JP5771612B2 - 電界発光材料および素子 - Google Patents

電界発光材料および素子 Download PDF

Info

Publication number
JP5771612B2
JP5771612B2 JP2012529288A JP2012529288A JP5771612B2 JP 5771612 B2 JP5771612 B2 JP 5771612B2 JP 2012529288 A JP2012529288 A JP 2012529288A JP 2012529288 A JP2012529288 A JP 2012529288A JP 5771612 B2 JP5771612 B2 JP 5771612B2
Authority
JP
Japan
Prior art keywords
polymer according
electroluminescent polymer
electroluminescent
polymer
repeating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012529288A
Other languages
English (en)
Other versions
JP2013505567A (ja
Inventor
ウイリアムズ,ジェフ
ピー モンクマン,アンドリュー
ピー モンクマン,アンドリュー
アール ブライス,マーティン
アール ブライス,マーティン
ピー ライアンズ,ベン
ピー ライアンズ,ベン
エル ヴォーン,ヘレン
エル ヴォーン,ヘレン
ティー カムテカー,キラン
ティー カムテカー,キラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thorn Lighting Ltd
Thorn Lighting Ltd
Original Assignee
Thorn Lighting Ltd
Thorn Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorn Lighting Ltd, Thorn Lighting Ltd filed Critical Thorn Lighting Ltd
Publication of JP2013505567A publication Critical patent/JP2013505567A/ja
Application granted granted Critical
Publication of JP5771612B2 publication Critical patent/JP5771612B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/105Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a methine or polymethine dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • C08G2261/5242Luminescence phosphorescent electrophosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、電界発光(エレクトロルミネセント)材料および素子(デバイス)に関する。
電界発光は、材料が、自身に流れた電流に応答して光を放射する現象である。この現象は、特に、有機光放射(有機発光)ダイオード(organic light emitting diodes:OLEDs)の製造と操作において利用される。OLEDsは、代表的には、有機小分子および/または高分子(例えば、オリゴマー)を有する、有機半導体材料を含有する。
単純なOLED構成において、有機光放射材料を有する薄膜は、アノード(陽極)とカソード(陰極)の間に挟まれる。バイアス電圧が、素子(デバイス)を横断して加えられたとき、正孔(ホール)は発光材料の最高被占分子軌道(HOMO)に注入され、電子は、最低空分子軌道(LUMO)に注入される。電子とホールが再結合するとき、励起子が放射的に崩壊できるように形成され、その結果、光の放射(発光)が起きる。生成される光の色は、材料のHOMO−LUMOバンドギャップに依存する。
しかしながら、安定性を上げ、素子の効率(注入電荷当たりの放射光の光子)を増加させるため、多層素子が通常使用される。そのような素子は、発光を増加させる結果に結びつく、発光材料への電荷の注入に影響を与える、電子輸送(伝達)材料および/または正孔輸送材料のような電荷輸送材料の層を含んでいる。多くの材料が、電子および正孔輸送材料として使用されることが述べられている(Kulkarniら Chem.Mater.2004, 16: 4556 - 4573; Yanら Appl Phys.Lett.2004, 84: 3873 - 3875)。
白色有機光放射(有機発光)素子(white organic light emitting devices:WOLEDs)は、液晶ディスプレイ(表示装置)のバックライト、および固体照明(solid-state lighting:SSL)デバイスにおいて、カラーフィルターの助けを得てのフルカラーディスプレイへの、その潜在的用途が明らかになったため、近年、関心が高まってきている。それゆえに、白色光放射(発光)できる効果的な単一成分OLEDは非常に望ましい。
それぞれ異なる色で光放射する2つまたはそれ以上の活性層から、同時に白色光放射を得るための多層素子構造の使用(Burrowsら Appl.Phys.Lett.1998, 73: 435 - 437;D'Andradeら Adv.Mater.2002, 14: 147 - 151;Leeら Mater.Sci.Eng. , B, 2002, 95:24 - 28; Huangら Appl.Phys.Lett.2002, 80: 2782 - 2784)、異なる蛍光またはリン光ドーパントがホスト高分子に分散された単一層を有する素子(ここで、ドーパントは、半導体材料の光学的/電気的性質を変化させるために低濃度で添加される不純物元素である)の使用(Kidoら Appl.Phys.Lett.1995, 67; 2281 - 2283;Mazzeoら、Synth Met.2003, 139:675 - 677)、または、赤、緑および青の3つの活性層が、正確なシャドーマスクを使用してマトリックス配列(アレー)としてパターン化された画素化構造の使用(Kidoら Appl.Phys.Lett.1995, 67; 2281 - 2283)、このような、WOLEDsからの白色光放射の達成のために多くのアプローチ法が述べられている。しかしながら、青色光放射に必要な高いバンドギャップは、効率的で、長続きする青色放射体の生産は挑戦的なことであると証明したことを確かなものとした。
単一層構造のWOLEDは、より容易な大規模な生産および低コストの製造に役立つので、望ましい。しかしながら、上記した単一層の蛍光またはリン光ドープWOLEDsは、加えられたバイアス電圧に依存する放射(発光)色(colour emission)のCIE(Commission Internationale de l'Eclairage)コーディネイトでの変化も含めて、多くの不利益に遭遇しており、それにより、LCDバックライトおよび他の照明用途にあまり好ましくないものとなっている。
過去10年間で、ポリフルオレン(PF)は、半導体有機共役高分子類の中で、効果的な電界発光材料として出現してきた。電界発光応用に適するようにするPFsの性質は、明るい青色放射、高正孔移動度、化学変性および共重合を通しての優れた熱的および化学的/電気化学的安定性、ならびに容易な調節性を含んでいる。しかしながら、これらの材料において、電子の移動度および注入は、正孔の移動度および注入より非常に低く、その結果、正負キャリヤの輸送の大きな不均衡をもたらす。電界発光材料中のこの乏しい荷電平衡は、結果としてPFsに基づくOLED素子の全体的な低効率につながる。PF材料に固有のさらなる問題は、しばしばこれらの材料で直面する、熱劣化、光劣化、または電気的劣化の結果としての、フルオレン欠陥の形成であり、結果的に低発光帯をもたらす。
