0.1以上1.2以下であることが特に好ましい。
(M3)γ(Mg)δ(R15)m(R16)n −(6)
(式中、M3は周期律表第1族、第2族、第12族及び第13族からなる群に属するマグネシウム以外の金属原子であり、R15及びR16はそれぞれ炭素数2以上20以下の炭化水素基であり、γ、δ、m及びnは次の関係を満たす実数である。0≦γ、0<δ、0≦k、0≦m、pγ+2δ=m+n(但し、pはM3の原子価))
(2)R15とR16とが炭素原子数の互いに相異なるアルキル基であること、好ましくはR15が炭素原子数2又は3のアルキル基であり、R16が炭素原子数4以上のアルキル基であること。
(3)R15、R16の少なくとも一方が炭素原子数6以上の炭化水素基であること、好ましくはR15、R16に含まれる炭素原子数を加算すると12以上になるアルキル基であること。
この製造方法で得られる直鎖状ポリエチレン(α)は、ゲルパーミエーションクロマトグラフィー法により求められるMw/Mn、分子量分布が狭いことはもちろん、先述の製造方法とは異なり、さらに低分子量成分であるオリゴマー成分を低減することができると共に、製法において塩素を含まないため、クリーン性に優れ、アウトガスの発生を低減できるため自動車をはじめとして鉄道車両や船舶、航空機といった輸送機内、ビルや住宅内の内装材にさらに適している。
メタロセン担持触媒[I]としては、(I−a)担体物質、(I−b)有機アルミニウム、(I−c)環状η結合性アニオン配位子を有する遷移金属化合物、及び(I−d)該環状η結合性アニオン配位子を有する遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤から調製されたメタロセン担持触媒を用いることが好ましい。
ジアルキルハロゲノアルミニウムとしては、例えば、ジメチルアルミニウムクロライド及びジエチルアルミニウムクロライドなどのジアルキルハロゲノアルミニウムなどが挙げられる。
液体助触媒成分[II]は下記式(16)で示される炭化水素溶媒に可溶な有機マグネシウム化合物[III−1](以下、単に「有機マグネシウム化合物[III−1]」と記載する場合がある。)とアミン、アルコール、シロキサン化合物から選ばれる化合物[III−2](以下、単に「化合物[III−2]」と記載する場合がある。)との反応によって合成される、炭化水素溶媒に可溶な有機マグネシウム化合物である。
本発明で用いられるポリエチレン系樹脂組成物に好ましく用いられる高圧法低密度ポリエチレン(β)は、エチレン単独重合体又はエチレンと1又は2種以上の炭素数3〜20のα−オレフィンとの共重合体であることが好ましく、公知の高圧ラジカル重合法により得ることができる。
本発明で用いる高圧法低密度ポリエチレン(β)のMFRは0.1〜10g/10分であることが好ましく、より好ましくは1.0〜5g/10分である。高圧法低密度ポリエチレン(β)のMFRは、後述の実施例に記載の方法により、測定することができる。また、樹脂組成物中の高圧法低密度ポリエチレン(β)のMFRは、樹脂組成物のMFRと高圧法低密度ポリエチレンの配合割合から求めることができる。
高圧法低密度ポリエチレン(β)の換算分子量106以上の成分の占有率が、上記範囲内にあれば、高圧法低密度ポリエチレン(β)の分岐状側鎖が数多く存在し、分岐点を起点に直鎖状ポリエチレン(α)が結晶化して、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)において発泡成形加工時にネットワーク構造が形成されると推定している。よって、発泡状態が良好な自動車内装材成形用基材を得ることができるものと推定される。
特に、高圧法低密度ポリエチレン(β)の換算分子量106以上の成分の占有率が1.5質量%以上であれば、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)のブレンドにおいて、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とを良好な相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、発泡状態が良好な自動車内装材成形用基材を得ることができるものと推定される。
上記換算分子量106以上の成分の占有率は、ゲル・パーミエーション・クロマトグラフィー法により求めることができ、より具体的には、後述の実施例に記載の方法により測定することができる。また、ポリエチレン系樹脂組成物中の高圧法低密度ポリエチレン(β)の換算分子量106以上の成分の占有率は、クロス分別クロマトグラフ法(CFC法)などの方法により測定することもできる。
