JP7134150B2 - 放射能分析装置 - Google Patents

放射能分析装置 Download PDF

Info

Publication number
JP7134150B2
JP7134150B2 JP2019154202A JP2019154202A JP7134150B2 JP 7134150 B2 JP7134150 B2 JP 7134150B2 JP 2019154202 A JP2019154202 A JP 2019154202A JP 2019154202 A JP2019154202 A JP 2019154202A JP 7134150 B2 JP7134150 B2 JP 7134150B2
Authority
JP
Japan
Prior art keywords
light
energy
spectrum
light source
inverse problem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154202A
Other languages
English (en)
Other versions
JP2021032753A (ja
Inventor
正一 中西
博志 西沢
真照 林
哲史 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019154202A priority Critical patent/JP7134150B2/ja
Publication of JP2021032753A publication Critical patent/JP2021032753A/ja
Application granted granted Critical
Publication of JP7134150B2 publication Critical patent/JP7134150B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

本願は、放射能分析装置に関するものである。
従来、ヨウ化ナトリウム(NaI)などのシンチレータを用いたシンチレーション検出器を備えた検出部と多重波高分析器とを組み合わせて波高スペクトルを表示できるようにした放射能分析装置は.概略的な放射線エネルギー分布を求めることができ、検出した放射線のエネルギー分布が分かり、放射能核種を特定することができる。
このような放射能分析装置において、多重波高分析器により得られる波高スペクトルに対して、さらに逆問題解法(例えばアンフォールディング演算)といった放射能分析機能を付加して、波高スペクトルをエネルギースペクトルに変換して検出した放射線のエネルギーをより高精度に算出して放射能核種を特定する(核種分析をする)技術が既に提案されている(例えば、下記の特許文献1参照)。
ところで、被測定体から放射される放射線を検出する検出部を構成するシンチレーション検出器は、温度変化などにより検出特性が変化することがある。特に、検出器出力であるパルス信号を増幅させる比率(ゲイン)は、環境温度、経年劣化などにより変化するという望ましくない特性がある。このため、環境温度または検出器の劣化度に応じてゲインが変動しないように自動調整する必要がある。
そこで、従来技術では、このようなゲインの自動調整を行うために、カリウム40の全吸収ピークを指標にしてゲインを自動調整する、あるいは、基準線源を用いたライトパルサを検出器内部に付加することで得えられる基準の全吸収ピークを指標にしてゲインを自動調整しているものがある。
特に、従来のシンチレーション検出器を適用している例えば原子力プラントに設置されている高感度型主蒸気管モニタは、広範囲のエネルギー帯を検出対象にしているので、広範囲のエネルギー帯において一定のゲインを保持する要求がある。そのため、シンチレーション検出器に基準線源を用いたライトパルサを検出器内部に付加することで得る基準の全吸収ピークを指標にしてゲインを自動調整している。
ここで、従来のライトパルサは、発光体からなるケース内にAm-241(アメリシウム-241)などの基準となる放射線源を封入して構成されており、基準の放射線源によって発光体が発光する。したがって、従来のライトパルサはその光の強度(光エネルギー)が常に固定しており、外部からの電力制御などによって可変できるものではない。
国際公開番号2016/129455号公報
前述のように、従来のシンチレーション検出器に適用されるゲイン調整のための指標としてカリウム40の全吸収ピーク、または基準線源を用いたライトパルサが適用されるが、特に、従来使用されているライトパルサは、その光の強度(光エネルギー)が常に固定している。このため、測定対象の放射能のスペクトルに対してライトパルサの光エネルギーのスペクトルが重複するような場合には、両者を区別することが難しくなり、ライトパルサをゲイン指標として利用するのが阻害されるという問題がある。
また、検出部を構成するシンチレーション検出器は、ライトパルサの固定された光の強度(光エネルギー)を指標としてゲイン調整されるので、このエネルギー近傍のエネルギー帯は正しいゲインになることは保証される半面、その近傍から外れたエネルギー帯においては、常に高精度の一定のゲインとなることは難しく、増幅回路の直線性性能に依存するという問題点がある。
本願は、上記のような課題を解決するための技術を開示するものであり、被測定体から放射される放射線を検出する検出部に対して、測定環境、経年劣化などに影響されないゲイン調整、および広域なエネルギー帯においても確実にゲイン保証ができる放射能分析装置を提供することを目的とする。
本願に開示される放射能分析装置は、被測定体から放射される放射線を検出して電気パルス信号を出力する検出部、前記検出部からの前記電気パルス信号に対して波高スペクトルを出力する多重波高分析器、および前記多重波高分析器からの前記波高スペクトルに対して応答関数を用いた逆問題演算を行って前記被測定体のエネルギースペクトルを抽出する逆問題演算部を備えるとともに、前記検出部に対して外部電力の大きさにより光の強度が変化する光源を有するライトパルサを設け、かつ、前記逆問題演算部は、前記逆問題演算により前記被測定体の放射線のエネルギースペクトルに加えて、前記ライトパルサの前記光源によるエネルギースペクトルを抽出するようにしている。
本願に開示される技術によれば、被測定体から放射される放射線を検出する検出部に対して、測定環境、経年劣化などに影響されないゲイン調整、および広域なエネルギー帯においても確実にゲイン保証ができる放射能分析装置を得ることができる。
本願の実施の形態1による放射能分析装置の構成を示すブロック図である。 図1に示した放射能分析装置の多重波高分析器の出力である波高スペクトルの一例を示す図である。 図1に示した放射能分析装置の逆問題演算部の出力であるエネルギースペクトルの一例を示す図である。 本願の実施の形態2による放射能分析装置の構成を示すブロック図である。 図4に示した放射能分析装置の逆問題演算部の出力であるエネルギースペクトルの一例を示す図である。
実施の形態1.
図1は実施の形態1による放射能分析装置の構成を示すブロック図である。
図1において、この実施の形態1の放射能分析装置1は、放射能を含む物質をモニタリングする装置であって、検出部11、増幅器12、多重波高分析器(Multi Channel Analyzer;MCA)13、逆問題演算部14、および表示部15を備え。さらにライトパルサ3が設けられている。
検出部11は、被測定体2から発せられる放射線を検出して電気パルス信号を出力するシンチレーション検出器が適用される。この場合のシンチレーション検出器は、図示しないが、放射線により発光するシンチレータおよび光電子増倍管を組み合わせて構成される。
増幅器12は、検出部11からの電気パルス信号の信号レベルを増幅して、パルス波形整形する。また、多重波高分析器13は、増幅器12の電気パルス信号を波高に基づいてデジタル値に変換し、そのデジタル値の大きさに応じて多重チャンネルに弁別し、各チャンネルに対応する信号数をカウントして波高スペクトルを出力する。
逆問題演算部14は、多重波高分析器13が出力する波高スペクトルに逆問題演算を施して、検出部11に入射した放射線のエネルギーに対応したチャンネルに変換することで、波高スペクトルからエネルギースペクトルに変換して被測定体2の放射能量を演算する。なお、その逆問題演算の内容については後に詳述する。表示部15は、多重波高分析器13の出力である波高スペクトル、および逆問題演算部14の出力であるエネルギースペクトルを表示する。
ライトパルサ3は、検出部11に対して一定強度の光を入射して波高スペクトルおよびエネルギースペクトル上に放射線検出を模擬するピークを発生させるためのものであって、光源31およびパルサスイッチ32を備える。
光源31は、外部電力の大きさで光の強さ(光エネルギー)が変化する発光素子、例えばLED(Light Emitting Diode)、半導体レーザ、有機EL(Electro Luminescence)などの発光素子で構成されており、パルサスイッチ32のオン/オフにより発光したり消光したりする。
この光源31により発光された光は、検出部11で受光され、増幅器12で信号増幅され、多重波高分析器13で入射した光の強度が分析されて光の強度に適合したチャンネルとしてカウントされて波高スペクトルとして表示部15に表示される。また、同時に逆問題演算部14において波高スペクトルに逆問題演算を施して光の強度(光エネルギー)に対応したチャンネルに変換することでエネルギースペクトルとして表示部15に表示される。
上記のように、この実施の形態1においては、ライトパルサ3の光源31は、検出部11に入射する放射線の模擬として光を発生するが、通常の放射線と違って、その光の強度(光エネルギー)を外部からの電力制御によって可変できるので、後述の逆問題演算を施して波高スペクトルをエネルギースペクトルに変換した際に、予め被測定体2の測定エネルギー帯と重複するのを回避して、使用者が決定する任意のエネルギー帯にチャンネルを設定することができる。このため、ライトパルサ3の光源31をゲイン調整のための指標として用いることが可能になる。
次に、上記のように構成された実施の形態1の放射能分析装置1の測定方法について説明する。
被測定体2は放射能を含むので、放射能から発せられる放射線の一部は検出部11に入射する。放射線が検出部11に入射すると、電気パルス信号に変換され増幅器12に出力され、増幅器12において電気パルス信号が増幅および整形された後、多重波高分析器13に出力される。
多重波高分析器13は、入力された電気パルス信号のパルス波高の高さを読み取って、そのパルス波高の高さに応じて例えば1000チャンネル程度に分割された各チャンネルに割り当てる。すなわち、多重波高分析器13が受け入れ可能な電気パルス信号の最大パルス波高については、最大チャンネルの例えば1000チャンネル目に割り当てられる。最大パルス波高以下のパルス波高については、パルス波高に比例したチャンネルにそれぞれ割り当てられる。
多重波高分析器13は、パルス波高のチャンネル毎のカウントを積算して、パルス波高のチャンネルを横軸、各チャンネルに対する各カウント数を縦軸として表した、例えば図2に示すような波高スペクトルを出力する。
図2は、検出部11として、ヨウ化ナトリウム(NaI)のシンチレーション検出器を用いた場合の波高スペクトルを表す。
図2において、被測定体2から入射した放射線のエネルギーはE1においてピークを示し、その周囲は広がりを持ち、その広がりを全吸収ピークの領域Raという。この全吸収ピークの領域Raの広がりの程度を、適用する検出部11の分解能といい、領域Raの広がりが狭いほど分解能が優れている。この分解能は、検出部11の特性であり、その種類および品質により決まる。全吸収ピークの領域Raより低いエネルギー領域の分布をコンプトン散乱領域Rcといい、検出部11の物理的な大きさが有限であるため、必ず現れる領域である。このコンプトン散乱領域Rcの分布面積が小さいほど、かつ全吸収ピークの領域Raの分布面積が大きいほどシンチレーション検出器の性能が優れているといえる。
また、図2に示す波高スペクトルにおいて、L1はライトパルサ3の光源31により入射される光によるパルス波高のピーク(以下、パルサピークという)を示す。被測定体2による放射線の全吸収ピークの領域Raの広がり、あるいはコンプトン散乱領域Rcの分布の上に、ライトパルサ3の光源31によるパルサピークL1が重なると、これが隠れてしまうが、予め使用者が、光源31による光の強度(光エネルギー)を調整しておくことで、後述の逆問題演算部14による逆問題演算により波高スペクトルをエネルギースペクトルに変換した際に、光源31によるパルサピークLlが被測定体2の測定エネルギー帯に重複するのを回避することができる。
なお、パルサスイッチ32による光源31の単位時間当たりのオン/オフは、図2の波高スペクトルのカウント数(縦軸)の大きさに影響するが、光の強度(光エネルギー)(横軸)とは直接には関係がない。
次に、逆問題演算部14による逆問題演算の内容について説明する。
多重波高分析器13の出力は、逆問題演算部14に入力される。逆問題演算部14は応答関数を保有しており、その応答関数を用いて波高スペクトルに対して逆問題演算を実施する。つまり、Mを波高スペクトル、Rを応答関数、Sを放射線の相互作用による影響が排除されたエネルギースペクトルとすると、下記の(式1)が成立する。
M=R・S (式1)
ここで、応答関数Rは、一般に可換群を形成するので逆元が存在する。そして、逆問題演算部14は、この(式1)における逆変換となる(式2)を計算し、エネルギースペクトルSを抽出する。なお、(式2)において(R-1)は応答関数の逆元を示す。
S=(R-1)・M (式2)
ここで、波高スペクトルMおよびエネルギースペクトルSをそれぞれベクトル表記、つまりチャンネル数に応じたカウント数をベクトル成分として表すと、応答関数Rおよび応答関数の逆元(R-1)はそれぞれ行列、逆行列と称することができる。
そして、逐次近似法(参考文献:文部科学省、放射能測定法シリーズ20「空間γ線スペクトル測定法」、(1990)付録2)によりフィードバック的操作を行い、予めシミュレーションにより算出された応答関数Rを用いて、被測定体2を計測して得られる波高スペクトルMからエネルギースペクトルSを詳細化していき、目的のエネルギースペクトルSを求めることができる。
上記の逐次近似法を適用すると、(式2)のエネルギースペクトルSの求め方が以下のようになる。
まず、エネルギースペクトルSの初期値として測定値Mをそのまま代入すると、(式3)となる
Figure 0007134150000001
次に、以下の(式4)、(式5)をフィードバック的に繰り返し、S(m+1)/S(m)が収束するまで繰り返す。
Figure 0007134150000002
Figure 0007134150000003
以上のようにして求めたエネルギースペクトルSに含まれる情報は、被測定体2に含まれる放射性核種の種類を示すものである。
この(式2)を解くことにより、Mで表される波高スペクトルから、放射線のエネルギー情報のみを含むSで表されるエネルギースペクトルを抽出することができる。つまり、こうして得られるエネルギースペクトルは、検出部11および被測定体2の周辺構造物等による相互作用による影響、および、検出部11にかかわる統計的なバラつきによる影響が排除されている。すなわち、(式2)の計算により、放射線のエネルギー情報を正確に知ることができ、検出された放射線を放出した放射性物質の同定の精度が向上する。そして、抽出されたエネルギースペクトルは、表示部15に表示される。その際、同時にライトパルサ3の光源31に基づいて得られる波高スペクトルについても、逆問題演算部14によりエネルギースペクトルに変換されて、表示部15に表示される。
図3は多重波高分析器13の出力である波高スペクトル(図2)を逆問題演算部14で変換して得られたエネルギースペクトルを示すものである。
被測定体2から入射した放射線については、逆問題演算により波高スペクトルに見られたコンプトン散乱領域Rcおよび全吸収ピークの領域Raの広がりが無くなる。なお、図3では、エネルギーE1を持つ放射線が1種類だけ入射した場合を示しているが、複数のエネルギーが入射した場合には、エネルギーE1以外のチャンネルにもカウントを示すようになる。これらのチャンネル毎、すなわちエネルギー毎のカウント数が求めるべき放射能量である。
このように、被測定体2から入射した放射線については、逆問題演算部14でエネルギースペクトルに変換されると、波高スペクトルに見られたコンプトン散乱領域Rcおよび全吸収ピークの領域Raの広がりが無くなる。また、ライトパルサ3の光源31によるパルサピークL1の位置は、被測定体2からの放射線のエネルギーE1と重ならないように予め設定しているので、エネルギーE1の位置に現れる被測定体2の放射能量に影響されることなく、ライトパルサ3の光源31によるパルサピークL1の位置がスペクトル上のどこに位置するのかが明確になる。
放射能分析装置1の検出出力であるパルス信号を増幅させる比率(ゲイン)が常に一定の場合には、図3に示したエネルギースペクトルにおける光源31のパルサピークL1の位置は、いつも同じ位置にある。一方、環境温度の変化または検出部11の経年劣化等によりゲインが変動すると、これに伴い、被測定体2が発する放射線のエネルギーも変動するので、放射能核種などを正確に特定できなくなる。また、光源31によるパルサピークL1の位置も変動する。
この場合には、表示部15に表示されるエネルギースペクトル(図3)を観察し、ライトパルサ3の光源31によるパルサピークL1の位置が常に同じ位置にくるように増幅器12のゲインを調整する。このようにゲイン調整すれば、放射能分析装置1のゲインが、環境温度の変化または検出部11の経年劣化等に影響されることなく常に一定に制御することができる。
以上のように、この実施の形態1によれば、外部電力の大きさで光量が変化する光源31を有するライトパルサ3を設け、かつ、逆問題演算部14の演算により被測定体2から放射される放射線のエネルギースペクトルに加えて、ライトパルサ3の光源31によるエネルギースペクトルを抽出するので、使用者が決定する任意のエネルギー帯にライトパルサ3の光源31のエネルギーに対応したチャンネルを設定することができる。このため、被測定体2の測定エネルギー帯を回避して、ライトパルサ3の光源31に基づくゲイン調整のための指標が得られるので、被測定体2から放射される放射線を検出する検出部11のゲインの健全性を確認することができ、正確なゲイン調整を行なえる。このため、常に精度良い検出結果が得られるようになる。
また、上記のライトパルサ3は、従来のような放射線源を用いたものではなくて、LED等の光源31を用いて構成されているので、予め光の強度を定めるだけでなく、光のオン/オフが可能である。そのため、ゲイン指標を使用しない時には光源31をオフにして、被測定体2からの放射線のみを入射するようにすることも可能である。
実施の形態2.
上記実施の形態1において、ライトパルサ3の光源31は、オン/オフだけの制御を行っているが、オン/オフの制御だけでなく、光の強度(光エネルギー)を制御するようにすると、ライトパルサ3の光源31によるエネルギースペクトルのピーク位置を任意に変更することができる。
図4はこの実施の形態2による放射能分析装置の構成を示すブロック図である。
この実施の形態2では、ライトパルサ3の構成として、光源31およびパルサスイッチ32に加えて、パルサ制御部33を設ける。そして、このパルサ制御部33によって、光源31から発生される光の強度(光エネルギー)を制御できるようにしている。
この場合のパルサ制御部33による具体的な制御の仕方としては、例えば、バルサスイッチ32のオン/オフ周期に同期して、ライトパルサ3の光源31に印加する電圧を変化させるなどの制御を行うことにより、光源31から発せられる光の強度を時分割で変更する。
図5は図4に示した放射能分析装置の逆問題演算部14の出力であるエネルギースペクトルの例を示す図である。
上記のように、パルサ制御部33により、バルサスイッチ32のオン/オフ周期に同期して、ライトパルサ3の光源31に印加する電圧を変化させるなどの制御を行うことにより、光源31から発せられる光の強度を変更する。そして、被測定体2についての逆問題演算部14の出力であるエネルギースペクトルが複数のチャンネル(エネルギー)E1、E2、E3、E4、……、Enにわたって存在する場合でも、これらのピークを避けて、例えば図示したL1、L2の各位置に光源31によるパルサピークを選定することができる。このため、ライトパルサ3の光源31の発光制御を継続しても被測定体2の測定を正常に継続することが可能となる。
また、検出部11について、広範囲のエネルギー分布を示す例えばガンマ線検出を目的とするシンチレーション検出器を用いる場合には、広範囲のエネルギー帯において優れたゲイン直線性を備えることが重要となる。このため、広範囲のエネルギー帯においてゲインを確認する必要性がある。この実施の形態2の構成では、上記必要性に応じてライトパルサ3の光源31の光の強度を制御することで、エネルギースペクトルのピーク位置をL1、L2、……というように広範囲にわたって変更できる。そのため、被測定体2の測定エネルギー帯が広域の場合でも、指標ゲインの位置を変えてゲインの健全性を確認することが可能となる。
上記のように、広範囲のエネルギーのガンマ線検出を目的とするシンチレーション検出器としては、例えば、原子力プラントに設置されている高感度型主蒸気管モニタがある。
高感度型主蒸気管モニタは、N-16(6.13MeV)という高エネルギーの放射線を検出すると同時に、低エネルギーの希ガスの検知機能も備えており測定にかかるエネルギーが広範囲であり、かつ、測定対象も数多くある。しかし、パルサ制御部33により、ライトパルサ3の光源31の光の強度を制御することで、エネルギースペクトルのパルサピークの位置をL1、L2というように広範囲にわたって変更できるため、測定対象である被測定体2のスペクトルピークに重なる等の影響を回避して、広範囲のエネルギー帯にわたってゲインの健全性を確認することが可能となる。
また、実施の形態2では、ライトパルサ3の光源31に印加する電圧を変化させるなどの制御を行うことにより、光源31から発せられる光の強度を変更するようにしているが、パルサ制御部33によって、光源31の発光周波数を変化させるようすれば、任意のエネルギーの設定だけでなく、任意の線量率の設定も可能となるので、ライトパルサ3は、放射線検出テスト装置としても適用できる。
なお、本願は、様々な例示的な実施の形態が記載されているが、一つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも一つの構成要素を変形する場合、追加する場合、または省略する場合、さらには、少なくとも一つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれものとする。
1 放射能分析装置、2 被測定体、3 ライトパルサ、31 光源、
32 パルサスイッチ、33 パルサ制御部、11 検出部、12 増幅器、
13 多重波高分析器、14 逆問題演算部、15 表示部。

Claims (2)

  1. 被測定体から放射される放射線を検出して電気パルス信号を出力する検出部、前記検出部からの前記電気パルス信号に対して波高スペクトルを出力する多重波高分析器、および前記多重波高分析器からの前記波高スペクトルに対して応答関数を用いた逆問題演算を行って前記被測定体のエネルギースペクトルを抽出する逆問題演算部を備えるとともに、
    前記検出部に対して外部電力の大きさにより光の強度が変化する光源を有するライトパルサを設け、かつ、前記逆問題演算部は、前記逆問題演算により前記被測定体の放射線のエネルギースペクトルに加えて、前記ライトパルサの前記光源によるエネルギースペクトルを抽出する放射能分析装置。
  2. 前記ライトパルサに供給する外部電力の大きさを変化させて前記光源の光の強度を制御するパルサ制御部を備える請求項1に記載の放射能分析装置。
JP2019154202A 2019-08-27 2019-08-27 放射能分析装置 Active JP7134150B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154202A JP7134150B2 (ja) 2019-08-27 2019-08-27 放射能分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154202A JP7134150B2 (ja) 2019-08-27 2019-08-27 放射能分析装置

Publications (2)

Publication Number Publication Date
JP2021032753A JP2021032753A (ja) 2021-03-01
JP7134150B2 true JP7134150B2 (ja) 2022-09-09

Family

ID=74675828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154202A Active JP7134150B2 (ja) 2019-08-27 2019-08-27 放射能分析装置

Country Status (1)

Country Link
JP (1) JP7134150B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223991A (ja) 2015-06-03 2016-12-28 三菱電機プラントエンジニアリング株式会社 放射能汚染検査装置
JP6138240B2 (ja) 2012-05-17 2017-05-31 エルジー・ハウスホールド・アンド・ヘルスケア・エルティーディー 推薦販売によるボーナス精算方法およびそのためのネットワークマーケティング管理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2895330B2 (ja) * 1992-10-29 1999-05-24 株式会社日立製作所 ガンマ線計測装置
JP5832404B2 (ja) * 2012-09-24 2015-12-16 三菱電機株式会社 放射能分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138240B2 (ja) 2012-05-17 2017-05-31 エルジー・ハウスホールド・アンド・ヘルスケア・エルティーディー 推薦販売によるボーナス精算方法およびそのためのネットワークマーケティング管理システム
JP2016223991A (ja) 2015-06-03 2016-12-28 三菱電機プラントエンジニアリング株式会社 放射能汚染検査装置

Also Published As

Publication number Publication date
JP2021032753A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5911585B2 (ja) 放射能分析装置
JP5988890B2 (ja) 放射能分析装置および放射能分析方法
JP5819024B1 (ja) 線量率測定装置
JP2008256630A (ja) エネルギー補償型シンチレーション式光子線量計
US10004132B2 (en) Dose rate monitoring device
Li et al. Ground-based calibration and characterization of the HE detectors for Insight-HXMT
Pywell et al. Photon flux monitor for a mono-energetic gamma ray source
JP7134150B2 (ja) 放射能分析装置
KR101762008B1 (ko) 방사선 검출 장치 및 검출 방법
Mizuno et al. Development of an MPPC-based gamma-ray detector onboard a radiation source imager under high-dose environments and initial performance results
KR102280128B1 (ko) 방사성 핵종 판별 장치 및 방법
US7599463B2 (en) Remote sensing device to detect materials of varying atomic numbers
Keyser Characterization of room temperature detectors using the proposed IEEE standard
JPH0392790A (ja) シンチレーションパルス波高データの組合わせ方法および装置
JP7183206B2 (ja) 放射能検査装置
KR101192175B1 (ko) 감마선 섬광 계수기의 에너지 교정 방법
JPH0566275A (ja) 指向性可変放射線検出装置
JP2019015509A (ja) 放射能分析装置
Schmitz et al. Construction and first application of a TEPC dose-equivalent meter for area monitoring
JP2018132392A (ja) 土壌放射能汚染検査装置
KR102062450B1 (ko) 다중 광다이오드를 이용한 방사선측정장치 및 다중 광다이오드를 이용한 방사선측정방법
Henshaw et al. The use of a scintillation counter to measure diagnostic X-ray tube kilovoltage, radiation exposure rates and contamination by low energy gamma emitters
Bernet Garcia et al. System of control of the quantity of liquid in soda cans based on gamma radiation transmission
Ghanim POLAR-2: Building a Qualification Setup for the POLAR-2 Space Mission
Devanz et al. Instrumentation for High Performance Cavities and Cryomodule Field Emission Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211102

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R151 Written notification of patent or utility model registration

Ref document number: 7134150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151