多くの異なるアプローチ法が、これらの問題を軽減するために用いられた;それらの中に、電子供与体または電子受容体部分をホモポリマー(単独重合体)中に導入するものがある(主鎖中に、側鎖または末端基として)。OLEDsにおいて、そのような電子供与体または電子受容体部分の導入は、高分子のHOMO−LUMOレベルを変化させる効果的な方法を意味し、それは電界発光層への電荷注入の障壁を減少させて、材料の電子/正孔移動度の増加を許し、そして発光色を調節する。すなわち、電極と高分子の境界において、LUMOエネルギーを減少させることによって、素子中の電荷を均衡させて効率を上げるために電子注入を増加させることを可能にする。
PFsおよび他の共役高分子系は多くの方法により合成され得るが、しかし、一般には、鈴木重合法または山本重合法の一つによって合成される。これらの方法の各々は、モノマー単位での共役系の結合を確実にする。
鈴木重合法は、共役系を形成するための、アリール−ボロン酸もしくはビニル−ボロン酸、またはそのエステルと、ハロゲン化アリールもしくはハロゲン化ビニルとの結合を生じさせる。その反応は、テトラキス(トリフェニルホスフィン)パラジウム(0)のようなパラジウム(0)錯体が触媒として使用され、いくつかの総説に記載されている(例えば、鈴木、A. J. Organometallic Chem.1999, 576, 147-168)。有機半導体の重合でのそれの使用は、「坂本J.ら、Macrol.Rapid Commun., 2009, 30, 653-687」に記載されている。
山本重合法は、共役系を形成するための、アリール−ハロゲン化マグネシウムもしくはビニル−ハロゲン化マグネシウムと、ハロゲン化アリールもしくはハロゲン化ビニルとの結合を生じさせる。その反応は、ニッケル錯体が触媒として使用され、「山本ら in Bull Chem.Soc.Jpn., 1978, 51, 2091」によって、最初に説明された。有機半導体の重合でのそれの使用は、「山本T. Prog.Polym.Sci., 1993, 17, 1153-1205」に記載されている。
電子不足のチオフェン−S,S−ジオキサイド(二酸化物)部分を組み込んだフルオレンベースの共重合体が試験され、従来のPFホモポリマーを超える改善されたLED性能を実証せず、10−3から0.14%である小〜中程度の外部EL効率を示した(Charasら Chem.Commun.2001,1216:Charasら、J. Mater.Chem.2002,12:3523;Pasiniら、J. Mater.Chem.2003,13:807;Destriら、Synth.Metals、2003,138,289)。それゆえ、通常は、チオフェン−S,S−ジオキサイド部分のフルオレンベースの共重合体への組み込みが有益であろうとは期待できない。事実、発光の消光(quenching)が発生し、これらの材料を組み込んだOLED素子の全体的に乏しい効率をもたらすことが予想され、そして報告されている。
ジベンゾチオフェン−2,8−ジイルを含有する、規則的な、およびランダムなフルオレン共重合体(Yangら J.Mater.Chem.2003, 13:1351 - 1356;根本ら J.Polym.Sex.A:Polym.Chem.2003, 41:1521 - 1526)、ならびに、主鎖中に、ジベンゾチオフェン−S,S−ジオキサイド−2,8−ジイル部分を含有する、PPV共重合体(Wangら Thin Solid Films 2003, 424:186 - 190;Wangら .Synth.Metals 2003, 132:191 - 195)が報告され、それらは、再び、OLEDにおいて、中程度から非常に低い程度の効率を示した。
Kulkarniら Chem.Mater.2004, 16: 4556 - 4573 Yanら Appl Phys.Lett.2004, 84: 3873 - 3875 Burrowsら Appl.Phys.Lett.1998, 73: 435 - 437 D'Andradeら Adv.Mater.2002, 14: 147 - 151 Leeら Mater.Sci.Eng. , B, 2002, 95:24 - 28 Huangら Appl.Phys.Lett.2002, 80: 2782 - 2784 Kidoら Appl.Phys.Lett.1995, 67; 2281 - 2283 Mazzeoら、Synth Met.2003, 139:675 - 677 鈴木、A. J. Organometallic Chem.1999, 576, 147-168 坂本J.ら、Macrol.Rapid Commun., 2009, 30, 653-687 山本ら in Bull Chem.Soc.Jpn., 1978, 51, 2091 山本T. Prog.Polym.Sci., 1993, 17, 1153-1205 Charasら Chem.Commun.2001,1216 Charasら、J. Mater.Chem.2002,12:3523 Pasiniら、J. Mater.Chem.2003,13:807 Destriら、Synth.Metals、2003,138,289 Yangら J.Mater.Chem.2003, 13:1351 - 1356 根本ら J.Polym.Sex.A:Polym.Chem.2003, 41:1521 - 1526 Wangら Thin Solid Films 2003, 424:186 - 190 Wangら .Synth.Metals 2003, 132:191 - 195
再度、これらの結果は、共役高分子としてチオフェン−S,S−ジオキサイド単位を組み込んだフルオレンベースの共重合体は、OLEDにおいて、乏しい効率をもたらすであろうということを示唆し得る。
第1の観点において、本発明は、次の構造を有する第1の繰り返し単位を含有する電界発光高分子(重合体)を提供する:
Figure 0005771612
ここで、RからRは、同じかまたは異なっており、Hまたは任意に置換されたCからC26の直鎖もしくは分岐のアルキル、アルケニル、またはアルキニル鎖、アルコキシ基を有し;RとRのすくなくとも1つ、およびRとRの少なくとも1つはHではなく、XはS、SO、SO、O、NR、またはPの1つを有し、Yは存在しないか、またはS、SO、SO、O、NR、P、またはCR10の1つを有し、RからR10は、同じかまたは異なっており、Hまたは任意に置換されたCからC20の分岐もしくは環状の、アルキル、アルケニル、またはアルキニル鎖、またはアリール基を有する。
どのような特別な理論によっても束縛されようとすること無しに、発明者らは、RまたはRで少なくとも1つの置換基、およびRまたはRで少なくとも1つの置換基を有することが、第1の繰り返し単位を、高分子主鎖の残りの部分に対してねじるための十分な立体効果を提供することを見出した。このねじれは、共役中での降下を引き起こし、材料のバンドギャップを増加させ得ることにより、その結果、濃い青色放射(発光)スペクトルを提供することが提案される。
さらに、発明者らは、驚くべきことに、RまたはRで少なくとも1つの置換基、およびRまたはRで少なくとも1つの置換基を有することによって、発光効率の増加が観察されることを見出した。
パラ結合(カップリング)およびメタ結合(カップリング)に関して、環構造は、炭素1が最大の分子量の原子または原子団の隣の炭素であるように、番号付けられる。位置2は「オルト」、位置3は「メタ」、そして位置4は「パラ」である。
好ましくは、XはSOもしくはSOを有し、および/またはYは存在しない。
好ましくは、Rおよび/またはRはHである。
好ましくは、RからRの少なくとも3つ(例えば全て)はHではない。
からRがHではない場合は、好ましくは、CからC10の直鎖もしくは分岐のアルキル、アルケニルまたはアルキニル鎖である。
好ましくは、第1の繰り返し単位は次の構造を有する:
Figure 0005771612

ここで、特に、RおよびRはHであり、RおよびRはC13である。
好ましくは、高分子は、有機半導体部分を有する第2の繰り返し単位を含有する。
好ましくは、第2の繰り返し単位は次の構造を有する:
Figure 0005771612

11およびR12は、同じかまたは異なっており、Hまたは任意に置換されたCからC20の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル鎖、アリール基、アルコキシ基、アミノ、アミド、またはヒドロキシル(水酸)基を有し得る。
好ましくは、R11およびR12は、両方ともC17である。
第1の繰り返し単位の存在が、スピンコート(回転塗布)のような、より良い溶解処理を促進させる、電界発光高分子の溶解度を大幅に増加させ、そしてこのように重要な利点を示すこともまた見出された。さらに、第1の繰り返し単位を高含量で有する電界発光高分子の形成もまた、可能である。
したがって、第1の繰り返し単位の数yに対する第2の繰り返し単位の数xの比率は、少なくとも15:85が好ましく、より好ましくは30:70であり、特に50:50が好ましい。
好ましくは、RおよびRは、CからC10の非置換直鎖アルキル鎖を有する。
好ましくは、第2の繰り返し単位は、高分子の主鎖中にパラ結合またはメタ結合によって組み込まれている。
本発明のさらなる観点によれば、次の構造を有する1つまたはそれ以上の第1の繰り返し単位を含有する、フルオレンベース共重合体(共重合高分子)またはオリゴマーが提供される:
Figure 0005771612
任意に、第1のまたは第2の観点に係る共重合体(共重合高分子)またはオリゴマーは、さらに、少なくとも1つのアルキン基を有する。この少なくとも1つのアルキン基は、第1の繰り返し単位と第2の繰り返し単位の間、または2つの第2の繰り返し単位の間に位置させることができる。
ある実施の態様において、高分子は、電子輸送部分を有する第3の繰り返し単位を含有し得る。電子輸送部分は、次の基から選択される構造を有することが好ましい:
Figure 0005771612

ここで、R15からR20は、同じかまたは異なっていてもよく、Hまたは任意に置換されたCからC10(例えば、CまたはC)の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル基、ニトロ、アミノ、アミド、ハロ(ハロゲン基)、アルコキシ、ヒドロキシル(水酸)、チオール、またはチオアルキルを有し得;QからQは、同じかまたは異なっていてもよく、NまたはCHを有し得、ZはO、NRまたはSを有し得る。
好ましくは、高分子は、正孔輸送部分を有する第4の異なる繰り返し単位を含有する。
好ましくは、正孔輸送部分は、次の基から選択される構造を有することが好ましい。
Figure 0005771612

ここで、R13およびR14は、同じかまたは異なっていてもよく、Hまたは任意に置換されたCからC10(例えば、CまたはC)の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル基、ニトロ、アミノ、アミド、ハロ(ハロゲン基)、アルコキシ、ヒドロキシル(水酸)、チオール、またはチオアルキルを有し得、ArからAr10は、任意に、置換アリール基を有する。
好ましくは、高分子は、第1の繰り返し単位、ならびに第2、第3および第4の繰り返し単位のうちの1つ、いくつか、または全てを含んでいる、ブロック共重合体、規則的(regular)もしくは交互共重合体、またはランダム共重合体を有する。
好ましくは、共重合体はランダム共重合体である。「ランダム共重合体」という用語は、与えられたモノマー(単量体)単位が鎖中の任意の与えられた場所に見出される可能性が、それに隣接する単位の性質と無関係である高分子、からなる共重合体を意味する。
「規則的共重合体(regular copolymer)」という用語は、規則的な交互の繰り返し単位の連続を有する共重合体を意味する。
「ブロック共重合体」という用語は、各々の繰り返し単位が、少なくとも1つの同一の繰り返し単位に隣接するように配置された共重合体を意味する。
いくつかの実施形態において、高分子は、さらに、1つまたはそれ以上の赤色および/または緑色の発光(emitting)繰り返し単位を有する。赤色および/または緑色の発光繰り返し単位は、好ましくは、LおよびXが次のようである、IrLまたはIrLX形態の複合体(complexes)、または下記の[化8]の形態の複合体から選択されるリン光放射体(phosphorescent emitters)を含有する。
Figure 0005771612

ここで、R31からR34は、同じかまたは異なっていてもよく、Hまたは任意に置換されたCからC10(例えば、CまたはC)の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル基、ニトロ、アミノ、アミド、ハロ(ハロゲン基)、アルコキシ、ヒドロキシル(水酸)、チオール、またはチオアルキルを有し得る。
Figure 0005771612
その代替として、または追加的に、高分子は、次の基から選択されるような色ドーパント(colour dopants)を含有し得る:
Figure 0005771612