このような特性を有する高圧法低密度ポリエチレン(β)は、オートクレーブタイプのリアクターでエチレンをラジカル重合して得る事ができ、より上記換算分子量106以上の成分の占有率が多く、分岐状側鎖がより数多く存在するものである。これを用いることにより、発泡状態が良好な自動車内装材成形用基材を得ることができる。
本実施の形態で用いる高圧法低密度ポリエチレン(β)の分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー法において、好ましくは7〜22であり、より好ましくは10〜20の範囲である。高圧法低密度ポリエチレン(β)の分子量分布は、ゲル・パーミエーション・クロマトグラフィー法により求めることができ、より具体的には、後述の実施例に記載の方法により測定することができる。
高圧法低密度ポリエチレン(β)の分子量分布が、上記範囲内にあれば、高圧法低密度ポリエチレン(β)の分岐状側鎖が数多く存在し、分岐点を起点に直鎖状ポリエチレン(α)が結晶化して、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)において成形時にネットワーク構造が形成されると推定している。よって、発泡状態が良好な自動車内装材成形用基材を得ることができるものと推定される。
特に、高圧法低密度ポリエチレン(β)の分子量分布が7以上であれば、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)のブレンドにおいて、直鎖状ポリエチレン(α)と高圧法低密度ポリエチレン(β)とを良好な相溶状態とすることができ、両者の結晶状態が相分離することを抑制できると推定される。このため、発泡状態が良好な自動車内装材成形用基材を得ることができるものと推定される。
高圧法低密度ポリエチレン(β)の溶融張力比(以下、MTRと略す。)は、下記式〔1〕で表され、その値が0.7以上であることが好ましく、より好ましくは0.8以上である。また、メルトフローレート比(以下、FRRと略す。)と溶融張力(以下、MTと略す。)との関係が下記式〔2〕を満たすことが好ましい。双方の条件を満たすことが特に好ましい。
MTR=(MT240 ℃)/(MT190 ℃)≧0.7 〔1〕
(MT190 ℃)≧0.65(FRR)−20 〔2〕
(ただし、ここで上記式〔1〕及び〔2〕において、MTRは溶融張力比、MTは溶融張力、MTの添え字は溶融張力の測定温度(℃)、FRRは温度=190℃、荷重=21.6kgでのMFRと温度=190℃、荷重=2.16kgでのMFRとの比である。)
このような特性を有する高圧法低密度ポリエチレン(β)を用いることにより、発泡状態が良好な自動車内装材成形用基材をより容易に得ることができる。
また、本来無添加が好ましいが、内容物の薬品の種類によっては、中和剤として好ましくは150PPM以下、より好ましくは100ppm以下である。酸化防止剤として好ましくは800PPM以下、より好ましくは300ppm以下である。
中和剤として高級脂肪酸の金属塩類を添加することが最も好ましく、成形加工性における滑剤としてはたらき、発泡成形体の表面状態が比較的良好である、
酸化防止剤としてフェノール系酸化防止剤を添加することが最も好ましく、樹脂の薬品による酸化劣化を防止し、容器の変色・劣化を抑えることができる。
また、無機充填剤およびブロッキング防止剤としては、炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウムなどが例示でき、滑剤としてはステアリン酸アマイドなどの高級脂肪酸アマイド類が例示できる。
更に、帯電防止剤としては、グリセリン脂肪酸モノエステルなどの脂肪酸部分エステル類が例示でき、金属不活性剤としてはトリアジン類、フォスフォン類、エポキシ類、トリアゾール類、ヒドラジド類、オキサミド類などが例示できる。
本発明の発泡シート状自動車内装材成形用基材を製造するにあたっては、ポリエチレン系樹脂組成物、発泡剤、及び所望によりそれ以外の各種添加剤を混合することが好ましい。例えば押出機、好ましくはベント付押出機を用いて予め各種添加剤並びに発泡剤をいっしょに直鎖状ポリエチレン(α)及び高圧法低密度ポリエチレン(β)を混練し、該押出機に取付けた丸棒状ダイ、T−ダイ、円環状ダイ等のダイを通して押出成形と同時に発泡を行い、発泡成形体を得る方法並びに一旦未発泡の状態でシート化した後、加熱発泡して発泡成形体を得る方法、若しくは、一旦シートなどの成形体を作った後に発泡剤を添加して発泡成形体を得る方法等を挙げることができる。
本発明の一実施形態の自動車内装材成形用積層基材は、自動車内装材成形用基材であるポリエチレン系樹脂発泡シートの片面に表皮材が貼合されてなるものである。
表皮材としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、熱可塑性エラストマーなどのフィルム、シートまたは不織布が挙げられる。中でも、自動車内装材成形用基材であるポリエチレン系樹脂発泡シートと同等の素材であるポリエチレン系樹脂のフィルム、シートおよび不織布がリサイクル性の面で適している。
自動車内装材成形用積層基材の製造においては、自動車内装材成形用基材であるポリエチレン系樹脂発泡シートと表皮材を積層する方法には特に制限はなく、公知の方法が適用できる。例えば、押出ラミネート法、ドライラミネート法など、基材の種類、形状に応じて公知の方法を採用することができ、(1)予めシート状に成形された表皮材および基材を、カレンダー成形機等の手段を用いて熱圧着または熱融着する方法。(2)予めどちらか一方がシート成形された基材または表皮材を、押出成形またはカレンダー成形をしている他方の層に熱圧着または熱融着する方法。(3)多層押出成形機で基材と表皮材とを同時に押出成形して熱圧着または熱融着する方法(共押出成形)が挙げられる。
本発明の自動車内装材成形用基材、及びそれと表皮材とを貼合した自動車内装材成形用積層基材は、天井材の成形用に好ましく用いられる。
自動車天井材は、自動車の屋根の内側に取り付けられる。本発明のポリエチレン系樹脂発泡シートからなる自動車内装材成形用基材、及びそれと表皮材とを貼合した自動車内装材成形用積層基材は、高発泡、独立気泡率が高く、発泡によるセルの平均気泡径が小さく均一であることにより、断熱性に優れる。このことから自動車天井に好適である。
また、自動車内装材成形用基材は表面平滑性が良いため、表面に装飾表皮材を積層せずに、そのまま自動車天井材として使用できる。また、表面に装飾表皮材を積層することもできる。
JIS−K−7112:1999に準じて測定した。
JIS−K−7210:1999(温度=190℃、荷重=2.16kg)に準じて測定した。メルトフローレート比を得るため、温度=190℃、荷重=21.6kgでも測定を行った。
Waters社製150−C ALC/GPCの装置を用い、カラムとしてShodex製AT−807Sと東ソー製TSK−gelGMH−H6を直列にして用い、ゲルパーミエーションクロマトグラフィーによる測定を行った。溶媒に10ppmのイルガノックス1010を含むトリクロロベンゼンを用いて、140℃で測定した。なお、標準物質として市販の単分散のポリスチレンを用い、検量線を作成した。
示差走査熱量計(パーキンエルマー社製DSC−7型装置)を用い、以下の条件で測定した。1)ポリマー試料約5mgをアルミパンに詰め200℃/分で200℃まで昇温し、200℃で5分間保持した。2)次いで、200℃から10℃/分の降温速度で50℃まで降温し、降温完了後5分間保持した。3)次いで、50℃から10℃/分の昇温速度で200℃まで昇温した。この3)の過程で観察される吸熱曲線より融解ピーク位置の最高温度を融点ピーク(℃)として求めた。
(5)ひずみ硬化性
以下の方法で測定した。
装置:ティー・エー・インスツルメント社製 ARES
冶具:ティー・エー・インスツルメント社製 Extentional Viscosity Fixture(EVF)伸長粘度測定用治具
測定温度:134℃
ひずみ速度:0.5/sec
試験片の作製:プレス成形して18mm×10mm、厚み0.7mmのシートを作製する。
(算出方法)
ひずみ速度:0.5/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上でひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度ηEの急激な立ち上がり現象をひずみ硬化性の有無の指標とする。また、伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする(図1参照)。ηmax/ηlinを、ひずみ硬化度(λmax)と定義し、ひずみ硬化性の程度の指標とする。
(6)溶融張力(MT)
2.095mm径、長さ8.0mmのキャピラリーを備えた東洋精機(株)製;キャピログラフ1Dを用い、60mm/minでポリエチレン樹脂を190℃、または240℃で押し出し、2m/minで引き取る時の張力を測定して得た。190℃で押し出したときの溶融張力をMT190℃、240℃で押し出したときの溶融張力をMT240℃として表す。さらにこれらから、下式〔1〕に従い、溶融張力比(MTR)を求めた。
MTR=(MT240 ℃)/(MT190 ℃) 〔1〕
メルトフローレート比は、JIS−K−7210:1999で規定されるMFR(温度=190℃、荷重=21.6kg)をMFR(温度=190℃、荷重=2.16kg)で除して得た。
(8)見掛け密度
ポリエチレン系樹脂発泡シート(自動車内装材成形用基材)から所定の大きさに切り取り、その体積と重量を測定して見掛け密度を得た。
(9)独立気泡率
ポリエチレン系樹脂発泡シート(自動車内装材成形用基材)について、ASTM D−2856に準じて測定を行い、下記式により求めた。
Vx:ポリエチレン系樹脂発泡シートの実容積(cm3)
Va:ポリエチレン系樹脂発泡シートの見掛け容積(cm3)
ρf:ポリエチレン系樹脂発泡シートの密度(g/cm3)
ρs:ポリエチレン系樹脂組成物の密度(g/cm3)
(10)平均気泡径
発泡成形体を押出成形方向と垂直に切り出した断面を顕微鏡で4〜10の倍率で観察し、幅方向と厚み方向の気泡径をそれぞれ測定し、10個の気泡径についての幅方向と厚み方向の気泡径の全体の平均値を平均気泡径とした。
(11)発泡の均一性
ポリエチレン系樹脂発泡シート(自動車内装材成形用基材)の断面について光学顕微鏡(倍率10倍)を用いて肉眼で目視観察した。
◎:気泡の大きさが均一である状態のもの。
○:気泡の大きさに多少ばらつきが見られ、かつ一部の気泡が連なっている状態のもの。
×:気泡の大きさにばらつきが見られ、かつ気泡が連なっている状態のもの。
(12)剛性
ポリエチレン系樹脂発泡シート(自動車内装材成形用基材)から所定の大きさ(15cm×15cm)に切り取り、その発泡シートの1辺を選び、挟む部分が平滑なクリップを用いて発泡シートの端から約1cmのはさみ代で挟んだ。
クリップで挟んだ発泡シートを水平になるように保ち、発泡シートの垂れ下がり、折れ曲がりについて以下の評価基準で評価した。
○:クリップで挟んでから15秒経過後も、わずかに発泡シートが垂れ下がるが、折れ曲がらない。
×:クリップで挟んでから15秒以内に、発泡シートが垂直に垂れ下がるか、あるいは折れ曲がる。
(13)表面外観性
ポリエチレン系樹脂発泡シート(自動車内装材成形用基材)の表面を肉眼で目視観察した。
◎:表面に凹凸がなく、光沢が見られ、表面の手触りがすべすべした感触のものであ
り、外観が極めて良好な状態のもの。
○:表面に凹凸がなく、外観が良好な状態のもの。
×:表面に凹凸があり、外観が不良な状態のもの。
<樹脂サンプル作製>
・直鎖状ポリエチレン(α−i)
(1)固体触媒[A−1]の調製
(1−1)不活性炭化水素溶媒に可溶な錯体の合成
ジブチルマグネシウム175gとトリエチルアルミニウム30gとを、ヘキサン1リットルと共に容量4リットルのステンレス製反応器にいれ、85℃で2時間撹拌しながら反応させることにより、組成AlMg5(C2H5)3(C4H9)10の錯体を合成した。
(1−2)担体の調製
充分に窒素置換された15リットルの反応器に、トリクロルシラン(HSiCl3)を2モル/リットルのn−ヘプタン溶液として2740ミリリットル仕込み、攪拌しながら50℃に保ち、組成式AlMg6(C2H5)3(n−C4H9)10.8(On−C4H9)1.2で示される有機マグネシウム成分のn−ヘプタン溶液7リットル(マグネシウム換算で5モル)を1時間かけて加え、更に50℃にて1時間攪拌下反応させた。反応終了後、上澄み液を除去し、n−ヘキサン7リットルで4回洗浄を行い、固体物質スラリーを得た。この固体を分離・乾燥して分析した結果、固体1グラム当たり、Mg8.62ミリモル、Cl17.1ミリモル、n−ブトキシ基(On−C4H9)0.84ミリモルを含有していた。
(1−3)固体触媒の調製
上記固体500gを含有するスラリーを、n−ブチルアルコール1モル/リットルのn−ヘキサン溶液2160ミリリットルとともに、攪拌下50℃で1時間反応させた。反応終了後上澄みを除去し、7リットルのn−ヘキサンで1回洗浄した。このスラリーを50℃に保ち、ジエチルアルミニウムクロリド1モル/リットルのn−ヘキサン溶液970ミリリットルを攪拌下加えて1時間反応させた。反応終了後上澄みを除去し、7リットルのn−ヘキサンで2回洗浄した。このスラリーを50℃に保ち、ジエチルアルミニウムクロリド1モル/リットルのn−ヘキサン溶液270ミリリットル及び四塩化チタン1モル/リットルのn−ヘキサン溶液270ミリリットルを加えて、2時間反応した。反応終了後上澄みを除去し、内温を50℃に保った状態で、7リットルのn−ヘキサンで4回洗浄して、固体触媒成分をヘキサンスラリー溶液として得た。この固体触媒を分離・乾燥して分析した結果、固体触媒1グラムあたりチタン0.52ミリモルを含有していた。
(2)重合
触媒として、固体触媒[A−1]とトリイソブチルアルミニウムを組み合わせて使用した。
重合には反応容積300リットルのステンレス製重合器を用いた。γ線を使用した液面計により測定された重合器内の溶媒の体積とポリエチレンの体積との和は170Lであり、重合器から溶媒とポリエチレンとが定常的に抜き取られる体積あたりの速度は51リットル/hであった。従って、平均滞留時間は1.1時間であった。重合器1からポリマーは10kg/hの速度で抜き取られた。重合温度86℃、重合圧力0.6MPaの条件で、触媒は上記の固体触媒[A−1]を0.5g/h、上記の有機アルミニウム化合物[B−1]をAl原子換算で20ミリモル/h、またヘキサンは40リットル/hの速度で導入した。分子量調整剤としては水素を用い、エチレンと水素と1−ブテンを、水素の気相濃度が43モル%、1−ブテンの気相濃度が2.4モル%、エチレンの供給量が10kg/hになるように重合器に供給し重合を行った。重合器における触媒活性は20000g/g/hであった。
上記重合により、パウダー状の直鎖状ポリエチレン(α−i)を製造した。得られた直鎖状ポリエチレン(α−i)の密度は959kg/m3、MFRは12、分子量分布:Mw/Mnは7.0であった。
・直鎖状ポリエチレン(α−ii〜iv)
[メタロセン担持触媒[I]の調製]
シリカP−10[富士シリシア社(日本国)製]を、窒素雰囲気下、400℃で5時間焼成し、脱水した。脱水シリカの表面水酸基の量は、1.3mmol/g−SiO2であった。容量1.8リットルのオートクレーブにこの脱水シリカ40gを入れ、ヘキサン800ccを加えて分散させ、スラリーを得た。得られたスラリーを攪拌下50℃に保ちながらトリエチルアルミニウムのヘキサン溶液(濃度1mol/リットル)を60cc加え、その後2時間攪拌し、トリエチルアルミニウムとシリカの表面水酸基とを反応させ、トリエチルアルミニウム処理されたシリカと上澄み液とを含み、該トリエチルアルミニウム処理されたシリカの全ての表面水酸基がトリエチルアルミニウムによりキャッピングされている成分[IV]を得た。その後、得られた反応混合物中の上澄み液をデカンテーションによって除去することにより、上澄み液中の未反応のトリエチルアルミニウムを除去した。その後、ヘキサンを適量加え、トリエチルアルミニウム処理されたシリカのヘキサンスラリー800ccを得た。
有機マグネシウム化合物[III−1]として、AlMg6(C2H5)3(n−C4H9)12で示される有機マグネシウム化合物を使用した。化合物[III−2]として、メチルヒドロポリシロキサン(25℃における粘度20センチストークス)を使用した。
(α−ii)上記により得られたメタロセン担持触媒[I]と液体助触媒成分[II]は、触媒移送ラインに連鎖移動剤として必要量の水素を供給することで水素を接触させて重合反応器に導入し、溶媒としてヘキサン、モノマーとしてエチレン及び1−ブテンを用いた。反応温度は78℃としてエチレン、1−ブテン、水素の混合ガス(ガス組成は1−ブテンとエチレン+1−ブテンのモル比が0.30、水素とエチレン+水素のモル比が0.0032を維持できるように調節)を全圧が0.8MPaで直鎖状ポリエチレン(α)であるエチレンと1−ブテンとの共重合体を重合した。得られた直鎖状ポリエチレン(α−i)であるエチレン−1−ブテン共重合体は密度が947kg/m3、MFRが5.0g/10分、ゲルパーミエーションクロマトグラフィー法により求められた分子量分布(Mw/Mn)が3.5の直鎖状ポリエチレンであるエチレン−1−ブテン共重合体(α−ii)を得た。
(α−iii)エチレン、水素の混合ガス(ガス組成は水素とエチレン+水素のモル比が0.48を維持できるように調節)を全圧が0.8MPaで直鎖状ポリエチレン(α)であるエチレン単独重合体を重合した。得られた直鎖状ポリエチレン(α)であるエチレン単独重合体は密度が966kg/m3、MFRが12g/10分、分子量分布:Mw/Mnが3.4の直鎖状ポリエチレンであるエチレン単独重合体(α−iii)を得た。
(α−iv)エチレン、1−ブテン、水素の混合ガス(ガス組成は1−ブテンとエチレン+1−ブテンのモル比が0.36を維持できるように調節)とした以外は(α−i)と同様にして、密度が941kg/m3、MFRが2.5g/10分、分子量分布:Mw/Mnが4.2の直鎖状ポリエチレンであるエチレン−1−ブテン共重合体(α−iv)を得た。
分岐状高圧法低密度ポリエチレン(β−i)はオートクレーブタイプのリアクターでエチレンをラジカル重合して得られたものである。重合条件は過酸化物存在下で、200〜300℃の温度、100〜250MPaの重合圧力に設定して、密度921kg/m3、MFR0.6g/10分である高圧法低密度ポリエチレン(β−i)を得た。
高圧法低密度ポリエチレン(β−ii)はオートクレーブタイプのリアクターでエチレンをラジカル重合して得られたものである。重合条件は過酸化物存在下で、200〜300℃の温度、100〜250MPaの重合圧力に設定して、密度919kg/m3、MFR2.0g/10分である高圧法低密度ポリエチレン(β−ii)を得た。
分岐状高圧法低密度ポリエチレン(β−iii)は、チューブリアクターでエチレンをラジカル重合して得られたものである。重合条件は過酸化物および連鎖移動剤の存在下で200〜350℃の重合反応ピーク温度、150〜350MPaの重合圧力に設定して、密度922kg/m3、MFR3.7g/10分である分岐状高圧法低密度ポリエチレン(β−iii)を得た。
(β−i)〜(β−iii)の換算分子量106以上の成分の占有率、分子量分布:Mw/Mn、溶融張力比、溶融張力(190℃)、メルトフローレート比、及び式〔2〕の関係の成立/不成立を、表1に示した。
直鎖状ポリエチレン(α)及び分岐状高圧法低密度ポリエチレン(β)を表1に記載の割合で混合したポリマーブレンド物を日本製鋼所社製TEX−44(スクリュー径44mm、L/D=35)の二軸押出成形機を利用し、220℃の温度で溶融混錬して造粒した。得られたポリエチレン系樹脂組成物100質量部に発泡剤としてアゾジカルボンアミド系発泡剤として「ビニホールAC#3(永和化成工業株式会社製)」を0.5質量部加えて溶融混練して製造した。このポリエチレン系樹脂組成物と発泡剤との混合物を65mmφ二軸押出機を用いてアゾジカルボンアミドが分解しない170℃の温度で溶融混練りした後、押出機途中から発泡剤としてブタン(イソブタン/ノルマルブタン=95/5(モル比))を10質量%圧入し、この押出機に連結しているTダイより押出してポリエチレン系樹脂発泡シートに成形した。厚みは約1.0mmであった。
得られたポリエチレン系樹脂組成物及びそれから得られた自動車内装材成形用基材の評価結果を表2に併せて示した。
また、得られた実施例4のポリエチレン系樹脂組成物に関して、伸長粘度のプロット図の一例を図1に示した。
[実施例6]
実施例1で得られたポリエチレン系樹脂発泡シートの片面に、50μm厚のメタロセン系高密度ポリエチレン製インフレーションフィルム(密度941kg/m3、MFR2.5g/10分、分子量分布:Mw/Mnが4.2、溶融張力が15mNである直鎖状ポリエチレン(α−iv)で作製したインフレーションフィルム)を、30μm厚の溶融メタロセン系高密度ポリエチレン(密度941kg/m3、MFR2.5g/10分、分子量分布:Mw/Mnが4.2、溶融張力が15mNである直鎖状ポリエチレン(α−ii))を接着剤とした押出ラミネート法で貼合わせて、自動車内装材成形用積層基材を得た。
得られた自動車内装材成形用積層基材の評価結果は、発泡の均一性は◎、剛性は○、表面の外観性は◎であり、いずれについても合格基準を満足した。
密度941kg/m3、MFR2.5g/10分、分子量分布:Mw/Mnが4.2、溶融張力が15mNである直鎖状ポリエチレン(α−iv)のみであり、高圧法低密度ポリエチレン(β)をブレンドしない以外は、実施例1と同様に押出発泡シートの作製を行なったが、ポリエチレン系樹脂発泡シートが得られなかった。
[比較例2、3]
表2に記載の割合で直鎖状ポリエチレン(α−v)又は(α−ii)と分岐状高圧法低密度ポリエチレン(β−i)又は(β−iii)をブレンドし、実施例1と同様の方法によりポリエチレン系樹脂組成物を得た。いずれのポリエチレン系樹脂組成物も、伸長粘度の測定においてひずみ硬化性をはっきりと確認できなかった。
得られたポリエチレン系樹脂組成物を用い実施例1と同様の方法により押出発泡シートの作製を行ったが、比較例2ではポリエチレン系樹脂発泡シートが得られなかった。
得られたポリエチレン系樹脂組成物及びそれから得られたポリエチレン系樹脂発泡シートの評価結果を表2に併せて示した。
ここで直鎖状ポリエチレン(α−v)は、特開昭60−4506号公報記載の方法でチーグラー触媒を用いて重合された表1記載の物性を有するエチレンと1−ブテンとの共重合体である。
Claims (7)
- ポリエチレン系樹脂組成物を含んでなり、見掛け密度が60g/L以上、300g/L以下、独立気泡率が70%以上の発泡シート状自動車内装材成形用基材であって、該ポリエチレン系樹脂組成物が、直鎖状ポリエチレン(α)90〜40質量%と、高圧法低密度ポリエチレン(β)10〜60質量%を含むポリエチレン系樹脂組成物であって、該ポリエチレン系樹脂組成物の密度が930〜960kg/m3、190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分、示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つ、伸長粘度の測定においてひずみ硬化性を有し、かつ、ひずみ硬化度(λmax)が2.0〜30であることを特徴とする、上記自動車内装材成形用基材。
- 前記直鎖状ポリエチレン(α)が、下記(α−1)〜(α−4)の要件を満たし、かつ前記高圧法低密度ポリエチレン(β)が、下記(β−1)〜(β−3)の要件を満たす請求項1に記載の自動車内装材成形用基材。
(α−1)エチレン単独重合体又はエチレンから導かれる繰り返し単位と1又は2種以上の炭素数3〜20のα−オレフィンから導かれる繰り返し単位とからなる共重合体である。
(α−2)密度が935〜975kg/m3である。
(α−3)190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分である。
(α−4)ゲルパーミエーションクロマトグラフィー法により求められるMw/Mnが、3〜7である。
(Mnは数平均分子量であり、Mwは重量平均分子量であり、Mw/Mnは分子量分布を表す指標である。)
(β−1)密度が910〜930kg/m3である。
(β−2)190℃、2.16kg荷重におけるメルトフローレートが0.1〜10g/10分である。
(β−3)ゲルパーミエーションクロマトグラフにより求められる換算分子量106以上の成分の占有率が全体の1.5〜9.0質量%である。 - 前記直鎖状ポリエチレン(α)がエチレンから導かれる繰り返し単位と1−ブテン、1−ヘキセン及び1−オクテンからなる群より選ばれる少なくとも一種のα−オレフィンから導かれる繰り返し単位とからなる共重合体である請求項1又は2に記載の自動車内装材成形用基材。
- 前記高圧法低密度ポリエチレン(β)が、下記(β−4)〜(β−5)の要件を満たすことを特徴とする請求項1〜3のいずれか1項に記載の自動車内装材成形用基材。
(β−4)ゲルパーミエーションクロマトグラフの測定において、Mw/Mnが7〜25である。
(β−5)溶融張力比(MTR)が下記式〔1〕を満たし、かつ、メルトフローレート比(FRR)と溶融張力(MT)との関係が下記式〔2〕を満たす。
MTR=(MT240 ℃)/(MT190 ℃)≧0.7 〔1〕
(MT190 ℃)≧0.65(FRR)−20 〔2〕
(ただし、ここで上記式〔1〕及び〔2〕において、MTの添え字は溶融張力の測定温度、FRRは温度=190℃、荷重=21.6kgでのMFRと温度=190℃、荷重=2.16kgでのMFRとの比である。) - 請求項1〜4のいずれか1項に記載の自動車内装材成形用基材、及び表皮材を含み、ポリエチレン系樹脂発泡シートである該自動車内装材成形用基材の片面に該表皮材が貼合されてなる自動車内装材成形用積層基材。
- 請求項1〜4のいずれか1項に記載の自動車内装材成形用基材又は請求項5に記載の自動車内装材成形用積層基材からなる天井材成形用基材。
- 前記直鎖状ポリエチレン(α)を、(ア)担体物質、(イ)有機アルミニウム、(ウ)環状η結合性アニオン配位子を有する遷移金属化合物、及び(エ)該環状η結合性アニオン配位子を有する遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤から調製されたメタロセン担持触媒[I]と、液体助触媒成分[II]を用いた重合により製造する工程を含む、請求項1〜4のいずれか1項に記載の自動車内装材成形用基材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012065058A JP5841869B2 (ja) | 2011-03-23 | 2012-03-22 | 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064538 | 2011-03-23 | ||
JP2011064538 | 2011-03-23 | ||
JP2012065058A JP5841869B2 (ja) | 2011-03-23 | 2012-03-22 | 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012211312A JP2012211312A (ja) | 2012-11-01 |
JP5841869B2 true JP5841869B2 (ja) | 2016-01-13 |
Family
ID=47265526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012065058A Expired - Fee Related JP5841869B2 (ja) | 2011-03-23 | 2012-03-22 | 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5841869B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6963171B2 (ja) * | 2017-08-30 | 2021-11-05 | キョーラク株式会社 | 発泡成形用樹脂、発泡成形体、発泡成形体の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3346027B2 (ja) * | 1994-04-19 | 2002-11-18 | 東レ株式会社 | ポリエチレン系電子線架橋発泡体 |
JP3557766B2 (ja) * | 1995-02-08 | 2004-08-25 | 東レ株式会社 | ポリオレフィン系電子線架橋発泡体 |
JPH11181175A (ja) * | 1997-12-25 | 1999-07-06 | Tosoh Corp | ポリエチレン系樹脂組成物 |
JP2004090531A (ja) * | 2002-09-02 | 2004-03-25 | Sekisui Chem Co Ltd | 架橋ポリオレフィン系樹脂発泡体及びその製造方法 |
JP4063037B2 (ja) * | 2002-10-16 | 2008-03-19 | 東ソー株式会社 | ポリエチレン系架橋発泡体 |
JP4680528B2 (ja) * | 2004-04-05 | 2011-05-11 | 積水化成品工業株式会社 | 熱成形用エチレン系樹脂発泡シート、成形品及び熱成形用エチレン系樹脂発泡シートの製造方法 |
JP4641842B2 (ja) * | 2005-03-25 | 2011-03-02 | 旭化成ケミカルズ株式会社 | 押出しラミネート用ポリエチレン樹脂組成物 |
JP2010163603A (ja) * | 2008-12-18 | 2010-07-29 | Sumitomo Chemical Co Ltd | 架橋発泡用樹脂組成物および架橋発泡体 |
-
2012
- 2012-03-22 JP JP2012065058A patent/JP5841869B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012211312A (ja) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5501047B2 (ja) | 無架橋発泡用ポリエチレン系樹脂組成物を含んでなる発泡成形体 | |
JP6569669B2 (ja) | エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物 | |
JP2012255138A (ja) | 表面保護フィルム用ポリエチレン樹脂組成物 | |
JP5448956B2 (ja) | ポリエチレン樹脂からなるフィルム | |
JP4931187B2 (ja) | Tダイ成形用ポリエチレン系樹脂組成物およびその組成物からなるtダイ成形フィルム | |
JP2011256375A (ja) | 無架橋発泡用ポリエチレン系樹脂組成物ならびにそのポリエチレン系樹脂無架橋発泡成形体 | |
JP5841869B2 (ja) | 自動車内装材成形用基材、それよりなる自動車内装材成形用積層基材 | |
JP5829160B2 (ja) | 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル | |
JP5829088B2 (ja) | 発泡フィルム | |
JP5289729B2 (ja) | ポリマーブレンド系シラン変性ポリエチレン系樹脂組成物およびその架橋体 | |
JP2013124300A (ja) | 無架橋発泡用ポリエチレン系樹脂組成物 | |
JP5827848B2 (ja) | 架橋発泡成形体 | |
JP2012082411A (ja) | 射出発泡成形体 | |
JP2012071893A (ja) | リードフレーム用スペーサー | |
JP5829105B2 (ja) | ブロー成形用ポリエチレン系樹脂組成物及びそれよりなるブロー成形体 | |
JP5334235B2 (ja) | ポリマーブレンド系ポリエチレン系樹脂組成物からなる給水用またはガス輸送用パイプ | |
WO2014064801A1 (ja) | 絶縁体用ポリエチレン系樹脂組成物およびそれを用いた高周波同軸ケーブル | |
JP2000001579A (ja) | ポリエチレン系樹脂組成物 | |
JP2013223959A (ja) | ポリエチレン積層フィルム | |
JP5334275B2 (ja) | ポリマーブレンド系ポリエチレン系樹脂組成物およびその成型体 | |
JP2012211313A (ja) | ポリエチレン系樹脂製断熱材基材、それよりなる断熱パイプカバー | |
JP2010116437A (ja) | ポリエチレン系樹脂組成物およびその成型体 | |
JPH11293055A (ja) | ポリエチレン系樹脂組成物 | |
JP2001114838A (ja) | エチレン−α−オレフィン共重合体 | |
JP2012046739A (ja) | パッキング基材、それよりなるパッキング積層基材、及びその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5841869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |