JP5710730B1 - 回転割り出し装置を備えた工作機械の制御装置 - Google Patents
回転割り出し装置を備えた工作機械の制御装置 Download PDFInfo
- Publication number
- JP5710730B1 JP5710730B1 JP2013223591A JP2013223591A JP5710730B1 JP 5710730 B1 JP5710730 B1 JP 5710730B1 JP 2013223591 A JP2013223591 A JP 2013223591A JP 2013223591 A JP2013223591 A JP 2013223591A JP 5710730 B1 JP5710730 B1 JP 5710730B1
- Authority
- JP
- Japan
- Prior art keywords
- target position
- drive motor
- torque
- output torque
- rotary table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/02—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
- B23Q3/06—Work-clamping means
- B23Q3/08—Work-clamping means other than mechanically-actuated
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/402—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q16/00—Equipment for precise positioning of tool or work into particular locations not otherwise provided for
- B23Q16/02—Indexing equipment
- B23Q16/04—Indexing equipment having intermediate members, e.g. pawls, for locking the relatively movable parts in the indexed position
- B23Q16/06—Rotary indexing
- B23Q16/065—Rotary indexing with a continuous drive
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39264—Torque control using hardware designed for position control
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Machine Tool Positioning Apparatuses (AREA)
- Automatic Control Of Machine Tools (AREA)
- Control Of Position Or Direction (AREA)
Abstract
【課題】回転テーブルを駆動する駆動モータが、加工負荷の影響で過負荷状態やオーバヒートになることを防止する。【解決手段】加工負荷によって回転テーブルが回転させられる。駆動モータは回転テーブルを位置決めされた目標位置に戻そうとして出力トルクを増大させる。出力トルクが上限トルクTmaxに達したとき、又は許容トルクTp以上の出力トルクが所定時間ΔT継続したとき、駆動モータに指令する目標位置を変更することによって、出力トルクの低下を促す。これより駆動モータの過負荷状態、オーバヒートを防止する。出力トルクが許容トルクTpより小さくなると、駆動モータの位置偏差を0にするように目標位置を変更し、速やかに位置ずれを戻す。これにより、加工誤差を少なくし、加工精度を向上させる。【選択図】 図4
Description
本発明は、工作機械の制御装置に関する。特に、ワークを載置する回転テーブルと該回転テーブルの角度位置を保持するクランプ機構、及び回転テーブルを駆動する駆動モータから構成される回転割り出し装置を備えた工作機械の制御装置に関する。
回転テーブルと該回転テーブルを保持するクランプ機構及び回転テーブルを駆動する駆動モータで構成される回転割り出し装置を備えた工作機械においては、回転テーブル上にワークを載置固定し、駆動モータで回転テーブルを回転させて所定の角度位置に位置決めし、クランプ機構を駆動してテーブルを該位置決め位置にクランプした後、ワークに対して加工を行うものである。
回転割り出し装置としては、特許文献1に記載されたものが知られている。このような回転割り出し装置を備えた工作機械においては、回転テーブル上に載置され固定されたワークに対して工具をワークに接触させて加工を行うが、この加工の際にワークに負荷がかかり、この負荷により回転テーブルを回転させるトルクが発生する。発生したトルクが大きいと、クランプ機構の剛性に抗して回転テーブルを回転させる場合がある(回転テーブルを所定回転位置に保持させるクランプ機構の剛性による位置保持力を、以下クランプ力という)。回転テーブルが位置決めされた回転位置より回転すると、回転テーブルを駆動する駆動モータも回転する。駆動モータは、位置制御がなされているから、出力トルクを増大させて位置決め回転位置に戻す制御がなされ、回転テーブルはこの位置制御によって、位置決め回転位置に保持される。
回転割り出し装置としては、特許文献1に記載されたものが知られている。このような回転割り出し装置を備えた工作機械においては、回転テーブル上に載置され固定されたワークに対して工具をワークに接触させて加工を行うが、この加工の際にワークに負荷がかかり、この負荷により回転テーブルを回転させるトルクが発生する。発生したトルクが大きいと、クランプ機構の剛性に抗して回転テーブルを回転させる場合がある(回転テーブルを所定回転位置に保持させるクランプ機構の剛性による位置保持力を、以下クランプ力という)。回転テーブルが位置決めされた回転位置より回転すると、回転テーブルを駆動する駆動モータも回転する。駆動モータは、位置制御がなされているから、出力トルクを増大させて位置決め回転位置に戻す制御がなされ、回転テーブルはこの位置制御によって、位置決め回転位置に保持される。
ところで、加工負荷等によって回転テーブルが回転し、回転位置が位置決め回転位置(目標回転位置)からずれると、このずれを解消しようとして駆動モータは大きな出力トルクを出力する。この状態が続くと駆動モータは過負荷状態になる。この過負荷状態になることを防止する方法として、特許文献2には、駆動モータへのトルク指令が設定値以上になると、速度制御部の制御をPI制御(比例積分制御)からP制御(比例制御)に切り替えたり、速度制御部のゲインを変えることによって、または、トルクリミット手段により、トルク指令値をトルクリミット値以下に制限して、駆動モータを駆動し出力トルクを小さく抑えることによって、駆動モータが過負荷状態になることを防止した方法が記載されている。
図5は、サーボモータの位置、速度を制御するモータ駆動制御系のブロック図であり、回転テーブルを駆動する駆動モータもサーボモータで構成され、モータ制御部24で位置、速度の制御がなされている。位置制御部100では、位置指令とサーボモータに設けられた位置・速度検出器103からの位置フィードバック信号により位置偏差が求められ、該位置偏差にポジションゲインを乗じて速度指令を速度制御部に出力する。速度制御部101では、速度指令と位置・速度検出器103からの速度フィードバック信号により、速度偏差が求められ、比例積分制御(PI制御)がなされてトルク指令(電流指令)を電流制御部102に出力する。電流制御部102では、このトルク指令(電流指令)とサーボアンプに設けられた電流検出器(図示せず)からの電流フィードバック信号により電流ループ制御がなされ、サーボアンプ25を介してサーボモータMを駆動制御する。
回転テーブルを駆動する駆動モータもサーボモータで構成され、このモータ制御部24によって位置、速度の制御がなされている。よって、回転テーブルが回転し、位置決め回転位置よりずれると、位置制御部100での位置偏差が増大し、速度指令、トルク指令も増大して、駆動モータは大きなトルクを出力して、回転テーブルを位置決め角度(目標位置)に戻すように制御され、位置偏差が0になるように制御されて回転テーブルを位置決め回転位置(目標位置)に保持するように位置制御がなされる。ところが、加工負荷が大きいと、回転角度位置のずれを小さくできない場合がある。回転テーブルを駆動する駆動モータは、工作機械がワークを加工中、回転テーブルを位置決め回転位置(目標位置)に保持するように位置制御するものであるから、加工負荷により回転テーブルが回転し、回転位置が位置決め回転位置からずれ、位置偏差が増大する。位置制御部100から位置偏差にポジションゲインを乗じた速度指令が出され、速度制御部101の積分器ではこれが積分(PI制御におけるI制御)され、トルク指令を増大させる。トルク指令の増大により、駆動モータは出力トルクを増大(駆動電流の増大)して駆動され、過負荷状態となりオーバヒートする恐れがある。
また、回転テーブルは、該回転テーブルを駆動する駆動モータによって駆動されて、所定の位置決め角度位置に位置決めされ、その後クランプ機構でクランプされ、位置決め回転位置を保持されるものである。この駆動モータによる位置決めは、一般に、駆動モータが指令された位置(位置決め位置)のある幅内に到達したとき(インポジション内になったとき)、位置決め完了とされ、回転テーブルはクランプ機構でクランプされることになる。このクランプの際、回転テーブルが回転してクランプされる場合がある。また、駆動モータの回転位置はインポジションになっているが、回転位置は目標の回転位置(位置決め回転位置)とは一致しない場合が生じる。その結果、位置偏差が生じる(インポジション幅の設定が大きいとこの位置偏差が大きくなる可能性が高い)。そして、クランプ機構のクランプ力が大きいと、この位置偏差は持続することになり、トルク指令が増大して駆動モータの出力トルクも増大し、大きな出力トルクを出力し続けることになる。その結果、過負荷状態となり、駆動モータの温度はオーバヒート温度に達し、工作機械を停止させる場合がある。
この駆動モータの過負荷状態、オーバヒートを防止するために、特許文献2では、トルク指令値が許容トルク以上になると、速度制御部の制御をPI制御からP制御に切り替えたり、トルク指令をトルクリミット値以下に制限して駆動モータの出力トルクを小さく抑えて駆動することにより、過負荷状態の発生を防止しているが、微小時間であっても、トルク指令値が許容トルクを超えるような加工負荷に対して、この位置ずれを戻し解消するのに必要に出力トルクを駆動モータは出力できない。駆動モータの発熱に影響が少ない微小時間に限定される駆動モータ出力トルクにおいても、トルクが小さいものに制限され、位置ずれが残り、瞬間的に大きな駆動モータ出力トルクが必要な部分では加工精度が低下することになる。
そこで、本発明は、回転テーブルを駆動する駆動モータが過負荷状態やオーバヒートになることを防止し、機械の停止を回避し、瞬間的に加わる加工負荷の増大による、回転テーブルの位置ずれを速やかに復旧させることができる工作機械の制御装置を提供することにある。
ワークを載置し固定する回転テーブルと、該回転テーブルをクランプするクランプ機構と、回転位置、速度を制御するモータ制御部を備え前記回転テーブルを回転駆動する駆動モータとから構成された回転割出し装置を備えた工作機械の制御装置において、本願の請求項1に係る発明は、前記駆動モータの出力トルクを検出する駆動モータ出力トルク検出手段と、前記モータ制御部から位置偏差を検出する位置偏差検出手段と、前記クランプ機構によって前記回転テーブルを所定の回転角度位置の目標位置にクランプし、回転テーブルに載置されたワークを加工中に、前記駆動モータ出力トルク検出手段により検出した駆動モータの出力トルクが、予め設定された許容トルク以上で所定時間経過するか、または予め設定された上限トルクに達したことを条件として、前記検出した出力トルクが許容トルク以上のときは、駆動モータの出力トルクが0になる方向に、前記検出した出力トルクが許容トルクより小さい場合は検出された位置偏差を0にする方向に、一定量ずつ目標位置を変更する目標位置変更手段とを有することを特徴とするものである。
請求項2に係る発明は、さらに、前記位置偏差検出手段で検出された位置偏差が0で、前記目標位置変更手段で変更された目標位置と前記クランプ機構によりクランプしたときの目標位置の差が所定の値より小さい場合は、前記変更された目標位置を元のクランプ時の目標位置に戻す目標位置復帰手段を備えるものである。
請求項3に係る発明は、前記目標位置変更手段により目標位置を変更したとき、目標位置を変更したことを示す目標位置変更信号をオンとして出力し、前記目標位置復帰手段で目標位置を元のクランプ時の目標位置に戻したとき、目標位置変更信号をオフとする目標位置変更信号出力手段を備え、目標位置が変更された加工区間を検出できるようにしたものである。
請求項4に係る発明は、さらに、前記クランプ機構によって前記回転テーブルを所定の回転角度位置の目標位置にクランプし、加工開始前に、駆動モータ出力トルク検出手段で検出される出力トルクが所定値以上になると、クランプ時位置ずれ信号を出力するクランプ時位置ずれ信号出力手段を備えるものとし、回転テーブルをクランプ機構でクランプした際、クランプミスで、回転テーブルが回転して位置ずれが生じた状態でクランプされたり、駆動モータはインポジション幅内に位置決めされているが、インポジション幅内の大きな位置偏差が残る状態でクランプされているようなことを発見できるようにしたものである。
請求項5に係る発明は、さらに、前記クランプ機構によりクランプしたときの目標位置と前記目標位置変更手段で変更された目標位置との差が許容位置偏差に達した場合に信号を出力する目標位置誤差過大信号出力手段を有するものとし、目標位置からの位置ずれが過大となって加工誤差が大きいことを知ることができるようにしたものである。
請求項6に係る発明は、前記駆動モータ出力トルク検出手段は、前記駆動モータのモータ制御部の速度制御部から出力されるトルク指令を前記駆動モータ出力トルクとして検出するようにしたものであり、請求項7に係る発明は、前記駆動モータ出力トルク検出手段を、前記駆動モータの駆動電流を検出することによって出力トルクを検出するようにしたものである。
本願請求項1、2に係る発明は、回転テーブルに載置固定されたワークへの加工時の加工負荷によって回転テーブルが回転しようとすると、該回転テーブルを駆動する駆動モータの出力トルクが、上限トルク未満で許容トルクを超える時間が所定時間に達するまでは、その出力トルクを減少させることなく、出力し続け、回転位置を保持するので、短時間の加工負荷の増大に対しては加工精度を低下させることはない。
また、出力トルクが、許容トルクを超える状態を所定時間持続するか、または上限トルクに達すると、出力トルクが許容トルクより小さくなるまで、駆動モータの出力トルクが0になる方向に一定量ずつ目標位置を変更するから、駆動モータの過負荷様態やオーバヒートを防止し、機械の停止を回避できるので機械の稼働率を向上することができる。なお、駆動モータの出力トルクが0になる方向に目標位置を変更すると、位置ずれを大きくする方向に作用し、加工誤差を大きくするが、加工負荷の増大は、通常、微小時間であり、既に、上限トルク未満で許容トルクを超える時間を所定時間だけ位置を保持しているから、出力トルクが0になる方向に目標位置を変更する時間は短く、加工誤差が大きくなる期間は、通常、非常に小さいものである。
また、請求項3に係る発明は、目標位置を変更したことを示す目標位置変更信号オンの信号で回転テーブルが位置ずれしている状態で加工がなされていることを知ることができるので、加工精度が低下する可能性のある加工領域を知ることができる。
請求項4に係る発明は、さらに、回転テーブルをクランプ機構でクランプしたときの、回転テーブルが回転してクランプされるようなクランプミスが発生したときを知ることができ、クランプミスによる無駄な加工を防止できる。
請求項5に係る発明は、目標位置誤差過大信号出力手段から信号によって、回転テーブルの位置ずれが大きく、加工誤差が大きいことを知ることができ、加工不良を検知できる。
請求項4に係る発明は、さらに、回転テーブルをクランプ機構でクランプしたときの、回転テーブルが回転してクランプされるようなクランプミスが発生したときを知ることができ、クランプミスによる無駄な加工を防止できる。
請求項5に係る発明は、目標位置誤差過大信号出力手段から信号によって、回転テーブルの位置ずれが大きく、加工誤差が大きいことを知ることができ、加工不良を検知できる。
以下、図面と共に本発明の一実施形態を説明する。
図1は、この実施形態の工作機械を駆動制御する制御部のブロック図である。
符号10は工作機械を制御する制御装置としての数値制御装置であり、CPU20は数値制御装置10を全体的に制御するプロセッサで、バス29を介してメモリ21、インターフェース22、23、各軸モータ制御部24、PMC(プログラマブル・マシン・コントローラ)26、主軸モータ制御部27に接続されている。CPU20はメモリ21内のROMに格納されたシステムプログラムを、バス29を介して読み出し、該システムプログラムにしたがって数値制御装置10全体を制御する。メモリ21は、ROM、RAM、不揮発性メモリ等で構成され、ROMにはシステムプログラム等が記憶され、RAMには一時的計算データや表示データ、表示装置/手動入力ユニット9を介して入力された各種データが格納される。また、不揮発性メモリはバッテリでバックアップされたSRAMで構成され、本発明に関係して、回転テーブルクランプ時の該回転テーブルを駆動する駆動モータの目標位置変更処理のソフトウエアが格納されている。インターフェイス23は、数値制御装置10と外部機器との接続を可能とするものである。PMC(プログラマブル・マシン・コントローラ)26は、数値制御装置10に内蔵されたシーケンスプログラムで制御対象物の工作機械の補助装置に信号を出力し制御する。本発明に関係しクランプ機構がこのPMC26に接続されている。
図1は、この実施形態の工作機械を駆動制御する制御部のブロック図である。
符号10は工作機械を制御する制御装置としての数値制御装置であり、CPU20は数値制御装置10を全体的に制御するプロセッサで、バス29を介してメモリ21、インターフェース22、23、各軸モータ制御部24、PMC(プログラマブル・マシン・コントローラ)26、主軸モータ制御部27に接続されている。CPU20はメモリ21内のROMに格納されたシステムプログラムを、バス29を介して読み出し、該システムプログラムにしたがって数値制御装置10全体を制御する。メモリ21は、ROM、RAM、不揮発性メモリ等で構成され、ROMにはシステムプログラム等が記憶され、RAMには一時的計算データや表示データ、表示装置/手動入力ユニット9を介して入力された各種データが格納される。また、不揮発性メモリはバッテリでバックアップされたSRAMで構成され、本発明に関係して、回転テーブルクランプ時の該回転テーブルを駆動する駆動モータの目標位置変更処理のソフトウエアが格納されている。インターフェイス23は、数値制御装置10と外部機器との接続を可能とするものである。PMC(プログラマブル・マシン・コントローラ)26は、数値制御装置10に内蔵されたシーケンスプログラムで制御対象物の工作機械の補助装置に信号を出力し制御する。本発明に関係しクランプ機構がこのPMC26に接続されている。
また、インターフェース22は、液晶やCRTで構成される表示装置とキーボート等で構成される手動入力ユニットからなる表示装置/手動入力ユニット9が接続されている。回転テーブルを駆動する駆動モータ(サーボモータ)や加工するための各送り軸のサーボモータを制御する各軸のモータ制御部24は、CPU20からの各送り軸の位置指令(移動指令量)を受けて、各送り軸の指令をそれぞれのサーボアンプ25に出力し各送り軸のサーボモータMをそれぞれ駆動する。回転テーブルを駆動する駆動モータもサーボモータで構成され、軸モータ制御部24で位置、速度が制御される。
