JP5819024B1 - 線量率測定装置 - Google Patents

線量率測定装置 Download PDF

Info

Publication number
JP5819024B1
JP5819024B1 JP2015509251A JP2015509251A JP5819024B1 JP 5819024 B1 JP5819024 B1 JP 5819024B1 JP 2015509251 A JP2015509251 A JP 2015509251A JP 2015509251 A JP2015509251 A JP 2015509251A JP 5819024 B1 JP5819024 B1 JP 5819024B1
Authority
JP
Japan
Prior art keywords
dose rate
energy
radiation
unit
dark current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015509251A
Other languages
English (en)
Other versions
JPWO2016030957A1 (ja
Inventor
茂木 健一
健一 茂木
俊英 相場
俊英 相場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5819024B1 publication Critical patent/JP5819024B1/ja
Publication of JPWO2016030957A1 publication Critical patent/JPWO2016030957A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/026Semiconductor dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/023Scintillation dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/15Instruments in which pulses generated by a radiation detector are integrated, e.g. by a diode pump circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

3台の半導体検出器(22)は、シンチレーション検出器(21)への放射線の入射を遮らない位置に、シンチレーション検出器(21)の中心軸を中心として互いに等間隔、且つ中心軸と直角に交わる平面に対して互いに等角度に設置される。これらの半導体検出器(22)から出力されたアナログ電圧パルスより得られる第2の波高スペクトルから求めた平均波高値に基づいてエネルギー補償係数を決定し、シンチレーション検出器(21)から出力された直流電圧により求めた高レンジ線量率のエネルギー特性を補償する。