ここで、R21およびR30は、同じかまたは異なっていてもよく、Hまたは任意に置換されたCからC10(例えば、CまたはC)の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル基、ニトロ、アミノ、アミド、ハロ(ハロゲン基)、アルコキシ、ヒドロキシル(水酸)、チオール、またはチオアルキルを有し得、XおよびXはSまたはCを有し得る。
任意に、第1のまたは第2の観点に係る共重合体またはオリゴマーは、さらに、少なくとも1つのアルキン基を有する。この少なくとも1つのアルキン基は、第1の繰り返し単位と第2の繰り返し単位の間、または2つの第2の繰り返し単位の間に位置させることができる。
好ましくは、選択的な第1の繰り返し単位は、高分子の約2−50モル%からなる。
より好ましくは、第1の繰り返し単位は、高分子の約10−35モル%からなる。
より好ましくは、第1の繰り返し単位は、高分子の約20−30モル%からなる。
好ましくは、少なくとも第1の繰り返し単位の一部は、青色放射(blue emitting)部分として機能する。
好ましくは、少なくとも第1の繰り返し単位の一部は、電子輸送部分として機能する。
好ましくは、少なくとも第1の繰り返し単位の一部は、1つまたはそれ以上のリン光放射体の存在下で、高エネルギー三重項ホスト(a high energy triplet host)として機能する(例えば、高分子が、1つまたはそれ以上のリン光放射体を有するか、またはそれと共に堆積させられるかすれば)。
第1の繰り返し単位および第2の繰り返し単位は、好ましくは、それらが、励起状態でそれらの間に電荷移動を許可するように選択される。
好ましくは、高分子は、CIE(x、y=0.33、0.33)で測定されて白色点(white point)に近い放射光(emitting light)にできる。
第2の繰り返し単位は、任意の適切な位置で、本発明に係る機能的に等価な分子をもたらす、任意の適切な官能基で置換され得る。
好ましくは、第2の繰り返し単位が置換されるとき、それらは、任意の適切な位置でアルキル基で置換され得る。
任意に、第2の繰り返し単位が置換されるとき、それらは、任意の適切な位置で懸垂部分(pendent moieties)によって置換され得る。
任意に、第2の繰り返し単位が置換されるとき、それらは、任意の適切な位置でスピロ単位(spiro units)によって置換され得る。
本発明の第3の観点によれば、上記の高分子を有する光学素子(an optical device)が提供される。
本発明者らによって見出された別の重要な結果は、発明に係る電界発光高分子の三重項エネルギーが、第1の繰り返し単位の割合の増加に応じて増加することである。特に、ホスト、例えば、緑色のリン光イリジウムゲスト放射体(a green phosphorescent iridium guest emitter)に対して十分に高い三重項エネルギーを持つ高分子からの可能性が高い。
したがって、本発明の好ましい実施形態において、光学素子は、付加的に、赤色および/または緑色のリン光放射体を有する。
好ましくは、光学素子は、高分子が放射(放出)層(an emissive layer)の少なくとも一部を構成している有機光放射素子である。
好ましくは、有機光放射素子は第1および第2電極を有し、放射層は第1および第2電極の間に形成されている。
任意に、有機光放射素子は、さらに少なくとも1つの層、例えば、正孔注入層または電子注入層を有する。
好ましくは、本発明の共重合体は鈴木重合法によって調製される。
任意に、本発明の共重合体は、山本重合法のような任意の適切な重合方法によって調製することができる。
本発明者らは、置換ジベンゾチオフェン−S,S−ジオキサイドを含むフルオレンベース共重合体を組み込んだ単純なOLED素子が、従来報告されているPF単独重合体素子を超える、改良された電子輸送および発光を実証し、その結果、改良された外部量子効率をもたらすことを、有利に確立した。置換ジベンゾチオフェン−S,S−ジオキサイド部分はまた、電子輸送部分として働き、さらに、フルオレン共重合体と結合し発光部分として機能する。
チオフェンジオキサイド(二酸化物)は電子輸送材料として知られている一方で、ヘテロ原子は励起状態の消滅(クエンチング)により高発光ではないことが知られているので、このことは驚くべきことである。それゆえに、置換ジベンゾチオフェン−S,S−ジオキサイドのフルオレンベース共重合体への組み込みは高発光であろうということは、期待され得ないことである。
したがって、本発明によって、上記の第1または第2の観点に記載されているように、ジベンゾチオフェン−S,S−ジオキサイド単位を組み込んだフルオレンベース共重合体を組み込んでいる発光表面を有する素子によって、実質的に、白色光源の代替の市場は、少なくとも部分的に満足させられる。
すでに上記したように、本発明のさらなる利点は、1つまたはそれ以上の置換によってもたらされた、第1の繰り返し基(グループ)の改良された溶解度から生じる。これは、高分子のスピンコート(回転塗布)のような、より良好な溶解処理を促進し、このことは、OLED素子の費用効率の高い生産をできるようにする。
本発明の実施の形態は、添付図を参照してより詳細に記述される。
図1は、本発明に係る高分子(重合体)を形成するモノマー(単量体)の合成を示す。 図2は、本発明に係る高分子の合成を示す。 図3は、高分子(重合体)1のフォトルミネセンスデータを示す。 図4は、高分子(重合体)2のフォトルミネセンスデータを示す。 図5は、実施例3に係る素子の電流密度に対する明度(brightness)の測定値を示す。 図6は、実施例3に係る素子の電界発光波長に対する電界発光力を示す。 図7は、実施例3に係る素子の電圧に対する電流密度を示す。 図8は、実施例4に係る素子の電流密度に対する明度(brightness)の測定値を示す。 図9は、実施例4に係る素子の電圧に対する電流密度を示す。 図10は、実施例4に係る素子および実施例5に係る素子の、電界発光波長に対する電界発光強度を示す。 図11は、実施例5に係る素子の電流密度に対する明度(brightness)の測定値を示す。 図12は、実施例5に係る素子の電圧に対する電流密度を示す。 図13は、発明に関する3つの異なる素子の電界発光(エレクトロルミネセンス)スペクトルを示す。 図14は、3つの素子の対応するフォトルミネセンス測定を示す。
ランダムフルオレン−ジベンゾチオフェン−S,S−ジオキサイド共重合体は、下記実施例に示すように、9,9−ジオクチルフルオレンコモノマーと置換ジブロモジベンゾチオフェン−S,S−ジオキサイドとの、パラジウム触媒による鈴木クロス−カップリング共重合によって合成される。
モノマー1の調製(図1参照)
ステージ1
ジベンゾチオフェン(AldrichまたはAlfa Aesar)(195mmol)が、アルゴンによる保護雰囲気下で、クロロホルムと酢酸(両者ともFisher)の1:1混合物(合計400mL)中に溶解され、氷浴で冷却された。クロロホルム(25mL)に溶解した臭素(Aldrich)(468moL)が、滴下的に(dropwise)添加され、混合物が、ゆっくり室温まで昇温されて一晩撹拌された。混合物は、メタノール(Fisher)(500mL)中に注ぎ込まれ、ジブロモジベンゾチオフェン生成物を沈殿させた。そして、ろ過されメタノールで洗浄された。
ステージ2
このジブロモジベンゾチオフェン(29.3mmoL)が、アルゴンによる保護雰囲気下で、テトラヒドロフラン(THF)(Fisher)(200mL)に溶解され、ドライアイス/アセトン浴で冷却された。n−ヘキシルリチウム(Aldrich)(64.4mmoL)がゆっくり添加され、溶液が3時間撹拌された。ブロモヘキサン(Aldrich)(71.2mmoL)が添加され、溶液が一晩、室温まで加温された。ジエチルエーテル(Fisher)で水層が抽出され、一体とした有機物(combined organics)が水で洗浄され、乾燥、ろ過され、さらに、酢酸(Fisher)(50mL)に溶解するオイル(oil)を得るように濃縮された。過酸化水素(Aldrich)(15mL)が注意深く添加され、さらに過酸化物を10mL添加する前に、溶液が140℃で2時間撹拌され、さらにその溶液が140℃で一晩撹拌された。冷水が添加され、水層がクロロホルムで抽出された。有機物が水で洗浄され、乾燥、ろ過され、さらに、エタノールに溶解するオイル(oil)を得るように濃縮された。フラスコが冷凍庫の中に一晩静置され、スルホン生成物が結晶化した。
ステージ3
スルホン(13mmoL)が、光からの保護のもと、HSO(Fisher)(300mL)に溶解され、70℃に過熱された。N−ブロモコハク酸イミド(N−ブロモスクシンイミド)(NBS)(Aldrich)(29mmoL)が、一部として添加され、混合物が70℃で一晩撹拌された。分析により、モノブロモおよびジブロモ生成物の存在が示され、さらにNBSの一部(5.6mmoL)が添加されて一晩撹拌が続けられた。冷水が添加されて水層がクロロホルムで抽出され、有機物が水で洗浄され、乾燥、ろ過され、さらに、シリカでの、DCM(Fisher):石油エーテル40−60(Fisher)=1:1溶出によって精製されるオイル(oil)を得るように濃縮された。得られた固体が、エタノールによって結晶化された。
実施例1
フルオレンが70%−モノマー1が30%の共重合体「高分子1」の合成(図2に図示される)
フラスコが、9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステル(400.0mg、99.50%、0.713mmoL)、2,7−ジブロモ−9,9−ジオクチルフルオレン(157.6mg、99.95%、0.287mmoL)、3,7−ジブロモ−2,8−ジヘキシルジベンゾチオフェン−S,S−ジオキサイド(235.0mg、98.7%、0.428mmoL)およびトルエン(16m)で充填された。混合物が、ビス[(トリ−オルト−トリル)ホスフィン]パラジウムジクロライド(11mg、1モル%)が添加される前に、15分間脱気され、さらに、脱気された水酸化テトラエチルアンモニウム20wt%水溶液(水4mL)が添加される前に、脱気が15分間継続され、そして、混合物が、光から保護されて、115℃で18時間、激しく撹拌された。
ブロモベンゼン(0.1mL)が添加され、ベンゼンボロン酸(100mg)が添加される前に、115℃で1時間、撹拌が継続され、さらに、115℃で1時間、撹拌が継続された。冷却後、灰色の混合物(grey mixture)が300mLのメタノールにゆっくり添加され、灰色の繊維状の粗重合体を沈殿させた。その繊維状物がろ過され、メタノール、水、およびさらなるメタノールで洗浄された。
高分子(重合体)が、トルエン(20mL)に再溶解され、N,N−ジエチルジチオカルバミン酸ナトリウム塩溶液(15mL)が添加され、その混合物が65℃で16時間攪拌された。層が分離され、水層がトルエンで抽出された。一体とした有機層が、透明な黄色溶液を得るように、セライト545栓(a celite 545 plug)を通過させる前、希塩酸(希HCl溶液)、酢酸ナトリウム溶液および2度の水で洗浄された。その溶液が粘稠になるまで濃縮され、次に、メタノール(350mL)へ滴下的に添加され、灰色がかった白色(オフホワイト)の繊維状の重合体を沈殿させ、それがろ過により分離され、メタノールとアセトンで洗浄された(420mg)。ゲル浸透クロマトグラフィー(GPC)において、ポリスチレン換算で、Mnが11,191で、Mwが29,849であった。
高分子1のフォトルミネセンスは、トルエンおよびクロロホルムの溶液中で、蛍光光度計で測定された(発光ピークはおよそ410nm)。結果は図3に図示される。
次に示すように、モノマー(単量体)1のアルキル化によって増加した溶解度は、また、従来の共重合体の場合に比較して、ジベンゾチオフェン−S,S−ジオキサイド−3,7−ジイル単位の、より高濃度での共重合体の合成を可能にする。
実施例2
フルオレンが50%−モノマー2が50%の共重合体「高分子2」の合成(図2に図示される)
フラスコが、9,9−ジオクチルフルオレン−2,7−ジボロン酸ビス(1,3−プロパンジオール)エステル(400.0mg、99.50%、0.713mmoL)、および3,7−ジブロモ−2,8−ジヘキシルジベンゾチオフェン−S,S−ジオキサイド(391.4mg、98.7%、0.713mmoL)およびトルエン(16m)で充填された。混合物が、ビス[(トリ−オルト−トリル)ホスフィン]パラジウムジクロライド(11mg、1モル%)が添加される前に、15分間脱気され、さらに、脱気された水酸化テトラエチルアンモニウム20wt%水溶液(水4mL)が添加される前に、脱気が15分間継続され、そして、混合物が、光から保護されて、115℃で18時間、激しく撹拌された。
ブロモベンゼン(0.1mL)が添加され、ベンゼンボロン酸(100mg)が添加される前に、115℃で1時間、撹拌が継続され、さらに、115℃で1時間、撹拌が継続された。冷却後、灰色の混合物(grey mixture)が300mLのメタノールにゆっくり添加され、灰色の繊維状の粗重合体を沈殿させた。その繊維状物がろ過され、メタノール、水、およびさらなるメタノールで洗浄された。
高分子が、トルエン(20mL)に再溶解され、N,N−ジエチルジチオカルバミン酸ナトリウム塩溶液(15mL)が添加され、その混合物が65℃で16時間攪拌された。層が分離され、水層がトルエンで抽出された。一体とした有機層が、透明な黄色溶液を得るように、セライト545栓(a celite 545 plug)を通過させる前、希塩酸(希HCl溶液)、酢酸ナトリウム溶液および2度の水で洗浄された。その溶液が粘稠になるまで濃縮され、次に、メタノール(350mL)へ滴下的に添加され、灰色がかった白色(オフホワイト)の繊維状の重合体を沈殿させ、それがろ過により分離され、メタノールとアセトンで洗浄された(503mg)。ゲル浸透クロマトグラフィー(GPC)において、ポリスチレン換算で、Mnが6,597で、Mwが14,791であった。
このように、モノマー1の増加した溶解度が、各ジオクチルフルオレン単位が2つのジヘキシルジベンゾチオフェン−S,S−ジオキサイド−3,7−ジイル単位に隣接している、交互共重合体を形成した。
高分子2のフォトルミネセンスは、トルエンおよびクロロホルムの溶液中で、蛍光光度計で測定され(発光ピークは、各々およそ410nmおよび415nm)、水晶基板(a quartz substrate)上の薄膜として、320nmで励起された(およそ425nmで発光ピーク)。結果は図4a(溶液)および4b(膜)に図示される。
モノマー1の増加した溶解度はまた、スピンコート(回転塗布)のような、より良い溶解処理を促進させる、全電界発光高分子の溶解度を増加させ、そしてこのように重要な利点を示す。それゆえ、OLED素子の形成が顕著に改良される。
電子素子が高分子1および高分子2を使用して作製された。
実施例3
電界発光素子が、15オーム/sq.のシート抵抗を与える、パターンのある(patterned)インジウムスズ酸化物が塗布された、1.1nm厚のガラス基板を使用して作製された。その基板が、超音波浴(超音波洗浄器)中で、洗浄剤、脱イオン水、アセトンおよびイソプロパノールで連続的に洗浄され、つづいて、10分間、UVオゾン処理がされた。
約50nm厚のポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルフォネート)(PEDOT)の層が、最初にスピンコートされ、その後、ホットプレート上で150℃で10分間乾燥された。高分子1がトルエンに溶解され、PEDOT層上にスピンコートされて約65nm厚の層を形成した。4nm厚のバリウムの層、そしてそれから少なくとも100nmのアルミニウムが、約1×10−6mBarの真空度で、その高分子層の上にマスクを通して蒸着させられた。
4mm×5mmの4つの素子が単一基板上に得られた。それらの素子は、紫外線硬化エポキシ樹脂を使用して素子領域の上の1枚のガラスを固定するように密封された。
実施例4
高分子1を高分子2に代えて、実施例3の方法が繰り返され、4mm×5mmの4つの素子を単一基板上に形成した。
実施例5
実施例4の方法が繰り返されたが、高分子2は、下記のような緑色リン光イリジウム錯体の10w/w%と共析出され、4mm×5mmの4つの素子を単一基板上に形成した。
Figure 0005771612
素子(デバイス)試験
実施例3、4および5の基板のそれぞれが、ピンがITO陽極およびバリウム/アルミニウム陰極への電気接点を形成する、サンプルホルダーに設置された。そのサンプルホルダーは、積分球に取り付けられた。各基板上の個々の素子は、そのサンプルホルダー上のスィッチを経て選択され得る。
アジレント(Agilent)6632B電源(power supply)が、素子の運転に使用された。電界発光が、光ファイバーケーブルの付いた球(sphere)に接続した、オーシャン オプティクス(Ocean Optics)USB4000 CCDを使用して測定された。電源およびCCDは両方とも、パーソナルコンピュータによって制御された。
素子に供給される電圧が一定の段階的に増加され、各段階で、電流および電界発光スペクトルが測定された。これらの値は、その後、電流密度、外部量子効率、光強度出力(optical power output)、壁プラグ効率(wall plug efficiency)、輝度(luminance)、発光効率、明度(brightness)、およびCIEコーディネイト(CIE co-ordinates)の計算に使用された。
これらの試験の結果のいくつかが、図6から11に示される。
図5から7に示されるように、実施例3の素子(高分子1含有)は、およそ425nmに強い電界発光放射(electroluminescent emission)ピークを示し(7V、48mA/cm、202cd/mで測定)、それによって、素子のオン電圧または明度に悪影響を与えることなく、非常に濃い青色放射を発した。
図10は、実施例4(7V、6.4mA/cm、23cd/mで)において、425nm(およびCIEコーディネイト0.18、0.15で)で青色放射体として働き、そして、実施例5において高エネルギー三重項ホストとして働く、高分子2を持つ実施例4および5に係る素子の、オーバーレイ(overlaid)電界発光出力を示し、それは、およそ530nm(8V、6.7mA/cm、283cd/mおよびCIEコーディネイト0.35、0.62で)で発光する。イリジウム錯体のリン光を発する性質は、より高い量子効率を提供し、さらに加えて、発光を、人間の目がより敏感な、青色から緑色にシフトさせる。このようにして、極めて効率的な緑色光放射OLED素子が得られる。
実施例4(高分子2含有)の素子のデータを表す図8および9は、素子が電圧の許容範囲内で良好に動作することを示す。
実施例5(高分子2およびイリジウム錯体含有)の素子のデータを表す図11および12は、また、素子が電圧の許容範囲内で良好に動作することを示す。
緑色リン光材料のホスティングのための本発明の共重合体の適切性は、ジヘキシルジベンゾチオフェン−S,S−ジオキサイド−3,7−ジイル単位の割合の増加につれて、これらの新しい共重合体の三重項エネルギーが増加する事実に起因する。このことが、次の構造を持つ3つの異なる素子A、BおよびCからの、電界発光スペクトルおよびフォトルミネセンス測定を示す、図13および14から認められる:ガラス/ITO(150nm)/PEDOT:PSS(50nm)/LEP/Ba(4nm)/Al(100nm)、ここで、素子Aの高分子において、モノマー1の割合は15%で、素子Bは実施例1(モノマー1の割合は30%)の高分子1を有し、素子Cは実施例2(モノマー1の割合は50%)の高分子2を有し、各高分子は3%の緑色のリン光を発するイリジウム錯体を混合される。
緑色放射(発光)の青色放射に対する比率は、EL測定と比べてフォトルミネセンス測定において減少する。事実、EL測定において、素子Cの材料からの発光がない一方で、ホスト高分子(重合体)からの青色蛍光発光は、全ての材料から観察される。このことが、電動(electrical operation)下で、直接電荷トラップ(direct charge trapping)によって、励起子(エキシトン)が緑色のリン光を発するイリジウム錯体上に形成されることの証拠を提供する。三重項励起子のいわゆるデクスターエネルギー移動(Dexter energy transfer)は、除外されることができないけれども、このことは、ホスト高分子からの蛍光発光を減少させないであろう。
もし緑色のリン光を発するイリジウム錯体(または、任意の他のリン光を発するゲスト材料)の三重項エネルギーが、ホスト高分子のそれより高い場合は、リン光を発するゲストからの緑色放射が減少するであろう。リン光を発する錯体へのデクスター移動(Dexter transfer)は起こりそうもなく、そして、直接電荷トラップによってリン光を発する錯体上に形成される任意の励起子が、ホスト高分子のより低いエネルギーの三重項に移動するかもしれない。素子A、BおよびCのこのシリーズにおいて、ホスト高分子中のモノマー1の量が増加するにつれて、リン光を発するゲストからの発光がより強くなる。より高い三重項エネルギーがホストへのエネルギー移動を阻止していることは明確である。このように、その結果は、これらのポリマーはリン光を発する材料に対してホストとして働くことができることを、納得のいくように示す。特に、高分子2の三重項エネルギーは、緑色のリン光を発する材料に対してホストとして働くのに十分なほど、十分に高い。
他の多くの効果的な代替案が当業者に思い浮かぶであろうことは疑いがない。本発明は、記載された実施の形態に限定されず、そして、ここに添付の特許請求の範囲の精神および範囲内にある、それらの当業者に明らかな変更を包含していることが理解されるであろう。

Claims (26)

  1. 次の化学式1の構造を有する第1の繰り返し単位を含有し、
    Figure 0005771612

    ここで、RからRは、同じかまたは異なっており、Hまたは任意に置換されたCからC26の直鎖もしくは分岐のアルキル、アルケニル、またはアルキニル鎖、アルコキシ基を有し;RとRの少なくとも1つ、およびRとRの少なくとも1つはHではなく、かつ、
    次の化学式2の構造を有する第2の繰り返し単位を含有し、
    Figure 0005771612

    ここで、R11およびR12は、同じかまたは異なっており、Hまたは任意に置換されたCからC20の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル鎖、アリール基、アルコキシ基、アミノ、アミド、またはヒドロキシル基を有する
    電界発光高分子。
  2. からRの少なくとも3つはHではない、
    請求項に記載の電界発光高分子。
  3. からRがHではない場合は、CからC10の直鎖もしくは分岐のアルキル、アルケニルまたはアルキニル鎖である、
    請求項1または2に記載の電界発光高分子。
  4. およびRはHであり、RおよびRはC13である、
    請求項1に記載の電界発光高分子。
  5. 11およびR12はC17である、
    請求項1に記載の電界発光高分子。
  6. 前記第1の繰り返し単位の数(y)に対する前記第2の繰り返し単位の数(x)の比率は、少なくとも15:85、少なくとも30:70、または少なくとも50:50である、
    請求項1〜5のいずれか一項に記載の電界発光高分子。
  7. 11およびR12は、CからC10の非置換直鎖アルキル鎖を有する、
    請求項1〜6のいずれか一項に記載の電界発光高分子。
  8. 前記第2の繰り返し単位は、高分子の主鎖中にパラ結合またはメタ結合によって組み込まれている、
    請求項1〜7のいずれか一項に記載の電界発光高分子。
  9. 少なくとも1つのアルキン基をさらに有する、
    請求項1〜8のいずれか一項に記載の電界発光高分子。
  10. 少なくとも1つの前記アルキン基は、前記第1の繰り返し単位と前記第2の繰り返し単位の間、または2つの前記第2の繰り返し単位の間に位置する、
    請求項に記載の電界発光高分子。
  11. 前記高分子は、電子輸送部分を有する第3の繰り返し単位を含有する、
    請求項1〜10のいずれか一項に記載の電界発光高分子。
  12. 前記高分子は、正孔輸送部分を有する第4の異なる繰り返し単位を含有する、
    請求項1〜11のいずれか一項に記載の電界発光高分子。
  13. 前記高分子は、ブロック共重合体、規則的もしくは交互共重合体、またはランダム共重合体を有する、
    請求項1〜12のいずれか一項に記載の電界発光高分子。
  14. 1つまたはそれ以上の赤色放射および/または緑色放射の繰り返し単位をさらに有する、
    請求項1〜13のいずれか一項に記載の電界発光高分子。
  15. 前記赤色放射および/または緑色放射の繰り返し単位は、リン光放射体を有する、
    請求項14に記載の電界発光高分子。
  16. 前記第1の繰り返し単位は、前記高分子の2−50モル%、10−35モル%または20−30モル%からなる、
    請求項1〜15のいずれか一項に記載の電界発光高分子。
  17. 少なくとも前記第1の繰り返し単位の一部は、青色放射部分として機能する、
    請求項1〜16のいずれか一項に記載の電界発光高分子。
  18. 少なくとも前記第1の繰り返し単位の一部は、電子輸送部分として機能する、
    請求項1〜17のいずれか一項に記載の電界発光高分子。
  19. 前記高分子が1つまたはそれ以上のリン光放射体を有し、
    少なくとも前記第1の繰り返し単位の一部は、1つまたはそれ以上のリン光放射体の存在下で、高エネルギー三重項ホストとして機能し、
    前記1つまたはそれ以上のリン光放射体は、LおよびXが下記の化学式3で示される、IrLまたはIrLX形態の複合体、
    Figure 0005771612

    ここで、R31からR34は、同じかまたは異なっていてもよく、Hまたは任意に置換されたCからC10の直鎖、分岐もしくは環状のアルキル、アルケニルまたはアルキニル基、ニトロ、アミノ、アミド、ハロ(ハロゲン)、アルコキシ、ヒドロキシル(水酸)、チオール、またはチオアルキル基を有し、
    または下記の化学式4の形態の複合体、
    Figure 0005771612
    から選択される、
    請求項1〜18のいずれか一項に記載の電界発光高分子。
  20. 前記第1の繰り返し単位および前記第2の繰り返し単位は、それらが、励起状態でそれらの間に電荷移動を許可するように選択される、
    請求項1〜19のいずれか一項に記載の電界発光高分子。
  21. 前記高分子は、白色点(x、y=0.33、0.33)に近い光を放射する、
    請求項1〜20のいずれか一項に記載の電界発光高分子。
  22. 請求項1〜21のいずれか一項に記載の高分子を有する、
    光学素子。
  23. 赤色および/または緑色のリン光放射体をさらに有する、
    請求項22に記載の光学素子。
  24. 前記光学素子は、前記高分子が放射層の少なくとも一部を構成している有機光放射素子である、
    請求項22または23に記載の光学素子。
  25. 前記有機光放射素子は第1および第2電極を有し、前記放射層は前記第1および第2電極の間に形成されている、
    請求項24に記載の光学素子。
  26. 正孔注入層または電子注入層を含む、少なくとも1つの層をさらに有する、
    請求項24または25に記載の光学素子。
JP2012529288A 2009-09-18 2010-09-17 電界発光材料および素子 Expired - Fee Related JP5771612B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0916395A GB2473816A (en) 2009-09-18 2009-09-18 Electroluminescent materials and devices
GB0916395.7 2009-09-18
PCT/EP2010/063721 WO2011033078A1 (en) 2009-09-18 2010-09-17 Electroluminescent materials and devices

Publications (2)

Publication Number Publication Date
JP2013505567A JP2013505567A (ja) 2013-02-14
JP5771612B2 true JP5771612B2 (ja) 2015-09-02

Family

ID=41277928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529288A Expired - Fee Related JP5771612B2 (ja) 2009-09-18 2010-09-17 電界発光材料および素子

Country Status (6)

Country Link
EP (2) EP2554626B1 (ja)
JP (1) JP5771612B2 (ja)
KR (1) KR101773212B1 (ja)
CN (1) CN102648267B (ja)
GB (1) GB2473816A (ja)
WO (1) WO2011033078A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382248A (zh) * 2012-05-04 2013-11-06 海洋王照明科技股份有限公司 二氧硫芴基共聚物、其制备方法以及聚合物发光二极管
CN104004165B (zh) * 2014-05-07 2016-08-24 华南理工大学 含s,s-二氧-二苯并噻吩单元的电子给体聚合物及其应用
CN105693749A (zh) * 2016-03-09 2016-06-22 中节能万润股份有限公司 一种含有吩噻嗪结构的有机光电材料及其应用
CN106220645B (zh) * 2016-04-25 2018-08-14 中节能万润股份有限公司 一种基于单取代基-9-芴酮的化合物及其应用
CN107068878B (zh) * 2016-04-25 2019-02-22 中节能万润股份有限公司 一种含单取代基-9-芴酮化合物的有机电致发光器件及其应用
US20190284334A1 (en) * 2016-11-10 2019-09-19 Changchun Institute Of Applied Chemistry, Chinese Academy Of Science Poly (spirobifluorene) and organic electroluminescent device
CN106565960A (zh) * 2016-11-11 2017-04-19 华南理工大学 一种含有s,s‑二氧‑二苯噻吩的嵌段共聚物发光材料及其制备方法与应用
CN113493564B (zh) * 2020-04-07 2023-05-02 中国科学院长春应用化学研究所 一种具有D-σ-A结构的有机聚合物发光材料及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0176336B1 (ko) * 1996-12-31 1999-04-01 박원훈 아세틸렌기를 함유한 플로렌계 교대 공중합체 및 이를 이용한 전계발광소자
SG128438A1 (en) * 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
CN1528760A (zh) * 2003-09-29 2004-09-15 上海交通大学 含二氧化二苯并噻吩基团的单体及其制备方法
KR100679724B1 (ko) * 2004-10-13 2007-02-07 주식회사 두산 전계 발광 소자용 발색 화합물 및 이를 포함하는 유기전계 발광소자
US20060094859A1 (en) * 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
GB0609673D0 (en) * 2006-05-16 2006-06-28 Univ Durham Novel light emitting polymeric compositions and uses thereof
JP5162856B2 (ja) * 2006-07-31 2013-03-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
EP3457452B1 (de) * 2006-09-21 2022-11-02 UDC Ireland Limited Oled-anzeige mit verlängerter lebensdauer
JP5090746B2 (ja) * 2007-01-19 2012-12-05 株式会社ツジデン カルバゾール系ランダム共重合体
WO2009003919A1 (de) * 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend mindestens eine disilylverbindung ausgewählt aus disilylcarbazolen, disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
EP2020424B1 (en) * 2007-08-01 2012-11-28 Imec Functionalization of poly(arylene-vinylene) polymers for electronic devices
CN101255336B (zh) * 2007-11-06 2011-04-27 华南理工大学 电致发光光谱稳定的蓝色芴类聚合物及其制备方法与应用

Also Published As

Publication number Publication date
EP2554626B1 (en) 2015-08-19
EP2478067B1 (en) 2015-06-24
GB0916395D0 (en) 2009-10-28
CN102648267B (zh) 2014-08-13
GB2473816A (en) 2011-03-30
KR20120104184A (ko) 2012-09-20
EP2554626A2 (en) 2013-02-06
JP2013505567A (ja) 2013-02-14
CN102648267A (zh) 2012-08-22
WO2011033078A1 (en) 2011-03-24
KR101773212B1 (ko) 2017-09-12
EP2478067A1 (en) 2012-07-25
EP2554626A3 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5771612B2 (ja) 電界発光材料および素子
KR100889516B1 (ko) 폴리머 매트릭스 전계발광 재료 및 전계발광 소자
Chen et al. New phenyl-substituted PPV derivatives for polymer light-emitting diodes− synthesis, characterization and structure− property relationship study
JP6129207B2 (ja) 非対称ジアリールアミンフルオレンユニットを含むポリマー
JP4966203B2 (ja) 発光装置
JP6225120B2 (ja) ポリマー
JP5610382B2 (ja) 発光素子
TWI613274B (zh) 有機發光組合物,裝置及方法
JP2008525957A5 (ja)
JP2008208356A (ja) ブロック共重合体並びにそれを用いた組成物、液状組成物、発光性薄膜及び高分子発光素子
JP5732042B2 (ja) 有機発光材料および素子
JP2012500886A (ja) 発光性の材料およびデバイス
US9136477B2 (en) Light emissive device
TW201326141A (zh) 化合物、裝置及彼等的製造方法
GB2488258A (en) Electroluminescent copolymer
KR20170048424A (ko) 유기 발광 조성물, 소자 및 방법
KR20080100440A (ko) 유기 발광 소자
JP5274448B2 (ja) 光電気ポリマー及び装置
JP2009535795A5 (ja)
GB2481227A (en) An organic electroluminescent device comprising a plasticiser
GB2473815A (en) Electroluminescent material and devices
KR20160134535A (ko) 중합체 및 유기 발광 소자

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5771612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees