JP5840825B2 - ポリマを用いたトランスデューサ - Google Patents

ポリマを用いたトランスデューサ Download PDF

Info

Publication number
JP5840825B2
JP5840825B2 JP2009146187A JP2009146187A JP5840825B2 JP 5840825 B2 JP5840825 B2 JP 5840825B2 JP 2009146187 A JP2009146187 A JP 2009146187A JP 2009146187 A JP2009146187 A JP 2009146187A JP 5840825 B2 JP5840825 B2 JP 5840825B2
Authority
JP
Japan
Prior art keywords
polymer
electrode
actuator
strained
electroactive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009146187A
Other languages
English (en)
Other versions
JP2009267429A (ja
Inventor
ペルライン・ロナルド・イー.
コーンブルー・ロイ・ディ.
ペイ・キビング
オー・シージン
ジョゼフ・ホゼ・ピー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRI International Inc filed Critical SRI International Inc
Publication of JP2009267429A publication Critical patent/JP2009267429A/ja
Application granted granted Critical
Publication of JP5840825B2 publication Critical patent/JP5840825B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/023Inchworm motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/52Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、一般に、電気エネルギから機械エネルギへ変換を行う電気活性ポリマに関する。本発明は、特に、プリストレインドポリマならびに、アクチュエータおよび各種用途においてこれらのポリマを使用することに関する。本発明は、さらに、電気活性ポリマと電気的に通信するために用いられる適合性電極と、プリストレインドポリマの製造法に関する。
電気エネルギから機械エネルギへの変換は、多くの用途において望まれている。電気エネルギから機械エネルギへの変換を必要とする代表的な用途としては、ロボット、ポンプ、スピーカ、一般オートメーション、ディスクドライブ、そして人工器官等が挙げられる。これらの用途には、マクロまたはミクロのレベルで電気エネルギを機械的作用に変換するアクチュエータが、1つまたはそれ以上含まれる。また、電磁モータやソレノイドなどの一般的な電気アクチュエータ技術は、例えば小サイズのデバイスを必要とする多くの用途(例えばミクロマシンや中規模マシンなど)において不適切である。これらの技術は、1つの構造内に多数のデバイスを組み込まなければならない場合や、比較的低周波数の高出力密度を必要とするような様々な性能条件のもとにおいても、やはり理想的ではない。
多くの「スマート材料」が、電気エネルギと機械エネルギとの間の変換に使用されてきたが、限られたレベルの成功しか得られなかった。これらのスマート材料としては、圧電磁器、形状記憶合金、そして磁わい材料などが挙げられる。しかしながら、これらのスマート材料にはそれぞれ限界があるので、広く一般的に使用することができない。電磁エネルギを機械エネルギに変換するためには、ジルコン酸チタン酸塩(PZT)などの特定の圧電磁器が使用されてきた。このような圧電磁器は、幾つかの用途において適切な効率を達成しえるものの、これは、一般にひずみが1.6%未満の場合に限られており、必要なひずみが1.6%を超える用途では不適切である場合が多い。また、これらの材料は高密度であるため、低重量が求められる用途では使用できないことが多い。照射ポリジフロロビニリデン(PVDF)は、電気エネルギから機械エネルギへの変換に必要なひずみが4%以下であるとされる電気活性ポリマである。圧電磁器と同様で、PVDFも、4%より大きいひずみを必要とする用途では不適切であることが多い。ニチノールなどの形状記憶合金は、ひずみや力の出力が大きい場合にも対応することができる。しかしながら、これらの形状記憶合金は、エネルギ効率や応答時間に問題があって高コストであるため、広く一般に使用することができない。
圧電磁器および照射PVDFは、性能限界を有するだけでなく、その製造でも問題を生じる場合が多い。単結晶の圧電磁器は、高温で成長させた後に非常にゆっくりと冷却しなければならない。照射PVDFの場合は、電子ビームを照射しなければならない。これらの処理は、いずれも高価で複雑であるので、これらの材料の受容性には限界がある。
以上から、電気エネルギから機械エネルギへの変換を行うための代替のデバイスが望まれていることがわかる。
本発明の一態様は、電気エネルギと機械エネルギとの変換を改善するようにプリストレインされたポリマに関する。プリストレインド(予めひずみを加えられた)ポリマは、それに接している電極に電圧が印加されると変形する。この変形は、機械的作用を行うために使用して良い。このプリストレインによって、電気活性ポリマの機械応答を、プリストレインされていないポリマのそれに比べて改善することができる。ポリマの方向ごとにプリストレインの量を変化させることによって、印加電圧に対するポリマの応答を変化させても良い。
別の態様では、本発明は、電気活性ポリマと、ポリマの変形を機械的出力へ変換するための機械的結合と、を備えたアクチュエータに関する。いくつかのアクチュエータには、電気活性ポリマの性能を改善させる機械的結合が含まれている。
本発明のさらに別の態様は、ポリマの形状変化に適合した適合電極に関する。多くの電極が、本発明によるプリストレインドポリマにおいて大きいひずみを生じた際にも電気通信を維持することができる。幾つかの実施形態では、電極の適合性が方向によって異なる場合がある。
本発明の別の態様は、1つまたはそれ以上の電気活性ポリマを備える電気機械デバイスを製造するための方法を提供する。ポリマは、例えば、ポリマを機械的に伸張させ、それと同時に1つまたはそれ以上の固形部材に固定するなどの、多くの技術を使用してプリストレインすることができる。本発明によるポリマは、鋳造、浸漬、スピンコート、噴霧、または薄膜ポリマを製造するための他の既知のプロセスによって製造して良い。一実施形態では、プリストレインドポリマは、製造時にプリストレインされる市販のポリマを含む。
本発明の別の態様は、電気エネルギを機械エネルギに変換するためのトランスデューサに関する。トランスデューサは、少なくとも2つの電極と、電場の変化に応じて一部分が変形するように構成されたポリマと、を備える。ポリマは、弾性的にプリストレインされている。
本発明の別の態様は、電気エネルギを機械エネルギに変換するためのトランスデューサに関する。トランスデューサは、少なくとも2つの電極と、少なくとも2つの電極によって供給される電場の変化に応じて一部分が変形するように構成されたポリマと、を備える。ポリマの一部は、電場の変化に応じて、約50%〜約215%の間の最大線ひずみで変形する。
本発明のさらに別の一態様は、電気エネルギを第1の方向への変位に変換するためのアクチュエータに関する。アクチュエータは、少なくとも1つのトランスデューサを備える。各トランスデューサは、少なくとも2つの電極と、電場の変化に応じて一部分が変形するように構成されたポリマと、を備える。アクチュエータは、さらに、少なくとも1つのトランスデューサに接続された可撓性フレームを備える。そのフレームは、第1の方向への変位を改善するための機械的な補佐となる。
本発明の別の一態様は、電気エネルギを機械エネルギへ変換するためのアクチュエータに関する。アクチュエータは、固定端と自由端とを有する可撓性部材を備え、可撓性部材は、少なくとも2つの電極と、少なくとも2つの電極によって供給される電場の変化に応じて一部分が変形するように構成されたプリストレインドポリマとを備える。
本発明の別の一態様は、電気エネルギを第1の方向への変位に変換するためのアクチュエータに関する。アクチュエータは、少なくとも1つのトランスデューサを備える。各トランスデューサは、少なくとも2つの電極と、電場の変化に応じて一部分が変形するように構成されたポリマと、を備える。アクチュエータは、また、少なくとも1つのトランスデューサに結合された少なくとも1つの剛性部材を備え、この少なくとも1つの剛性部材は、第2の方向への変位を実質的に阻止する。
本発明のさらに別の一態様は、電気エネルギを機械エネルギへ変換するためのダイヤフラムアクチュエータに関する。アクチュエータは、少なくとも1つのトランスデューサを備える。各トランスデューサは、少なくとも2つの電極と、電場の変化に応じて第1の部分が変形するように構成されたプリストレインドポリマと、を備える。また、アクチュエータは、ポリマの第2の部分に取り付けられ、少なくとも1つの円形の穴を有したフレームを備え、第1の部分は、電場の変化に応じて少なくとも1つの円形の穴の面から変形する。
別の態様では、本発明は、電気エネルギを機械エネルギに変換するためのアクチュエータに関し、アクチュエータは、第1のボディ部分と第2のボディ部分との間の自由度が少なくとも1であるボディを備え、ボディは、第1の部分と第2の部分とに取り付けられた少なくとも1つのトランスデューサを備え、各トランスデューサは、電場の変化に応じてポリマの一部が変形するように構成された少なくとも2つの電極およびプリストレインドポリマを備え、アクチュエータは、さらに、第1のボディ部分に取り付けられた第1のクランプと第2のボディ部分に取り付けられた第2のクランプを備える。
さらに別の態様では、本発明は、電気エネルギを機械エネルギに変換するためのアクチュエータに関し、アクチュエータは、トランスデューサを備え、トランスデューサは、電場の変化に応じてポリマの第1の部分が変形するように構成されたポリマと、ポリマの第2の部分を作動するよう構成された第1の電極対と、ポリマの第3の部分を作動するよう構成された第2の電極対とを備え、アクチュエータは、さらに、ポリマの第1の部分に結合された出力部を備える。
本発明の別の態様は、電気活性ポリマと共に使用する電極に関する。電極は、電気活性ポリマとの接触部に適合性の部分を備え、適合性の部分は、少なくとも約50%のひずみと共に変形する能力がある。
本発明の別の一形態は、プリストレインドポリマを含むトランスデューサの製造する方法に関する。その方法は、電気活性ポリマをプリストレインして、プリストレインドポリマを形成する工程を含む。方法は、また、プリストレインドポリマの一部分を固形部材に固定する工程を備える。方法は、さらに、プリストレインドポリマの上に1つまたはそれ以上の電極を形成する工程を備える。
本発明のさらに別の一形態は、複数のプリストレインドポリマを含むトランスデューサを製造する方法に関する。その方法は、第1のポリマをプリストレインして、第1のプリストレインドポリマを形成する工程を含む。方法は、さらに、第1のプリストレインドポリマの上に1つまたはそれ以上の電極を形成する工程を備える。その方法は、さらに、第2のポリマをプリストレインして、第2のプリストレインドポリマを形成する工程を含む。方法は、さらに、第2のプリストレインドポリマの上に1つまたはそれ以上の電極を形成する工程を備える。その方法は、さらに、第2のプリストレインドポリマに第1のプリストレインドポリマを結合する工程を含む。
添付の図面に関連して行う以下の説明から、本発明のさらなる特徴および利点が明らかになる。
電圧を印加される前および後におけるトランスデューサを、本発明の一実施形態にしたがって示した上面図である。 電圧を印加される前および後におけるトランスデューサを、本発明の一実施形態にしたがって示した上面図である。 波状の外形を有した電気活性ポリマに関し、テクスチャ加工された表面を示した図である。 ランダムなテクスチャを有したテクスチャ加工された表面を含む電気活性ポリマを示した図である。 電気活性ポリマを含んだダイヤフラムアクチュエータの電圧印加前における状態を、本発明の一実施形態にしたがって示した横断面図である。 図1Eの電気活性ポリマダイヤフラムの電圧印加後における状態を、本発明の一実施形態にしたがって示した横断面図である。 バウアクチュエータの作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。 バウアクチュエータの作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。 変形を改善させるコンポーネントを追加されたバウアクチュエータを、本発明の特定の一実施形態にしたがって示した図である。 直線運動アクチュエータの作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。 直線運動アクチュエータの作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。 複数のポリマ層を含んだアクチュエータを、本発明の一実施形態にしたがって示した横断面図である。 人工筋肉の一例としての積層形の多層アクチュエータを、本発明の一実施形態にしたがって示した図である。 電気活性ポリマのダイヤフラムを含んだ線形アクチュエータを、本発明の別の一実施形態にしたがって示した図である。 ロール状の電気活性ポリマを含んだシャクトリムシ型アクチュエータを、本発明の一実施形態にしたがって示した図である。 1方向への変形を提供するための伸張膜アクチュエータを、本発明の別の一実施形態にしたがって示した図である。 曲がり梁アクチュエータを、本発明の別の一実施形態にしたがって示した図である。 図2Kの曲がり梁アクチュエータを90度の曲げ角度で曲げた状態を示した図である。 2つのポリマ層を含む曲がり梁アクチュエータを、本発明の別の一実施形態にしたがって示した図である。 適合性が1方向性である構造化電極を、本発明の特定の一実施形態にしたがって示した図である。 適合性が指向性でない構造化電極を備えるプリストレインドポリマを、本発明の特定の一実施形態にしたがって示した図である。 テクスチャ加工された電極を、本発明の一実施形態にしたがって示した図である。 2つのダイヤフラムアクチュエータポンプを含んだ2段式のカスケード式ポンピングシステムを、本発明の特定の一実施形態にしたがって示した図である。 少なくとも1つのプリストレインドポリマを有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示したフローチャートである。 複数のポリマ層を有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示した図である。 複数のポリマ層を有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示した図である。 複数のポリマ層を有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示した図である。 複数のポリマ層を有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示した図である。 複数のポリマ層を有した電気機械デバイスを製造するためのプロセスを、本発明の一実施形態にしたがって示した図である。
以下では、添付の図面に示された好ましい幾つかの実施形態を参照にしながら、本発明の詳しい説明を行う。以下の説明では、本発明の完全な理解を促すために、多くの詳細が具体的に示されている。しかしながら、本発明がこれらの具体的な詳細の一部または全てがなくても実現できることは、当業者にとって明らかである。また、本発明を不必要に不明瞭化しないように、周知のプロセス工程および/または構造の説明は省略してある。
1.概要
電気活性ポリマは、電気エネルギによって作動されると変形を生じる。一実施形態において、電気活性ポリマは、2つの電極間の絶縁誘電体として作用し且つ2つの電極間に電圧差を加えると変形するようなポリマを指す。本発明の一態様は、電気エネルギと機械エネルギとの間の変換を改善するようにプリストレインされたポリマに関する。このプリストレインによって、電気活性ポリマの機械応答が、プリストレインされていない電気活性ポリマのそれに比べて改善される。機械応答の改善によって、例えば変形や作動圧力などの、より大きな機械的作用を電気活性ポリマに加えることが可能になる。例えば、本発明によるプリストレインドポリマには、少なくとも約200%の線ひずみと、少なくとも約300%の面ひずみと、を加えることが可能である。このプリストレインは、ポリマの方向によって大きさが異なる。プリストレインの方向による可変性、ポリマを制約する様々な方法、電気活性ポリマのミクロおよびマクロのレベルへの拡張性、そしてポリマの様々な指向方向を組み合わせる(例えば個々のポリマ層を巻いたり積層させたりする)ことによって、電気エネルギを機械的作用に変換させる様々なアクチュエータを実現することが可能になる。このようなアクチュエータは、広い用途において使用することができる。
本発明による電気活性ポリマは、少なくとも約200%の線ひずみで変形し得るので、ポリマに取り付けられた電極も、機械的性能または電気的性能に支障を生じることなく変形する必要がある。これに対応し、本発明の別の一態様は、電気活性ポリマの形状に適合された適合電極に関する。これらの電極は、本発明によるプリストレインドポリマのように大きく変形した場合であっても電気通信を維持することができる。例えば、本発明による電極に関しては、少なくとも約50%のひずみが一般的である。幾つかの実施形態では、電極の適合性が方向によって異なる場合もある。
プリストレインドポリマは、様々なアクチュエータおよび多様な用途においてミクロおよびマクロの両スケールで使用するのに適しているので、本発明において使用される製造プロセスも実に多様である。本発明の別の一形態は、1つまたはそれ以上のプリストレインドポリマを含んだ電気機械デバイスを製造するための方法を提供する。ポリマは、例えば、電気活性ポリマを機械的に伸張させ、それと同時に1つまたはそれ以上の固形部材に固定するなどの、多くの技術を使用してプリストレインすることができる。
2.デバイスの一般構造
図1Aおよび図1Bは、トランスデューサ100を、本発明の一実施形態にしたがって示した上面図である。トランスデューサ100は、電気エネルギと機械エネルギとの間の変換を行うためのポリマ102を備える。電気活性ポリマ102の上面および下面には、トップ電極104およびボトム電極106がそれぞれ取り付けられており、ポリマ102の一部分に電圧差を提供する。ポリマ102は、トップ電極104およびボトム電極106によって提供される電場の変化によって変形する。電極104,106によって提供される電場の変化に応じたトランスデューサ100の変形は、作動と称される。ポリマ102のサイズが変化するのにともなって、この変形を使用して機械的作用を生じることができる。
図1Bは、電場の変化に応じて変形したトランスデューサ100の上面図である。一般に、変形とは、あらゆる変位、膨張、収縮、捩れ、線もしくは面ひずみ、またはポリマ102の一部分に生じる他のあらゆる変形を指す。電極104,106によって生じた電圧差に対応する電場の変化は、プリストレインドポリマ102内に機械的圧力を生じる。この場合は、電極104,106によって生じた異なる電荷が互いに引き合うことによって、電極104,106間で圧縮力を生じ、ポリマ102上で2次元方向108,110への膨張力を生じるので、ポリマ102は、電極104,106間で圧縮され、2次元方向108,110に伸張される。
電極104,106は、ポリマ102の全面積ではなく一部分のみを覆っている場合もある。これは、ポリマ102の周囲で電気的な破壊が生じるのを防ぐこと、またはポリマの特定部分のみを特別に変形させることを目的とする。ここで、アクティブ領域とは、ポリマ材料102のうち、変形を生じるのに十分な静電力を有した部分として定義される。以下で説明するように、本発明によるポリマは複数のアクティブ領域を有して良い。アクティブ領域の外側のポリマ材料102は、変形が生じる際に、そのアクティブ領域に対して外から働くスプリング力として作用して良い。より詳しく言うと、アクティブ領域の外側の材料は、その収縮または膨張によってアクティブ領域の変形に抵抗して良い。電圧差の排除およびそれによって誘導される電荷は、逆の効果をもたらす。
電極104,106は適合性があり、ポリマ102とともに形状を変化させる。ポリマ102および電極104,106は、変形に対するポリマ102の応答を増大させるように構成される。より詳しく言うと、トランスデューサ100が変形すると、ポリマ102の圧縮によって電極104,106内の相対する電荷が近づけられ、ポリマ102の伸張によって各電極内の同じ電荷が引き離される。一実施形態において、電極104,106の一方は接地されている。
一般に、トランスデューサ100は、変形を生じる静電力が機械的な力によって相殺されるまで変形を続ける。機械的な力としては、ポリマ102材料の弾性復元力や、電極104,106の適合性や、トランスデューサ100に結合されたデバイスおよび/または負荷によって提供される外部からの抵抗などが挙げられる。電圧印加の結果として生じるトランスデューサ100の変形は、また、ポリマ102の誘電率やポリマ102のサイズなどの、他の幾つかの要因にも依存し得る。
本発明にしたがった電気活性ポリマは、あらゆる方向へ変形することが可能である。電極104,106間に電圧が印加されると、電気活性ポリマ102は、2次元方向108,110の両方向にサイズを増大させる。場合によっては、電気活性ポリマ102が非圧縮性である、例えば応力下における体積が実質的に一定であることもある。このような場合のポリマ102は、2次元方向108,110に膨張した結果として厚さを減少させる。ここで、本発明は非圧縮性のポリマに限定されないこと、そしてポリマ102の変形はこのような単純な関係にのみ適合するものではないことに、注意する必要がある。
電気活性ポリマ102は、プリストレインされている。プリストレインは、電気エネルギと機械エネルギとの間の変換を改善させる。一実施形態では、プリストレインによってポリマの絶縁耐力が改善される。トランスデューサ100に関しては、プリストレインによって、電気活性ポリマ102をより大きく変形させ、より大きな機械的作用を提供することが可能になる。ポリマのプリストレインは、プリストレイン前後における1つまたはそれ以上の方向の寸法の変化として理解される。プリストレインは、ポリマ102を弾性的に変形させることを備え、例えば、1つまたはそれ以上のエッジを固定した状態でポリマを伸張させることによって形成して良い。一実施形態において、プリストレインは弾性的である。弾性的にプリストレインされたポリマは、原則的に、作動後に緩んでもとの状態に戻ることができる。プリストレインは、剛性フレームを使用してポリマの境界に対して課しても良いし、ポリマの一部分に対して局所的に課しても良い。
一実施形態では、ポリマ102の一部分に対して均一にプリストレインを加え、等方性のプリストレインドポリマを形成する。例えば、アクリルのエラストマポリマを、両2次元方向に200〜400%伸張して良い。別の一実施形態では、ポリマ102の一部分に対して異なる複数の方向に不均一にプリストレインを加え、異方性のプリストレインドポリマを形成する。この場合のポリマ102は、作動時において、ある1方向にだけ別の1方向よりも大きく変形し得る。理論に縛られることは本望ではないが、ポリマを1方向にプリストレインすると、その方向におけるポリマの剛性が増すと考えられる。すると、ポリマは、より大きくプリストレインされた方向には剛性が強く、より小さくプリストレインされた方向には適合性が強くなるので、作動時における変形の大半は、より小さくプリストレインされた方向に生じる。一実施形態では、大きなプリストレインを垂直方向110に加えることによって、トランスデューサ100の方向108への変形を強化している。例えば、トランスデューサ100として使用されるアクリルのエラストマポリマを、方向108には100%、そして垂直な方向110には500%伸張して良い。アクチュエータに関連して以下で述べるように、トランスデューサ100の構成および幾何学的なエッジ制約も、特定方向への変形に対して影響を及ぼし得る。
あるポリマに対するプリストレインの量は、電気活性ポリマと、アクチュエータまたは用途において所望されるそのポリマの性能と、に基づく。本発明による幾つかのポリマに関して、1つまたはそれ以上の方向へのプリストレインは−100%〜600%の範囲でよい。例えば、異方性のプリストレインを有したVHBアクリルエラストマに関しては、少なくとも約100%、好ましくは約200〜400%のプリストレインを各方向に使用して良い。一実施形態において、ポリマは、もとの面積の約1.5倍〜50倍の範囲にある係数によってプリストレインされる。適合性の強い方向への作動を強化する目的でプリストレインされた異方性のアクリルに関しては、強化された方向へは約400〜500%のプリストレインを、そして適合性の方向へは約20〜200%のプリストレインを使用して良い。場合によっては、ある1方向へのプリストレインによって別の1方向へのプリストレインが負になるようにプリストレインを加えても良い。例えば、ある1方向へは600%のプリストレインを加え、直交する方向へは−100%のプリストレインを加えても良い。このような場合、プリストレインによる正味面積の変化は一般に正である。
プリストレインは、ポリマ102の他の性質にも影響を及ぼし得る。大きくプリストレインさせると、ポリマの弾性が変化し、粘弾性のロスが小さく剛性が強い体制を得る可能性がある。また、ポリマのなかには、プリストレインによって電気破壊強度を増大させることによって、ポリマ内で使用される電場が増大し、作動圧力および変形を増大させることが可能になるものもある。
プリストレインドポリマの変形を表すために、線ひずみや面ひずみを使用しても良い。ここで、プリストレインドポリマの線ひずみとは、非作動状態と比べた場合の1単位長さ(変形の線に沿った)あたりの変形を指す。本発明によるプリストレインドポリマに関しては、線ひずみ(引張りまたは圧縮)の最大値は少なくとも約50%であるのが一般的である。ポリマの変形は、もちろん上記の最大値より小さくても良く、そのひずみは、印加電圧を調整することによって調整して良い。プリストレインドポリマのなかには、線ひずみの最大値が一般に少なくとも約100%であるものもある。米国ミネソタ州セントポール所在の3Mコーポレーションによって製造されたVHB 4910のようなポリマに関しては、線ひずみの最大値は一般に40〜215%の範囲にある。電気活性ポリマの面ひずみとは、非動作状態から作動状態に移行する際の、単位面積あたりのポリマ平面の面積の変化を指す。この平面は、例えば、図1Aおよび図1Bにおいて方向108,110によって規定された平面である。本発明によるプリストレインドポリマに関しては、面ひずみの最大値として少なくとも約100%が可能である。プリストレインドポリマのなかには、面ひずみの最大値が一般に70〜330%の範囲であるものもある。
一般に、プリストレインされたポリマは、1つまたはそれ以上の物体に固定して良い。各物体は、ポリマのプリストレインを望ましいレベルに維持できる適切な剛性を有して良い。ポリマは、化学的接着、接着層または材料、機械的な取り付け等などの、当該分野において既知の任意の方法にしたがって、1つまたはそれ以上の物体に固定して良い。
本発明によるトランスデューサおよびプリストレインドポリマは、どんな特定のジオメトリまたは線変形にも限定されない。例えば、ポリマおよび電極を、チューブ状やロール状、複数の剛性構造間に取り付けられた伸張されたポリマ、任意のジオメトリ(カーブ状または複雑なものを含む)を有したフレームまたは1つもしくはそれ以上のジョイントを有したフレームに取り付けられた伸張されたポリマなどを含む、任意のジオメトリまたは形状に形成してよい。本発明にしたがったトランスデューサの変形は、1つまたはそれ以上の方向への線膨張および圧縮、曲げ、ポリマを巻く際の軸方向変形、基板に設けられた穴に向かった変形などを含む。トランスデューサの変形は、ポリマに取り付けられたフレームまたは剛性構造が、ポリマにどのような制約を及ぼすかによって影響される。一実施形態では、ポリマより伸び率の小さい可撓性の材料をトランスデューサの一側面に取り付けることによって、作動時にポリマを曲げる。別の一実施形態では、平面からそれて半径方向に変形するトランスデューサをダイヤフラムと称する。図1Eおよび図1Fを参照しながら、ダイヤフラムアクチュエータを詳細に説明する。
本発明の一実施形態にしたがった電気活性ポリマは、テクスチャ加工された表面を有してよい。図1Cは、波状の外形を有した電気活性ポリマ152に関し、テクスチャ加工された表面150を示した図である。テクスチャ加工された表面150は、表面の波154の曲げを使用してポリマ152を変形させることを可能にする。表面の波154の曲げによって、ポリマ152上に方向155に取り付けられた剛性の電極に対し、バルク伸張させるよりも小さい抵抗で方向155への方向的な適合性を提供することができる。テクスチャ加工された表面150は、例えば幅が約0.1マイクロメートル〜40マイクロメートルで深さが約0.1マイクロメートル〜20マイクロメートルである谷および山によって特徴付けられてよい。この場合の波の幅および深さは、ポリマの厚さよりも実質的に小さい。特定の一実施形態では、厚さ200マイクロメートルのポリマ層に対して山および谷の幅は10マイクロメートルで深さは6マイクロメートルである。
一実施形態では、電極などの薄膜状の剛性材料156をポリマ152に取り付けることによって、波状の外形が提供される。製造の際には、作動時に伸張できるよりもさらに大きく電気活性ポリマを伸張させ、その状態のポリマ152表面に薄膜状の剛性材料156を取り付ける。続いて、ポリマ152を弛緩させ、その構造を留めることによって、テクスチャ加工された表面を得る。
一般に、テクスチャ加工された表面は、ポリマ表面の変形によってポリマの変形を可能にする均一でないまたは平滑でない任意の表面トポグラフィを備えてよい。例えば、図1Dは、ランダムなテクスチャを有した粗面161を含む電気活性ポリマ160を示した図である。粗面161は、方向的に適合性でない2次元的な変形を可能にする。したがって、表面トポグラフィの変形は、バルク伸張またはバルク圧縮よりも小さい抵抗で剛性の電極を変形させることを可能にする。ここで、テクスチャ加工された表面を有するプリストレインドポリマの変形が、ポリマの表面変形およびバルク伸張の組み合わせを備えてよいことに、注意する必要がある。
また、ポリマのテクスチャ加工された表面または不均一な表面は、テクスチャ加工された表面の変形に依存する障壁層および/または電極の使用をも可能にする。電極は、ポリマ表面のジオメトリにしたがって曲がる金属を含んで良い。障壁層は、プリストレインドポリマ材料内で局所的な電気破壊が生じた際に、電荷をブロックするために使用してよい。
本発明においてプリストレインドポリマとして使用するのに適した材料は、静電力に応じて変形するか、またはその変形によって電場が変化するような、実質的に絶縁である任意のポリマまたはゴムを含んで良い。このような適切な材料の1つとして、米国カリフォルニア州カーペンテリア所在のNuSilテクノロジーによるNuSil CF19−2186が挙げられる。プリストレインドポリマとしての使用に適した別の代表的な材料は、任意の誘電エラストマポリマ、シリコンラバー、フルオロエラストマ、デラウェア州ウィルミントンのダウコーニング社によるダウコーニング730のようなシリコン、ミネソタ州セントポールの3Mコーポレーションによる4900 VHBアクリルシリーズの任意のアクリルポリマなどである。
本発明にしたがって使用される材料は、市販のポリマである場合が多い。このような市販のポリマとしては、例えば、任意の市販のシリコンエラストマ、ポリウレタン、PVDFコポリマ、そして接着性のエラストマが挙げられる。市販の材料を使用することによって、本発明によるトランスデューサおよび関連のデバイスに対してコスト有効度の高い代替物を提供することができる。市販の材料の使用により、製造の簡略化が可能である。一実施形態では、市販のポリマとして、製造時に光硬化された脂肪族アクリラートの混合物を含んだ市販のアクリルエラストマを使用してよい。アクリルエラストマの弾性は、枝分れした脂肪族を組み合わせ、アクリルポリマ鎖間を架橋することによって得られる。
プリストレインドポリマとして使用される材料は、電気破壊強度が大きいか、(大きい変形または小さい変形に対する)弾性率が小さいか、誘電率が大きいか等などの1つまたはそれ以上の材料特性に基づいて選択して良い。一実施形態において、ポリマは、その弾性率が100MPa以下であるように選択される。別の一実施形態において、ポリマは、その最大作動圧力が約0.05MPa〜約10MPaになるように、好ましくは約0.3MPa〜約3MPaになるように選択される。用途によっては、温度および/または湿度の範囲が広い、繰り返しが可能である、正確である、低クリープである、信頼度や耐性の程度など、1つまたはそれ以上の要望にもとづいて電気活性ポリマが選択される場合もある。
本発明によるプリストレインドポリマに適した作動電圧は、ポリマの寸法(例えば電極間の厚さ)はもちろん、その電気活性ポリマの材料および特性(例えば誘電率)にも依存して変化し得る。例えば、図1Aのポリマ102の作動電場の大きさは、約0V/m〜440MV/mの範囲で変化し得る。作動電圧がこの範囲にあると、約0Pa〜約10MPaの圧力が生じ得る。より大きな力を発揮できるトランスデューサを実現するためには、ポリマの厚さを増加させれば良い。あるいは、複数のポリマ層を使用しても良い。特定のポリマの作動電圧を下げるためには、例えば、誘電率を高めたり、ポリマの厚さを薄くしたり、弾性率を下げたりすれば良い。
本発明によるプリストレインドポリマの厚さは、広い範囲に渡ることが可能である。一実施形態において、ポリマの厚さは約1マイクロメートル〜2ミリメートルの範囲で良い。プリストレインする前の代表的な厚さは、HS3の場合は50〜225マイクロメートル、NuSil CF 19−2196の場合は25〜75マイクロメートル、3M VHB 4900シリーズの任意のアクリルポリマである場合は100〜1000マイクロメートルである。ポリマの厚さは、片方または両方の2次元方向に膜を伸張させることによって薄くすることが可能である。本発明によるプリストレインドポリマは、薄膜として製造および実現して良い場合が多い。このような薄膜の厚さとしては、50マイクロメートル未満が適切である。
3.アクチュエータ
プリストレインドポリマの変形を様々な形で使用することによって、機械エネルギを生成することができる。一般に、本発明による電気活性ポリマは、プリストレインドポリマによって改良された従来のアクチュエータや、1つまたはそれ以上のプリストレインドポリマのために特別に設計されたカスタムアクチュエータを含む、様々な形のアクチュエータにおいて使用して良い。従来のアクチュエータは、エクステンダ、曲がり梁、スタック、ダイヤフラム等などを含む。以下では、本発明にしたがった、幾つかの代表的なカスタムアクチュエータに関して説明する。
図1Eは、プリストレインドポリマ131を含んだダイヤフラムアクチュエータ130の、作動される前における状態を、本発明の一実施形態にしたがって示した横断面図である。プリストレインドポリマ131は、フレーム132に取り付けられている。フレーム132は、円形の穴133を含み、これによって、この円形の穴133の領域に垂直な方向にポリマ131を変形させることが可能になる。ダイヤフラムアクチュエータ130は、ポリマ131の両側に円形電極134,136を含むことによって、ポリマ131の一部分に電圧差を提供する。
電圧が印加されていない図1Eの状態では、プリストレインを行うために、ポリマ131を伸張させてフレーム132に固定している。適切な電圧が電極134,136に印加されると、ポリマの膜131は、図1Fに示すように、フレーム132の平面を離れて膨張する。電極134,136は適合性があるので、プリストレインドポリマ131の変形にともなって形状を変化させる。
ダイヤフラムアクチュエータ130は、平面を挟んで上下両方の方向に膨張することができる。一実施形態では、ポリマ131の下面側141に、ポリマ膜131の膨張に作用するバイアス圧力を含ませることによって、ポリマ膜131を、矢印143(図1F)の方向に向かって上向きに作動させる。別の一実施形態では、少量のシリコンオイルなどの膨張剤を下面側141に加えることによって、ポリマ131を矢印143の方向に向かって膨張させる。例えば、製造時に膨張剤を加えるにあたって、わずかな圧力を下面側141に加えると、ポリマを、1方向に向かって永久的にわずかに変形させることができる。膨張剤によって、ダイヤフラムを、バイアス圧力を使用することなく望ましい方向に作動させ続けることが可能になる。
ダイヤフラムアクチュエータ130が膨張する量は、ポリマ131の材料、印加される電圧の大きさ、プリストレインの大きさ、バイアス圧力の大きさ、電極134,136の適合性などを含む多くの要因に基づいて変化し得る。一実施形態において、ポリマ131は、穴の直径139の約50%以上に相当する高さ137まで変形して、大きく変形した半球状の形を形成することができる。この場合、ポリマ131とフレーム132との間に形成される角度147は90度未満である。
上述のように、電気活性ポリマを1方向に膨張させると、ポアソン効果などによって、第2の方向への収縮応力が生じる。すると、第2の方向の機械的出力を提供するトランスデューサへの機械的出力が減少する。したがって、本発明によるアクチュエータを、ポリマが非出力方向に制約されるように設計して良い。また、アクチュエータを、非出力方向への変形によって機械的出力が改善されるように設計して良い場合もある。
ある2次元方向への変形を使用してもう一方の2次元方向への機械的出力を改善させるアクチュエータの1つとして、バウアクチュエータが挙げられる。図2Aおよび図2Bは、バウアクチュエータ200の作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。バウアクチュエータ200は、可撓性のフレーム202を備えた2次元機構であり、フレーム202は、このフレーム202に取り付けられたポリマ206を機械的に補助することによって、機械的出力を改善させるものである。フレーム202は、ジョイント205において接続された6つの剛性部材204を含む。部材204およびジョイント205は、ある2次元方向208へのポリマの変形を、その方向に垂直な2次元方向210への機械的出力に結合させることによって、機械的な補助を提供する。さらに詳しく言うと、フレーム202は、方向208へのポリマ206の少量の変形が、方向208に垂直な2次元方向210への変位を改善させるように構成される。ポリマ206の相対する面(上面および下面)には、ポリマ206の一部分に電圧差を提供するための電極207(ポリマ206の下面に取り付けられたボトム電極は未図示)が取り付けられている。
ポリマ206は、互いに垂直な2方向へのプリストレインの程度が異なるように構成される。より詳しく言うと、電気活性ポリマ206は、2次元方向208へのひずみが大きく、方向208に垂直な2次元方向210へのひずみが小さいまたは全く無いように構成される。このような異方性のプリストレインは、フレーム202のジオメトリに相対するように施されている。より詳しく言うと、電極207および209によって作動されたポリマは、プリストレインが大きい方向208に収縮する。フレーム202と、部材204によって提供されるレバーアームとによって、ポリマ206の動きに制約が加えられるので、この収縮は、ポリマを垂直な2次元方向210へと変形させるように作用する。したがって、たとえプリストレインの大きい方向208へのポリマ206の変形がわずかであっても、フレーム202を方向210に向かって外側に曲げることができる。このようにして、プリストレインの大きい方向210へのわずかな収縮が、プリストレインの小さい方向208への大きい膨張につながる。
バウアクチュエータ200は、異方性のプリストレインおよびフレーム202による制約を使用して、1方向への収縮を可能にすることによって、機械的な変形を強化し、もう1方向への電気−機械変換を促進させることができる。つまり、バウアクチュエータ200に取り付けられた負荷211(図2B)は、2方向すなわち方向208,210へのポリマ206の変形に結合される。このように、ポリマ206に加えるプリストレインを異方性にし、フレーム202に対して上記ジオメトリを採用することによって、バウアクチュエータ200は、電気活性ポリマを単独で使用する場合と比べて、同じ電気的入力に対し、より大きい機械的変位を生じさせることができる。
バウアクチュエータ200は、ポリマ206に基づいて構成して良い。例えば、フレーム202のジオメトリおよびポリマ206の寸法を、ポリマ206の材料に基づいて適合させて良い。ポリマ206としてHS3シリコンを使用した特定の一実施形態において、ポリマ206は、方向208および方向210にそれぞれ約270%および約−25%だけプリストレインされ、方向208および方向210に関して9:2の長さの比を有することが好ましい。このような構成では、少なくとも約100%の線ひずみを方向210に加えることが可能である。
ポリマ206のプリストレインと、フレーム202によって提供される制約とによって、バウアクチュエータ200は、プリストレインドポリマ206を、より小さい作動電圧で所定の大きさだけ変形させることができる。バウアクチュエータ200は、プリストレインが小さい方向210へは小さい有効弾性率を有することから、フレーム202によって提供される機械的な制約によって、バウアクチュエータ200を、より小さい電圧でより大きく方向210に変形するように作動させることができる。また、方向208に大きくプリストレインさせることによって、ポリマ206の破壊強度が増すことから、バウアクチュエータ200に対し、大きい電圧および大きい変形を加えることが可能になる。
図1Aに関して上述したように、静電力の結果として膨張をはじめたポリマは、膨張を促進する静電圧力が機械的な力によって相殺されるまで膨張を続ける。負荷211をバウアクチュエータ200に取り付けた場合は、負荷211によって提供される機械的な効果が、ポリマ206の力の均衡および変形に影響を及ぼす。例えば、負荷211がバウアクチュエータ200の膨張に抵抗する場合は、負荷がない場合よりもポリマ206の膨張が少なくなる。
一実施形態において、バウアクチュエータ200は、機械的補助を提供して機械的出力を高める目的で追加のコンポーネントを含んで良い。例えば、図2Cに示されるようなバネ220をバウアクチュエータ200に取り付けて、方向210への変形を促進して良い。これらのバネは、バウアクチュエータ200に対して負荷を与えることによって、バネによるバネ力が外側の負荷による抵抗に抗するようにする。バネ220によって、バウアクチュエータ200の変形がいっそう促進される場合もある。一実施形態では、外側にバネ220を設ける代わりにジョイント205内にバネ要素を組み込むことによって、バウアクチュエータ200の変形を促進しても良い。また、変形を促進するためにプリストレインを増大させても良い。また、負荷を、フレーム202の側面をなす剛性部材に結合する(図2Bに示される)のではなく、フレーム202の上部および下部をなす剛性部材204に結合しても良い。図2Bに示すように圧力が印加されると、上部および下部の剛性部材204が互いに近づく方向に収縮されるので、電圧の印加時において、バウアクチュエータ200は、膨張するのではなく典型的な2次元収縮を呈する。
図2A〜2Cのバウアクチュエータ200は、可撓性のフレームと電気活性ポリマとを備えるカスタムアクチュエータの具体例を示すが、フレームのジオメトリや、電気活性ポリマの変位改善のための機械的な補助はすべて、本発明での使用に適している。
ポリマの形状および制約は、変形に影響を及ぼし得る。電気活性ポリマのアスペクト比は、その長さと幅との比として定義される。アスペクト比が大きく(例えばアスペクト比が約4:1以上である)、ポリマがその長さに沿って剛性部材による制約を受ける場合、変形は、幅の方向のみの実質的に1次元となる。
図2Dおよび図2Eは直線運動アクチュエータ230の作動前および作動後における状態を、本発明の特定の一実施形態にしたがって示した図である。直線運動アクチュエータ230は、1方向への機械的出力を提供する2次元機構である。直線運動アクチュエータ230は、幅234よりも実質的に大きい長さ233を有した(例えば、アスペクト比が約4:1以上)ポリマ231を備える。ポリマ231は、その長さ233に沿って、フレームの剛性部材232の相対する2面に取り付けられている。剛性部材232の剛性は、ポリマ231の剛性より大きい。剛性部材232によって提供される幾何学的なエッジ制約が、長さ233に沿った方向236へのポリマの変位を実質的に阻止するので、変形は、ほとんど方向235にのみ促進される。直線運動アクチュエータ230が、異方性のプリストレインを有したポリマ231によって実現される場合、例えば、方向236へのプリストレインの方が方向235へのプリストレインよりも大きい場合などは、ポリマ231の方向236への剛性は方向235へのそれよりも大きく、結果として方向235への変形の方が大きくなる。例えば、このような構成は、異方性のプリストレインを有したアクリルに対して少なくとも約200%の線ひずみを生じ得る。
電気活性ポリマまたはアクチュエータの集合体を機械的に結合することによって、例えば力および/または変位などに関して共通の出力を有した、より大きいアクチュエータを形成しても良い。1集合体内の基本単位として小さな電気活性ポリマを使用することによって、電気エネルギから機械エネルギへの変換を用途に応じて大小させて良い。例えば、複数の直線運動アクチュエータ230を方向235に直列に組み合わせ、一列にならんだ全直線運動アクチュエータの累積変形を有したアクチュエータを形成しても良い。電気エネルギを機械エネルギに変換する場合は、1集合体内において個々にまたは機械的に繋がれた電気活性ポリマを「人工筋肉」と称しても良い。ここでは、人工筋肉は、力の出力および/または変位を1つ有した1つまたはそれ以上のトランスデューサおよび/またはアクチュエータとして定義される。人工筋肉は、ミクロまたはマクロなレベルで実現して良く、ここで説明された任意の1つまたはそれ以上のアクチュエータを備えて良い。
図2Fは、人工筋肉の一例としての、多層アクチュエータ240を、本発明の特定の一実施形態にしたがって示した横断面図である。多層アクチュエータ240は、並列に配置された4つのプリストレインドポリマ241を含み、これらのプリストレインドポリマ241は、同じ変形を有するようにそれぞれ剛性フレーム242に取り付けられている。電極243,244は、各ポリマ241の相対する2面に設けられ、4つのプリストレインドポリマを同時に静電作動させる。多層アクチュエータ240は、個々のポリマ層241の力を累積させたものを出力として提供する。
別の一実施形態では、1つのポリマの代わりに複数の電気活性ポリマ層を使用して、アクチュエータから出力される力または圧力を増大させて良い。例えば、10個の電気活性ポリマを積層させることによって、図1Eのダイヤフラムアクチュエータの圧力の出力を増大させても良い。図2Gは、人工筋肉の別の例としての積層形の多層ダイヤフラムアクチュエータ245を、本発明の一実施形態にしたがって示した図である。積層された多層アクチュエータ245は、互いに積層された3枚のポリマ層246を含み、これらのポリマ層は、接着層247によって取り付けられて良い。接着層247の中には、ポリマ層246を作動させる電極248,249が設けられている。最も外側のポリマ層には剛性の強いプレート250が取り付けられており、このプレートは、積層された多層ダイヤフラムアクチュエータ245が変形するのを可能にする複数の穴251を含むようにパターン形成されている。積層された多層アクチュエータ245は、ポリマ層246を組み合わせることによって、個々のポリマ層246の力を累積させた出力を提供することができる。
本発明による電気活性ポリマは、図2Dおよび図2Eの直線運動アクチュエータ230だけでなく、直線変位を提供する様々なアクチュエータに含ませることが可能である。図2Hは、電気活性ポリマのダイヤフラム256を含んだ線形アクチュエータ255を、本発明の別の一実施形態にしたがって示した図である。この場合は、フレーム261に設けられた穴258内で変形するダイヤフラム256の中央部分に、出力シャフト257が取り付けられている。静電エネルギの作動時および除去時において、出力シャフト257は、矢印259で示されるように変位する。線形アクチュエータ255は、また、出力シャフト257の位置付けを容易にする適合性のバネ要素260を含んでも良い。
別の一実施形態では、本発明によるプリストレインドポリマを巻くまたは折ることによって、作動の際に軸方向に変形するような線形のトランスデューサおよびアクチュエータを形成して良い。電気活性ポリマの製造は、層の枚数を少なくするほど簡単になる場合が多いので、アクチュエータを巻くことによって、大きなポリマ層をコンパクトな形状に効果的に圧縮することができる。巻かれたまたは折られたトランスデューサおよびアクチュエータは、互いに近接する多数のポリマ層を提供するために、1以上の巻かれたまたは折られたポリマ層を含んでも良い。巻かれたまたは折られたアクチュエータは、ロボットの足や指、高応力のグリッパ、汎用の線形アクチュエータなど、線形アクチュエータが使用されるあらゆる用途に対して適用可能である。
図2Iは、シャクトリムシ型アクチュエータ262を、本発明の特定の一実施形態にしたがって示した図である。シャクトリムシ型アクチュエータ262は、円筒状の軸に沿って軸方向に変形する、電極をともなった2枚またはそれ以上のロール状のプリストレインドポリマ層263を含む。シャクトリムシ型アクチュエータ262は、また、金属面268への取り付けおよび取り外しを行うための静電クランプ264,265を含む。静電クランプ264,265は、シャクトリムシ型アクチュエータ262の総合的なストロークを、クランプなしのアクチュエータと比べて増大させることを可能にする。静電クランプ264,265の単位重量あたりのクランプ力は大きいので、シャクトリムシ型アクチュエータ262を使用すると、本発明によるプリストレインドポリマの単位重量あたりの力を保存できるという利点がある。静電クランプ264,265は、接続領域267においてシャクトリムシ型アクチュエータに取り付けられる。シャクトリムシ型アクチュエータのボディ266は、接続領域267を含んでおり、ロール状のポリマ263は、その軸方向に沿って、ある程度の遊びを接続領域267間に有している。一実施形態において、静電クランプ264,265は、静電クランプ264,265から金属面268への電気的短絡を阻止するための絶縁接着剤269を含む。
シャクトリムシ型アクチュエータ262は、6つのステップを経て上方に移動する。ステップ1において、静電クランプ264,265が作動されてポリマ263が弛緩されると、シャクトリムシ型アクチュエータ262は、両端で固定されて移動不能になる。静電クランプは、クランプと金属面268との間に電圧差を加えることによって作動される。ステップ2において、クランプ265が解放される。クランプ264,265の一方を解放すると、シャクトリムシ型アクチュエータ262の両端のうち、解放されたクランプに対応する一端が自由に移動できるようになる。ステップ3において、静電ポリマ263が作動され、シャクトリムシ型アクチュエータ262は上方に伸張される。ステップ4において、クランプ265が作動され、シャクトリムシ型アクチュエータ262は移動不能になる。ステップ5において、クランプ264が解放される。ステップ6において、ポリマ263が弛緩され、シャクトリムシ型アクチュエータ262は収縮する。シャクトリムシ型アクチュエータ262は、ステップ1からステップ6までを周期的に繰り返すことによって上方に移動する。上述したプロセスにおいて、クランプ264,265を逆にすると、シャクトリムシ型アクチュエータ262は逆方向に移動する。
以上では、1つの電気活性ポリマと2つのクランプを使用した場合を例にとってシャクトリムシ型アクチュエータ262を説明したが、複数の電気活性ポリマを使用して、複数セグメントのシャクトリムシ型アクチュエータを実現しても良い。複数セグメントのシャクトリムシ型アクチュエータは、厚さを増すことなくシャクトリムシ型アクチュエータの長さを長くすることを可能にする。2セグメントのシャクトリムシ型アクチュエータは、ロール状のポリマを1つでなく2つ使用し、クランプを2つではなく3つ使用する。一般に、nセグメントのシャクトリムシ型アクチュエータは、n+1個のクランプ間にn個のアクチュエータを備える。
図2Jは、線変形を提供するための伸張膜アクチュエータ270を、本発明の別の一実施形態にしたがって示した図である。伸張膜アクチュエータ270は、1つの穴272を有した剛性フレーム271を含む。プリストレインドポリマ273は、引っ張られた状態でフレーム271に取り付けられて穴272を塞ぐ。剛性バー274は、ポリマ273の中央に取り付けられており、ポリマ273の変形に対応した変位を外に対して提供する。ポリマ273の上面および下面の両方には、適合性の電極対275,276が設けられており、これらの電極対は、剛性バー274の左側および右側にそれぞれ配置される。電極対275が作動されると、電極対275のトップ電極とボトム電極との間およびそれらの附近において、ポリマ273の一部分が膨張され、ポリマ273の他の部分における既存の張力によって、剛性バー274が右側に引っ張られて移動される。反対に、電極対276が作動された場合は、ポリマ273のうち電極対276による影響をうける第2の部分が、ポリマ273の残りの部分と比べて膨張し、剛性バー274を左側に移動させる。電極対275,276を交互に作動させることによって、剛性バー274の総合的なストローク279を効果的に増大させることができる。このアクチュエータのヴァリエーションの1つとして、異方性のプリストレインをポリマに加え、ポリマが剛性バーの変位に垂直な方向に大きなプリストレイン(および剛性)を有するようにすることが挙げられる。別のヴァリエーションは、一方の電極対を排除することである。このヴァリエーションでは、伸張膜アクチュエータ270のストローク279を減少させることによって設計の簡略化を図っている。この場合、除去された電極によって使用されていた部分のポリマは、復元バネのように受身的に応じるようになる。
図2Kは、曲がり梁アクチュエータ280を、本発明の別の一実施形態にしたがって示した図である。曲がり梁アクチュエータ280は、剛性サポート282によって一端に固定されたポリマ281を含み、このポリマ281は、例えば接着層を使用して、ポリイミドまたはマイラーなどの可撓性の薄膜材料283に取り付けられている。可撓性薄膜材料283の弾性率は、ポリマ281の弾性率よりも大きい。作動時には、曲がり梁アクチュエータ280の上面286および下面287の弾性率の差によって、曲がり梁アクチュエータ280が曲げられる。電極284,285は、ポリマ281の相対する2面に取り付けられ、電気エネルギを提供する。曲がり梁アクチュエータ280は、自由度が1の自由端288を含む。自由端288の変形は、自由端288と、剛性サポート282によって固定された端との間に形成される角度の変化によって測定される。図2Lは、90度の曲げ角度を有した状態の曲がり梁アクチュエータ280を示した図である。
曲がり梁アクチュエータ280の最大曲げ角度は、ポリマの材料、アクチュエータの長さ、電極284,285および可撓性薄膜材料283の曲げ剛性などの多くの要因に応じて変化する。ダウコーニングHS3シリコンと、金の電極と、長さが3.5mmのアクティブ領域とを備えた曲がり梁アクチュエータ280の場合は、225度を超える曲げ角度を達成することができる。アクティブ領域の長さが増大すると、曲がり梁アクチュエータ280において達成可能な曲げ角度も増大する。したがって、上記した曲がり梁アクチュエータのアクティブ領域の長さを5mmまで伸ばすと、360度の曲げ角度を達成することが可能になる。
一実施形態において、電極の1つは可撓性の薄膜材料283として作用する。可撓性薄膜材料283として作用する電極としては、金などの、曲げ剛性が小さく且つ引張り剛性が大きい任意の薄い金属が適している。別の一実施形態では、ポリマが局所的に破壊されるのを最小限に抑えるために、電極284,285の一方とポリマ281との間に障壁層を設けている。破壊は、ポリマが印加電圧に耐えられなくなった場所として定義して良い。障壁層は、一般にポリマ281より薄くて且つポリマ281より高誘電率であるので、電圧降下は、主にポリマ281内において生じる。多くの場合において、障壁層の絶縁破壊強度は大きいことが好ましい。
図2Mは、曲がり梁アクチュエータ290を、本発明の別の一実施形態にしたがって示した図である。曲がり梁アクチュエータ290は、剛性サポート296によって一端に固定された上部および下部のプリストレインドポリマ291,292を含む。各ポリマ291,292は、独立して個々に作動して良い。独立した作動は、上部および下部のポリマ291,292にそれぞれ取り付けられたトップ電極293およびボトム電極294を、別々に電気制御することによって行われる。上部および下部の電気活性ポリマ291,292の間には、両方のポリマに接した共通の電極295が設けられている。共通の電極295は、ポリマ層291,292のプリストレインを維持するとともに伸張および曲げを可能にできる十分な剛性を有する。
上側の電極対293,295を使用して上部の電気活性ポリマ291を作動させると、曲がり梁アクチュエータ290は下向きに曲げられる。下側の電極対294,295を使用して下部の電気活性ポリマ292を作動させると、曲がり梁アクチュエータ290は上向きに曲げられる。したがって、上部および下部の電気活性ポリマ291,292を独立して使用することによって、曲がり梁アクチュエータ290を半径方向297に沿って制御することが可能になる。実質的に同じサイズおよび材料を有した上部および下部のポリマ291,292が同時に作動されると、曲がり梁アクチュエータ290は直線方向298に沿って伸張される。半径方向297および直線方向298への動きを制御する能力を組み合わせると、曲がり梁アクチュエータ290は、自由度が2のアクチュエータになる。したがって、上部および下部のポリマ291,292を、別々に作動および制御することによって、曲がり梁アクチュエータ290の自由端299を、円形または楕円形などの複雑な経路で動かすことが可能になる。
4.性能
本発明にしたがったトランスデューサは、電気エネルギと機械エネルギとの間でエネルギの変換を行う。トランスデューサの性能は、トランスデューサ自体の観点から見て特徴付けられる。すなわち、アクチュエータにおけるトランスデューサの性能か、または特定の1用途におけるトランスデューサの性能(例えば、1モータ内に実装されたトランスデューサの数)によって特徴付けられて良い。プリストレインされた本発明にしたがった電気活性ポリマによって、トランスデューサの性能は大きく向上される。
トランスデューサ自体によるトランスデューサ性能の特徴付けは、一般に、ポリマおよび電極の材料特性に関する。電気活性ポリマの性能は、ひずみ、エネルギ密度、作動圧力、作動圧力の密度および効率などのパラメータによって、ポリマのサイズとは別個に記述して良い。ただし、ここでは、以下で説明するようなプリストレインドポリマおよび関連のトランスデューサ性能の特徴付けが、電気活性ポリマおよび電極の種類によって変化し得ることに注意が必要である。
本発明によるプリストレインドポリマは、約0.1〜約100MPaの有効弾性率を有して良い。作動圧力は、作動状態と非作動状態との間における、単位断面積あたりのプリストレインドポリマにかかる力の変化として定義される。本発明によるプリストレインドポリマは、約0〜約100MPaの作動圧力、好ましくは0.1〜10MPaの作動圧力を有して良い場合がある。また、作動状態から非作動状態への移行時における、単位重量あたりの材料の変形のエネルギとして定義される特定の弾性エネルギ密度を使用して、重量が重要な要素を占める電気活性ポリマを記述しても良い。本発明によるプリストレインドポリマは、3J/gを超える特定の弾性エネルギ密度を有して良い。
また、プリストレインドポリマの性能を、ポリマのサイズとは別個に効率によって記述しても良い。電気機械効率は、電気入力エネルギに対する機械出力エネルギの比として定義される。本発明によるプリストレインドポリマを使用すれば、80%を超える電気機械効率を達成することが可能である。プリストレインドポリマがその最大(または最小)作動圧力まで増圧される(または減圧される)までの時間は、応答時間と称される。本発明にしたがったプリストレインドポリマは、広い範囲の応答時間に適応し得る。応答時間は、ポリマのサイズおよび構成に依存して、例えば約0.01ミリ秒〜1秒の範囲で変化し得る。また、高い率で誘起されたプリストレインドポリマを、動作周波数によって特徴付けても良い。一実施形態において、本発明での使用に適した最大動作周波数は約100Hz〜100kHzで良い。動作周波数がこの範囲にあると、本発明によるプリストレインドポリマを、音響関係の様々な用途(例えばスピーカ)で使用することが可能になる。いくつかの実施形態では、本発明によるプリストレインドポリマを共振周波数で動作させることによって、機械的出力の改善を図って良い場合もある。
アクチュエータの性能は、そのアクチュエータに特有な性能パラメータによって記述し得る。例えば、特定のサイズおよび重量を有したアクチュエータの性能は、ストロークや変位、力、アクチュエータの応答時間などのパラメータによって定量して良い。ある用途におけるトランスデューサの性能の特徴付けは、そのトランスデューサが、特定の用途(例えばロボットなど)にどの程度適切に組み込まれているかに関する。ある用途におけるトランスデューサの性能は、その用途に特有な性能パラメータ(例えばロボットの用途における単位重量あたりの力)によって記述して良い。用途に特有なパラメータには、ストロークまたは変位、力、アクチュエータの応答時間、周波数応答、効率等などが含まれる。これらのパラメータは、トランスデューサのサイズ、重量、および/またはデザイン、ならびに用途の種類に依存して良い。
ここで、ある電気活性ポリマに対する所望の材料特性は、アクチュエータまたは用途に応じて変化し得ることに注意が必要である。ある用途において、大きい作動圧力および大きいひずみを生成するためには、高絶縁強さ、高誘電率、低弾性率のうちいずれか1つの特性を備えたプリストレインドポリマを使用して良い。また、ある用途のエネルギ効率を最大化するためには、高体積抵抗率および低機械減衰のいずれか1つの特性を備えたポリマを使用して良い。
5.電極
上述のように、本発明のトランスデューサは、電気活性ポリマを作動させるための1つ以上の電極を備えることが好ましい。概して、本発明での使用に適した電極は、時間的に一定もしくは変化する適切な電圧を電気活性ポリマに供給し、電気活性ポリマから受け取ることができれば、どのような形態および材料であっても良い。一実施形態では、電極は、ポリマの表面に接着されている。ポリマに接着する電極は、適合性で、ポリマの形状変化に適合することが好ましい。電極は、電気活性ポリマの一部分にのみ適用可能であり、電極の形状にしたがってアクティブ領域を規定する。
適合性電極は、1以上の方向に変形することが可能である。これらの方向の一方への適合性電極の変形を表すために、線ひずみを使用しても良い。ここで、適合性電極の線ひずみとは、変形の線に沿った1単位長さあたりの変形を指す。本発明による適合性電極に関しては、少なくとも約50%の最大線ひずみ(引張りまたは圧縮)が可能である。線ひずみの最大値が、一般に少なくとも約100%であるような適合性電極も存在する。もちろん、電極は、最大値以下のひずみで変形することが可能である。一実施形態では、適合性電極は、1以上の高導電領域と1以上の低導電領域を備える「構造化電極」である。
図3は、適合性が1方向性である構造化電極501を、本発明の一実施形態にしたがって示した上面図である。構造化電極501は、電荷分布層503にわたって平行な線上にパターニングされた金属トレース502を含む。金属トレース502と電荷分布層503は両方とも、ポリマのアクティブ領域(図示せず)にわたっている。金属トレース502と電荷分布層503は、ポリマの相対する2面に用いられる。それゆえ、相対する2面に構造化電極501を含むトランスデューサの断面は、上部から下部に向かって、トップ金属トレース、トップ電荷分布層、ポリマ、ボトム電荷分布層、ボトム金属トレースとなっている。ポリマの両表面上の金属トレース502は、それらの間の電気活性ポリマ金属のための電極として働く。別の実施形態では、ボトム電極は、適合性の均一の電極で良い。電荷分布層503は、金属トレース502の間の電荷の分布を促進する。それと共に、高導電性の金属トレース502は、アクティブ領域をわたって低導電性の電荷分布層503へ電荷を迅速に導電する。それにより、トレース502の間のポリマの表面にわたって均一に電荷が分布する。電荷分布層503は、適合性がある。結果として、構造化電極501は、平行な金属トレース502に垂直である適合的な方向506への偏向を許容する。
ポリマ全体の作動は、ポリマの長さ方向に沿った平行の金属トレース502の長さを伸張することと、ポリマの幅に沿って適切な数のトレース502を実装することによって実現されても良い。一実施形態では、金属トレース502は、400マイクロメートルの間隔で離間され、約20〜100ナノメートルの厚さを持っている。トレースの幅は通例、その間隔よりも広い。構造化電極501に対する反応速度全体を高めるためには、金属トレース502の間の距離を小さくすれば良い。金属トレース502は、金、銀、アルミニウム、その他多くの金属、比較的剛性の導電材料を含んで良い。一実施形態では、電気活性ポリマの相対する2面上の金属トレースは、ポリマ層の電荷分布を改善し、直接的な金属間電気破壊を防ぐために、他の金属トレースからずらされている。
金属トレース材料の弾性許容よりも、軸沿いの平行金属トレース502の変形の方が、金属トレース502の損傷につながる可能性が高い。このような損傷を防ぐために、ポリマは、ポリマと金属トレース502の軸沿いの変形を防ぐ剛性構造によって制約されても良い。図2Dおよび2Eの直線運動アクチュエータの剛性部材232は、この点で適切である。別の実施形態において、金属トレース502は、ポリマ500の表面上で少し起伏していても良い。これらの起伏は、軸方向についてトレース502に適合性を付加し、その方向への変形を許す。
一般に、電荷分布層503は、電気活性ポリマよりも導電度が大きいが、金属トレースよりは小さい。電荷分布層503は導電条件が厳しくないため、幅広い種類の材料を用いることができる。例えば、電荷分布層は、カーボンブラック、コロイド銀を含むフルオロエラストマ、少ない割合のヨウ化ナトリウムが濃度負荷された水性ラテックスラバー乳濁液、テトラチアフルバレン/テトラシアノキノジメタン(TTF/TCNQ)電荷移動錯体を含むポリウレタンを含んでよい。これらの材料は、平坦な被覆と共に薄い均一な層を形成することができ、周囲への実質的な電荷漏出の前に金属トレース502の間に電荷を導電するのに十分な表面導電性を持っている。一実施形態では、電荷分布層503の材料は、ポリマのRC時間定数に基づいて選択される。例えば、本発明に適した電荷分布層503の表面抵抗は、106〜1011オームでよい。いくつかの実施形態では、電荷分布層が用いられず、金属トレース502が直接ポリマにパターニングされることにも注意すべきである。この場合、ポリマ表面上の空気もしくは別の化学種は、トレース間の電荷を運ぶのに十分だろう。プラズマエッチングやイオンインプランテーションなどの表面処理によって表面の導電性を高めることにより、効果を高めても良い。
別の実施形態では、複数の金属電極が、ポリマの1つの面に置かれ、ポリマの幅に達している。電極は、幅の方向と垂直な方向に適合性を提供する。2つの近接した金属電極は、それらの間のポリマ材料のための電極として働く。複数の電極はこのように交互になっており、交互の電極は、ポリマの同期活性化を提供するために電気的に通信することが可能である。
図4は、指向的な適合性のない構造化電極の下にあるプリストレインドポリマ510を、本発明の特定の一実施形態にしたがって示した図である。構造化電極は、「ジグザグ」パターンを形成する一定間隔の平行線で電気活性ポリマ510の一表面上に直接パターニングされた金属トレース512を備える。ポリマの相対する2面上の2つの金属トレース512は、それらの間の電気活性ポリマ510材料のための電極として働く。金属トレース512の「ジグザグ」パターンにより、複数の方向514および516へのポリマおよび構造化電極の膨張と収縮が許される。
図3および4に関して記されたような金属トレースの配列を用いることにより、導電度の低い電荷分布層を用いることが可能となる。より詳しく言うと、金属トレース間の間隔が小さくなると、トレース間の材料に必要な導電度が減少する。このように、電荷分布層の使用に適する導電性があるとみなされない材料を用いることができる。例えば、1010オームの表面抵抗を持つポリマが、このように電荷分布層として用いられても良い。特定の一実施形態では、25マイクロメートルの厚さを持ち、約500マイクロメートルの平行金属トレースの間を仕切るポリマ層の構造化電極の一部である電荷分布層として、ラバーが用いられた。電荷分布層に必要な導電度を低減することに加えて、金属トレースの間隔を小さくすることにより、間隔の小さいトレース間の短い距離間で、電荷が電荷分布層を通過すればよくなるため、作動速度が大きくなる。
本発明の構造化電極は、2つの具体的な金属トレースの構成に即して説明されたが、本発明にしたがった構造化電極は、任意の適切な方法でパターニングしても良い。当業者の理解するように、均一に分布された様々な金属トレースのパターンにより、ポリマの表面上に電荷が提供されると共に、1以上の方向の適合性が提供される。いくつかの場合では、構造化電極は、非均一の方法でポリマ表面に取り付けられても良い。ポリマの作動は、適切に近接した1対のパターニングされた金属トレース内のアクティブ領域に限定されていて良いため、電気活性ポリマに特化したアクティブおよび非アクティブ領域は、特注の金属トレースパターニングによって規定されても良い。これらのアクティブおよび非アクティブ領域は、従来の金属トレース蒸着技術にしたがって特注の構造と高分解能に形成されても良い。電気活性ポリマの全表面にわたってこの動作を施すことにより、数多くの特注構造のアクティブ領域を含む構造化電極の特注パターンの結果、構造化電極のパターンにしたがった電気活性ポリマの作動は、特化した不均一のものとなる。
本発明は、主に平坦な電極に即して説明されたが、適合性電極を提供するために、様々な平面でない特徴を持つ「テクスチャ加工された電極」が用いられても良い。図5は、代表的なテクスチャ加工された電極520および521を、本発明の一実施形態にしたがって示した図である。テクスチャ加工された電極520および521は、ポリマ522の変形の結果、テクスチャ加工された電極520および521が2次元および非2次元的に変形するように、電気活性ポリマの相対する2面に取り付けられる。電極520および521の2次元および非2次元的な適合性は、起伏パターンによって提供され、ポリマ522の平面および/または厚さ方向の変形に関して、方向526への適合性が提供される。テクスチャ加工された電極520および521に対して実質的に均一な適合性を提供するために、方向526に関して電気活性ポリマの表面全体にわたって、起伏パターンが実装される。一実施形態では、テクスチャ加工された電極520および521は、適合性を提供するために金属にひびが入ることなしに曲がるような厚さを持つ金属からなる。通例、テクスチャ加工された電極520は、実質的に一定の電場をポリマ522に提供するために、電極520および521の非2次元的な変形がポリマ522の厚さよりも十分に小さくなるように構成される。テクスチャ加工された電極は、1以上の方向に適合性を提供しても良い。特定の一実施形態では、きめの粗いテクスチャ加工された電極が、直交する2次元方向に適合性を提供している。きめの粗いテクスチャ加工された電極は、図1Dのきめの粗い表面と同一の構造を持っても良い。
一実施形態では、本発明の適合性電極は、カーボングリースもしくは銀グリースのような導電性のグリースを含む。導電性グリースは、複数の方向に適合性を提供する。ポリマの導電性を高めるために、粒子を付加しても良い。例えば、炭素粒子をシリコンのようなポリマ結合剤と組み合わせ、弾性が低く導電性が高いカーボングリースを生成しても良い。1以上の材料特性を変えるために、導電性グリースに他の材料を混合しても良い。本発明にしたがった導電性グリースは、少なくとも約100パーセントひずみの変形に適している。
本発明の適合性電極は、さらに、コロイド懸濁液を含んでもよい。コロイド懸濁液は、液媒の中に、グラファイト、銀、金のようなサブマイクロメートルサイズの粒子を含む。一般に、十分に導電性粒子を負荷した任意のコロイド懸濁液が、本発明にしたがった電極として用いられてよい。特定の一実施形態では、コロイドサイズの導電粒子を含む導電性グリースは、硬化して導電性の半固体を形成するコロイド懸濁液を生成するために、シリコン結合剤の中にコロイドサイズの導電性粒子を含む導電性シリコンと混合される。コロイド懸濁液の利点は、液体を薄く均一にコーティングすることのできる噴霧、浸漬コーティング、およびその他の技術によってポリマ表面にパターニングできることである。ポリマと電極の間の接着を容易にするために、結合剤が、電極に加えられてもよい。例えば、水性のラテックスラバーもしくはシリコンが、グラファイトを含むコロイド懸濁液に結合剤として加えられてもよい。
別の実施形態では、適合性電極は、カーボンフィブリルやカーボンナノチューブのようなアスペクト比の大きい導電性材料を用いて実現される。これらのアスペクト比の大きいカーボン材料は、薄い層の中で高い表面導電性を形成することができる。アスペクト比の大きいカーボン材料は、その相互接続性の高さから、比較的低い電極厚さでポリマ表面に高導電性を分け与えてもよい。例えば、アスペクト比の大きくない一般の形状のカーボンからなる電極の厚さは、5〜50マイクロメートルの範囲であり、カーボンフィブリルもしくはカーボンナノチューブ電極からなる電極の厚さは、2〜4マイクロメートル未満である。アクリルおよびその他のポリマ上のカーボンフィブリルおよびカーボンナノチューブ電極については、100%をはるかに上回る複数方向への領域拡張が適している。アスペクト比の大きいカーボン材料は、電気活性ポリマ層との接着力を増すためにポリマ結合剤を使用してもよい。ポリマ結合剤を用いることにより、或る特定の電気活性ポリマ層との接着と、ポリマの弾性的および機械的特性に基づいて、或る特定の結合剤を選択できるという利点がある。
一実施形態では、アスペクト比の大きいカーボン電極は、電極の不透明度がポリマの変形にしたがって変更可能なように十分に薄く製造されて良い。例えば、電極は、電極が2次元的な膨張の際に不透明から半透明に変化するように十分に薄く造られても良い。このように電極の不透明度を操作することにより、以下に説明するように、本発明のトランスデューサが多くの様々な光学的用途に用いられてもよい。
別の実施形態では、イオンによる導電性材料の混合物が、適合性電極に用いられても良い。これは、例えば、ゼラチン内のグリセロールもしくは塩、ヨウ素添加天然ゴム、ヨウ化カリウムのような有機塩を加えた水性乳濁液のような水性ポリマ材料を含んでもよい。水性電極に十分に接着できない疎水性の電気活性ポリマについては、接着性を高めるために、ポリマ表面が、プラズマエッチング、もしくはグラファイトやカーボンブラックのような微粉によって前処理されても良い。
本発明の電極に用いられる材料は、大幅に変わっても良い。電極に用いられる適切な材料は、グラファイト、カーボンブラック、コロイド懸濁液、銀および金を含む薄い金属、銀およびカーボンで満たされたゲルおよびポリマ、イオンもしくは電子工学的に導電性を持つポリマを含む。 特定の一実施形態では、本発明での使用に適切な電極は、ペンシルベニア州フィラデルフィアのストックウェルラバー社によって生産されるストックウェルRTV60‐CONのように、シリコンラバー結合剤の中に80%のカーボングリースと20%のカーボンブラックを含むものである。カーボングリースは、ジョージア州ケニソーのケムトロニクス社によって生産されるサーキットワークス7200のような種類のものである。導電性グリースは、さらに、ゲル状の導電性グリースを提供するために、ニューヨークのジェネラル・エレクトリック・オブ・ウォーターフォード社によって生産されるシリコンエラストマRTV118のようなエラストマと混合されても良い。
或る電極材料が、特定のポリマとは上手く機能し、他のポリマとは上手く機能しない場合があることが理解される。例えば、カーボンフィブリルは、アクリルエラストマポリマとは上手く機能するが、シリコンポリマでは上手く機能しない。ほとんどのトランスデューサについて、適合性電極に関する所望の特性は、低弾性率、低機械的減衰、低表面抵抗、均一な抵抗、化学的および環境的安定性、電気活性ポリマとの化学的互換性、電気活性ポリマへの良好な接着性、滑らかな表面を形成する能力のいずれか一つを含むだろう。いくつかの場合では、電極材料が、製造中の正確なパターニングに適していることが望ましいだろう。例えば、適合性電極は、ポリマ上に噴霧コーティングされて良い。この場合、噴霧コーティングに利点となる材料特性が望ましい。いくつかの場合、本発明のトランスデューサは、2つの異なる種類の電極を実装しても良い。例えば、本発明のダイヤフラムアクチュエータは、上面に取り付けられた構造化電極と、下面側に蒸着されたアスペクト比の大きいカーボン材料とを備えても良い。
電子ドライバは、電極に接続される。電気活性ポリマに供給される電圧は、用途の詳細によって異なるだろう。一実施形態では、本発明のトランスデューサは、DCバイアス電圧付近に印加電圧を調節することによって電気的に駆動される。バイアス電圧付近に調節することにより、印加電圧に対するトランスデューサの感度と線形性が改善される。例えば、オーディオに用いられるトランスデューサは、約750〜2000ボルトDC範囲のバイアス電圧の頂点に関するピークツーピーク電圧200〜1000ボルトまでの信号によって駆動されて良い。
6.用途
本発明は、ミクロおよびマクロスケール両方で、非常に様々なアクチュエータ設計に実装可能なトランスデューサを含むため、本発明は、電気的エネルギが機械的エネルギに変換される幅広い用途に用いることが可能である。以下は、上述のアクチュエータの一部に関するいくつかの代表的な用途である。一般に、本発明のトランスデューサとアクチュエータは、機械的エネルギから電気的エネルギへの変換を必要とする任意の用途に用いることができる。
上述のように、独立したもしくは機械的に集合体に組み込まれた電気活性ポリマは、人工筋肉と呼ぶことができる。人工筋肉という用語自体は、これらのアクチュエータが、生物的に刺激を与えられるロボットもしくは生物医学的な用途のように(哺乳類その他の)筋肉の複製を用いることが望ましい用途での利用に適していることを示唆する。例えば、義肢、外骨格、人工心臓のような用途に、本発明のプリストレインドポリマが役立つかもしれない。電気活性ポリマのサイズ拡張性と、集合体内で任意の数のトランスデューサもしくはポリマアクチュエータを用いる能力により、本発明にしたがった人工筋肉は、生物的な同等物よりも広い範囲で用いることができる。本発明のトランスデューサおよびアクチュエータは、生物的な同等物よりもはるかに広い動作範囲を持つため、本発明は、実際の筋肉に相当する動作を持つ人工筋肉に限定されず、実際の筋肉にはない動作を必要とする用途を含んでも良い。
人工筋肉の一例では、直線運動アクチュエータの集合体は、互いに折り重なり、各ポリマの向かい合った端にある2つの剛性プレートに取り付けられた2つ以上のプリストレインドポリマの層を含む。電極は、各ポリマ層の間の中央に封入されている。集合体の中の直線運動アクチュエータはすべて、剛性プレートによって提供される幾何学的な制約と、異方性のプリストレインを利用して、作動方向のポリマの変形を制限できる。層構造の利点は、必要な数の電気活性ポリマを平行に積み上げれば、所望の力を生み出すことができる点である。さらに、この直線運動アクチュエータの構成のストロークは、同様の直線運動アクチュエータを直列に加えることによって増大されても良い。
ミクロの分野では、プリストレインポリマは、数マイクロメートル〜数ミリメートルの範囲で良く、数マイクロメートル〜数百マイクロメートルが好ましい。マイクロプリストレインドポリマは、インクジェット、作動バルブ、マイクロポンプ、シャクトリムシ型アクチュエータ、ポインティングミラー、サウンドジェネレータ、マイクロクランプ、マイクロロボットなどの用途に非常に適している。マイクロロボットでの用途は、マイクロロボットの脚、握るための手段、CCDカメラ用のポインタアクチュエータ、マイクロ溶接および修理用のワイヤ供給装置、固定した位置を保持するためのクランピングアクチュエータ、正確な距離にわたってデータを伝送するための超音波アクチュエータを含む。他の用途では、ダイヤフラムアクチュエータが、単一の表面上で2次元的に構成された同様の電気活性ポリマダイヤフラムの配列内に実装されても良い。例えば、配列は、各々が2次元構成に構成された150マイクロメートル直系のダイヤフラム62個を含んでも良い。一実施形態では、ダイヤフラムアクチュエータの配列は、シリコンウエハ上に形成されても良い。このように生成されたダイヤフラムアクチュエータの配列は、例えば、各々が60〜150マイクロメートルの直径を持つ5〜10,000もしくはそれ以上のダイヤフラムを含んでも良い。その配列は、各ダイヤフラムに対して適切に離間した穴を持つグリッド板に配置されても良い。
マクロの分野では、上述のアクチュエータ各々が、それ自身の用途に非常に適している。例えば、図2Iのシャクトリムシ型アクチュエータは、直径2cm以下のパイプ内を進むことのできる小型ロボットでの利用に適している。他のアクチュエータは、例えば、ロボット工学、ソレノイド、サウンドジェネレータ、線形アクチュエータ、航空宇宙用アクチュエータ、一般的な自動化などの用途に適している。
別の実施形態では、本発明のトランスデューサは、光学的調節デバイスや光学スイッチとして用いられる。そのトランスデューサは、変形に応じて不透明度が変化する電極を備えている。透明もしくは実質的に半透明なプリストレインドポリマが、不透明度の変化する電極に取り付けられており、デバイスの不透明度を調節するために、ポリマの変形が用いられる。光学スイッチの場合、不透明度の変化するトランスデューサが、光センサと通信する光源を遮る。それゆえ、透明のポリマが変形することにより、不透明度の変化する電極が変形、光センサに影響を与える。特定の一実施形態では、不透明度の変化する電極は、電極領域が増大しフィブリル密度が減少するにつれて不透明度が下がるカーボンフィブリルもしくはカーボンナノチューブを含む。別の特定の実施形態では、電気活性ポリマと不透明度の変化する電極からなる光学的調節デバイスは、そのデバイスを通って伝送された光の量を正確に調節するよう設計されても良い。
ダイヤフラムアクチュエータは、ポンプ、バルブなどとして用いられても良い。一実施形態では、プリストレインドポリマを備えたダイヤフラムアクチュエータは、ポンプとしての利用に適している。ポンプの動作は、ポリマの作動を繰り返すことにより生み出される。本発明にしたがった電気活性ポリマポンプは、ミクロおよびマクロスケール両方に実装可能である。例えば、ダイヤフラムは、約150マイクロメートル〜約2センチメートルの範囲の直径を持つポンプとして使用可能である。これらのポンプは、100%を超えて歪んだポリマを含んでも良く、20kPa以上の圧力を生み出すことが可能である。
図6は、ダイヤフラムポンプ540および542を含んだ2段式のカスケード式ポンピングシステムを、本発明の特定の一実施形態にしたがって示した図である。ダイヤフラムポンプ540および542は、フレーム545および547に取り付けられたプリストレインドポリマ544および546を含む。ポリマ544および546はそれぞれ、フレーム545および547の穴548および550内で、穴548および550の面に垂直の方向へ変形する。ポリマ544および546に沿ったフレーム545および547は、空洞551および552を決定する。ポンプ540は、空洞551方向へのバイアスをダイヤフラム544に提供するためのバネ560を備えるプランジャ553を含む。
1方向バルブ555は、空洞551への液体もしくは気体の流入を許可する。1方向バルブ556は、空洞551から空洞552への液体もしくは気体の流出を許可する。さらに、1方向バルブ558は、空洞552からの液体もしくは気体の流出を許可する。ポリマ544および546の作動にあたって、ポリマが順に変形、空洞551および552内の圧力がそれぞれ変化する。それにより、1方向バルブ555から空洞551へ、バルブ556から空洞552へ、バルブ558の外へと液体もしくは気体が移動する。
図6の2段式のカスケード式ポンピングシステムでは、ダイヤフラムポンプ542は、ダイヤフラムポンプ540からの圧力の掛かった出力がポンプ542にバイアスをかけるため、バイアスを含まない。一実施形態では、ダイヤフラムポンプのカスケード配列における第1のポンプのみが、バイアス圧力、もしくは自吸のための他の機構を用いる。いくつかの実施形態では、或る配列で設けられたダイヤフラムポンプは、ポンプ効率を高めるために、電子計時によって提供された電圧を用いても良い。図6に示された実施形態では、ポリマ544および546は、最良の動作をするために同時に作動される。カスケード内にさらに多くのダイヤフラムポンプを備える別の実施形態では、異なるアクチュエータ用の電子計時は、1つのポンプが空洞の容積を縮小すると共に配列内の(1方向バルブによって連結する)次のポンプが拡張するように理想的に設定される。特定の一実施形態では、ダイヤフラムポンプ540は、40ml/分の速度と約1kPaの圧力で気体を供給し、ダイヤフラムポンプ542は、実質的に同じ流速で気体を供給するが、圧力は2.5kPaに増大する。
図2K〜2Mに関して説明されたような曲がり梁アクチュエータは、ファン、電気スイッチおよびリレー、光スキャナなどの様々な工業用および航空宇宙用のデバイスおよび用途にミクロおよびマクロレベル両方で用いることができる光スキャナとして用いられる曲がり梁アクチュエータについては、アルミ処理したマイラのような反射面は、曲がり梁アクチュエータの自由端に接着可能である。より詳細には、曲がり梁が作動されている際には光が反射され、曲がり梁が停止している際には光が通過する。次に、反射体は、アクチュエータの変形にしたがってアークもしくはラインを形成するために、入射光を反射し、スキャンされたビームを形成するために用いられても良い。曲がり梁アクチュエータの配列は、さらに、表面上の熱伝達および/または光の吸収を制御するための「スマートなファー」として、低プロフィルのスピーカと振動サプレッサに対して表面の空気の流れを制御するために、フラットパネルディスプレイに用いられても良いし、物を動かすために調和して動く繊毛として機能しても良い。
管状もしくは多層のシリンダに巻かれたポリマおよびポリマ膜は、作動の際に軸方向に伸張するピストンとして実装されても良い。そのようなアクチュエータは、油圧もしくは空気圧ピストンと類似しており、これらの伝統的な形の線変形を用いるデバイスもしくは用途すべてに実装可能である。
電気活性ポリマアクチュエータは、さらに、サウンドジェネレータ、音響スピーカ、インクジェットプリンタ、高速MEMSスイッチなどを含む様々な用途に対して高速で動作しても良い。特定の一実施形態では、電気活性ポリマダイヤフラムは、光スキャナとして用いられる。より詳細には、鏡付き湾曲部分を提供するために、5mm直径の電気活性ポリマダイヤフラムを押し下げる湾曲部分に鏡を設置しても良い。約190〜300ボルトの範囲の電圧と約30〜300Hzの範囲の周波数により、約10〜30度のスキャン角度で画像の良好なスキャニングが実現可能である。また、さらに大きいスキャン角度(例えば、90度)は、400〜500Vの範囲の電圧を用いることにより適応される。さらに、より高い周波数が、より堅い鏡付き湾曲部分と共に用いられても良い。
7.製造
プリストレインドポリマは、幅広い材料の様々なアクチュエータの設計において、そして多様な用途において、ミクロおよびマクロのスケールの両方で実装可能なため、本発明において使用される製造プロセスも、実に多様である。本発明の一形態は、1つまたはそれ以上のプリストレインポリマを有した電気機械デバイスを製造する方法を提供する。
図7Aは、少なくとも1つの電気活性ポリマ層を有した電気機械デバイスを製造するためのプロセスの流れ600を、本発明の一実施形態にしたがって示したフローチャートである。本発明にしたがったプロセスは、いくつかの追加のステップを含んでも良いが、本発明を不明瞭にすることを避けるため、説明も図示もしていない。本発明の製造プロセスは、マイクロ電子機器や電子技術の製造において用いられている市販のポリマおよび技術のような従来の材料および技術を含む場合もある。例えば、マイクロダイヤフラムアクチュエータは、穴を形成してポリマおよび電極を取り付ける従来の技術を用いてシリコン上に形成されても良い。
プロセスの流れ600は、ポリマを受け取るもしくは製造することにより始まる(602)。ポリマは、いくつかの方法にしたがって受け取られても良いし製造されても良い。一実施形態では、ポリマは、市販のアクリルエラストマ膜のような市販の製品である。別の実施形態では、ポリマは、鋳造、浸漬、回転塗布、吹き付けの1つによって生産された膜である。一実施形態では、ポリマ全体に最大の電場が印加されることを危うくすることにより性能を下げる厚さのばらつきと他の欠陥すべてを最小限にするように、ポリマが生産される。
回転塗布は通例、剛性基板にポリマ混合物を塗布する工程と、回転させて所望の厚さにする工程とを含む。ポリマ混合物は、ポリマ、硬化剤、揮発性の分散剤もしくは溶媒を含んで良い。分散剤の量、分散剤の揮発性、回転速度は、所望のポリマを生産するために変更可能である。例えば、ポリウレタン膜は、ポリウレタンおよびテトラヒドロフラン(THF)もしくはシクロヘキサノンの溶液内で回転塗布されて良い。シリコン基板の場合、ポリマは、アルミ処理したプラスチックもしくは炭化ケイ素上に回転塗布されて良い。アルミニウムと炭化ケイ素は、適切なエッチング液によって実質的に除去される犠牲層を形成する。1マイクロメートル厚の範囲の膜は、このように回転塗布によって生産されても良い。シリコンなどのポリマ膜の回転塗布は、ポリメタクリル酸メチルもしくはテフロン(登録商標)のような滑らかな非固着性のプラスチック基板上に施されても良い。次いで、ポリマ膜は、機械的なはく離工程によって、もしくはアルコールやその他の適切なはく離剤を用いて、はく離されて良い。回転塗布は、さらに、10〜750マイクロメートルの範囲の厚いポリマの生産にも適している。いくつかの場合では、ポリマ混合物は、工業用ポリマに用いられている充填物、微粒子、色素などの異物を取り除くために、回転塗布前に遠心分離されてもよい。遠心分離の効果を増大し、厚さの一貫性を改善するために、ポリマは、粘性を下げるよう溶媒で希釈されても良い。例えば、シリコンは、ナフサ内に分散されても良い。
次いで、ポリマは、1以上の方向にプリストレインされる(604)。一実施形態では、ポリマを1以上の方向へ伸張し、歪んだ状態でそれを1以上の固形部材(例えば、剛性プレート)に固定することにより、プリストレインが実現される。プリストレインを維持するための別の技術では、1つ以上の補強材を用いる。補強材は、プリストレインされた状態、例えば、伸張された状態のポリマ上に配置された長い剛性の構造である。補強材は、それらの軸方向のプリストレインを維持する。補強材は、トランスデューサの指向的な適合性を実現するために平行もしくはその他の構成で配置されて良い。補強材の軸方向の剛性が増すと、プリストレイン方向へのポリマの剛性が増すだけでなく、補強材によって提供される剛性も増すことに注意されたい。
プリストレインドポリマの表面は、テクスチャ加工されても良い。一実施形態では、作動時に伸張できるよりもさらに大きくポリマを伸張させ、その状態のポリマ表面に薄膜状の硬い材料を蒸着する。例えば、硬い材料は、電気活性ポリマが伸張されている間に硬化されたポリマでも良い。硬化の後、電気活性ポリマは緩められ、構造が曲がって、テクスチャ加工された表面を提供する。硬い材料の厚さは、サブマイクロメートルのレベルを含む任意のスケールのテクスチャを提供するために変更されても良い。別の実施形態では、テクスチャ加工された表面は反応性イオンエッチング(RIE)によって生成されても良い。例えば、RIEは、90%の四フッ化炭素と10%の酸素を含むRIEガスを用いてシリコンを含むプリストレインドポリマに対して施され、深さ4〜5マイクロメートルの山と谷を持つ表面を形成する。
次いで、1つ以上の電極がポリマ上に形成される(606)。上述のRIEによって修正されたシリコンポリマについては、テクスチャ加工された電極を提供するために、RIEテクスチャ加工表面に金の薄層がスパッタ蒸着されても良い。別の実施形態では、1つ以上のグラファイト電極が、ステンシルを用いてパターニングされ蒸着されても良い。導電性シリコンと混合された導電性グリースを含む電極は、導電性グリースと硬化していない導電性シリコンを溶媒に溶かすことによって製造されても良い。次いで、溶液は、電気活性ポリマ材料の上に噴霧されて良く、或る特定のパターンを実現するためにマスクもしくはステンシルを含んでも良い。
図3および4の構造化電極の金属トレースは、ポリマもしくは電荷分布層の上部にフォトリソグラフィによってパターニングされて良い。例えば、金の層は、金にフォトレジストを蒸着する前にスパッタ蒸着される。フォトレジストと金は、従来のフォトリソグラフィ技術、例えば、マスクを用いた後にフォトレジストを除去するために1以上の洗浄を行う工程によってパターニングされても良い。ポリマと金属トレースの間に付加された電荷分布層は、例えば、回転塗布によって蒸着されても良い。
特定の一実施形態では、構造化電極は、毎分約150オングストロームで(所望の厚さに応じて)約2〜3分間、金をスパッタ蒸着することにより、ポリマ上に形成される。次いで、コネチカット州ノーウォークのアーチケミカルズ社によって提供されているようなHPR506フォトレジストが、約500〜1500rpmで約20〜30秒、金の上に回転塗布された後に、摂氏約90度で焼かれる。次いで、フォトレジストの紫外線への曝露と現像の前に、マスクが塗布され、フォトレジストのマスクされていない部分が除去される。次いで、金がエッチングされ、膜は洗浄される。残りのフォトレジストは、紫外線への曝露、現像、洗浄によって除去される。次いで、金トレースは、ひずみ耐性を高めるために伸張されて良い。
本発明のテクスチャ加工された電極もまた、フォトリソグラフィによってパターニングされて良い。この場合、フォトレジストは、プリストレインドポリマ上に蒸着され、マスクを用いてパターニングされる。プラズマエッチングは、所望のパターンでマスクによって保護されていない電気活性ポリマの一部を除去することができる。続いて、マスクは、適切なウェットエッチングによって除去できる。次いで、ポリマの活性表面は、例えば、スパッタリングによって蒸着された金の薄層で被覆されても良い。
トランスデューサは、1つ以上のポリマ層と電極を含んでおり、用途に応じてパッケージングされる(608)。また、パッケージングは、機械的につながった、もしくは複数の層として重ねられた複数のトランスデューサのアセンブリを含んでも良い。さらに、トランスデューサへの機械的および電気的接続が、用途に応じて形成されて良い。
本発明は、さらに、複数のプリストレインポリマ層を有した電気機械デバイスを製造する代替方法を提供する。一実施形態では、電気機械デバイスを製造するプロセスが、ポリマ層を取得もしくは製造することによって始まる。次いで、ポリマは、所望のプリストレインに伸張され、第1の剛性フレームに取り付けられる。アクティブ領域を規定し、電気的接続を確立するために、ポリマの両側に次の電極が蒸着される。電極は、マスクを通しての噴霧コーティングのような様々な従来の技術によってパターニングされて良い。必要ならば、次いで、第2のポリマ層が第2のフレーム上に伸張される。次いで、この第2のポリマ層の上に電極がパターニングされる。次いで、第2のポリマ層は、それぞれのフレームを積み重ねることにより第1の層に接続される。必要ならば、2つの層および電極を接着するために、適切な適合性接着剤の層が用いられても良い。フレームのサイズは、ポリマ層が密接に接触することを妨げないように選択される。妨害が生じる場合には、例えば、第1のフレームの周囲のポリマ層を切除することにより、第2のフレームを除去することが望ましい。必要ならば、電極を備える第3のポリマ層が、第1の層に第2の層が付加された方法と同様にして追加されても良い。この手順は、所望の数の層に達するまで継続して良い。
次いで、剛性フレーム、剛性部材、もしくはその他の電気的および機械的なコネクタが、例えば、接着によってポリマ層に取り付けられる。必要ならば、次いで、第1のフレームからポリマが除去されても良い。いくつかの場合では、第1のフレームが、最後のアクチュエータの構造部として働いても良い。例えば、第1のフレームは、ダイヤフラムアクチュエータの配列を形成するために穴の配列であっても良い。
図7B〜図7Fは、複数の電気活性ポリマ層を有した電気機械デバイス640を製造するための第2のプロセスを、本発明の別の実施形態にしたがって示した図である。本発明にしたがったプロセスは、いくつかの追加のステップを含んでも良いが、本発明を不明瞭にすることを避けるため、説明も図示もしていない。そのプロセスは、例えば、ポリメタクリル酸メチル(PMMA)ディスク上にポリマを回転塗布する工程と、ポリマを伸張する(図7B)工程と、剛性基板624に取り付ける工程によって、適切な剛性基板624上にプリストレインドポリマ622を形成することにより始まる。ポリマ622が硬化された後、ポリマ622の露出面626上に、電極625がパターニングされる。次いで、ポリイミド、マイラ、アセテートの内の1つを含む可撓性の膜のような固形部材627が、適切な接着剤628で電気活性ポリマ622上に蒸着される(図7C)。
次いで、剛性基板624は、電気活性ポリマ622からはく離される(図7D)。はく離を促進するために、イソプロピルアルコールのようなはく離剤が用いられても良い。次いで、ポリマ622のあらかじめ露出されていない面に、電極629がパターニングされる。次いで、剛性基板631に取り付けられた別の電気活性ポリマ層630に、アセンブリが接着される。ポリマ層622および630は、例えば、GE RTV118シリコンを含む接着層632によって接着されても良い。次いで、剛性基板631がポリマ630からはく離され、ポリマ630の利用可能な面634に電極633がパターニングされる。追加のポリマ層が必要であれば、ポリマ層を追加し、剛性基板を除去し、電極を追加するステップを、所望の数のポリマ層を形成するまで繰り返せば良い。ポリマ層635は、このように追加されたものである。デバイス640の内部の層にある電極への電気の伝達を促進するために、金属ピンを構造内に貫通させて、各層の電極と接触させても良い。
次いで、特定のアクチュエータによって必要とされるフレームもしくは機械的接続を提供するための必要に応じて、固形部材627がパターニングもしくは除去されても良い。一実施形態では、ダイヤフラムアクチュエータは、適切なマスクもしくはエッチング技術を用いて、電気機械デバイス640にアクティブ領域を提供する穴636を形成するために固形部材627をパターニングすることにより形成されても良い。別の実施形態では、アクティブ領域が広くなく、損傷なしにポリマのアクティブ領域に電極を追加できる場合には、固形部材627は、ポリマ622への取り付け前に穴636によってパターニングされても良い。
図7B〜Fのプロセスについては、剛性基板624は通例、可撓性の電気活性ポリマをはく離することにより電気活性ポリマ622からはく離される。はく離は、実質的に平面のプロフィルを持つ電気活性ポリマを含むデバイスを製造するのに適している。別の実施形態では、はく離を容易にするために、ポリマもしくは電極と剛性基板との間に、犠牲層が用いられても良い。犠牲層を用いると、犠牲層をエッチング除去することにより、ポリマ、電極、取り付けアセンブリを剛性基板からはく離することができる。例えば、アルミニウムと銀を含む金属は、犠牲層としての使用に適している。金属を用いると、ポリマ層に影響を与えない液体によって、犠牲層をエッチング除去することができる。金属の犠牲層は、さらに、電気機械デバイス640の他の構造要素のためのフレームやコネクタを提供するために、様々なマスキング技術によって容易にパターニングされることが可能である。犠牲層は、さらに、例えば、管状の剛性基板を用いるような、平面でないプロフィルを持つトランスデューサを備えるデバイスの製造に用いられても良い。幾何学的に複雑なトランスデューサについては、複雑な形状を形成するために、浸漬コーティングと組み合わせて犠牲層が用いられても良い。
いくつかの特定の例にしたがってプリストレインドポリマの製造に関して簡単に説明したが、本発明の製造プロセスおよび技術は、上述の任意のアクチュエータもしくは用途に応じて変化しても良い。例えば、特定の一実施形態にしたがってダイヤフラムアクチュエータを製造するプロセスは、構造化電極がポリマ上に製造される前に基板上にポリマを回転塗布する工程を含んでも良い。次いで、ポリマが伸張され、各ダイヤフラムアクチュエータのアクティブ領域サイズの1つ以上の穴を含む剛性フレームが、構造化電極の重複部分すべてを含むプリストレインドポリマに接着される。別の実施形態では、例えば、基板がシリコンである場合に、別々の剛性フレームを用いる代わりに、基板内に穴がエッチングされる。次いで、基板がポリマからはく離され、ポリマの下面側に電極が取り付けられる。
8.結論
本発明は、いくつかの好ましい実施形態に即して説明され、簡単のために省略したが、本発明の範囲内の変更、置換、等価物が存在する。例えば、本発明は、様々な多数の応用材料の電極に即して説明されたが、本発明は、これらの材料に限定されず、空気を電極として備える場合もある。したがって、本発明の範囲は、添付の請求項を参照して決定されるべきである。
100 トランスデューサ
102 ポリマ
104 トップ電極
106 ボトム電極
108 方向
110 方向
130 ダイヤフラムアクチュエータ
131 プリストレインドポリマ
132 フレーム
133 円形の穴
134 円形電極
136 円形電極
137 高さ
139 穴の直径
141 下面側
143 矢印
147 角度
150 テクスチャ加工された表面
152 電気活性ポリマ
154 表面の波
155 方向
156 剛性材料
160 電気活性ポリマ
161 粗面
200 バウアクチュエータ
202 フレーム
204 剛体部材
205 ジョイント
206 ポリマ
207 電極
208 方向
210 方向
211 負荷
220 バネ
230 直線運動アクチュエータ
231 ポリマ
232 剛体部材
233 長さ
234 幅
235 方向
236 方向
240 多層アクチュエータ
241 プリストレインドポリマ
242 剛性フレーム
243 電極
244 電極
245 多層ダイヤフラムアクチュエータ
246 ポリマ層
247 接着層
248 電極
249 電極
250 プレート
251 穴
255 線形アクチュエータ
256 ダイヤフラム
257 出力シャフト
258 穴
259 矢印
260 バネ要素
261 フレーム
262 シャクトリムシ型アクチュエータ
263 ポリマ層
264 静電クランプ
265 静電クランプ
266 ボディ
267 接続領域
268 金属面
269 絶縁接着剤
270 伸張膜アクチュエータ
271 剛性フレーム
272 穴
273 プリストレインドポリマ
274 剛体バー
275 電極対
276 電極対
279 ストローク
280 曲がり梁アクチュエータ
282 剛体サポート
281 ポリマ
283 薄膜材料
284 電極
285 電極
286 上面
287 下面
288 自由端
290 曲がり梁アクチュエータ
291 プリストレインドポリマ
292 プリストレインドポリマ
293 トップ電極
294 ボトム電極
295 電極
296 剛体サポート
297 半径方向
298 直線方向
299 自由端
500 ポリマ
501 構造化電極
502 金属トレース
503 電荷分布層
510 プリストレインドポリマ
512 金属トレース
514 方向
516 方向
520 テクスチャ加工された電極
521 テクスチャ加工された電極
522 ポリマ
526 方向
540 ダイヤフラムポンプ
542 ダイヤフラムポンプ
544 プリストレインドポリマ
545 フレーム
546 プリストレインドポリマ
547 フレーム
548 穴
550 穴
551 空洞
552 空洞
553 プランジャ
555 1方向バルブ
556 1方向バルブ
558 1方向バルブ
560 バネ
622 プリストレインドポリマ
624 剛性基板
625 電極
626 露出面
627 固形部材
628 接着剤
629 電極
630 電気活性ポリマ層
631 剛性基板
632 接着層
633 電極
634 利用可能な面
635 ポリマ層
636 穴
640 電気機械デバイス

Claims (3)

  1. 電気活性ポリマを用いたトランスデューサであって、
    100MPa未満の弾性率を有し、均一でない第1の表面および均一でない第2の表面を備える板状のプリストレインド電気活性ポリマと、
    前記プリストレインド電気活性ポリマの前記第1の表面上に、前記第1の表面と平行に形状が適合するように配置されている剛性の第1の電極と、
    前記プリストレインド電気活性ポリマの前記均一でない第2の表面上に、前記第2の表面に対して平行に形状が適合するように配置されている第2の電極と、
    を備え、
    前記プリストレインド電気活性ポリマの前記均一でない第1の表面は、約0.1μm〜約40μmの幅と、約0.1μm〜約20μmの深さを有する谷および山によって特徴付けられる波状形状を備え
    記第1の電極は、前記プリストレインド電気活性ポリマの前記第1の表面上の前記谷および山と適合する谷および山を備えた形状を有し、
    前記プリストレインド電気活性ポリマの前記均一でない第2の表面は、約0.1μm〜約40μmの幅と、約0.1μm〜約20μmの深さを有する谷および山によって特徴付けられる波状形状を備え、
    前記第2の電極は、前記プリストレインド電気活性ポリマの前記第2の表面上の前記谷および山と適合する谷および山を備えた形状を有する、電気活性ポリマトランスデューサ。
  2. ポリマロールトランスデューサであって、
    均一でない第1の表面および100Mpa未満の弾性率を有するプリストレインド電気活性ポリマの複数の層をロール状の構成で有する電気活性ポリマロールを備え、
    前記プリストレインド電気活性ポリマは、前記均一でない第1の表面上に、形状が適合するように配置されている電極を有し、第2の均一でない表面に形状が適合するように配置されている第2の電極を有し
    前記電極の前記均一でない第1の形状は、約0.1μm〜約40μmの幅と、約0.1μm〜約20μmの深さを有する谷および山によって特徴付けられる波状形状を有する表面を備え、形状が適合するように配置されている前記電極は、前記プリストレインド電気活性ポリマの前記均一でない表面に対応する均一でない表面を有し、
    前記プリストレインド電気活性ポリマの前記第2の均一でない表面は、約0.1μm〜約40μmの幅と、約0.1μm〜約20μmの深さを有する谷および山によって特徴付けられる波状形状を有する表面を備え、形状が適合するように配置されている前記第2の電極は、前記プリストレインド電気活性ポリマの前記第2の均一でない表面に対応する均一でない表面を有し
    前記ポリマロールトランスデューサは、前記電極および前記第2の電極に印加された電圧に応じて、その円筒状の軸に沿って軸方向に変形することにより線形的に作動する、ポリマロールトランスデューサ。
  3. 請求項に記載のポリマロールトランスデューサであって、さらに、前記ロール状の構成を維持するように前記電気活性ポリマロールを固定するための固定手段を備えるポリマロールトランスデューサ。
JP2009146187A 1999-07-20 2009-06-19 ポリマを用いたトランスデューサ Expired - Lifetime JP5840825B2 (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US14455699P 1999-07-20 1999-07-20
US60/144,556 1999-07-20
US15332999P 1999-09-10 1999-09-10
US60/153,329 1999-09-10
US16132599P 1999-10-25 1999-10-25
US60/161,325 1999-10-25
US18140400P 2000-02-09 2000-02-09
US60/181,404 2000-02-09
US18780900P 2000-03-08 2000-03-08
US60/187,809 2000-03-08
US19223700P 2000-03-27 2000-03-27
US60/192,237 2000-03-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001510928A Division JP5512063B2 (ja) 1999-07-20 2000-07-20 電気活性ポリマ

Publications (2)

Publication Number Publication Date
JP2009267429A JP2009267429A (ja) 2009-11-12
JP5840825B2 true JP5840825B2 (ja) 2016-01-06

Family

ID=27558294

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2001510928A Expired - Lifetime JP5512063B2 (ja) 1999-07-20 2000-07-20 電気活性ポリマ
JP2009146187A Expired - Lifetime JP5840825B2 (ja) 1999-07-20 2009-06-19 ポリマを用いたトランスデューサ
JP2011279651A Expired - Lifetime JP5607018B2 (ja) 1999-07-20 2011-12-21 電極及び光変調デバイス
JP2013172290A Expired - Lifetime JP5937044B2 (ja) 1999-07-20 2013-08-22 トランスデューサ、アクチュエータ、及び、トランスデューサを製造する方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2001510928A Expired - Lifetime JP5512063B2 (ja) 1999-07-20 2000-07-20 電気活性ポリマ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011279651A Expired - Lifetime JP5607018B2 (ja) 1999-07-20 2011-12-21 電極及び光変調デバイス
JP2013172290A Expired - Lifetime JP5937044B2 (ja) 1999-07-20 2013-08-22 トランスデューサ、アクチュエータ、及び、トランスデューサを製造する方法

Country Status (9)

Country Link
EP (3) EP1848046B1 (ja)
JP (4) JP5512063B2 (ja)
AT (1) ATE480872T1 (ja)
AU (1) AU7052000A (ja)
DE (1) DE60044940D1 (ja)
DK (3) DK2264801T3 (ja)
ES (2) ES2394160T3 (ja)
PT (3) PT1848046E (ja)
WO (1) WO2001006579A2 (ja)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812624B1 (en) 1999-07-20 2004-11-02 Sri International Electroactive polymers
US7320457B2 (en) 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US6586859B2 (en) 2000-04-05 2003-07-01 Sri International Electroactive polymer animated devices
US7052594B2 (en) 2002-01-31 2006-05-30 Sri International Devices and methods for controlling fluid flow using elastic sheet deflection
US6806621B2 (en) * 2001-03-02 2004-10-19 Sri International Electroactive polymer rotary motors
US7608989B2 (en) 1999-07-20 2009-10-27 Sri International Compliant electroactive polymer transducers for sonic applications
US8181338B2 (en) 2000-11-02 2012-05-22 Danfoss A/S Method of making a multilayer composite
DE10054247C2 (de) * 2000-11-02 2002-10-24 Danfoss As Betätigungselement und Verfahren zu seiner Herstellung
US7400080B2 (en) 2002-09-20 2008-07-15 Danfoss A/S Elastomer actuator and a method of making an actuator
US7166953B2 (en) 2001-03-02 2007-01-23 Jon Heim Electroactive polymer rotary clutch motors
US7233097B2 (en) 2001-05-22 2007-06-19 Sri International Rolled electroactive polymers
AU2002351736A1 (en) 2001-12-21 2003-07-15 Danfoss A/S Dielectric actuator or sensor structure and method of making it
SG103371A1 (en) 2001-12-28 2004-04-29 Matsushita Electric Works Ltd Wearable human motion applicator
WO2003107523A1 (en) * 2002-03-05 2003-12-24 Sri International Electroactive polymer devices for controlling fluid flow
EP1512215B1 (en) * 2002-03-18 2011-08-17 SRI International Electroactive polymer devices for moving fluid
US7362889B2 (en) 2002-05-10 2008-04-22 Massachusetts Institute Of Technology Elastomeric actuator devices for magnetic resonance imaging
US7411331B2 (en) 2002-05-10 2008-08-12 Massachusetts Institute Of Technology Dielectric elastomer actuated systems and methods
US7371223B2 (en) 2002-10-02 2008-05-13 Boston Scientific Scimed, Inc. Electroactive polymer actuated heart-lung bypass pumps
US7868221B2 (en) 2003-02-24 2011-01-11 Danfoss A/S Electro active elastic compression bandage
JP4068013B2 (ja) 2003-06-06 2008-03-26 曙ブレーキ工業株式会社 電動式ブレーキ装置
DK1751843T3 (da) 2003-08-29 2012-12-17 Stanford Res Inst Int Forbelastning af elektroaktive polymer
CA2537244C (en) 2003-09-03 2013-11-05 Sri International Surface deformation electroactive polymer transducers
US7598651B2 (en) * 2004-03-12 2009-10-06 Sri International Mechanical meta-materials
CN108425170B (zh) * 2004-11-09 2021-02-26 得克萨斯大学体系董事会 纳米纤维纱线、带和板的制造和应用
JP4691703B2 (ja) * 2005-03-31 2011-06-01 独立行政法人産業技術総合研究所 アクチュエータ素子およびその製造方法
WO2006121818A2 (en) 2005-05-05 2006-11-16 Rodrigo Alvarez Icaza Rivera Dielectric elastomer fiber transducers
US7935743B1 (en) 2005-07-06 2011-05-03 Lenore Rasmussen Electrically driven mechanochemical actuators that can act as artificial muscle
US7353747B2 (en) 2005-07-28 2008-04-08 Ethicon Endo-Surgery, Inc. Electroactive polymer-based pump
JP2007125246A (ja) * 2005-11-04 2007-05-24 Terumo Corp 血圧測定装置及びそれに用いるカフ
US7443082B2 (en) 2006-03-03 2008-10-28 Basf Corporation Piezoelectric polymer composite article and system
US7551419B2 (en) 2006-06-05 2009-06-23 Sri International Electroadhesion
US7554787B2 (en) 2006-06-05 2009-06-30 Sri International Wall crawling devices
US7732999B2 (en) 2006-11-03 2010-06-08 Danfoss A/S Direct acting capacitive transducer
WO2008052559A2 (en) * 2006-11-03 2008-05-08 Danfoss A/S A dielectric composite and a method of manufacturing a dielectric composite
EP2498311A3 (en) * 2006-11-03 2014-09-10 Danfoss A/S A direct acting capacitive transducer
US7880371B2 (en) 2006-11-03 2011-02-01 Danfoss A/S Dielectric composite and a method of manufacturing a dielectric composite
JP2008141380A (ja) * 2006-11-30 2008-06-19 Hyper Drive Corp 電場応答性高分子を用いた振動素子
US8248750B2 (en) * 2007-12-13 2012-08-21 Bayer Materialscience Ag Electroactive polymer transducers
US7911761B2 (en) * 2006-12-14 2011-03-22 Bayer Materialscience Ag Fault-tolerant materials and methods of fabricating the same
JPWO2008093695A1 (ja) * 2007-02-01 2010-05-20 アルプス電気株式会社 アクチュエータ
JP2008198811A (ja) * 2007-02-14 2008-08-28 Tokai Rubber Ind Ltd 電歪型アクチュエータ
US7729068B2 (en) * 2007-02-27 2010-06-01 Konica Minolta Holdings, Inc. Polymer actuator and optical unit
JP4922879B2 (ja) * 2007-03-30 2012-04-25 東海ゴム工業株式会社 アクチュエータ
WO2009001770A1 (ja) * 2007-06-27 2008-12-31 Alps Electric Co., Ltd. 電歪アクチュエータ
WO2009006318A1 (en) 2007-06-29 2009-01-08 Artificial Muscle, Inc. Electroactive polymer transducers for sensory feedback applications
US8354774B2 (en) 2007-08-17 2013-01-15 Kuraray Co., Ltd. Dielectric material for polymeric actuator, and polymeric actuator using the same
JPWO2009031538A1 (ja) * 2007-09-05 2010-12-16 アルプス電気株式会社 電歪アクチュエータ
JP5243775B2 (ja) * 2007-11-14 2013-07-24 東海ゴム工業株式会社 誘電膜およびそれを用いたアクチュエータ、センサ、トランスデューサ
WO2009088969A2 (en) 2008-01-04 2009-07-16 Boston Scientific Scimed, Inc. Detachment mechanisms for implantable devices
DE102008006296A1 (de) * 2008-01-28 2009-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Schubaktuator und mit einem solchen Schubaktuator versehener Träger
DE102008039757A1 (de) 2008-08-20 2010-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktorelement sowie seine Verwendung
KR101084008B1 (ko) 2008-10-07 2011-11-16 웅진코웨이주식회사 좌변기용 비데의 노즐 어셈블리 및 그 제어방법
JP5474331B2 (ja) * 2008-10-30 2014-04-16 東海ゴム工業株式会社 誘電膜、およびそれを用いたアクチュエータ、センサ、トランスデューサ
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
CN101895807B (zh) 2009-05-19 2012-11-21 清华大学 平板扬声器
KR101908113B1 (ko) 2009-11-16 2018-10-15 삼성전자 주식회사 전기활성 폴리머 엑츄에이터 및 그 제조방법
JP5331033B2 (ja) * 2010-02-26 2013-10-30 日本放送協会 スピーカ装置
WO2011118315A1 (ja) 2010-03-23 2011-09-29 東海ゴム工業株式会社 導電性架橋体、およびその製造方法、並びにそれを用いたトランスデューサ、フレキシブル配線板、電磁波シールド
DE102011075127B4 (de) * 2010-05-04 2014-10-30 Electronics And Telecommunications Research Institute Mikroventilstruktur mit einem Polymeraktor und Lab-on-a-chip Modul
CN106131761B (zh) * 2010-05-10 2020-12-29 北京富纳特创新科技有限公司 热致发声装置
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
CA3184858A1 (en) 2010-10-06 2012-04-12 Profusa, Inc. Tissue-integrating sensors
JPWO2012050128A1 (ja) 2010-10-13 2014-02-24 東海ゴム工業株式会社 柔軟導電材料、およびそれを用いたトランスデューサ、フレキシブル配線板、電磁波シールド
KR101703281B1 (ko) * 2010-12-07 2017-02-06 삼성전자주식회사 다층 전기활성 폴리머 디바이스 및 그 제조방법
SG191895A1 (en) * 2011-01-18 2013-08-30 Bayer Ip Gmbh Frameless actuator apparatus, system, and method
WO2012118916A2 (en) 2011-03-01 2012-09-07 Bayer Materialscience Ag Automated manufacturing processes for producing deformable polymer devices and films
WO2012129357A2 (en) 2011-03-22 2012-09-27 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
JP5987440B2 (ja) 2011-06-17 2016-09-07 日産自動車株式会社 燃料電池用微細多孔質層シート及びその製造方法
JP5941646B2 (ja) 2011-09-29 2016-06-29 住友理工株式会社 誘電膜の製造方法
JP5719937B2 (ja) 2011-10-11 2015-05-20 住友理工株式会社 イオン成分が固定化されたエラストマー材料およびその製造方法
WO2013054614A1 (ja) 2011-10-11 2013-04-18 東海ゴム工業株式会社 トランスデューサ
EP2770510A4 (en) 2011-10-17 2015-09-16 Sumitomo Riko Co Ltd DIELECTRIC FILM AND CONVERTER THEREFORE
RU2014129880A (ru) * 2011-12-21 2016-02-10 Конинклейке Филипс Н.В. Управляемый полимерный актюатор
US8891222B2 (en) 2012-02-14 2014-11-18 Danfoss A/S Capacitive transducer and a method for manufacturing a transducer
US8692442B2 (en) 2012-02-14 2014-04-08 Danfoss Polypower A/S Polymer transducer and a connector for a transducer
WO2013135241A1 (en) * 2012-03-15 2013-09-19 Danfoss Polypower A/S Stretchable protection cover
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
CN104114567B (zh) 2012-03-30 2016-06-22 住友理工株式会社 反应性离子液体和使用了其的离子固定化金属氧化物颗粒、离子固定化弹性体以及转换器
KR20150031285A (ko) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 연신 공정을 위한 연신 프레임
EP2870593A4 (en) * 2012-07-05 2016-03-02 Univ Northeastern DEVICES, METHODS, AND SYSTEMS FOR HIGH-RESOLUTION TOUCH SCREENS
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
TW201431966A (zh) * 2012-12-28 2014-08-16 Dow Corning 轉換器及其製造方法
WO2014105981A1 (en) * 2012-12-28 2014-07-03 Dow Corning Corporation Method of preparing electroactive article and electroactive article formed in accordance therewith
JP6284758B2 (ja) * 2013-01-15 2018-02-28 東洋ゴム工業株式会社 高分子アクチュエータ
WO2014121799A1 (en) 2013-02-07 2014-08-14 Danfoss Polypower A/S All compliant electrode
WO2014156876A1 (ja) 2013-03-25 2014-10-02 東海ゴム工業株式会社 反応性イオン液体およびこれを用いたイオン固定化金属酸化物粒子、イオン固定化エラストマーならびにトランスデューサ
JP6343618B2 (ja) 2013-10-01 2018-06-13 住友理工株式会社 搬送装置
KR101562240B1 (ko) * 2013-10-25 2015-10-26 한국표준과학연구원 주름진 코러게이티드 고분자 유전체를 이용한 플렉서블 햅틱모듈 및 촉감제공방법
KR101587338B1 (ko) * 2014-01-09 2016-01-21 한국표준과학연구원 정전기력 기반의 폴리머 액추에이터를 이용한 플렉서블 햅틱모듈 및 촉감제공방법
EP3108510B1 (en) * 2014-02-18 2018-12-26 Parker Hannifin Corp ELECTROACTIVE POLYMER ACTUATOR WITH IMPROVED PERFORMANCE
EP2916364B1 (en) * 2014-03-07 2017-12-20 Alcatel Lucent Translation apparatus for moving an object outside a housing of the translation apparatus, translation system and rf component for mobile communication thereof
WO2015166700A1 (ja) * 2014-04-30 2015-11-05 株式会社 村田製作所 導電パターン付絶縁基材
RU2577923C2 (ru) * 2014-05-12 2016-03-20 Игорь Трофимович Пронькинов Способ получения механической энергии с помощью электроактивных полимеров
US9212045B1 (en) 2014-07-31 2015-12-15 Infineon Technologies Ag Micro mechanical structure and method for fabricating the same
JP6132075B2 (ja) * 2014-08-21 2017-05-24 株式会社村田製作所 電気機械変換素子および触覚提示装置
JP2016046953A (ja) 2014-08-25 2016-04-04 ソニー株式会社 トランスデューサおよび電子機器
WO2016031137A1 (ja) * 2014-08-27 2016-03-03 ソニー株式会社 トランスデューサおよび電子機器
JP6302811B2 (ja) * 2014-09-29 2018-03-28 カシオ計算機株式会社 投影装置
JP6439438B6 (ja) * 2014-12-24 2019-01-30 Tdk株式会社 圧電アクチュエータ
US11278455B2 (en) 2014-12-29 2022-03-22 ElastiMed Ltd. Methods for maintaining an electro-active polymer in a pre-stretch state
WO2016108082A1 (en) 2014-12-29 2016-07-07 ElastiMed Ltd. Methods and mechanisms for maintaining an electro-active polymer in a pre-stretch state and uses thereof
JP6699119B2 (ja) 2015-01-22 2020-05-27 株式会社リコー 素子及び発電装置
EP3278375B1 (en) * 2015-03-31 2019-05-15 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive polymer
US20160343637A1 (en) * 2015-05-19 2016-11-24 Ekaterina Axelrod Device integration of active cooling systems
US9773969B2 (en) * 2015-05-28 2017-09-26 The Board Of Trustees Of The Leland Stanford Junior University Electrostrictive element manufacturing method
KR101664980B1 (ko) * 2015-07-10 2016-10-11 한국기술교육대학교 산학협력단 햅틱 액추에이터
WO2017036815A1 (en) * 2015-08-31 2017-03-09 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive or photoactive polymer
JP2017108601A (ja) * 2015-12-09 2017-06-15 国立大学法人信州大学 誘電アクチュエータ
KR20180128483A (ko) 2016-04-06 2018-12-03 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 비다공성 음향 멤브레인을 위한 압력 균등화 구조체
BR112018075684A2 (pt) 2016-06-14 2019-04-02 Koninklijke Philips N.V. dispositivo atuador, e método para acionar um atuador de polímero eletroativo
US20190312193A1 (en) * 2016-07-05 2019-10-10 Koninklijke Philips N.V. Shape change device
KR101837505B1 (ko) * 2016-07-15 2018-03-12 한국기술교육대학교 산학협력단 햅틱 디스플레이
US10658565B2 (en) 2016-08-29 2020-05-19 The Boeing Company Actuator assemblies, mechanical assemblies including the actuator assemblies, and methods of fabricating the same
WO2018047129A1 (en) * 2016-09-09 2018-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Modular exoskeleton for example for spinal cord injured patients
EP3515286B1 (en) * 2016-09-22 2020-04-08 Koninklijke Philips N.V. Sensor positioning using electroactive polymers
EP3842856A1 (en) * 2016-11-21 2021-06-30 Koninklijke Philips N.V. Optical beam processing device
US11331018B2 (en) 2016-12-22 2022-05-17 Profusa, Inc. System and single-channel biosensor for and method of determining analyte value
WO2018124308A1 (ja) 2016-12-29 2018-07-05 ソニー株式会社 アクチュエータおよびその製造方法
EP3624328A4 (en) 2017-05-10 2020-05-13 Sony Corporation ACTUATOR, DRIVE ELEMENT, HAPTICAL DEVICE AND DRIVE DEVICE
JP7032875B2 (ja) * 2017-06-21 2022-03-09 正毅 千葉 誘電エラストマートランスデューサーおよび誘電エラストマー駆動装置
JP2019041555A (ja) * 2017-08-29 2019-03-14 正毅 千葉 誘電エラストマートランスデューサー
EP3762618A4 (en) 2018-03-04 2021-12-01 The Regents Of The University Of Colorado HYDRAULICALLY REINFORCED SELF-HEALING ELECTROSTATIC CONVERTERS USING A ZIPPING MECHANISM
EP3787565B1 (en) * 2018-05-02 2024-03-20 Elastimed Ltd. A strap having a portion of electro-active polymer, and methodsfor making and using the same
JP7061019B2 (ja) * 2018-05-31 2022-04-27 正毅 千葉 アンテナ装置
KR102006611B1 (ko) * 2018-10-22 2019-08-05 (주)이미지스테크놀로지 자기유변탄성체를 이용한 가변렌즈모듈과 이를 포함하는 촬상장치
CN113475099B (zh) * 2019-04-26 2023-06-06 住友理工株式会社 静电型换能器以及静电型换能器单元
CN114270628A (zh) 2019-08-19 2022-04-01 千叶正毅 天线装置
US11139755B2 (en) 2020-01-31 2021-10-05 Toyota Motor Engineering & Manufacturing North America, Inc. Variable stiffening device comprising electrode stacks in a flexible envelope
US11370496B2 (en) 2020-01-31 2022-06-28 Toyota Motor Engineering & Manufacturing North America, Inc. Programmable texture surfaces having artificial muscles
DE102020203208A1 (de) * 2020-03-12 2021-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Elektromechanischer Wandler und dessen Verwendung
US11453347B2 (en) 2020-03-12 2022-09-27 Toyota Motor Engineering & Manufacturing North America, Inc. Suction devices having artificial muscles
US11611293B2 (en) 2020-03-13 2023-03-21 Toyota Motor Engineering & Manufacturing North America, Inc. Artificial muscles having a reciprocating electrode stack
KR102275106B1 (ko) * 2020-06-30 2021-07-07 한국기술교육대학교 산학협력단 폴리염화비닐 겔 기반의 마이크로 펌프
US11827459B2 (en) 2020-10-16 2023-11-28 Artimus Robotics Inc. Control of conveyor systems using hydraulically amplified self-healing electrostatic (HASEL) actuators
KR102558860B1 (ko) * 2020-11-20 2023-07-25 한국과학기술원 선형 구동기
KR102635935B1 (ko) * 2021-10-13 2024-02-08 연세대학교 산학협력단 열 기반 광 위상 변조 장치
KR102637396B1 (ko) * 2022-01-24 2024-02-16 한국기술교육대학교 산학협력단 전기활성고분자 기반 유연 양방향 햅틱 입출력 모듈과 이를 포함하는 입출력 통합 시스템
US11731269B1 (en) 2022-02-01 2023-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Artificial muscles comprising an electrode pair and a clamping device for compressing the electrode pair

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902849C3 (de) * 1968-01-25 1978-06-29 Pioneer Electronic Corp., Tokio Mechanisch-elektrisch bzw. elektrisch-mechanischer Wandler
JPS6027128B2 (ja) * 1978-07-27 1985-06-27 呉羽化学工業株式会社 誘電体として改良された弗化ビニリデン系樹脂フイルム及びその製造方法
JPS5569902A (en) * 1978-11-21 1980-05-27 Kureha Chemical Ind Co Ltd Preparing piezoelectric* electrically scorchable film
US4241128A (en) * 1979-03-20 1980-12-23 Bell Telephone Laboratories, Incorporated Production of piezoelectric PVDF films
US4342936A (en) * 1980-12-19 1982-08-03 Eastman Kodak Company High deflection bandwidth product polymeric piezoelectric flexure mode device and method of making same
FR2511570A1 (fr) * 1981-08-11 1983-02-18 Thomson Csf Transducteur electroacoustique a polymere piezoelectrique
JPS6130899A (ja) * 1984-07-23 1986-02-13 Nec Corp 圧電スピ−カ
JPH0632549B2 (ja) * 1986-03-31 1994-04-27 日本特殊陶業株式会社 圧電送受波器
US4868447A (en) * 1987-09-11 1989-09-19 Cornell Research Foundation, Inc. Piezoelectric polymer laminates for torsional and bending modal control
JPH02270520A (ja) * 1989-04-13 1990-11-05 Dynic Corp 熱可塑性ポリウレタンフィルムの製造方法および熱可塑性ポリウレタン加工布の製造方法
GB2233251B (en) * 1989-06-20 1993-03-10 Courtaulds Films & Packaging Production of polymeric films
JPH0758193B2 (ja) * 1990-09-14 1995-06-21 三菱電機株式会社 原子間力顕微鏡の微動走査機構
JPH0560783A (ja) * 1991-09-03 1993-03-12 Fujikura Ltd 圧電型加速度センサの製造方法
US5356500A (en) * 1992-03-20 1994-10-18 Rutgers, The State University Of New Jersey Piezoelectric laminate films and processes for their manufacture
JPH07135345A (ja) * 1993-11-09 1995-05-23 Casio Comput Co Ltd 圧電素子
US5440194A (en) * 1994-05-13 1995-08-08 Beurrier; Henry R. Piezoelectric actuators
US5494617A (en) * 1994-05-16 1996-02-27 The United States Of America As Represented By The Secretary Of The Navy Method of inducing piezoelectric properties in polymers
US5751090A (en) * 1995-05-17 1998-05-12 Burleigh Instruments Inc Peristaltic driver apparatus
US5780958A (en) * 1995-11-03 1998-07-14 Aura Systems, Inc. Piezoelectric vibrating device
JP4388603B2 (ja) * 1997-02-07 2009-12-24 エス アール アイ・インターナショナル 弾性誘電体ポリマフィルム音波アクチュエータ
WO1999017929A1 (en) * 1997-10-03 1999-04-15 The Trustees Of The University Of Pennsylvania Polymeric electrostrictive systems
EP1212800B1 (en) * 1999-07-20 2007-12-12 Sri International Electroactive polymer generators

Also Published As

Publication number Publication date
JP2003506858A (ja) 2003-02-18
JP5937044B2 (ja) 2016-06-22
DK1848046T3 (da) 2013-01-07
JP2014014266A (ja) 2014-01-23
DK2264801T3 (da) 2013-01-07
PT1221180E (pt) 2010-11-26
EP1848046B1 (en) 2012-10-03
PT1848046E (pt) 2012-12-17
PT2264801E (pt) 2012-12-10
DK1221180T3 (da) 2010-12-20
JP5512063B2 (ja) 2014-06-04
DE60044940D1 (de) 2010-10-21
EP1848046A2 (en) 2007-10-24
EP1848046A3 (en) 2009-04-15
JP2009267429A (ja) 2009-11-12
EP1221180A4 (en) 2004-09-15
EP1221180A2 (en) 2002-07-10
EP2264801A2 (en) 2010-12-22
WO2001006579A3 (en) 2002-01-31
EP1221180B1 (en) 2010-09-08
ATE480872T1 (de) 2010-09-15
JP2012095527A (ja) 2012-05-17
ES2394501T3 (es) 2013-02-01
EP2264801B1 (en) 2012-10-03
WO2001006579A2 (en) 2001-01-25
JP5607018B2 (ja) 2014-10-15
EP2264801A3 (en) 2011-05-04
WO2001006579A8 (en) 2002-08-22
AU7052000A (en) 2001-02-05
ES2394160T3 (es) 2013-01-22

Similar Documents

Publication Publication Date Title
JP5937044B2 (ja) トランスデューサ、アクチュエータ、及び、トランスデューサを製造する方法
JP5714200B2 (ja) 改良電気活性ポリマ
US7199501B2 (en) Electroactive polymers
US6781284B1 (en) Electroactive polymer transducers and actuators
US6583533B2 (en) Electroactive polymer electrodes
US6545384B1 (en) Electroactive polymer devices
US6543110B1 (en) Electroactive polymer fabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140728

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5840825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term