Description

本発明は、原子炉施設等の施設周辺に設置される線量率測定装置に関するものである。
従来、原子炉施設及び使用済燃料再処理施設等の施設の周辺においては、自然放射線レベルから事故時の高放射線レベルまでの広範囲に亘る線量率を測定するため、測定対象の放射線のレベルに応じた感度及び精度の複数の線量率測定装置を設置していた。
しかし、複数の線量率測定装置を近接して設置した場合、互いが放射線入射の障害物となることがある。また、複数の線量率測定装置を用意するため、装置コストが高くなるという問題がある。このため、単一の線量率測定装置で広範囲の線量率に対応した測定を行うことが求められている。
このような要求に対し、特許文献1には、タリウム活性化ヨウ化ナトリウムシンチレーション検出器に鉛遮蔽体を施し、測定場の線量率のレベルに応じて線量率の測定方式を自動的に切換えるようにした線量率測定装置が提示されている。
この線量率測定装置では、低線量率領域における線量率(以下、低レンジ線量率と称す)の測定には波高弁別バイアス変調方式(DBM方式:Discrimination Bias Modulation)を採用し、高線量率領域における線量率(以下、高レンジ線量率と称す)の測定には電流測定方式を採用している。
DBM方式とは、シンチレーション検出器が出力した電流パルスをアナログ電圧パルスに変換して増幅すると共に高周波ノイズを除去し、これをDBM回路において線量率で重み付けして線量率に比例する繰り返し周波数のパルスとし、このパルスに基づいて低レンジ線量率を演算するものである。
また、電流測定方式とは、シンチレーション検出器が出力した直流電流を電圧/周波数変換器に入力して電圧に比例する繰り返し周波数のパルスとし、このパルスに基づいて高レンジ線量率を演算するものである。
なお、γ線のエネルギーに依存して発生する誤差としてのエネルギー特性は、低レンジ線量率と高レンジ線量率で異なること、また、γ線のエネルギーに依存して低レンジ線量率と高レンジ線量率の最適切換点が異なることから、2つの測定方式を固定した線量率で切換えた場合、切換点において出力エネルギー特性の段差が発生する。これに対し、特許文献1では、検出器に鉛遮蔽体を設けることにより、上記段差が小さくなるようにしている。
特開昭61−104282号公報
特許文献1に提示された線量率測定装置では、タリウム活性化ヨウ化ナトリウムシンチレーション検出器に鉛遮蔽体を設けることにより、高線量率域のエネルギー特性に起因する誤差と切換点で発生する段差の両方を、ある程度抑制することはできるが、一方で、低レンジ線量率の本来の出力エネルギー特性が悪化するという問題があった。
このように、単一の線量率測定装置において広範囲の線量率に対応した測定を行う場合、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好であり、且つ低レンジ線量率と高レンジ線量率の切換点の段差を抑制して良好なエネルギー特性を得ることが難しく、これを実現することが課題であった。
本発明は、上記問題点に鑑み、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好であり、測定領域全体において直線性が良好で切換点の段差が抑制された線量率測定装置を得ることを目的とする。
本発明に係る線量率測定装置は、放射線を検出してアナログ電圧パルス及び直流電圧を出力する第1の放射線検出手段と、3個以上のセンサ部で放射線を検出してアナログ電圧パルスを出力する第2の放射線検出手段とを有する検出部、第1の放射線検出手段から出力されたアナログ電圧パルスにより得られる第1の波高スペクトルを低レンジ線量率に変換する低レンジ線量率演算手段と、第1の放射線検出手段から出力された直流電圧を高レンジ線量率に変換する高レンジ線量率演算手段と、第2の放射線検出手段から出力されたアナログ電圧パルスにより得られる第2の波高スペクトルから求めた平均波高値に基づいて高レンジ線量率に対するエネルギー補償係数を決定するエネルギー補償係数決定手段とを有する測定部を備え、第2の放射線検出手段の各センサ部は、第1の放射線検出手段への放射線の入射を遮らない位置に、第1の放射線検出手段の中心軸を中心として互いに等間隔且つ中心軸と直角に交わる平面に対して互いに等角度に設置されると共に、中心軸と平行な方向から各センサ部の有感面を透視した面積の合計と、中心軸と直角な方向から各センサ部の有感面を透視した面積が同等となるように配置され、高レンジ線量率演算手段は、高レンジ線量率にエネルギー補償係数決定手段から取得したエネルギー補償係数を乗算し、高レンジ線量率のエネルギー特性を補償するものである。
本発明に係る線量率測定装置によれば、3個以上のセンサ部を有する第2の放射線検出手段から出力されたアナログ電圧パルスにより得られる第2の波高スペクトルから求めた平均波高値に基づいてエネルギー補償係数を決定し、第1の放射線検出手段から出力された直流電圧により求めた高レンジ線量率のエネルギー特性を補償するようにしたので、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好であり、測定レンジ全体において直線性が良好で切換点の段差が抑制された線量率測定装置を得ることが可能である。
本発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下の本発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1に係る線量率測定装置の全体構成を示す図である。 本発明の実施の形態1に係る線量率測定装置の検出部を示す図である。 本発明の実施の形態1に係る半導体検出器の測定空間に対する実効面積を示す図である。 本発明の実施の形態1に係る半導体検出器の平均波高値とエネルギー補償係数の対応テーブルを示す図である。 本発明の実施の形態1に係る線量率測定装置における低レンジ線量率及び高レンジ線量率のエネルギー特性を示す図である。 本発明の実施の形態1に係る線量率測定装置における放射線の入力線量率と最適切換点の関係を示す図である。 本発明の実施の形態2に係る線量率測定装置の全体構成を示す図である。 本発明の実施の形態2に係る線量率測定装置のシンチレーションファイバー検出器を示す図である。 本発明の実施の形態2に係る線量率測定装置の検出部を示す図である。 本発明の実施の形態3に係る線量率測定装置の演算部を示す図である。 本発明の実施の形態3に係る線量率測定装置における高電圧と暗電流線量率の対照テーブルを示す図である。 本発明の実施の形態4に係る線量率測定装置の全体構成を示す図である。 本発明の実施の形態5に係る線量率測定装置の全体構成を示す図である。 本発明の実施の形態5に係るシンチレーション検出器の低線量率領域におけるゲインドリフト補償動作を説明する図である。
実施の形態1.
以下に、本発明の実施の形態1に係る線量率測定装置について、図面に基づいて説明する。図1は、本実施の形態1に係る線量率測定装置の全体構成を示し、図2は、本実施の形態1に係る線量率測定装置の検出部を示している。なお、以下の説明で用いる各図において、図中、同一、相当部分には同一符号を付している。
線量率測定装置1の検出部2は、放射線を検出してアナログ電圧パルス及び直流電圧を出力する第1の放射線検出手段と、3個以上のセンサ部で放射線を検出してアナログ電圧パルスを出力する第2の放射線検出手段とを有している。
本実施の形態1では、図1に示すように、第1の放射線検出手段としてシンチレーション検出器21を、第2の放射線検出手段として3台の半導体検出器22a、22b、22cを備えている。なお、以下の説明では、3台の半導体検出器22a、22b、22cを特に区別する必要がない場合には総称して半導体検出器22と記す。
シンチレーション検出器21には、無機シンチレーション検出器やプラスチックシンチレーション検出器等が用いられる。本実施の形態1では、無機シンチレーション検出器を代表するタリウム活性化ヨウ化ナトリウム(以下、NaI(Tl)と記す)シンチレーション検出器を用いている。
シンチレーション検出器21は、低線量率領域においては、NaI(Tl)シンチレータが吸収した放射線のエネルギーに正比例する電圧を有する離散的なアナログ電圧パルスを出力し、高線量率領域においては吸収した放射線のエネルギーに正比例する直流電圧を出力する。
また、半導体検出器22には、例えばSi−PINホトダイオード検出器が用いられる。半導体検出器22は、センサ部として半導体センサを備え、それぞれのセンサ部に入射した放射線のエネルギーを吸収し、吸収したエネルギーに正比例する電圧を有する離散的なアナログ電圧パルスを出力する。
なお、半導体検出器22を選定する際には、出力されるアナログ電圧パルスの繰り返し周波数が、高レンジ線量率の下限付近では計数率が小さ過ぎるとゆらぎが大きくなり、また、高レンジ線量率の上限付近では計数率が大き過ぎるとアナログ電圧パルスのパイルアップが発生し、エネルギー補償係数の精度が低下するため、高線量率領域に適合する検出効率のものを選定する。
線量率測定装置1の測定部3は、シンチレーション検出器21から出力されたアナログ電圧パルスにより第1の波高スペクトルを得る手段として、パルス増幅器31、アナログ/デジタル変換器32(以下、A/D変換器32と記す)、及び演算部35の波高スペクトル生成部351を備えている。
パルス増幅器31は、シンチレーション検出器21から出力されたアナログ電圧パルスを増幅すると共に、重畳されている高周波ノイズを除去する。A/D変換器32は、パルス増幅器31で増幅されたアナログ電圧パルスから波高値Vp1を測定する。波高スペクトル生成部351は、A/D変換器32から出力された波高値Vp1に基づいて第1の波高スペクトルを生成し出力する。
また、測定部3の演算部35は、第1の波高スペクトルを低レンジ線量率DLに変換する低レンジ線量率演算手段として、G(E)関数メモリ352と低レンジ線量率演算部353を備えている。
G(E)関数メモリ352には、例えば測定エネルギー範囲50keV〜3000keVを10ch〜600chのチャンネルに分割して、各チャンネル(ch(i))と単位計数率当りの線量率Gi(nGy・h−1/cpm)とを対応させたG(E)関数と呼ばれるテーブルが記憶されている。
低レンジ線量率演算部353は、G(E)関数メモリ352に記憶されたテーブルを用い、波高スペクトル生成部351から出力された第1の波高スペクトルのスペクトルデータに基づいて、定周期で測定された各チャンネルの単位計数率当りの線量率Giと計数Niとの積を積算したΣGi・Niを定周期時間で除して、当該演算周期の線量率とする。さらに、その線量率の最新化された測定時間分のデータ列を移動平均して平均線量率を求め、低レンジ線量率DLとして出力する。
また、測定部3は、シンチレーション検出器21から出力された直流電圧を高レンジ線量率DHに変換する高レンジ線量率演算手段として、電圧/周波数変換器33(以下、V/F変換器33と記す)、カウンタ34、及び演算部35の高レンジ線量率演算部354を備えている。
V/F変換器33は、シンチレーション検出器21から出力された直流電圧を、その電圧値に正比例する繰り返し周波数のデジタルパルスに変換する。カウンタ34は、V/F変換器33から出力されたデジタルパルスを定周期に亘って計数した計数値Niを出力する。
高レンジ線量率演算部354は、カウンタ34から出力された計数値を定周期時間で除して求めた計数率に線量率換算係数ηを乗じて当該演算周期の線量率とする。さらに、その線量率の最新化された測定時間分のデータ列を移動平均して平均線量率を求め、高レンジ線量率DHとする。
また、測定部3は、半導体検出器22から出力されたアナログ電圧パルスにより第2の波高スペクトルを得る手段として、パルス加算回路37、パルス増幅器38、アナログ/デジタル変換器39(以下、A/D変換器39と記す)、及び演算部35の波高スペクトル生成部357を備えている。
パルス加算回路37は、半導体検出器22a、22b、22cのそれぞれから出力されたアナログ電圧パルスを加算合成して一連のアナログ電圧パルス列とする。パルス増幅器38は、パルス加算回路37から出力されたアナログ電圧パルスを増幅すると共に重畳されている高周波ノイズを除去する。
A/D変換器39は、パルス増幅器38で増幅されたアナログ電圧パルスから波高値Vp2を測定する。波高スペクトル生成部357は、A/D変換器39から出力された波高値Vp2に基づいて第2の波高スペクトルを生成し出力する。
さらに、測定部3は、第2の波高スペクトルから求めた平均波高値に基づいて、高レンジ線量率DHに対するエネルギー補償係数を決定するエネルギー補償係数決定手段として、平均波高値演算部356とエネルギー特性補償部355を備えている。
平均波高値演算部356は、第2の波高スペクトルに基づいて当該定周期の定周期平均波高値を求め、その定周期平均波高値の最新化された測定時間分のデータ列を移動平均した平均波高値を出力する。
エネルギー特性補償部355には、型式試験に基づき作成された既知のエネルギーの放射線の平均波高値PHとエネルギー補償係数βとの対応テーブル(図4参照)が記憶されている。エネルギー特性補償部355は、平均波高値演算部356から取得した平均波高値を対応テーブルに照合し、対応するエネルギー補償係数を出力する。
エネルギー特性補償部355からエネルギー補償係数を取得した高レンジ線量率演算部354は、高レンジ線量率にエネルギー補償係数を乗算し、エネルギー特性を補償した高レンジ線量率(DH×β)を出力する。
また、測定部3は、エネルギー特性を補償された高レンジ線量率と低レンジ線量率の比を求め、その比とエネルギー特性を補償された高レンジ線量率に基づき、低レンジ線量率とエネルギー特性を補償された高レンジ線量率を切り換えて出力する線量率切換手段である線量率切換部358を備えている。線量率切換部358は、低レンジ線量率に対するエネルギー補償した高レンジ線量率の比(DH×β)/DLに基づいて、低レンジ線量率から高レンジ線量率へ、または高レンジ線量率から低レンジ線量率へ、その出力を切換える。
線量率切換部358による切換方法について簡単に説明する(図6参照)。高レンジ線量率(DH×β)が設定値C以上の条件のもとで線量率上昇の場合は、(DH×β)/DLが設定点A1以上になった時、低レンジ線量率からエネルギー補償された高レンジ線量率に切り換えて出力する。一方、線量率下降の場合は、高レンジ線量率(DH×β)が設定値C以上の条件のもとで(DH×β)/DLが設定点A2以下になった時、エネルギー補償された高レンジ線量率から低レンジ線量率に切換えて出力する。なお、設定点A1、A2には、A1>A2のヒステリシスを設ける。設定点B1、B2についても同様である。
また、測定部3は、線量率切換部358から出力された線量率を表示すると共に、各部の設定等の操作を行う表示及び操作部36と、シンチレーション検出器21を動作させる高電圧を供給する高圧電源40を備えている。表示及び操作部36は、手動操作により波高スペクトル生成部351から出力された波高スペクトルを表示する。これにより、操作員は、注目する核種の存在を確認することができる。高圧電源40からシンチレーション検出器21に供給される高電圧の設定は、表示及び操作部36において行われる。
次に、検出部2の各構成要素の配置について、図2及び図3を用いて説明する。シンチレーション検出器21は、放射線のエネルギーを吸収して蛍光を発する円柱状のシンチレータ211と、その蛍光を電子に変換して増倍させてアナログ電流パルスに変換する光電子増倍管212と、アナログ電流パルスをアナログ電圧パルスに変換する機能部(図示省略)及びアナログ電流パルスを直流電圧に変換する機能部(図示省略)が、図2中、上から順に配置されている。これらの機能部は、架台24を貫く検出器ケース213内に設置される。
一方、半導体検出器22a、22bは、各々、半導体センサをフィルタ板23で覆われ、架台24の側面に取り付けられている。架台24は、三角錐の上部をカットした形状であり、内部は空洞である。なお、図示していない半導体検出器22cは、架台24の裏面側の側面に取り付けられている。
半導体検出器22は、シンチレーション検出器21のシンチレータ211への放射線の入射を遮らない位置に設置される。また、架台24に取り付けられた半導体検出器22の各半導体センサは、シンチレーション検出器21の中心軸Zを中心として互いに等間隔に、且つ中心軸Zと直角に交わる平面に対して互いに等角度に設置される。
検出部外套25は、シンチレーション検出器21、半導体検出器22、及び架台24を内包し、遮光している。また、検出部2を屋外に設置する場合、検出部外套25は、外気を遮断する防水構造となっている。スタンド26は、検出部外套25と内包する機器を支持すると共に、シンチレーション検出器21を決められた高さに保持する。
また、図3に示すように、半導体検出器22は、中心軸Zと平行な方向(図中、矢印Y)から各センサ部の有感面を透視した面積S2の合計(3×S2)と、中心軸Zと直角な方向(図中、矢印X)から各センサ部の有感面を透視した面積S1が同等(S1=3×S2)となるように、各センサ部を配置している。
このような配置とすることにより、半導体検出器22の測定空間に対する感度の方向依存性が抑制される。すなわち、高線量率領域における測定空間の放射線の平均エネルギーと、半導体検出器22の出力を総合して求めた平均波高値の相関が、放射線の入射方向に影響されなくなる。半導体検出器22の各センサ部の中心軸Zに対する角度を実験により細密に調整することにより、半導体検出器22の感度の方向依存性をさらに小さくすることができる。
図4は、半導体検出器22の平均波高値PHとエネルギー補償係数βの対応テーブルを示している。エネルギー補償係数は、シンチレーション検出器21から出力された直流電圧により得られる高レンジ線量率のエネルギー特性の歪を補正する係数であり、高線量率領域における測定空間の放射線の平均エネルギーと半導体検出器22の平均波高値の相関から求められる。エネルギー特性補償部355は、図4に示すテーブルを参照して、平均波高値に対応するエネルギー補償係数を決定する。
図4に示す例では、Cs(セシウム)−137の平均波高値PHsに対するエネルギー補正係数βsを1とし、その他の平均波高値PHに対するエネルギー補償係数βは、βs相対比で示している。測定エネルギー範囲は、一般的な線量率測定装置と同様に50keV〜3000keVとし、その上限及び下限、さらにその間で分割された複数のポイントにおいて、平均波高値とエネルギー補償係数を実験により求める。実験が困難なポイントについては、解析により平均波高値とエネルギー補償係数を求める。
なお、測定エネルギー範囲の下限の50keVは、実質的にXe−133のγ線81keVを測定できるように設定されたものである。エネルギー補償係数の下限は、X線80keVまたはAm−241のγ線60keV(実効エネルギー57keV)のスペクトルを測定し、対応するエネルギー補償係数を求めてもよい。
前述のように、本実施の形態1では、半導体検出器22から出力されるアナログ電圧パルスのスペクトルから求めた平均波高値は、測定空間の平均エネルギーと良好な相関が得られる。このため、図4に示す平均波高値に対応するエネルギー補償係数のテーブルにより高レンジ線量率のエネルギー特性を補償することで、精度の高い測定を行うことができる。
また、半導体検出器22にフィルタ板23を設けることにより、アナログ電圧パルスのパルス列の計数率が、放射線のエネルギーに依存せずに概ね線量率に比例するように減衰させている。これにより、測定空間の線量率に対する計数効率の比が好適な値となり、高線量率領域におけるパルス相互のパイルアップを抑制すると共に、低計数率領域における計数率が小さすぎて精度が低下することを抑制している。
次に、エネルギー特性補償部355における高レンジ線量率に対するエネルギー特性の補償について説明する。図5は、本実施の形態1に係る線量率測定装置1における低レンジ線量率及び高レンジ線量率のエネルギー特性を示す図であり、Cs−137のγ線のエネルギー662keVの入射に対する低レンジ線量率のレスポンスを1とした時の他のエネルギーのレスポンスの比を示している。
図5において、横軸は放射線のエネルギーE(MeV)を示し、縦軸はP点を基準値1とした時の線量率測定装置1のレスポンス比Fを示している。また、図5中、aで示す実線は、低レンジ線量率のエネルギー特性であり、bで示す点線は、高レンジ線量率の補償前のエネルギー特性であり、cで示す点線は、高レンジ線量率の補償後のエネルギー特性である。
図5に示すように、低レンジ線量率のエネルギー特性aは、G(E)関数により波高スペクトルをきめ細かく線量率に対応させることにより、低エネルギー領域において良好なエネルギー特性が得られている。
一方、高レンジ線量率の補償前のエネルギー特性bは、特に低エネルギー領域において大きな歪があるが、補償後のエネルギー特性cでは、良好なエネルギー特性が得られている。その結果、測定対象の放射線のエネルギー全体に亘って良好な出力エネルギー特性が得られている。
なお、図5では、各エネルギーに対応するエネルギー補償係数として代表値を用いているため、器差により補償後の高レンジ線量率のエネルギー特性cに若干の歪みが残っている。このような器差による歪みは、図4に示すテーブルを個々の検出器に対して用意することにより理論的には解消されるが、現実的ではないため代表値が用いられる。
次に、線量率切換部358における低レンジ線量率と高レンジ線量率の切換点の設定について説明する。線量率切換部358は、低レンジ線量率演算部353から出力された低レンジ線量率と高レンジ線量率演算部354から出力された高レンジ線量率との比に基づいて最適切換点を検索し、切換えを実行する。
低レンジ線量率DLから高レンジ線量率DHへの切換は、(DH×β)/DLが1+k1を超えたら実行され、高レンジ線量率DHから低レンジ線量率DLへの切換は、(DH×β)/DLが1+k2まで低下したら実行される。
上昇時と下降時の切換点を同じにすると、線量率が切換点付近に留まって揺らいだ場合にハンチングし、動作や指示が不安定となる。このため、k1>k2として適度にヒステリシスを持たせる。k1、k2は、切換点の段差が精度の範囲内となるように、また、急激な上昇応答時に確実に切換動作が行われるように、正(+)の値とする。
図6は、本実施の形態1に係る線量率測定装置1における放射線の入力線量率及び出力線量率と最適切換点の関係を示している。図6において、横軸は入力線量率D(in)(μGy/h)、縦軸は出力線量率D(out)(μGy/h)であり、a1及びa2は、Am(アメリシウム)−241の実効エネルギー57keVの線量率の入出力応答特性を概念的に示している。
また、b1及びb2は、Cs−137の実効エネルギー660keVの線量率の入出力応答特性を概念的に示しており、Am−241の特性に対して高線量率側に直線的に約1桁シフトした形になっている。
a1は、低レンジ線量率演算部353による入出力応答特性であり、低線量率側は直線性が良好で、高線量率側は飽和に続いて低下傾向(Am−241の破線)になる。また、a2は、高レンジ線量率演算部354による入出力応答特性であり、低線量率側ではシンチレーション検出器21の暗電流Id(点線)が支配的であるが、入力線量率の増加に伴い良好な直線性を示す。
同様に、b1は、低レンジ線量率演算部353による入出力応答特性であり、低線量率側は直線性が良好で、高線量率側は飽和に続いて低下傾向(Cs−137の破線)になる。また、b2は、高レンジ線量率演算部354による入出力応答特性で、低線量率側ではシンチレーション検出器21の暗電流Idが支配的であるが、入力線量率の増加に伴い良好な直線性を示す。
なお、図6において、A1は、(DH×β)/DLが1+k1における切換点を示し、A2は、(DH×β)/DLが1+k2における切換点を示す。A1及びA2は、暗電流Idを考慮してその影響が小さくなる線量率に設定される。同様に、B1は、(DH×β)/DLが1+k1における切換点を示し、B2は、(DH×β)/DLが1+k2における切換点を示す。
以上のように、本実施の形態1に係る線量率測定装置1によれば、3台の半導体検出器22から出力されたアナログ電圧パルスより得られる第2の波高スペクトルから求めた平均波高値に基づいてエネルギー補償係数を決定し、シンチレーション検出器21から出力された直流電圧により得られる高レンジ線量率のエネルギー特性を補償するようにし、また、低レンジ線量率と高レンジ線量率の切換点を、暗電流Idの影響が小さくなる線量率(図6中、設定点C)以上という条件のもとに、(DH×β)/DLの比に基づいて自動的に決定するようにしたので、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好であり、測定レンジ全体において直線性が良好で切換点の段差が抑制され、広範囲の線量率に対応した測定を高精度に行うことが可能である。
さらに、シンチレーション検出器21から出力されたアナログ電圧パルスにより得られる第1の波高スペクトルを必要に応じて表示及び操作部36に表示できるようにしたので、施設事故発生時において、長期に亘ってCs−134、Cs−137の核種の存在を把握することが可能である。
実施の形態2.
本発明の実施の形態2に係る線量率測定装置の全体構成を図7に示す。なお、図7中、図1と同一、相当部分には同一符号を付し、説明を省略する。上記実施の形態1では、第2の放射線検出手段として3台の半導体検出器22a、22b、22cを用いたが、本実施の形態2では、1台のシンチレーションファイバー検出器27を用いている。また、測定部3には、シンチレーションファイバー検出器27を動作させる高電圧を供給する高圧電源41を備えている。
図8は、本実施の形態2に係る線量率測定装置1Aのシンチレーションファイバー検出器27を示している。シンチレーションファイバー検出器27は、センサ部である複数のシンチレーションファイバーを3つに分けることにより、3つの帯状のシンチレーションファイバー271a、271b、271cを有している。以下の説明では、3つのシンチレーションファイバー271a、271b、271cを特に区別する必要がない場合には、総称してシンチレーションファイバー271と記す。
図8に示すように、各シンチレーションファイバー271には、光ファイバー272が接続されている。光ファイバー272は、ライトガイド273端面の孔に挿入されて光学的に接合され、ライトガイド273は光電子増倍管274に光学的に接合されている。シンチレーションファイバー271は、吸収した放射線のエネルギーに正比例する光量の蛍光を発する。光電子増倍管274は、その蛍光を電子に変換して増倍し、光量に正比例した電荷量の電流パルスを出力する。
分配回路275は、測定部3の高圧電源41から供給された高電圧を分割し、光電子増倍管274を動作させるためにバイアスとして分配する。光電子増倍管274から出力された電流パルスは、プリアンプ276(図9参照)を介して測定部3のパルス増幅器38に入力される。
図9は、本実施の形態2に係る線量率測定装置1Aの検出部2を示している。なお、図9中、図2と同一、相当部分には同一符号を付し、説明を省略する。シンチレーションファイバー検出器27は、シンチレーション検出器21のシンチレータ211への放射線の入射を遮らない位置に設置される。
帯状のシンチレーションファイバー271a、271b、及び図示しないシンチレーションファイバー271cは、それぞれ光ファイバー272a、272b、及び図示しない光ファイバー272cに接続されている。各シンチレーションファイバー271は、シンチレーション検出器21の中心軸Zを中心として互いに等間隔であり、且つ中心軸Zと直角に交わる平面に対して互いに等角度に設置される。
さらに、上記実施の形態1と同様に、3つの帯状のシンチレーションファイバー271a、271b、271c全ての中心軸方向の有感面積の合計と、それぞれの直角方向の有感面積をほぼ等しくすることにより、シンチレーションファイバー検出器27の測定空間に対する感度の方向依存性が抑制される。
遮光フィルタケース277は、シンチレーションファイバー検出器27全体を遮光し、電気的にシールドする。さらに、遮光フィルタケース277には、上記実施の形態1の半導体検出器22に設けられたフィルタ板23(図2参照)と同様に、シンチレーションファイバー検出器27のアナログ電圧パルスのパルス列の計数率が、放射線のエネルギーに依存せず概ね線量率に比例するように減衰させる作用がある。
本実施の形態2に係る線量率測定装置1Aにおける低レンジ線量率演算手段、高レンジ線量率演算手段、及びネルギー補償係数決定手段の構成及び動作は、上記実施の形態1と同様であるので説明を省略する。
本実施の形態2によれば、上記実施の形態1と同様の効果に加え、第2の放射線検出手段として3台の半導体検出器22の代わりに1台のシンチレーションファイバー検出器27を用いることにより、装置の簡素化が図られる。
実施の形態3.
図10は、本発明の実施の形態3に係る線量率測定装置の演算部の構成を示している。本実施の形態3に係る線量率測定装置は、測定部3の演算部35に、シンチレーション検出器21の暗電流補償手段である暗電流補償部359を備えている以外は、上記実施の形態1または実施の形態2と同様の構成及び動作であるので、ここでは図1を流用して説明する。
暗電流補償部359は、シンチレーション検出器21に高電圧を供給する高圧電源40の高電圧設定値に基づいて、シンチレーション検出器21の暗電流を求め、該暗電流に相当する暗電流線量率を演算する。高圧電源40の設定は、表示及び操作部36から行われる。
通常、高圧電源40の出力の高電圧VHは、700V〜1000Vの範囲で使用される。この範囲の高電圧VHの変化分の対数とシンチレーション検出器21の出力の暗電流Idの変化分の対数は概ね比例し、高電圧VHの増加に伴い暗電流Idは指数関数的に増加する。定期点検では、必要に応じて高電圧VHを調整してシンチレーション検出器21のゲイン調整を行うが、装置更新までの全使用期間における高電圧VHの調整範囲は概ね100V〜150Vである。
本実施の形態3では、高電圧VHの使用範囲700V〜1000Vについて、シンチレーション検出器21毎に高電圧VHと暗電流Idの関係を測定し、図11に示すような対照テーブルを作成する。対照テーブルは、表示及び操作部36から入力され、暗電流補償部359に記憶される。また、表示及び操作部36から高電圧VHを設定すると、暗電流補償部359から対応する暗電流Idが出力される。
高電圧VHと暗電流線量率の対照テーブルの例を図11に示す。この例では、基準温度における高電圧VHに対する暗電流線量率をDsとし、高電圧VHの使用範囲700V〜1000Vの上限及び下限、さらにその間で分割された複数のポイントにおいて、高電圧VHに対する暗電流線量率Dを実験または解析により求めている。
高レンジ線量率演算部354は、シンチレーション検出器21から出力された直流電圧により得られる高レンジ線量率DHに対し、エネルギー特性補償部355から取得したエネルギー補償係数βを乗じてエネルギー特性を補償した後、暗電流補償部359から取得した暗電流線量率Dを減算した高レンジ線量率(DH×β−D)を出力する。
本実施の形態3によれば、上記実施の形態1及び実施の形態2と同様の効果に加え、高レンジ線量率に含まれるシンチレーション検出器21の暗電流線量率を補償するようにしたので、高レンジ線量率の下限レンジ付近の測定精度を改善することができ、測定レンジ全体に亘ってさらに良好な直線性が得られる。これにより、低レンジ線量率演算部353と高レンジ線量率演算部354の切換点付近の出力エネルギー特性を改善することができる。
実施の形態4.
図12は、本発明の実施の形態4に係る線量率測定装置の全体構成を示している。本実施の形態4に係る線量率測定装置1Bは、検出部2に、シンチレーション検出器21が設置された測定空間の温度を検出し温度信号を出力する温度センサ28を有している。また、測定部3は、温度センサ28から出力された温度信号に基づいて、測定された温度を出力する温度測定部42と、上記実施の形態3と同様の暗電流補償部359を有している。
上記実施の形態3では、高圧電源40の高電圧設定値に基づいてシンチレーション検出器21の暗電流線量率を求めたが、本実施の形態4に係る線量率測定装置1Bは、シンチレーション検出器21の温度に依存する暗電流線量率を求めることにより、高レンジ線量率から排除される暗電流線量率の正確性を向上させている。
線量率測定装置1Bのその他の構成については、上記実施の形態2に係る線量率測定装置1A(図7参照)と同様であるので、説明を省略する。なお、本実施の形態4による、シンチレーション検出器21の温度に依存する暗電流線量率を求める方法は、上記実施の形態1に係る線量率測定装置1(図1参照)に適用することもできる。
暗電流補償部359は、温度測定部42から出力された温度と高圧電源40の高電圧設定値に基づいてシンチレーション検出器21の暗電流を求め、該暗電流に相当する暗電流線量率Dを演算する。具体的には、暗電流補償部359は、温度測定部42から出力されたシンチレーション検出器21の温度T(℃)を下記の式1に代入し、絶対温度Taを求める。
Ta=T+273(K) (式1)
次に、光電子増倍管の分野で一般的に知られている暗電流と温度の関係を示す下記の式2に絶対温度Taを代入し、温度に依存する暗電流I(T)を求める。なお、E及びQは光電子増倍管によって定まる定数である。Eは光電子増倍管の光電面の仕事関数に関係しており、光電子増倍管メーカの出荷試験データに基づいて求められる。
I(T)=Q(Ta)5/4exp(−E/Ta) (式2)
暗電流補償部359は、基準温度Tと高電圧設定値の条件における暗電流Idと温度に依存する暗電流I(T)の比、すなわちId/I(T)を求め、上記実施の形態3で示した暗電流線量率D(図11参照)に乗じる。これにより、温度特性を反映した暗電流線量率が得られる。
高レンジ線量率演算部354は、シンチレーション検出器21から出力された直流電圧により得られる高レンジ線量率に対し、エネルギー特性補償部355から取得したエネルギー補償係数を乗じてエネルギー特性を補償した後、暗電流補償部359から取得した温度特性を反映した暗電流線量率を減算した高レンジ線量率を出力する。
本実施の形態4によれば、上記実施の形態1から実施の形態3と同様の効果に加え、高レンジ線量率演算部354において温度特性を反映した暗電流線量率を補償するようにしたので、暗電流をより正確に排除した正味の高レンジ線量率を求めることができ、高レンジ線量率の測定精度が向上する。
実施の形態5.
図13は、本発明の実施の形態5に係る線量率測定装置の全体構成を示している。本実施の形態5に係る線量率測定装置1Cは、第1の波高スペクトルに基づいてシンチレーション検出器21の構成材料に含まれる天然の放射性核種K−40のスペクトルピークを検出し、該スペクトルピークの基準位置からのずれを補償することにより、低レンジ線量率の温度依存性と光電子増倍管212のドリフトを補償するものである。
本実施の形態5に係る線量率測定装置1Cは、ゲイン補償手段として、測定部3に設置されたデジタル/アナログ変換器43(以下、D/A変換器43と記す)と、演算部35に追加されたK−40ピーク検出部3500及びゲイン補償部3510を有している。また、上記実施の形態4と同様の温度センサ28と温度測定部42を有している。
線量率測定装置1Cのその他の構成については、上記実施の形態4に係る線量率測定装置1B(図12参照)と同様であるので、説明を省略する。なお、本実施の形態5によるゲイン補償手段は、上記実施の形態1に係る線量率測定装置1(図1参照)に適用することもできる。
低線量率領域におけるシンチレーション検出器21のゲインドリフト補償動作について、図14を用いて説明する。図14は、第1の波高スペクトルのスペクトルデータに基づく各チャネルにおける計数を示しており、横軸はチャネル、縦軸はカウントである。図中、aはK−40のピークが基準位置Aにある場合を示し、bは同ピークが基準位置より低い場合、cは同ピークが高い場合を示している。ゲイン補償手段がない場合は、K−40のピークがbまたはcのように変動する。
K−40ピーク検出部3500は、波高スペクトル生成部351から取得した第1の波高スペクトルに基づいて、シンチレーション検出器21の構成材料に含まれる天然の放射性核種K−40のスペクトルピークを検出し、K−40のピーク波高値を分析する。
ゲイン補償部3510は、温度測定部42から取得した温度と、K−40ピーク検出部3500から取得したK−40のスペクトルピークの検出結果に基づいて、K−40のスペクトルピークの基準位置からのずれを補償し基準位置に戻すのに必要なゲインを決定する。D/A変換器43は、ゲイン補償部3510から出力されたデータを電圧に変換し、パルス増幅器31に出力してゲインを設定する。K−40のピーク位置の検出精度は、ピークカウント数に依存する。また、ピーク位置の変動は、短期的には温度に依存し、長期的には光電子増倍管212のゲインドリフトに依存する。従って、温度補償を連続で行い、K−40のピーク位置を検出することによるゲイン補償は間欠的に行うことで問題はない。
本実施の形態5によれば、上記実施の形態1から実施の形態4と同様の効果に加え、測定部3にゲイン補償手段を備え、低レンジ線量率の温度依存性と光電子増倍管212のドリフトを補償するようにしたので、高い安定性が要求される低線量率領域における測定精度が向上する。なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
本発明は、原子炉施設等の施設周辺に設置される線量率測定装置に利用することができる。

Claims (9)

  1. 放射線を検出してアナログ電圧パルス及び直流電圧を出力する第1の放射線検出手段と、3個以上のセンサ部で放射線を検出してアナログ電圧パルスを出力する第2の放射線検出手段とを有する検出部、
    前記第1の放射線検出手段から出力されたアナログ電圧パルスにより得られる第1の波高スペクトルを低レンジ線量率に変換する低レンジ線量率演算手段と、前記第1の放射線検出手段から出力された直流電圧を高レンジ線量率に変換する高レンジ線量率演算手段と、前記第2の放射線検出手段から出力されたアナログ電圧パルスにより得られる第2の波高スペクトルから求めた平均波高値に基づいて前記高レンジ線量率に対するエネルギー補償係数を決定するエネルギー補償係数決定手段とを有する測定部を備え、
    前記第2の放射線検出手段の前記各センサ部は、前記第1の放射線検出手段への放射線の入射を遮らない位置に、前記第1の放射線検出手段の中心軸を中心として互いに等間隔且つ前記中心軸と直角に交わる平面に対して互いに等角度に設置されると共に、前記中心軸と平行な方向から前記各センサ部の有感面を透視した面積の合計と、前記中心軸と直角な方向から前記各センサ部の有感面を透視した面積が同等となるように配置され、
    前記高レンジ線量率演算手段は、前記高レンジ線量率に前記エネルギー補償係数決定手段から取得したエネルギー補償係数を乗算し、前記高レンジ線量率のエネルギー特性を補償することを特徴とする線量率測定装置。
  2. 前記エネルギー特性を補償された高レンジ線量率と前記低レンジ線量率の比を求め、その比と前記エネルギー特性を補償された高レンジ線量率に基づき、前記低レンジ線量率と前記エネルギー特性を補償された高レンジ線量率を切り換えて出力する線量率切換手段を備えたことを特徴とする請求項1記載の線量率測定装置。
  3. 前記第2の放射線検出手段として、前記センサ部が半導体センサである半導体検出器を用いたことを特徴とする請求項1または請求項2に記載の線量率測定装置。
  4. 前記第2の放射線検出手段として、前記センサ部がシンチレーションファイバーであるシンチレーションファイバー検出器を用いたことを特徴とする請求項1または請求項2に記載の線量率測定装置。
  5. 前記低レンジ線量率演算手段は、前記第1の波高スペクトルを定周期で入力して波高を線量率に変換し、移動平均により求めた平均線量率から前記低レンジ線量率を求めることを特徴とする請求項1から請求項のいずれか一項に記載の線量率測定装置。
  6. 前記高レンジ線量率演算手段は、前記第1の放射線検出手段から出力された直流電圧に正比例する繰り返し周波数のデジタルパルスを計数した計数値を入力して線量率に変換し、移動平均により求めた平均線量率から前記高レンジ線量率を求めることを特徴とする請求項1から請求項のいずれか一項に記載の線量率測定装置。
  7. 前記測定部は、前記第1の放射線検出手段に高電圧を供給する高電圧供給手段の高電圧設定値に基づいて前記第1の放射線検出手段の暗電流を求め、該暗電流に相当する暗電流線量率を演算する暗電流補償手段を備え、
    前記高レンジ線量率演算手段は、前記高レンジ線量率に対し、前記エネルギー補償係数決定手段から取得したエネルギー補償係数を乗算した後、前記暗電流補償手段から取得した暗電流線量率を減算し、前記高レンジ線量率のエネルギー特性と暗電流を補償することを特徴とする請求項1から請求項のいずれか一項に記載の線量率測定装置。
  8. 前記検出部は、前記第1の放射線検出手段が設置された空間の温度を検出し温度信号を出力する温度センサを備え、前記測定部は、前記温度センサから出力された温度信号に基づいて測定された温度を出力する温度測定部を備え、前記暗電流補償手段は、前記温度測定部から出力された温度と前記高電圧供給手段の高電圧設定値に基づいて前記第1の放射線検出手段の暗電流を求め、該暗電流に相当する暗電流線量率を演算することを特徴とする請求項記載の線量率測定装置。
  9. 前記検出部は、前記第1の放射線検出手段が設置された空間の温度を検出し温度信号を出力する温度センサを備え、前記測定部は、前記温度センサから出力された温度信号に基づいて測定された温度を出力する温度測定部と、前記第1の波高スペクトルに基づいて前記第1の放射線検出手段の構成材料に含まれる天然の放射性核種K−40のスペクトルピークを検出するK−40ピーク検出部と、前記温度測定部から取得した温度と前記K−40ピーク検出部から取得したK−40のスペクトルピークの検出結果に基づいて、K−40のスペクトルピークの基準位置からのずれを補償するゲインを決定するゲイン補償手段を備えたことを特徴とする請求項1から請求項のいずれか一項に記載の線量率測定装置。
JP2015509251A 2014-08-26 2014-08-26 線量率測定装置 Active JP5819024B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072231 WO2016030957A1 (ja) 2014-08-26 2014-08-26 線量率測定装置

Publications (2)

Publication Number Publication Date
JP5819024B1 true JP5819024B1 (ja) 2015-11-18
JPWO2016030957A1 JPWO2016030957A1 (ja) 2017-04-27

Family

ID=54602185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015509251A Active JP5819024B1 (ja) 2014-08-26 2014-08-26 線量率測定装置

Country Status (5)

Country Link
US (1) US9841508B2 (ja)
EP (1) EP3187901B1 (ja)
JP (1) JP5819024B1 (ja)
CN (1) CN106662656B (ja)
WO (1) WO2016030957A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075520A (ja) * 2014-10-03 2016-05-12 富士電機株式会社 電流測定装置
CN111221371A (zh) * 2020-01-03 2020-06-02 深圳市汇川技术股份有限公司 模拟电压输出方法、系统、设备以及计算机可读存储介质
US11448777B2 (en) * 2018-05-09 2022-09-20 Target Systemelektronik Gmbh & Co. Kg Method and device for the measurement of high dose rates of ionizing radiation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452425B2 (ja) * 2014-12-11 2019-01-16 株式会社日立製作所 放射線モニタ
CN108074636B (zh) * 2017-12-26 2021-10-26 北京纳米维景科技有限公司 一种表面入射剂量计算方法、设备及存储介质
CN109471154B (zh) * 2018-11-09 2020-03-17 中国核动力研究设计院 一种小型gm计数管宽量程监测仪表
CN112651595B (zh) * 2020-12-01 2022-05-17 中国辐射防护研究院 一种后处理厂应急行动水平的制定方法
GB202203570D0 (en) * 2022-03-15 2022-04-27 Johnson Matthey Plc Methods and apparatus for processing a counting output

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104282A (ja) * 1984-10-26 1986-05-22 Japan Atom Energy Res Inst 携帯型広レンジγ線照射線量率測定・記録装置
JPH01250885A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 放射線モニタ
JPH01274095A (ja) * 1988-03-11 1989-11-01 Bicron Corp 低レベル環境放射線測定装置
JP2002168957A (ja) * 2000-12-04 2002-06-14 Aloka Co Ltd 放射線検出装置
JP2005077230A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 環境放射線モニタ
JP2012007888A (ja) * 2010-06-22 2012-01-12 Hitachi Ltd 放射線計測装置
JP2014085183A (ja) * 2012-10-22 2014-05-12 Panasonic Corp 放射線測定装置、放射線測定方法及び放射線測定プログラム
JP2014122861A (ja) * 2012-12-21 2014-07-03 National Institute Of Advanced Industrial & Technology 放射線飛来方向検出システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389570A (en) * 1979-03-14 1983-06-21 Westinghouse Electric Corp. Wide range radiation monitoring apparatus
JPS6275366A (ja) * 1985-09-30 1987-04-07 Toshiba Corp 放射線検出装置
US4888483A (en) * 1987-10-27 1989-12-19 Grobbelaar Jacobus H Diamond radiation probe
US4973913A (en) * 1990-02-08 1990-11-27 Mitsubishi Denki Kabushiki Kaisha Radiation measuring apparatus
JPH071305B2 (ja) * 1992-02-26 1995-01-11 アロカ株式会社 放射線検出装置
EP2028509A1 (en) * 2007-08-09 2009-02-25 European Organisation for Nuclear Research CERN Radiation monitoring device
DE102007041416A1 (de) * 2007-08-31 2009-03-05 Basf Se Destillation ionischer Flüssigkeiten
JP2009079969A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 放射線スペクトル計測システム
JP4583480B2 (ja) * 2008-06-24 2010-11-17 富士電機システムズ株式会社 中性子線量計
RU82377U1 (ru) * 2008-11-28 2009-04-20 Юрий Николаевич Глыбин Устройство для контроля мощности поглощенной и эквивалентной дозы фотонного излучения
US8022355B2 (en) * 2009-08-04 2011-09-20 Thermo Fisher Scientific Inc. Scintillation detector gain control system using reference radiation
CN201600459U (zh) * 2010-02-10 2010-10-06 陕西卫峰核电子有限公司 数字伽玛辐射探测器
CN101937090B (zh) * 2010-08-12 2012-11-07 上海新漫传感技术研究发展有限公司 一种高灵敏宽量程X-γ周围剂量当量率仪探头
JP6275366B2 (ja) * 2011-11-09 2018-02-07 積水化学工業株式会社 感光性水系エポキシ樹脂硬化用微粒子、感光性水系エポキシ樹脂硬化用微粒子の製造方法、及び、感光性水系エポキシ樹脂組成物
JP5868256B2 (ja) * 2012-04-26 2016-02-24 三菱電機株式会社 線量率測定装置
WO2013183434A1 (ja) * 2012-06-07 2013-12-12 国立大学法人静岡大学 放射線線量計および放射線線量の算出方法
JP6124663B2 (ja) * 2013-04-19 2017-05-10 三菱電機株式会社 線量率測定装置
JP2015010998A (ja) * 2013-07-02 2015-01-19 三菱電機株式会社 線量率測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104282A (ja) * 1984-10-26 1986-05-22 Japan Atom Energy Res Inst 携帯型広レンジγ線照射線量率測定・記録装置
JPH01274095A (ja) * 1988-03-11 1989-11-01 Bicron Corp 低レベル環境放射線測定装置
JPH01250885A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 放射線モニタ
JP2002168957A (ja) * 2000-12-04 2002-06-14 Aloka Co Ltd 放射線検出装置
JP2005077230A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 環境放射線モニタ
JP2012007888A (ja) * 2010-06-22 2012-01-12 Hitachi Ltd 放射線計測装置
JP2014085183A (ja) * 2012-10-22 2014-05-12 Panasonic Corp 放射線測定装置、放射線測定方法及び放射線測定プログラム
JP2014122861A (ja) * 2012-12-21 2014-07-03 National Institute Of Advanced Industrial & Technology 放射線飛来方向検出システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075520A (ja) * 2014-10-03 2016-05-12 富士電機株式会社 電流測定装置
US11448777B2 (en) * 2018-05-09 2022-09-20 Target Systemelektronik Gmbh & Co. Kg Method and device for the measurement of high dose rates of ionizing radiation
CN111221371A (zh) * 2020-01-03 2020-06-02 深圳市汇川技术股份有限公司 模拟电压输出方法、系统、设备以及计算机可读存储介质

Also Published As

Publication number Publication date
JPWO2016030957A1 (ja) 2017-04-27
EP3187901A4 (en) 2018-06-13
CN106662656A (zh) 2017-05-10
US20170219718A1 (en) 2017-08-03
EP3187901B1 (en) 2019-06-26
CN106662656B (zh) 2019-01-08
US9841508B2 (en) 2017-12-12
WO2016030957A1 (ja) 2016-03-03
EP3187901A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5819024B1 (ja) 線量率測定装置
JP6184608B2 (ja) 線量率測定装置
US8546749B2 (en) Intrinsic radioactivity in a scintillator as count rate reference
US9817136B2 (en) Radiation monitoring device
JP6124663B2 (ja) 線量率測定装置
US10054689B2 (en) Dose rate monitoring device
JP6147068B2 (ja) 線量率測定装置
JP6091622B2 (ja) 放射線測定装置
JP7134150B2 (ja) 放射能分析装置
KR101192175B1 (ko) 감마선 섬광 계수기의 에너지 교정 방법
Fiandrini et al. Direct detection of long-duration intense X-ray fluxes with SiPM
KR20240115070A (ko) 방사성 핵종 분석을 위한 스펙트럼 안정화 방법 및 이를 위한 시스템
JP2020109371A (ja) 放射能測定装置
JP2019132632A (ja) 密度測定装置および密度測定方法
UA100966U (uk) Пристрій для контролю параметрів рентгенівських випромінювачів

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R151 Written notification of patent or utility model registration

Ref document number: 5819024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250