JP5716693B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP5716693B2
JP5716693B2 JP2012041445A JP2012041445A JP5716693B2 JP 5716693 B2 JP5716693 B2 JP 5716693B2 JP 2012041445 A JP2012041445 A JP 2012041445A JP 2012041445 A JP2012041445 A JP 2012041445A JP 5716693 B2 JP5716693 B2 JP 5716693B2
Authority
JP
Japan
Prior art keywords
engine
traveling
travel
storage device
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041445A
Other languages
English (en)
Other versions
JP2013177042A (ja
Inventor
平井 誠
誠 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012041445A priority Critical patent/JP5716693B2/ja
Priority to US13/770,571 priority patent/US9487209B2/en
Publication of JP2013177042A publication Critical patent/JP2013177042A/ja
Application granted granted Critical
Publication of JP5716693B2 publication Critical patent/JP5716693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/21External power supplies
    • B60Y2400/214External power supplies by power from domestic supply, e.g. plug in supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

この発明は、ハイブリッド車両に関し、より特定的には、車載蓄電装置を車両外部の電源によって充電可能に構成されたハイブリッド車両に関する。
近年、ハイブリッド車両においては、搭載する蓄電装置を商用電源なとの車両外部の電源(外部電源)からの電力によって充電するための構成が提案されている。このような外部電源により蓄電装置を充電可能な、いわゆるプラグインタイプのハイブリッド車両では、エンジンを可能な限り停止状態に維持して走行することがエネルギ効率上好ましい。そのため、エンジンを停止状態に保ったまま電動機のみを用いた走行と、エンジンおよび電動機を用いた走行との2つの走行モードが選択的に適用される。なお、前者の走行モードは、EV(Electric Vehicle)走行とも称され、後者の走行モードは、HV(Hybrid Vehicle)走行とも称される。
このようなプラグインタイプのハイブリッド車両においては、蓄電装置を充電するための構成として、HV走行中におけるエンジンの動力を受けた発電動作、および、外部電源による蓄電装置への電力供給、という電力供給形態を有する。以下の説明では、HV走行中における蓄電装置の充電を「内部充電」とも記し、外部電源による蓄電装置の充電を「外部充電」とも表記する。このような蓄電装置の充電制御の一態様として、特開2010−167898号公報(特許文献1)には、外部充電が開始され、かつ蓄電装置の電池残量(SOC:State of Charge)が所定の下限値よりも小さい場合には、内部充電を目的としたエンジンの作動を行なわないハイブリッド車両が記載されている。
特開2010−167898号公報 特開2011−161950号公報 特開2011−066957号公報
プラグインタイプのハイブリッド車両では、外部充電時には基本的に蓄電装置を満充電レベルまで充電することによって、EV走行可能な航続距離(以下、「EV走行距離」とも称する)を伸ばすことができる。これにより、燃費が改善されるとともに、エミッション排出量が削減される。しかしながら、内部充電のみが繰り返されるような使用形態では、外部充電の機会を適切に確保することが困難となる。この結果、EV走行距離が低下してしまい、プラグインタイプのハイブリッド車両の利点を十分に享受できなくなる虞がある。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、外部充電可能な蓄電装置を搭載したハイブリッド車両において、外部充電の機会を適切に確保することである。
この発明のある局面では、ハイブリッド車両は、エンジンおよび車両駆動用電動機を搭載する。ハイブリッド車両は、車両駆動用電動機との間で電力を入出力するとともに、エンジンの出力を用いた発電によって充電されるように構成された蓄電装置と、蓄電装置を車両外部から供給された電力によって充電するための外部充電部と、車両駆動用電動機のみを用いた走行とエンジンを用いた走行との切替えを制御するための制御装置とを備える。制御装置は、前回の外部充電部による外部充電からエンジンを用いた走行が所定の度合いを超えて実行されたときには、新たに外部充電が実行されるまでの間、エンジンを用いた走行を抑制する。
好ましくは、制御装置は、新たに外部充電が実行されたときに、エンジンを用いた走行の抑制を解除する。
好ましくは、制御装置は、新たに外部充電が実行されたときに、蓄電装置の残容量が所定量に達している場合には、エンジンを用いた走行の抑制を解除する。
好ましくは、制御装置は、前回の外部充電からのエンジンを用いた走行での走行距離の累積値が所定の閾値を超えたときに、エンジンを用いた走行を抑制し、エンジンを用いた走行の抑制を解除するときには、走行距離の累積値を零に初期化する。
好ましくは、制御装置は、前回の外部充電からのエンジンの運転時間の累積値が所定の閾値を超えたときに、エンジンを用いた走行を抑制し、エンジンを用いた走行の抑制を解除するときには、運転時間の累積値を零に初期化する。
好ましくは、エンジンは、燃料の燃焼により作動するように構成される。制御装置は、前回の外部充電からの燃料消費量が所定の閾値を超えたときに、エンジンを用いた走行を抑制し、エンジンを用いた走行の抑制を解除するときには、燃料消費量を零に初期化する。
好ましくは、制御装置は、前回の外部充電からのエンジンの排気量が所定の閾値を超えたときに、エンジンを用いた走行を抑制し、エンジンを用いた走行の抑制を解除するときには、排気量を零に初期化する。
好ましくは、制御装置は、前回の外部充電からのエンジンを用いた走行での走行距離の累積値が、前回の外部充電からの車両駆動用電動機のみを用いた走行での走行距離の累積値を超えたときに、エンジンを用いた走行を抑制し、エンジンを用いた走行の抑制を解除するときには、走行距離の累積値をを零に初期化する。
この発明によれば、外部充電可能な蓄電装置を搭載したハイブリッド車両において、外部充電の機会を適切に確保することができる。
本発明の実施の形態によるハイブリッド車両の構成を示す概略ブロック図である。 図1に示した動力分割機構の構成図である。 動力分割機構の共線図である。 図1に示したハイブリッド車両における走行モードおよびSOCの推移の代表例を説明するための概念図である。 本発明の実施の形態によるハイブリッド車両における走行制御を説明する機能ブロック図である。 本発明の実施の形態によるハイブリッド車両における走行モード、SOCおよびHV走行距離累積値の代表例を説明するための概念図である。 本発明の実施の形態によるハイブリッド車両でのHV走行の可否判定の処理手順を説明するためのフローチャートである。 本発明の実施の形態の変更例によるハイブリッド車両でのHV走行の可否判定の処理手順を説明するためのフローチャートである。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明を繰返さない。
図1は、本発明の実施の形態によるハイブリッド車両の構成を示す概略ブロック図である。
図1を参照して、ハイブリッド車両5は、エンジン18とモータジェネレータMG1,MG2とを搭載する。さらに、ハイブリッド車両5は、モータジェネレータMG1,MG2に対して電力を入出力可能な蓄電装置10を搭載する。
蓄電装置10は、再充電可能な電力貯蔵要素であり、代表的には、リチウムイオンやニッケル水素などの二次電池が適用される。あるいは、電気二重層キャパシタなどの電池以外の電力貯蔵要素によって、蓄電装置10を構成してもよい。図1には、ハイブリッド車両5のうちの蓄電装置10の充放電制御に関連するシステム構成が記載されている。
監視ユニット11は、蓄電装置10に設けられた温度センサ12、電圧センサ13および電流センサ14の出力に基づいて、蓄電装置10の「状態値」を検出する。上述のように、蓄電装置10として代表的には二次電池が用いられるため、蓄電装置10の温度Tb、電圧Vbおよび電流Ibについて、以下では、電池温度Tb、電池電圧Vbおよび電池電流Ibとも称する。また、電池温度Tb、電池電圧Vbおよび電池電流Ibを包括的に「電池データ」とも総称する。
なお、温度センサ12、電圧センサ13および電流センサ14については、蓄電装置10に設けられる温度センサ、電圧センサ、および電流センサのそれぞれを包括的に示すものである。すなわち、実際には、温度センサ12、電圧センサ13の少なくとも一部については、複数個設けられることが一般的である点について確認的に記載する。
エンジン18は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関である。なお、内燃機関の代わりに、外燃機関を用いてもよい。
エンジン18、モータジェネレータMG1およびモータジェネレータMG2は、遊星歯車機構からなる動力分割機構22を介して機械的に連結される。動力分割機構22は、エンジン18のクランクシャフト、モータジェネレータMG1の回転軸およびモータジェネレータMG2の回転軸の三要素の各々を機械的に連結する動力伝達装置である。動力分割機構22は、上述の三要素のうちのいずれか一つを反力要素とすることによって、他の2つの要素間での動力の伝達を可能とする。
この結果、図3に示されるように、ハイブリッド車両5では、動力分割機構22を介した連結により、エンジン18、モータジェネレータMG1およびMG2の回転数は、共線図において直線で結ばれる関係になる。
図2を参照して、動力分割機構22についてさらに説明する。動力分割機構22は、サンギヤ202と、ピニオンギヤ204と、キャリア206と、リングギヤ208とを含む遊星歯車によって構成される。
ピニオンギヤ204は、サンギヤ202およびリングギヤ208と係合する。キャリア206は、ピニオンギヤ204が自転可能であるように支持する。サンギヤ202はモータジェネレータMG1の回転軸に連結される。キャリア206はエンジン18のクランクシャフトに連結される。リングギヤ208はモータジェネレータMG2の回転軸および減速機95に連結される。
減速機95は、駆動輪24Fとの間で回転駆動力を伝達する。減速機95によって、動力分割機構22(リングギヤ208)からの動力が、駆動輪24Fに伝達される。さらに、減速機95は、駆動輪24Fが受けた路面からの反力を、加速トルクあるいは減速トルクとして、動力分割機構22(リングギヤ208)へ伝達する。すなわち、リングギヤ208は、ハイブリッド車両5において駆動軸に相当する。
モータジェネレータMG1は、動力分割機構22によって分割されたエンジン18の動力を用いて発電するジェネレータとしての機能を有する。すなわち、ハイブリッド車両5の走行中において、蓄電装置10は、エンジン18の出力を源とした、モータジェネレータMG1の発電電力により充電可能である。反対に、モータジェネレータMG1は、蓄電装置10からの電力を受けて、動力分割機構22を介してエンジン18のクランクシャフトを回転駆動させるためのトルクを出力することができる。したがって、モータジェネレータMG1は、エンジン18を始動するため、あるいは、モータリングするためのモータとしての機能をも有する。
モータジェネレータMG2は、蓄電装置10に蓄えられた電力およびモータジェネレータMG1による発電電力の少なくとも一方を用いて、駆動輪24Fに駆動力を与える車両駆動用電動機としての機能を有する。また、モータジェネレータMG2は、回生制動によって発電するジェネレータとしての機能をも有する。
ハイブリッド車両5の走行時において、動力分割機構22は、エンジン18の作動によって発生する駆動力を二分割し、その一方をモータジェネレータMG1側へ配分するとともに、残りをモータジェネレータMG2へ配分する。動力分割機構22からモータジェネレータMG1側へ配分された駆動力は、発電動作に用いられる。一方、モータジェネレータMG2側へ配分された駆動力は、モータジェネレータMG2で発生した駆動力と合成されて、駆動輪24Fの駆動に使用される。このように、ハイブリッド車両5の走行状況に応じて、動力分割機構22を介して上記3者の間で駆動力の分配および結合が行なわれ、その結果として、駆動輪24Fが駆動される。
ハイブリッド車両5は、エンジン18を停止して、モータジェネレータMG2の出力のみで走行することも可能である。この状態では、エンジン18(キャリア206)の回転数が0である一方で、リングギヤ208(MG2)が正回転し、サンギヤ202(MG1)が負回転することで、ハイブリッド車両5は、EV走行する。
さらに、モータジェネレータMG1をモータ(スタータ)として作動させて、エンジン18をクランキングすることによって、EV走行からHV走行へ移行できる。
ハイブリッド車両5は、エンジン18を高効率の動作点で動作させることによって、燃費の向上を図る。したがって、エンジン18の動作点が低回転・低トルクとなる、車両発進時や軽負荷走行時には、EV走行が選択される。車速あるいは走行負荷が高まって、エンジン18が高効率の動作点で作動できる車両状態となると、EV走行に代えてHV走行が選択される。HV走行時には、エンジン18の動作点を高効率領域に維持した上で、パワーまたはトルクの過不足分が、モータジェネレータMG1,MG2の出力によって調整される。
再び図1を参照して、ハイブリッド車両5の電気システムの構成を説明する。ハイブリッド車両5は、電力制御ユニット(PCU:Power Control Unit)50をさらに備える。PCU50は、モータジェネレータMG1およびモータジェネレータMG2と、蓄電装置10との間で双方向に電力変換するように構成される。PCU50は、コンバータ(CONV)6と、モータジェネレータMG1およびMG2にそれぞれ対応付けられた第1インバータ(INV1)8−1および第2インバータ(INV2)8−1とを含む。
コンバータ(CONV)6は、蓄電装置10と、インバータ8−1,8−2の直流リンク電圧を伝達する正母線MPLとの間で、双方向の直流電圧変換を実行するように構成される。すなわち、蓄電装置10の入出力電圧と、正母線MPLおよび負母線MNL間の直流電圧とは、双方向に昇圧または降圧される。コンバータ6における昇降圧動作は、制御装置100からのスイッチング指令PWCに従ってそれぞれ制御される。そして、正母線MPLおよび負母線MNL間の直流電圧Vhは、電圧センサ16によって検知される。
第1インバータ8−1および第2インバータ8−2は、正母線MPLおよび負母線MNLの直流電力と、モータジェネレータMG1およびMG2に入出力される交流電力との間で双方向の電力変換を実行する。主として、第1インバータ8−1は、制御装置100からのスイッチング指令PWM1に応じて、エンジン18の出力によってモータジェネレータMG1が発生する交流電力を直流電力に変換し、正母線MPLおよび負母線MNLへ供給する。これにより、車両走行中にも、エンジン18の出力によって蓄電装置10を能動的に充電することができる。
また、第1インバータ8−1は、エンジン18の始動時には、制御装置100からのスイッチング指令PWM1に応じて、蓄電装置10からの直流電力を交流電力に変換して、モータジェネレータMG1へ供給する。これにより、エンジン18は、モータジェネレータMG1をスタータとして始動することができる。
第2インバータ8−2は、制御装置100からのスイッチング指令PWM2に応じて、正母線MPLおよび負母線MNLを介して供給される直流電力を交流電力に変換して、モータジェネレータMG2へ供給する。これにより、モータジェネレータMG2は、ハイブリッド車両5の駆動力を発生する。
一方、ハイブリッド車両5の回生制動時には、モータジェネレータMG2は、駆動輪24Fの減速に伴なって交流電力を発電する。このとき、第2インバータ8−2は、制御装置100からのスイッチング指令PWM2に応じて、モータジェネレータMG2が発生する交流電力を直流電力に変換し、正母線MPLおよび負母線MNLへ供給する。これにより、減速時や降坂走行時に蓄電装置10が充電される。
蓄電装置10とPCU50との間には、正線PLおよび負線NLに介挿接続されたシステムメインリレー7が設けられる。システムメインリレー7は、制御装置100からのリレー制御信号SEに応答して、オンオフされる。
制御装置100は、代表的には、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリ領域と、入出力インターフェイスとを主体として構成された電子制御装置(ECU:Electronic Control Unit)により構成される。そして、制御装置100は、予めROMなどに格納されたプログラムをCPUがRAMに読出して実行することによって、車両走行および充放電に係る制御を実行する。なお、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
制御装置100に入力される情報として、図1には、監視ユニット11からの電池データ(電池温度Tb、電池電圧Vbおよび電池電流Ib)や、正母線MPLと負母線MNLとの線間に配置された電圧センサ16からの直流電圧Vhを例示する。図示しないが、モータジェネレータMG1,MG2の各相の電流検出値やモータジェネレータMG1,MG2の回転角検出値についても、制御装置100に入力される。
ハイブリッド車両5は、蓄電装置10を外部充電するための構成として、コネクタ受入部90および外部充電部30をさらに備える。また、ハイブリッド車両5は、後述する走行モードをユーザが強制的に選択するための選択スイッチ26をさらに備える。選択スイッチ26は、たとえば運転席近傍に設けられる。
コネクタ部350がコネクタ受入部90に連結されることで、正充電線CPLおよび負充電線CNLを介して外部電源からの電力が外部充電部30へ供給される。また、コネクタ受入部90は、コネクタ受入部90とコネクタ部350との連結状態を検出するための連結検出センサ90aを含む。連結検出センサ90aからの連結信号CONによって、制御装置100は、外部電源により充電可能な状態となったことを検出する。なお、外部電源は、代表的には単相交流の商用電源により構成される。ただし、商用電源に代えて、もしくは商用電源に加えて、住宅の屋根などに設置された太陽電池パネルによる発電電力によって外部電源の電力が供給されてもよい。
コネクタ部350は、外部電源からの電力をハイブリッド車両5に供給するための連結機構を構成する。たとえば、コネクタ部350は、キャプタイヤケーブルなどからなる電力線PSLを介して外部電源を備えた充電ステーション(図示せず)と連結される。そして、コネクタ部350は、外部充電時にハイブリッド車両5と連結されることによって、外部電源とハイブリッド車両5に搭載された外部充電部30とを電気的に接続する。一方、ハイブリッド車両5には、コネクタ部350と連結されることによって外部電源を受入れるためのコネクタ受入部90が設けられる。
なお、図1に示す構成に代えて、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成、具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して電力供給を行なう構成により、外部電源からの電力を受入れてもよい。
外部充電部30は、外部電源からの電力を受けて蓄電装置10を充電するための装置であり、正線PLおよび負線NLと正充電線CPLおよび負充電線CNLとの間に配置される。外部充電部30は、電流制御部30aと、電圧変換部30bとを含む。外部充電部30は、制御装置100からの制御信号PWCHに応じて、外部電源からの電力を蓄電装置10の充電に適した電力に変換する。
具体的には、電圧変換部30bは、外部電源の供給電圧を蓄電装置10の充電に適した電圧に変換する機能を有する。電圧変換部30bは、代表的には、所定の変圧比を有する巻線型の変圧器や、AC−ACスイッチングレギュレータなどからなる。また、電流制御部30aは、電圧変換部30bによる電圧変換後の交流電圧を整流して直流電圧を生成するとともに、制御装置100からの制御信号に従って、蓄電装置10に供給する充電電流を制御する。電流制御部30aは、代表的には、単相のブリッジ回路などからなる。なお、電流制御部30aおよび電圧変換部30bからなる構成に代えて、AC−DCスイッチングレギュレータなどによって外部充電部30を実現してもよい。
本発明の実施の形態によるハイブリッド車両5では、蓄電装置10は、モータジェネレータMG1の発電電力によって車両走行中に充電可能であるとともに、走行終了後には、蓄電装置10を外部電源によって充電することができる。以下の説明では、それぞれの充電動作を区別するために、外部電源による蓄電装置10の充電を「外部充電」とも記し、車両走行中におけるエンジン18およびモータジェネレータMG1による蓄電装置10の充電を「内部充電」とも表記する。
このようなプラグインタイプのハイブリッド車両では、エンジン18を可能な限り停止状態に維持して走行することが燃費およびエミッション排出量の観点から好ましい。そのため、ハイブリッド車両5では、基本的には蓄電装置10のSOCに応じて、2つの走行モードが選択的に適用される。この走行モードは、蓄電装置10のSOCを一定レベルに維持するCS(Charge Sustaining)モードと、蓄電装置10のSOCを積極的に使用してモータジェネレータMG2のみで主に走行するCD(Charge Depleting)モードとを含む。
図4は、ハイブリッド車両5における走行モードおよびSOCの推移の代表例を説明するための概念図である。
図4を参照して、時刻t1までに外部充電によって蓄電装置10が満充電レベルまで充電されている。すなわち、走行開始時において、SOC=Smaxである。イグニッションスイッチがオンされてハイブリッド車両5の走行が開始されると(時刻t1)、SOC推定値(♯SOC)がモード判定値Sthよりも高いため、CDモードが選択される。
CDモードでは、基本的にエンジン18を停止して、モータジェネレータMG2からの駆動力のみで走行する。そのため、エンジン18の動力を受けたモータジェネレータMG1の発電動作は行なわれず、モータジェネレータMG1による蓄電装置10の充電は制限される。なお、CDモードでも、ユーザによりアクセルペダルが大きく踏込まれたり、エンジン駆動タイプのエアコン動作時やエンジン暖機時など、特別な条件が成立した場合には、エンジン18の作動が許容される。すなわち、CDモードの間は、蓄電装置3の内部充電を目的にエンジン18が始動されることはない。このため、蓄電装置10のSOCは、回生制動によるエネルギ回収時を除いて、徐々に低下する。
なお、ユーザは、選択スイッチ26の操作によって、強制的にCSモードを選択、すなわち、CDモードの選択をキャンセルすることができる。一方、選択スイッチ26が操作されていないときには、制御装置100は、蓄電装置10のSOCに基づいて、走行モードを自動的に選択する。
CDモード中(♯SOC>Sth)に選択スイッチ26の操作によって、強制的にCSモードが選択された場合には(時刻t2)、その時点でのSOC(=S1)を維持するように、蓄電装置10の充放電が制御される。すなわち、SOC制御範囲の制御中心値SOCrを、選択スイッチ26の操作時におけるSOC推定値(♯SOC)に固定するように、SOC制御範囲が設定される。
時刻t3において、選択スイッチ26が再び操作されることによって、走行モードはCDモードに復帰する。そして、SOC推定値♯SOCが、モード判定値Sthまで低下すると(時刻t4)、走行モードはCDモードからCSモードに移行する。CSモードに移行すると、制御中心値SOCrは、CSモード用の一定値に設定される。これにより、制御中心値SOCrを中心とする一定範囲内(SOCl〜SOCu)にSOCが維持されるように、蓄電装置10の充放電は制御される。したがって、CSモードでは、SOCが低下すると、エンジン18(図1)が作動して、モータジェネレータMG1による発電電力によって蓄電装置10が充電される。この結果、SOCは増加し始めて、SOC制御範囲内(SOCl〜SOCu)に維持される。
そして、ハイブリッド車両5の走行が終了すると、運転者がコネクタ部350(図1)をハイブリッド車両5に連結することによって、外部充電が開始される(時刻t5)。これにより、蓄電装置10のSOCは上昇し始める。SOCが満充電レベル(Smax)に達すると(時刻t6)、外部充電が完了して、時刻t1以前の状態が再現される。
なお、上述したように、走行モードがCDモードであっても、ユーザからの駆動力要求が与えられればエンジン18が作動する。一方、走行モードがCSモードであっても、蓄電装置10のSOCが制御中心値SOCrを上回っていればエンジン18は停止する。ただし、CDモードではエンジン18の作動が制限されるため、CSモードではCDモードよりもエンジン18の作動時間が長くなることが理解される。以下の説明では、走行モードに拘わらず、エンジン18を停止してモータジェネレータMG2のみを用いての走行を「EV走行」と称し、エンジン18を作動させてモータジェネレータMG2およびエンジン18を用いての走行を「HV走行」と称する。
蓄電装置10は、CSモード中は、HV走行によって、エンジン18およびモータジェネレータMG1による内部充電が可能である。そのため、エンジン18の作動が制限されるCDモードとは異なり、走行モードがCSモードに移行した後は、ハイブリッド車両5はCSモードでの走行を継続することができる。その結果、運転者によっては、HV走行が実行される度合い(実行頻度)が高くなる可能性がある。このようにHV走行の実行頻度が高くなることは、外部充電が実行される度合いの低下に繋がる可能性がある。そして、外部充電の実行頻度が低下すると、EV走行可能な航続距離(以下、「EV走行距離」とも称する)が制限されることによって、燃費の改善およびエミッション排出量の削減といったプラグインタイプのハイブリッド車両の利点を十分に享受できなくなる虞がある。
そこで、本発明の実施の形態では、前回の外部充電からHV走行が実行される度合い(以下、「HV走行実行度合い」とも称する)が所定の度合いを超えたときには、新たに外部充電が実行されるまでの間、HV走行の実行を抑制する。蓄電装置10の内部充電を制限することによって、ハイブリッド車両5の走行終了後において可能な限り多くの電力を蓄えるために、外部充電が積極的に行なわれるようにするためである。なお、本明細書における「HV走行実行度合い」は、前回の外部充電からのHV走行の実行実績(すなわち、エンジン18の動作実績)に相当しており、たとえば、HV走行での航続距離(以下、「HV走行距離」とも称する)、およびHV走行が実行される時間(すなわち、エンジン18が運転される時間)を含む。
図5は、本発明の実施の形態によるハイブリッド車両における走行制御を説明する機能ブロック図である。なお、図5に記載された各機能ブロックについては、予め設定されたプログラムに従って制御装置100がソフトウェア処理を実行することにより実現することができる。あるいは、制御装置100の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。
図5を参照して、状態推定部110は、監視ユニット11からの電池データ(Tb,Ib,Vb)に基づいて、蓄電装置10のSOCを推定する。公知のように、SOCは、満充電容量に対する現在の残容量を百分率(0〜100%)で示したものである。たとえば、状態推定部110は、蓄電装置10の充放電量の積算値に基づいて蓄電装置10のSOC推定値(♯SOC)を順次演算する。充放電量の積算値は、電池電流Ibおよび電池電圧Vbの積(電力)を時間的に積分することで得られる。あるいは、開放電圧(OCV:Open Circuit Voltage)とSOCとの関係に基づいてSOC推定値(♯SOC)を算出してもよい。
走行モード選択部210は、蓄電装置10のSOC推定値(♯SOC)と、モード判定値Sthとの比較に基づいて、CDモードおよびCSモードの一方を選択する。あるいは、上述したような選択スイッチ26の操作が、走行モードの選択に反映されてもよい。走行モード選択部210は、CDモードおよびCSモードのいずれが選択されているかを示す走行モードフラグFMを発生する。走行モードフラグFMは、充放電制御部150および走行制御部200へ送出される。
充放電制御部150は、蓄電装置10の状態に基づいて、充電電力上限値Winおよび放電電力上限値Woutを設定する。たとえば、充電電力上限値Winおよび放電電力上限値Woutは、電池温度TbおよびSOC推定値(♯SOC)に基づいて設定される。具体的には、SOC推定値(♯SOC)が低下すると、放電電力上限値Woutは徐々に低くなるように設定される。反対に、SOC推定値(♯SOC)が高くなると、充電電力上限値Winは徐々に低くなるように設定される。
さらに、充放電制御部150は、蓄電装置10の充電要否を判定するとともに、蓄電装置10の充電電力指令値Pchを設定する。
充放電制御部150は、CDモードの選択時には、Pch=0に設定する。すなわち、CDモードでは、SOCを一定範囲に収めるために、蓄電装置10の充電を目的としてエンジン18が作動することはない。
充放電制御部150は、CSモードの選択時には、SOC推定値(♯SOC)を一定範囲内(たとえば、図4のSOCl〜SOCu)に制御するように、充電電力指令値Pchを設定する。たとえば、♯SOC<SOCrとなったときには、蓄電装置10の充電を指示するために、Pch>0に設定される。エンジン18の停止時にPch>0となると、エンジン18が始動される。そして、エンジン出力要求に充電電力指令値Pchが上乗せされる。
一方、SOC推定値(♯SOC)が低下していないときには、Pch=0に設定される。さらに、♯SOC>SOCrのときには、Pch<0に設定することによって、蓄電装置10の放電が促進される。
走行制御部200は、ハイブリッド車両5の車両状態およびドライバ操作に応じて、ハイブリッド車両5全体で必要な車両駆動力や車両制動力を算出する。ドライバ操作には、アクセルペダル(図示せず)の踏込み量、シフトレバー(図示せず)のポジション、ブレーキペダル(図示せず)の踏込み量等が含まれる。
そして、走行制御部200は、要求された車両駆動力あるいは車両制動力を実現するように、モータジェネレータMG1,MG2への出力要求およびエンジン18への出力要求を決定する。
走行制御部200は、CDモードでは、基本的にエンジン18を停止して、モータジェネレータMG2からの駆動力のみで走行するように、モータジェネレータMG1,MG2への出力要求およびエンジン18への出力要求を決定する。走行制御部200は、CDモードでは、ユーザからの急加速などの駆動力要求が与えられた場合等、特別な条件が成立した場合にエンジン18を始動する。すなわち、CDモードでは、基本的にはエンジン18を停止することによって、ハイブリッド車両5の燃費が改善されるとともに、エミッション排出量が削減される。
一方、走行制御部200は、CSモードでは、蓄電装置10のSOCを一定範囲内に維持しつつ、かつ、総合的な燃費が最適化されるように、モータジェネレータMG1,MG2への出力要求およびエンジン18への出力要求を決定する。たとえば、燃費が悪い領域を避けてエンジン18を動作させた上で車両全体での要求パワーを確保するように、各出力要求を決定することによって、エネルギ効率を高めることができる。
なお、モータジェネレータMG1,MG2への出力要求は、蓄電装置10の充放電可能な電力範囲内(Win〜Wout)で蓄電装置10の充放電が実行されるように制限した上で設定される。すなわち、蓄電装置10の出力電力を確保できないときには、モータジェネレータMG1および/またはMG2による出力が制限される。
配分部250は、走行制御部200によって設定されたモータジェネレータMG1,MG2への出力要求に応じて、モータジェネレータMG1,MG2のトルクや回転速度を演算する。そして、トルクや回転速度についての制御指令をインバータ制御部260へ出力すると同時に、直流電圧Vhの制御指令値をコンバータ制御部270へ出力する。
さらに、配分部250は、走行制御部200によって決定されたエンジンパワーおよびエンジン目標回転速度を示すエンジン制御指示を生成する。このエンジン制御指示に従って、図示しないエンジン18の燃料噴射、点火時期、バルブタイミング等が制御される。
インバータ制御部260は、配分部250からの制御指令に応じて、モータジェネレータMG1およびMG2を駆動するためのスイッチング指令PWM1およびPWM2を生成する。このスイッチング指令PWM1およびPWM2は、それぞれ第1インバータ8−1および第2インバータ8−2へ出力される。
コンバータ制御部270は、配分部250からの制御指令に従って直流電圧Vhが制御されるように、スイッチング指令PWCを生成する。このスイッチング指令PWCに従ったコンバータ6の電圧変換によって、蓄電装置10の充放電電力が制御されることになる。
このようにして、CDモードの選択によってEV走行を積極的に行ないながら、車両状態およびドライバ操作に応じて、エネルギ効率を高めたハイブリッド車両5の走行制御が実現される。
外部充電の際には、充放電制御部150は、SOC推定値(♯SOC)を監視しながら、充電指令Pr♯を生成する。充電指令Pr♯には、外部充電部30の作動および停止を指示する信号、および、外部充電部30が出力すべき充電電力値が含まれる。外部充電制御部280は、充電時の電圧および電流の検出値に基づいて、充電指令Pr♯に従って蓄電装置10の充電が制御されるように、外部充電部30の制御信号PWCHを生成する。
図5に示す構成において、走行制御部200は、カウンタ220を含む。カウンタ220は、上述した「HV走行実行度合い」を計測するために用いられる。本実施の形態では、カウンタ220は、前回の外部充電が実行されてからのHV走行距離をカウントし記憶する。すなわち、カウンタ220のカウント値CNTは、前回の外部充電が実行されてからのHV走行距離に応じてカウントアップされる。そして、カウンタ220は、新たに外部充電が実行されたときに、記憶していたカウント値CNTを零に初期化(クリア)する。したがって、カウンタ220のカウント値CNTは、前回の外部充電が実行されてから現時点までのHV走行距離の累積値(以下、「HV走行距離累積値」とも称する)を示すパラメータとなる。走行制御部200は、このカウンタ220のカウント値CNT(HV走行距離累積値)に応じて、HV走行の可否(すなわち、エンジン18の作動可否)を判定する。このHV走行の可否(エンジン18の作動可否)の判定は、以下のように実行される。
図6には、本発明の実施の形態によるハイブリッド車両における走行モード、SOCおよびHV走行距離累積値の代表的な推移が示される。
図6を参照して、図4と同様に時刻t1までに外部充電によって蓄電装置10が満充電レベルまで充電されている。したがって、時刻t1において、カウンタ220のカウント値CNT(HV走行距離累積値)はクリアされている(CNT=0)。
時刻t1においてハイブリッド車両5の走行が開始されると、時刻t1〜t2の間、ハイブリッド車両5は、CDモードで走行する。CDモードでは、EV走行が主に行なわれるため、カウント値CNTはほとんど増加しない。
そして、CDモードでの走行中の時刻t2において、選択スイッチ26の操作により、ユーザによってCSモードが選択されると、時刻t2からは、選択スイッチ26の操作時点(t2)でのSOCを制御中心値SOCrとして、CSモードにおけるSOC制御が実行される。CSモードでは、SOCの低下に応じて、エンジン18が作動してHV走行が実行される。この結果、カウント値は徐々に増加する。
時刻t3において、選択スイッチ26が再び操作されることによって、走行モードがCDモードに復帰すると、時刻t3からは、時刻t1〜t2の間と同様に、ハイブリッド車両5の走行に伴ないSOCが徐々に低下する一方で、カウント値CNTはほとんど増加しない。
SOC推定値(SOC♯)がモード判定値Sthまで低下すると(時刻t4)、走行モードはCDモードからCSモードに移行する。時刻t4からは、時刻t2〜t3の間と同様に、制御中心値SOCrを中心とする一定範囲内(SOCl〜SOCu)にSOCが維持されるように、蓄電装置10の充放電は制御される。そのため、SOCは一定範囲内(SOCl〜SOCu)に維持される一方で、カウント値CNTは徐々に増加する。
走行制御部200は、カウント値CNTが予め定められた判定値Cthに到達すると(時刻ta)、HV走行を禁止する。すなわち、エンジン18の作動が禁止される。このため、時刻taからは、ハイブリッド車両5はEV走行する。EV走行中は、エンジン18が停止されるため、カウント値CNTは判定値Cthに維持される。
そして、ハイブリッド車両5の走行が終了し、外部充電が開始されると(時刻t5)、蓄電装置10のSOCは上昇し始める。時刻t6において、SOCが満充電レベル(Smax)に達することによって外部充電が完了すると、走行制御部200は、HV走行の禁止を解除する。これにより、エンジン18の作動が許可され、エンジン18の出力を用いたHV走行が再び許容される。さらに、走行制御部200は、カウント値CNTをクリアする(CNT=0)。これにより、時刻t1以前の状態が再現される。
図7は、本発明の実施の形態によるハイブリッド車両でのHV走行の可否判定の処理手順を説明するためのフローチャートである。図7に示したフローチャートによる制御処理は、制御装置100により所定周期で実行される。図7に示したフローチャートによる制御処理は、走行制御部200の機能の一部に対応する。
図7を参照して、制御装置100は、ステップS01では、ハイブリッド車両5がEV走行中であるか否かを判定する。ハイブリッド車両5がEV走行中でないとき(ステップS01のNO判定時)、すなわち、ハイブリッド車両5がHV走行中であるときには、制御装置100は、後述するステップS05により、前回の外部充電からのHV走行距離累積値を算出する。
一方、ハイブリッド車両5がEV走行中であるとき(ステップS01のYES判定時)には、制御装置100は、さらにステップS02により、HV走行が要求されているか否かを判定する。このHV走行の要求は、エンジン18に対する作動要求に相当する。上述のように、CDモードでは、ユーザからの急加速などの駆動力要求が与えられた場合等、特別な条件が成立した場合にエンジン18の作動が要求される。また、CSモードでは、蓄電装置10のSOCが低下したときにエンジン18の作動が要求される。
EV走行中においてHV走行の要求がないとき(ステップS02のNO判定時)には、処理は最初に戻される。これにより、エンジン18は停止状態に維持される。一方、HV走行の要求があるとき(ステップS02のYES判定時)には、制御装置100は、ステップS03により、HV走行が禁止されているか否かを判定する。HV走行が禁止されているとき(ステップS03のYES判定時)には、処理は最初に戻される。
これに対して、HV走行が許可されているとき(ステップS03のNO判定時)には、制御装置100は、ステップS04に進み、エンジン18を始動させることにより、EV走行からHV走行に移行する。
HV走行中において、制御装置100は、ステップS05により、前回の外部充電からのHV走行距離累積値を算出する。具体的には、制御装置100は、前回の外部充電が実行されてからのHV走行距離に応じてカウンタ220(図5)のカウント値CNTをカウントアップする。
そして、制御装置100は、ステップS06では、ステップS05で算出されたHV走行距離累積値(カウント値CNT)と判定値Cthとを比較する。HV走行距離累積値CNTが判定値Cth以下であるとき(ステップS06のNO判定時)には、処理は最初に戻される。すなわち、エンジン18が作動状態に維持されるため、ハイブリッド車両5はHV走行を維持する。
これに対して、HV走行距離累積値CNTが判定値Cthより大きいとき(ステップS06のYES判定時)には、制御装置100は、ステップ07により、HV走行を禁止する。これにより、エンジン18の作動が禁止されるため、作動状態のエンジン18は停止される。
そして、制御装置100は、ステップS08により、蓄電装置10の外部充電が実行されたか否かを判定する。外部充電が実行されていなければ(ステップS08のNO判定時)には、処理は最初に戻される。
一方、外部充電が実行されたと判定されると(ステップS08のYES判定時)、制御装置100は、ステップS09により、HV走行の禁止を解除する。これにより、エンジン18の作動禁止が解除され、HV走行が再び許容される。さらに、制御装置100は、ステップS10により、カウンタ220に記憶されているHV走行距離累積値CNTをクリアする。
このように、前回の外部充電が実行されてからのHV走行距離累積値が判定値を超えた場合には、新たに外部充電が実行されるまでの間、HV走行を禁止することによって、蓄電装置10の内部充電が制限される。これにより、蓄電装置10のSOCが低下するため、蓄電装置10の外部充電を促すガイダンスがユーザへ提供される。その結果、外部充電が実行される機会を増やして、EV走行距離の確保を容易とすることができる。
(変更例)
なお、図7に示したフローチャートでは、新たに外部充電が実行されたときに、HV走行の禁止を解除する構成について例示したが、外部充電時において蓄電装置10の充電時間や充電量が制限された場合には、蓄電装置10を満充電レベルまで充電することができないために、蓄電装置10の出力可能な電力が低下する虞がある。このような事態となると、モータジェネレータMG2の出力が制限されるため、EV走行が制限される可能性がある。したがって、新たに外部充電が実行されたときの蓄電装置10のSOCが所定の閾値を超えているときに、HV走行の禁止を解除するようにしてもよい。
図8は、本発明の実施の形態の変更例によるハイブリッド車両でのHV走行の可否判定の処理手順を説明するためのフローチャートである。
図8を参照して、制御装置100は、図7と同様のステップS01〜S07により、前回の外部充電が実行されてからのHV走行距離累積値に応じてHV走行を禁止する。そして、制御装置100は、図7と同様のステップS08により、蓄電装置10の外部充電が実行されたか否かを判定する。外部充電が実行されていなければ(ステップS08のNO判定時)には、処理は最初に戻される。
一方、外部充電が実行されたと判定されると(ステップS08のYES判定時)、制御装置100は、さらにステップS080により、蓄電装置10のSOC推定値(♯SOC)が所定の閾値より大きいか否かを判定する。そして、SOC推定値が閾値より大きいとき(ステップS080のYES判定時)には、制御装置100は、図7と同様のステップS09,S10により、HV走行の禁止を解除するとともに、カウンタ220に記憶されているHV走行距離累積値CNTをクリアする。一方、新たに外部充電が実行されたものの、SOC推定値が閾値以下であるとき(ステップS080のNO判定時)には、処理は最初に戻される。すなわち、HV走行の禁止が解除されないため、停止状態のエンジン18は、停止状態を維持する。
なお、上述した本発明の実施の形態では、前回の外部充電からHV走行が実行される度合い(HV走行実行度合い)を示すパラメータとして、前回の外部充電が実行されてからのHV走行距離の累積値を用いる例を示したが、結果的にHV走行の実行実績(すなわち、エンジンの動作実績)を示すことが可能であれば、上述の例に限定されるものではない。たとえば、前回の外部充電からのエンジンの運転時間の累積値や、エンジンの燃料消費量、あるいはエンジンのエミッション排出量などを用いることができる。
また、本発明の実施の形態では、前回の外部充電からHV走行が実行される度合い(HV走行実行度合い)が所定の度合いを超えたときに、HV走行の実行を禁止する構成について説明したが、HV走行実行度合いと、前回の外部充電からEV走行が実行される度合い(以下、「EV走行実行度合い」とも称する)とを比較して、HV走行実行度合いがEV走行実行度合いを超えたときに、HV走行の実行を禁止するようにしてもよい。たとえば、前回の外部充電からのHV走行距離の累積値が、前回の外部充電からのEV走行距離の累積値を超えたときに、HV走行の実行を禁止する。この場合、HV走行の禁止を解除するときには、HV走行距離累積値およびEV走行距離累積値の各々が零に初期化される。
さらに、本発明の実施の形態によるハイブリッド車両では、HV走行実行度合いが所定の度合いを超えたときに、HV走行の実行を禁止する構成について説明したが、新たに外部充電が実行されるまでの間、HV走行の実行を抑制することが可能であれば、上記のような構成に限定されるものではない。例えば、HV走行の実行を禁止する構成に代えて、新たに外部充電が実行されるまでの間のHV走行距離や、エンジンの運転時間、燃料消費量およびエミッション排出量などに所定の制限をかけるようにしてもよい。すなわち、HV走行の実行を抑制するための制御態様には、HV走行の実行を禁止する構成、および、HV走行の実行を制限する構成が含まれる。
以上説明したように、本発明の実施の形態によるハイブリッド車両において、車載蓄電装置は、HV走行中に内部充電が可能であるとともに、走行終了後は外部充電が可能に構成される。このようなプラグインタイプのハイブリッド車両において、HV走行が実行される度合いを制限することによって、外部充電が実行される機会を確保することができる。この結果、燃費の改善およびエミッション排出量の削減といったプラグインタイプのハイブリッド車両の利点を十分に享受することが可能となる。
なお、上述の実施の形態では、プラグインタイプのハイブリッド車両の一例として、エンジン18を駆動力源として搭載し、かつ、エンジン18の出力によって蓄電装置10の充電電力を発生することが可能な車両の構成について説明した。しかしながら、本発明の適用はこのようなハイブリッド車両に限定されるものではない。具体的には、車載蓄電装置を走行中に充電するための電力発生機構と、走行終了後に車両外部からの電力により蓄電装置を充電するための外部充電部とが搭載されていれば、本発明を適用することが可能である点について確認的に記載する。たとえば、図1とは異なるハイブリッド構成のハイブリッド車両(たとえば、いわゆるシリーズハイブリッド構成や、電気分配式のハイブリッド構成)や、燃料電池自動車についても本発明は適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
5 ハイブリッド車両、6 コンバータ、7 システムメインリレー、8−1,8−2 インバータ、10 蓄電装置、11 監視ユニット、12 温度センサ、13,16 電圧センサ、14 電流センサ、18 エンジン、22 動力分割機構、24F 駆動輪、26 選択スイッチ、30 外部充電部、30a 電流制御部、30b 電圧変換部、90 コネクタ受入部、90a 連結検出センサ、95 減速機、100 制御装置、110 状態推定部、150 充放電制御部、200 走行制御部、202 サンギヤ、204 ピニオンギヤ、206 キャリア、208 リングギヤ、210 走行モード選択部、220 カウンタ、250 配分部、260 インバータ制御部、270 コンバータ制御部、280 外部充電制御部、350 コネクタ部、MG1,MG2 モータジェネレータ。

Claims (2)

  1. エンジンおよび車両駆動用電動機を搭載したハイブリッド車両であって、
    前記車両駆動用電動機との間で電力を入出力するとともに、前記エンジンの出力を用いた発電によって充電されるように構成された蓄電装置と、
    前記蓄電装置を車両外部から供給された電力によって充電するための外部充電部と、
    前記車両駆動用電動機のみを用いた走行と前記エンジンを用いた走行との切替えを制御するための制御装置とを備え、
    前記制御装置は、前回の前記外部充電部による外部充電から前記エンジンを用いた走行が所定の度合いを超えて実行されたときには、新たに前記外部充電が実行されるまでの間、前記エンジンを用いた走行を抑制する一方で、新たに前記外部充電が実行されたときに、前記エンジンを用いた走行の抑制を解除するように構成され
    前記制御装置は
    前回の前記外部充電からの前記エンジンを用いた走行での走行距離の累積値が、前回の前記外部充電からの前記車両駆動用電動機のみを用いた走行での走行距離の累積値を超えたときに、前記エンジンを用いた走行を抑制し
    前記エンジンを用いた走行の抑制を解除するときには、前記走行距離の累積値を零に初期化する、ハイブリッド車両。
  2. エンジンおよび車両駆動用電動機を搭載したハイブリッド車両であって、
    前記車両駆動用電動機との間で電力を入出力するとともに、前記エンジンの出力を用いた発電によって充電されるように構成された蓄電装置と、
    前記蓄電装置を車両外部から供給された電力によって充電するための外部充電部と、
    前記車両駆動用電動機のみを用いた走行と前記エンジンを用いた走行との切替えを制御するための制御装置とを備え、
    前記制御装置は、前回の前記外部充電部による外部充電から前記エンジンを用いた走行が所定の度合いを超えて実行されたときには、新たに前記外部充電が実行されるまでの間、前記エンジンを用いた走行を抑制する一方で、新たに前記外部充電が実行されたときに、前記蓄電装置の残容量が所定量に達している場合には、前記エンジンを用いた走行の抑制を解除するように構成され
    前記制御装置は
    前回の前記外部充電からの前記エンジンを用いた走行での走行距離の累積値が、前回の前記外部充電からの前記車両駆動用電動機のみを用いた走行での走行距離の累積値を超えたときに、前記エンジンを用いた走行を抑制し
    前記エンジンを用いた走行の抑制を解除するときには、前記走行距離の累積値を零に初期化する、ハイブリッド車両。
JP2012041445A 2012-02-28 2012-02-28 ハイブリッド車両 Active JP5716693B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012041445A JP5716693B2 (ja) 2012-02-28 2012-02-28 ハイブリッド車両
US13/770,571 US9487209B2 (en) 2012-02-28 2013-02-19 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041445A JP5716693B2 (ja) 2012-02-28 2012-02-28 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2013177042A JP2013177042A (ja) 2013-09-09
JP5716693B2 true JP5716693B2 (ja) 2015-05-13

Family

ID=49004162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041445A Active JP5716693B2 (ja) 2012-02-28 2012-02-28 ハイブリッド車両

Country Status (2)

Country Link
US (1) US9487209B2 (ja)
JP (1) JP5716693B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184910A (ja) * 2013-03-25 2014-10-02 Toyota Motor Corp 車両の制御装置
DE102013208078A1 (de) * 2013-05-02 2014-11-06 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer Energiespeicheranordnung eines Kraftfahrzeuges
JP5920306B2 (ja) * 2013-10-02 2016-05-18 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP5884807B2 (ja) * 2013-10-16 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両
JP6187302B2 (ja) * 2014-02-17 2017-08-30 トヨタ自動車株式会社 車両の制御装置
JP6040950B2 (ja) * 2014-03-18 2016-12-07 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP6003943B2 (ja) * 2014-04-28 2016-10-05 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
US9499157B2 (en) 2014-07-24 2016-11-22 GM Global Technology Operations LLC Method and system for controlling a hybrid vehicle
JP6439322B2 (ja) * 2014-08-27 2018-12-19 三菱自動車工業株式会社 ハイブリッド車両の回生制御装置
KR101655555B1 (ko) * 2014-10-31 2016-09-22 현대자동차주식회사 태양전지 활용 시스템 및 방법
JP6241427B2 (ja) * 2015-01-27 2017-12-06 トヨタ自動車株式会社 ハイブリッド車両
JP6354713B2 (ja) * 2015-09-04 2018-07-11 トヨタ自動車株式会社 ハイブリッド自動車
JP6399026B2 (ja) 2016-03-30 2018-10-03 トヨタ自動車株式会社 ハイブリッド自動車および連携システム
JP6642206B2 (ja) * 2016-03-30 2020-02-05 トヨタ自動車株式会社 ハイブリッド自動車
JP2017178082A (ja) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 ハイブリッド自動車
JP2017178081A (ja) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 ハイブリッド自動車
JP6361681B2 (ja) 2016-03-30 2018-07-25 トヨタ自動車株式会社 ハイブリッド自動車
JP6863233B2 (ja) * 2017-10-31 2021-04-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置及び制御システム
DE102019121415A1 (de) * 2019-08-08 2021-02-11 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit einem verbrennungsmotorischen Antrieb
DE102021201533A1 (de) 2021-02-17 2022-08-18 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betrieb eines Hybridfahrzeugs
CN118544977A (zh) * 2023-02-24 2024-08-27 广州汽车集团股份有限公司 车辆供电方法、装置以及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790256B2 (ja) * 1989-10-25 1998-08-27 富士重工業株式会社 電気自動車の自動充電装置
JP3016349B2 (ja) * 1994-04-28 2000-03-06 三菱自動車工業株式会社 燃料使用制限式ハイブリッド電気自動車
US5670830A (en) 1994-04-28 1997-09-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel use limiter-equipped hybrid electric car
JP2010058695A (ja) * 2008-09-04 2010-03-18 Honda Motor Co Ltd 動力装置
JP2010167898A (ja) 2009-01-22 2010-08-05 Toyota Motor Corp ハイブリッド車両
US8170737B2 (en) * 2009-04-30 2012-05-01 GM Global Technology Operations LLC Method of controlling vehicle powertrain and vehicle control system
JP2011066957A (ja) 2009-09-15 2011-03-31 Mitsubishi Fuso Truck & Bus Corp 発電制御システム
JP5520625B2 (ja) 2010-02-04 2014-06-11 本田技研工業株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US9487209B2 (en) 2016-11-08
JP2013177042A (ja) 2013-09-09
US20130226379A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5716693B2 (ja) ハイブリッド車両
JP5418676B2 (ja) 電動車両およびその制御方法
JP5730501B2 (ja) 電動車両およびその制御方法
JP5772952B2 (ja) 電動車両および電動車両の制御方法
JP5278614B2 (ja) ハイブリッド車両およびその制御方法
JP5316703B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5370584B2 (ja) ハイブリッド車両
JP5163407B2 (ja) ハイブリッド車両
EP2353922A1 (en) Electromotive vehicle power supply system, electromotive vehicle, and electromotive vehicle control method
JP5267734B2 (ja) 電動車両およびその制御方法
JP4618158B2 (ja) ハイブリッド車両
JP6028328B2 (ja) ハイブリッド車両
JP2011093335A (ja) ハイブリッド車両の制御装置
JP5729475B2 (ja) 車両および車両の制御方法
JPWO2012131864A1 (ja) 電動車両およびその制御方法
JP5733198B2 (ja) ハイブリッド車両
JP2016010981A (ja) ハイブリッド車両の制御装置
JP2011225077A (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151