各軸モータ制御部24は、図5に示されるように位置制御部100、速度制御部101、電流制御部102を備え、サーボモータMに内蔵する位置・速度検出器103、及び電流検出器(図示せず)からの位置、速度、電流のフィードバック信号を受け位置、速度、電流のフィードバック制御を行う。回転テーブルも送り軸の1つとして構成され、回転テーブルを駆動する駆動モータはサーボモータで構成され、各軸モータ制御部24の1つのモータ制御部で制御される。
主軸モータ制御部27はCPU20から主軸回転速度指令を受けて、主軸アンプ28に主軸速度信号を出力し、主軸アンプ28は主軸速度信号を受けて、主軸モータSMを指令された回転速度(回転数)で回転させ、図示しないポジションコーダからの回転に同期してフィードバックされる帰還パルスを受け、主軸回転速度指令と一致した速度になるように速度のフィードバック制御を行う。
主軸モータ制御部27はCPU20から主軸回転速度指令を受けて、主軸アンプ28に主軸速度信号を出力し、主軸アンプ28は主軸速度信号を受けて、主軸モータSMを指令された回転速度(回転数)で回転させ、図示しないポジションコーダからの回転に同期してフィードバックされる帰還パルスを受け、主軸回転速度指令と一致した速度になるように速度のフィードバック制御を行う。
この数値制御装置10の構成は、回転テーブルクランプ時の該回転テーブルを駆動する駆動モータへの目標位置変更処理のソフトウエアがメモリ21に格納されている以外は、従来の工作機械を制御する数値制御装置の構成と同じである。
図2、図3は、回転テーブルのクランプ時及び回転テーブルに載置されたワークを加工中における、該回転テーブルを駆動する駆動モータへの目標位置変更処理のアルゴリズムを示すフローチャートである。
回転テーブルを加工開始位置(目標位置)へ移動させる移動指令が出された後、該回転テーブルをその位置決め位置(目標位置)にクランプするクランプ指令が出されると、CPU20は、インポジションチェックを行う(ステップS1)。回転テーブルを駆動する駆動モータ(サーボモータ)Mの位置が指令された目標位置のインポジション幅内にあるか判別する。インポジションの幅は、予めパラメータで設定されており、指令された目標位置のインポジション幅内に達していれば、位置決め完了とされる。インポジション幅内と判断されると、この指令された位置決め位置(目標位置)を真の目標位置として記憶し(ステップS2)、クランプ動作指令を出し(ステップS3)、クランプ機構を駆動し回転テーブルをクランプする。
そしてクランプ機構からクランプ完了信号が入力されると(ステップS4)、回転テーブルを駆動する駆動モータMの出力トルクが、クランプミスを判別するために予め設定されている基準値以下か判別する(ステップS5)。なお、この実施形態では、駆動モータMの出力トルクを検出することの代わりに、回転テーブルを駆動する駆動モータ(サーボモータ)Mの軸モータ制御部24の速度制御部から出力されるトルク指令Tcを検出するものとしている。
回転テーブルが位置決め位置(目標位置)にクランプされていれば、該回転テーブルを駆動するモータMも位置決め位置(目標位置)に位置決めされ、該駆動モータのサーボ制御部での位置偏差もほぼ「0」であり、駆動モータの出力トルクはほとんどない。一方、回転テーブルをクランプするときに回転テーブルが回転して位置決め位置(目標位置)からずれてクランプされると、位置決め位置(目標位置)からずれているために、位置偏差か発生する。また、インポジション幅にはいっているとして位置決め完了とされ、クランプした時、インポジション幅内ではあるが、指令された位置決め位置(目標位置)と実際にクランプされた位置が異なると位置偏差が発生する。この位置偏差の発生に伴って、この位置偏差を解消しようと回転テーブルを駆動する駆動モータの軸モータ制御部24は該駆動モータMを駆動することになる。一方、回転テーブルはクランプされているからその回転が困難であるから、軸モータ制御部24はトルク指令を増大させ、駆動モータMの出力トルクを増大させてこの位置ずれを解消しようとする。よって、回転テーブルをクランプした後、加工開始前に出力トルク(トルク指令Tc)が設定されている基準値を超えるとクランプミスとして、クランプ時位置ずれ信号を出力し、表示装置/手動入力ユニット9の表示装置に表示して回転テーブルのクランプをやり直すことを促して(ステップS19)、この処理を終了する。
一方、回転テーブルが位置決め位置(目標位置)に位置決めされ、位置ずれがなければ(ステップS5)加工許可信号を出力し、回転テーブルに載置されたワークに対する加工を開始させる(ステップS6)。
そして、加工終了かを判別する(ステップS7)と共に、トルク指令Tcが設定されている許容トルクTpより大きい時間が設定されている許容時間ΔT以上続いたか、又は、トルク指令Tcが設定されている上限トルクTmax以上に達しているか判別する(ステップS8)。以下、ステップS7,S8の処理を加工中実行し、トルク指令Tcが上限トルクTmaxに達することもなく、また、許容トルクTpより大きい時間が許容時間ΔT内で収まって加工終了に達すれば、当該出力トルク制御処理は終了する。
そして、加工終了かを判別する(ステップS7)と共に、トルク指令Tcが設定されている許容トルクTpより大きい時間が設定されている許容時間ΔT以上続いたか、又は、トルク指令Tcが設定されている上限トルクTmax以上に達しているか判別する(ステップS8)。以下、ステップS7,S8の処理を加工中実行し、トルク指令Tcが上限トルクTmaxに達することもなく、また、許容トルクTpより大きい時間が許容時間ΔT内で収まって加工終了に達すれば、当該出力トルク制御処理は終了する。
すなわち、加工中は、工具からワークに加工負荷がかかるが、この加工負荷は回転テーブルを介して該回転テーブルを駆動する駆動モータにもかかる。この加工負荷が大きく、この加工負荷による回転モータを回転させる方向の力が回転テーブルをクランプするクランプ機構の剛性による位置保持力のクランプ力よりも大きいと、クランプ機構はねじれが生じ、回転テーブルは回転し、位置決め位置(目標位置)からずれる。これに伴って、駆動モータも位置決め位置(目標位置)からずれ、モータ制御部の位置制御部の位置偏差が増大し、速度制御部への速度指令も増大し、速度制御部の積分器の積分値も増大することになり、トルク指令Tc、出力トルクが増大し、回転テーブルを位置決め位置(目標位置)に保持するように作用する。
図4(イ)に示すように、出力トルク(トルク指令Tc)が上限トルクTmaxに達することもなく、また、上限トルクTmaxより小さく、許容トルクTpより大きい時間が許容時間ΔT内であれば、モータのオーバヒートは避けられるとして、そのまま加工を続行させる。出力トルク(トルク指令Tc)が増大することは、加工負荷がクランプ機構のクランプ力より大きく、駆動モータの出力トルクで、回転テーブルを位置決め位置(目標位置)に保持している。これによって、位置ずれはなく、加工精度を向上させている。なお、許容トルクTpは定格トルクの70%、許容時間ΔTは100msec、上限トルクTmaxは駆動モータ出力トルクの70%程度に設定する。
次に、出力トルク(トルク指令Tc)が上限トルクTmax以上になったこと、又は、許容トルクTpを超える時間が許容時間ΔT以上になったときはステップS8からステップS9に進み、駆動モータの出力トルクを小さくする方向に目標位置を変更し、この目標位置を現在の目標位置として記憶する。この実施形態ではこの目標位置の変更は位置指令の最小単位Pminで行うものとしており、出力トルク(トルク指令Tc)がプラス+のトルクであれば、駆動モータにマイナス方向の移動指令を与えれば、出力トルクを小さくできるので、マイナス方向への最小単位Pminの移動指令を与え、目標位置の変更を行う。 つまり、出力トルク(トルク指令Tc)が+であれば、−方向への最小単位Pminの移動指令を、出力トルク(トルク指令Tc)が−であれば、+方向への最小単位Pminの移動指令をモータ制御部に出力し、目標位置を変更する。回転テーブルを駆動する駆動モータの軸モータ制御部24の位置制御部にこの移動指令が入力されると、位置制御部の位置偏差を小さくする作用をなす(出力トルクが+の時は位置偏差は+で、出力トルクが−の時は位置偏差は−であり、出力トルクとは逆符号の最小単位Pminの移動指令が入力されれば、位置偏差の絶対値は小さくなる)。位置偏差が小さくなれば、出力トルクを小さくする作用をなす。そして、現在目標位置として、ステップS2で記憶した真の目標位置に移動指令の値を加算(+Pmin又は−Pmin)した値を現在の目標位置として記憶する(ステップS9)。
目標位置が変更されたことから、目標位置変更信号をオンとして出力して表示装置/手動入力ユニット9の表示装置に目標位置が変更されていることを表示する(ステップS10)。
次に、真の目標位置と現在の目標位置の差に位置制御部から読み取った位置偏差の合計を求め、この合計が設定されている許容位置偏差を超えているかを判別する(ステップS11)。この合計は、目標位置(位置決め位置)からずれ量を表すから、この合計が許容位置偏差を超えているときには、目標位置誤差過大信号を出力し(ステップS20)、表示装置/手動入力ユニット9に目標位置誤差過大を表示してこの処理を終了する。
次に、真の目標位置と現在の目標位置の差に位置制御部から読み取った位置偏差の合計を求め、この合計が設定されている許容位置偏差を超えているかを判別する(ステップS11)。この合計は、目標位置(位置決め位置)からずれ量を表すから、この合計が許容位置偏差を超えているときには、目標位置誤差過大信号を出力し(ステップS20)、表示装置/手動入力ユニット9に目標位置誤差過大を表示してこの処理を終了する。
また、上記合計が許容位置偏差を超えていない場合には、出力トルク(トルク指令Tc)が許容トルクTpより小さいか判断し(ステップS12)、許容トルクTp以上であれば、駆動モータの出力トルクを0にするように最小単位Pminの位置指令のモータ制御部に出力し現在の目標位置を変更し(ステップS13)、ステップS11に戻る。以下、駆動モータの出力トルク(トルク指令Tc)が許容トルクTpより小さくなるまで、ステップS11からステップS13の処理を繰り返し実行し、現在の目標位置を変更する。駆動モータの出力トルクが許容トルクTpを超えているということは、加工負荷が大きく駆動モータは過負荷状態であり、オーバヒートする恐れがある。そのため、駆動モータの出力トルクを0にするように位置指令を出力し現在の目標位置を変更することより、駆動モータの出力トルクを抑え、駆動モータが過負荷状態になりオーバヒートすることを防止する。
駆動モータの出力トルク(トルク指令Tc)が許容トルクTpより小さくなると、ステップS12からステップS14に移行し、回転テーブルを駆動する駆動モータの軸モータ制御部24の位置制御部から位置偏差を読み取り、該位置偏差が0か判別し、0でなければ、この位置偏差を0にする方向に最小単位Pminの位置指令を出力し現在の目標位置を変更し(ステップS15)、ステップS11に戻る。以下ステップS11からステップS15の処理を繰り返し実行し、位置偏差が0になると、ステップS14からステップS16に移行し、現在の目標位置と真の目標位置が予め設定された所定値(たとえば2〜3Pmin)以下か判別し、所定値以下でなければ、ステップS11に戻り、ステップS11からステップS16の処理を繰り返し実行する。そして、現在の目標位置と真の目標位置の差が所定値以下となると、ステップS16からステップS17に移行し、現在の目標位置を真の目標位置に変更し、目標位置変更信号オフを出力する(ステップS18)。ステップS10で目標位置変更信号オンを出力して目標位置変更状態を示していたが、目標位置変更信号オフとすることによって、現在の目標位置と真の目標位置が一致状態であることを示す。そして、ステップS7に戻り、前述したステップS7以下の処理を続行する。ステップS10の目標位置変更信号オンの出力で表示され、ステップS18の目標位置変更信号オフの出力で消去される目標位置変更状態を示す表示が、加工中、長い時間表示されることは、位置ずれ状態で加工が長く行われていることを意味するので、この表示が長い時間表示されるようであれば、加工条件の変更等を行うようにすればよく、加工条件の調整に役立つものである。
図4(ロ)、(ハ)は、ステップS9以下の目標位置変更処理を実行するタイミングを説明する図であり、駆動モータの出力トルク(トルク指令Tc)が、図4(ロ)に示すように上限トルクTmaxを超えると、ステップS9以下の目標位置変更処理が実行され、また、出力トルク(トルク指令Tc)が上限トルクTmaxまで達しないが、許容トルクTpを超える時間が許容時間ΔT以上となるとステップS9以下の目標位置変更処理が実行される。目標位置変更処理がなされると、出力トルク(トルク指令Tc)が許容トルクTpより小さくなるまで、ステップS9及びステップS13の処理によって出力トルクが減少するように位置指令が出され現在の目標位置が変更されるので、図4(ロ)、(ハ)に示されるように急激に出力トルクは減少し、駆動モータの過負荷状態を防止し、オーバヒートが発生しないように制御される。
ステップS9及びステップS13の処理によって出力トルクが減少するように位置指令が出され現在の目標位置が変更されることは、回転テーブルの位置ずれを大きくし、加工誤差を大きくする方向に作用をなす。しかし、加工負荷が過大となるのは通常短時間であり、ステップS9及びステップS13の処理がなされるのは、ステップS8の出力トルク(トルク指令Tc)が許容トルクTpを超える時間が許容時間ΔTを経過した後か、上限トルクTmaxまで達したときである。そのため、たとえば、上限トルクTmaxには達しないが、許容トルクTpを超える負荷トルクが発生した場合(たとえば、この負荷トルクの区間を時間幅Taだとする)、まず、ステップS8で、許容時間ΔTだけは位置決め位置(目標位置)を保持するように駆動トルクを発生し、その後、ステップS9及びステップS13が実行されるものであるから、ステップS9及びステップS13の処理によって加工誤差を発生する区間は(Ta−ΔT)であり、このような過大負荷が発生する区間Taは通常短い時間であるから、加工誤差を発生する区間(Ta−ΔT)は非常に微小な時間となる。
また、上限トルクTmaxが発生するような過大な加工負荷は、微小時間であり、ステップS9及びステップS13の処理も非常に微小な時間となり、加工誤差発生はわずかなものである。
負荷トルクが減少すれば、クランプ機構のねじれの復元力(クランプ機構のクランプ力すなわち位置保持力)により回転テーブルは位置決め位置(真の目標位置)に戻るように作用する。一方、ステップS9、S13の処理によって現在の目標位置は真の目標位置よりずれる方向に変更されているから、回転テーブルは位置決め位置(真の目標位置)に戻ることにより、位置偏差は増大することになる。
負荷トルクが減少すれば、クランプ機構のねじれの復元力(クランプ機構のクランプ力すなわち位置保持力)により回転テーブルは位置決め位置(真の目標位置)に戻るように作用する。一方、ステップS9、S13の処理によって現在の目標位置は真の目標位置よりずれる方向に変更されているから、回転テーブルは位置決め位置(真の目標位置)に戻ることにより、位置偏差は増大することになる。
出力トルク(トルク指令Tc)が許容トルクTpより小さくなると、ステップS14,S15の処理によって、位置偏差が0になるように位置指令が出され現在位置が変更されるから、出力トルク(トルク指令Tc)の変動を抑える。また、位置偏差が0になるように現在の目標位置を変更することは、現在の目標位置を実際の位置に近づけることであり、実際の位置はクランプ機構のねじれの復元力(クランプ機構のクランプ力すなわち位置保持力)で真の目標位置に近づけられているから、現在の目標位置に近づけることになる。
クランプされた回転テーブルを回転させるような大きな加工負荷がかかるのは通常短期間であり、この加工負荷が小さくなれば、この加工負荷の減少とステップS13の処理によって、速やかに駆動モータの出力トルクは許容トルクTpより小さくなる。また、トルク指令Tcは軸モータ制御部24の速度制御部から出力されるものであり、速度制御部の比例積分制御(PI制御)の出力であるから、トルク指令値の大きさは積分値の影響が大きい、ステップS13の処理によって、駆動モータの出力トルク(トルク指令Tc)が減少するということは、積分値を小さくしてトルク指令Tc小さくするもので、そのため、位置偏差の符号が逆転する場合がある。たとえば位置偏差が+でトルク指令Tcが+の値であったとき、位置偏差を−の値にして速度制御部の積分値を減少させることによって、トルク指令Tc(駆動モータの出力トルク)を急激に減少させる。また、ステップS12、S13の処理中に負荷トルクが急激に減少した場合は、前述したように、実際の位置が真の目標位置にクランプ機構の位置保持力で戻されるから、位置偏差はさらに増大することになる。
出力トルク(トルク指令Tc)が許容トルクTpより小さくなると、ステップS12からステップS14、ステップS15に移行して、位置偏差を0にする方向に位置指令を出して現在位置を変更する。位置偏差を0にする方向に現在の目標位置を変更することは、現在の目標位置を実際の位置に近づけることであり、出力トルクの変動を小さくし制御を安定化させる。そして現在の目標位置を真の目標位置に近づける。
また、出力トルクの符号と位置偏差の符号が異なるとき(先の例でトルク指令Tcが+の値で、位置偏差を−の値のときなど)、位置偏差を0に近づけると、トルク指令Tc、出力トルクは増大することになる。増大して出力トルク(トルク指令Tc)が許容トルクTpを超えるようであれば、ステップS12、S14の処理がなされる。しかし、過大な加工負荷が瞬時的で、回転テーブルを回転させるような大きな加工負荷が既にかかっていない状態であれば、回転テーブルはクランプ機構によってクランプされているから、出力トルク(トルク指令Tc)が増大しても、クランプ力を超えるものは発生せず、影響はない。
一方、クランプ力に抗して回転テーブルを回転させるような大きな加工負荷が長くかかるような場合、ステップS13の処理で出力トルクを0にするように位置指令を出力して現在の目標位置を変更し(現在の目標位置と真の目標位置の差は増大する)、出力トルクを減少させれば、持続する加工負荷により位置ずれが増大する。大きな加工負荷が長く続くと、真の目標位置と現在の目標位置の差と位置偏差の合計は増大することになる。また、この合計が増大することは加工誤差が大きくなることを意味する。そこで、本実施形態では、この合計が許容位置偏差を超えると、ステップS11からステップS20に移行し目標位置誤差過大信号を出力し、表示装置/手動入力ユニット9の表示装置に誤差拡大を表示して当該処理を終了する。なお、ステップS11の処理を真の目標位置と現在の目標位置の差が許容位置偏差を超えるかとの判断処理にして、位置偏差は考慮しなくてよい。ただし、位置偏差を考慮したほうがより正確になる。このステップS11とステップS20の処理で本実施形態は目標位置誤差過大信号出力手段を構成する。
なお、上述した実施形態では回転テーブルを駆動する駆動モータへのトルク指令Tcを出力トルクの代わりに求めるようにしたが、出力トルクを直接検出するようにしてもよい。また、出力トルクは駆動電流に比例するものであるから、駆動モータの駆動電流を検出することによって出力トルクを検出するようにしてもよい。この場合、軸モータ制御部24の電流制御部102にフィードバックされてくる電流検出器からの駆動電流のフィードバック信号を検出、該駆動電流を出力トルクの代わりに用いればよい。
以上のとおり、本実施形態においては、回転テーブルに加工負荷がかかり、該回転テーブルを駆動する駆動モータに大きな負荷がかかったとき、回転テーブル(駆動モータ)の目標位置を変更して負荷を減少させ、過負荷状態となることを防止し、その過大負荷が短時間であれば、目標位置を速やかに戻して加工誤差を小さくして加工精度を向上させる。また、この過大負荷が長くかかり、位置ずれが長く続くときには、位置誤差過大を表示するようにした。これにより、そのときの加工は加工誤差が大きいことを知ることができるようにした。
10 数値制御装置
Tmax 上限トルク
Tp 許容トルク
Tmax 上限トルク
Tp 許容トルク
Claims (7)
- ワークを載置し固定する回転テーブルと、該回転テーブルをクランプするクランプ機構と、回転位置、速度を制御するモータ制御部を備え前記回転テーブルを回転駆動する駆動モータとから構成された回転割出し装置を備えた工作機械の制御装置において、
前記駆動モータの出力トルクを検出する駆動モータ出力トルク検出手段と、
前記モータ制御部から位置偏差を検出する位置偏差検出手段と、
前記クランプ機構によって前記回転テーブルを所定の回転角度位置の目標位置にクランプし、回転テーブルに載置されたワークを加工中に、前記駆動モータ出力トルク検出手段により検出した駆動モータの出力トルクが、予め設定された許容トルク以上で所定時間経過するか、または予め設定された上限トルクに達したことを条件として、前記検出した出力トルクが許容トルク以上のときは、駆動モータの出力トルクが0になる方向に、前記検出した出力トルクが許容トルクより小さい場合は検出された位置偏差を0にする方向に、一定量ずつ目標位置を変更する目標位置変更手段と、
を有することを特徴とする回転割出し装置を備えた工作機械の制御装置。 - 前記位置偏差検出手段で検出された位置偏差が0で、前記目標位置変更手段で変更された目標位置と前記クランプ機構によりクランプしたときの目標位置の差が所定の値より小さい場合は、前記変更された目標位置を元のクランプ時の目標位置に戻す目標位置復帰手段を備えることを特徴とする請求項1記載の回転割出し装置を備えた工作機械の制御装置。
- 前記目標位置変更手段により目標位置を変更したとき、目標位置を変更したことを示す目標位置変更信号をオンとして出力し、前記目標位置復帰手段で目標位置を元のクランプ時の目標位置に戻したとき、目標位置変更信号をオフとする目標位置変更信号出力手段を備えることを特徴とする請求項2記載の回転割出し装置を備えた工作機械の制御装置。
- 前記クランプ機構によって前記回転テーブルを所定の回転角度位置の目標位置にクランプし、加工開始前に、駆動モータ出力トルク検出手段で検出される出力トルクが所定値以上になると、クランプ時位置ずれ信号を出力するクランプ時位置ずれ信号出力手段を備える請求項1乃至3の内いずれか1項に記載の回転割出し装置を備えた工作機械の制御装置。
- 前記クランプ機構によりクランプしたときの目標位置と前記目標位置変更手段で変更された目標位置との差が許容位置偏差に達した場合に信号を出力する目標位置誤差過大信号出力手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の回転割出し装置を備えた工作機械の制御装置。
- 前記駆動モータ出力トルク検出手段は、前記駆動モータのモータ制御部の速度制御部から出力されるトルク指令を前記駆動モータ出力トルクとして検出する1乃至5のいずれか1項に記載の回転割出し装置を備えた工作機械の制御装置。
- 前記駆動モータ出力トルク検出手段は、前記駆動モータの駆動電流を検出することによって出力トルクを検出する1乃至5のいずれか1項に記載の回転割出し装置を備えた工作機械の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013223591A JP5710730B1 (ja) | 2013-10-28 | 2013-10-28 | 回転割り出し装置を備えた工作機械の制御装置 |
US14/519,544 US9527176B2 (en) | 2013-10-28 | 2014-10-21 | Control device for machine tool including rotary indexing device |
DE102014115481.9A DE102014115481B4 (de) | 2013-10-28 | 2014-10-23 | Steuervorrichtung für eine Werkzeugmaschine mit einer Drehungsindexiervorrichtung |
CN201410587591.7A CN104570922B (zh) | 2013-10-28 | 2014-10-28 | 具备旋转分度装置的机床的控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013223591A JP5710730B1 (ja) | 2013-10-28 | 2013-10-28 | 回転割り出し装置を備えた工作機械の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5710730B1 true JP5710730B1 (ja) | 2015-04-30 |
JP2015087820A JP2015087820A (ja) | 2015-05-07 |
Family
ID=52811893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013223591A Active JP5710730B1 (ja) | 2013-10-28 | 2013-10-28 | 回転割り出し装置を備えた工作機械の制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9527176B2 (ja) |
JP (1) | JP5710730B1 (ja) |
CN (1) | CN104570922B (ja) |
DE (1) | DE102014115481B4 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6020537B2 (ja) * | 2014-11-21 | 2016-11-02 | 株式会社安川電機 | モータ制御装置及びモータ制御方法 |
CN104942653B (zh) * | 2015-06-15 | 2018-04-27 | 许勇 | 一种自动分度治具 |
JP6219424B2 (ja) * | 2016-03-02 | 2017-10-25 | 平田機工株式会社 | 制御方法、作業システムおよび製造方法 |
JP6549641B2 (ja) | 2017-06-05 | 2019-07-24 | ファナック株式会社 | 工作機械および待機時間変更方法 |
JP6573750B1 (ja) * | 2019-02-07 | 2019-09-11 | 三菱電機株式会社 | 制御データ作成装置、制御データ作成方法、および制御データ作成プログラム |
TWI692625B (zh) * | 2019-05-10 | 2020-05-01 | 德川機械股份有限公司 | 測量背隙的方法、感測裝置及具有該感測裝置的分度盤裝置 |
JP7256686B2 (ja) * | 2019-05-21 | 2023-04-12 | ファナック株式会社 | 回転テーブル装置 |
WO2021048957A1 (ja) * | 2019-09-11 | 2021-03-18 | 株式会社Fuji | 多関節ロボット、多関節ロボットの制御方法及び多関節ロボットの制御プログラム |
JP7357349B2 (ja) * | 2019-10-31 | 2023-10-06 | パスカルエンジニアリング株式会社 | 回転支持装置、工作機械、および工具状態監視方法 |
JP7302518B2 (ja) * | 2020-03-31 | 2023-07-04 | ブラザー工業株式会社 | 数値制御装置 |
CN113758499B (zh) * | 2021-03-18 | 2024-05-17 | 北京京东乾石科技有限公司 | 确定定位传感器装配偏差补偿参数的方法、装置和设备 |
US20240066652A1 (en) * | 2021-04-06 | 2024-02-29 | Fanuc Corporation | Numerical controller and machining system |
WO2024079786A1 (ja) * | 2022-10-11 | 2024-04-18 | ファナック株式会社 | モータ制御装置及びモータ制御方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB851608A (en) * | 1956-12-21 | 1960-10-19 | Nils Johannes Liaaen | Servomotor control system |
US3825245A (en) * | 1972-04-24 | 1974-07-23 | Kearney & Trecker Corp | Workpiece changer mechanism for a machine tool |
FR2467045B1 (fr) * | 1979-10-09 | 1985-07-05 | Severt W | Dispositif de montage de pieces lourdes notamment pour leur soudage |
US4705438A (en) * | 1986-08-20 | 1987-11-10 | Wesflex International Corporation | Machining center having an inclinable vacuum-holding worktable |
JPS6368906A (ja) | 1986-09-11 | 1988-03-28 | Toshiba Corp | 産業用ロボツトの制御装置 |
JPH03161248A (ja) | 1989-11-15 | 1991-07-11 | Okuma Mach Works Ltd | Nc旋盤用刃物台の割出し制御装置 |
US5307676A (en) * | 1992-08-12 | 1994-05-03 | Gei Systems, Inc. | Controllable gear testing system |
JPH07195258A (ja) | 1993-12-29 | 1995-08-01 | Daido Steel Co Ltd | 刃具欠損監視方法及び装置 |
US5676360A (en) * | 1995-07-11 | 1997-10-14 | Boucher; John N. | Machine tool rotary table locking apparatus |
JPH1029125A (ja) | 1996-07-15 | 1998-02-03 | Toyoda Mach Works Ltd | 回転割出し装置 |
DE19840942C1 (de) * | 1998-09-08 | 2000-03-09 | Albeck Gmbh | Mehrfach-Spannvorrichtung |
JP2000094307A (ja) * | 1998-09-18 | 2000-04-04 | Ebara Corp | ポリッシング装置 |
JP2000100895A (ja) * | 1998-09-18 | 2000-04-07 | Nikon Corp | 基板の搬送装置、基板の保持装置、及び基板処理装置 |
JP3923047B2 (ja) | 2003-03-04 | 2007-05-30 | ファナック株式会社 | 同期制御装置 |
JP4971763B2 (ja) | 2006-11-29 | 2012-07-11 | 津田駒工業株式会社 | 工作機械用回転割出し装置における駆動モータの駆動制御方法 |
US8246026B2 (en) * | 2007-10-10 | 2012-08-21 | Mori Seiki Usa, Inc. | Tool indexer and turret-indexer assembly |
DE112010004197T5 (de) * | 2009-10-29 | 2012-11-22 | Dalian Kede Numerical Control Co., Ltd. | Standdreh- und Fräsmaschine |
US20120326402A1 (en) * | 2010-03-02 | 2012-12-27 | Burkhart Grob | Machine tool |
FR2966760B1 (fr) * | 2010-10-29 | 2012-12-21 | Areva Nc | Dispositif de maintien axial et de mise en rotation autour de son axe d'un element de forme allongee |
US8911282B2 (en) * | 2010-12-20 | 2014-12-16 | Progressive Surface, Inc. | Apparatus with variable fixturing arms for abrasive environment |
WO2012111166A1 (ja) * | 2011-02-15 | 2012-08-23 | 株式会社牧野フライス製作所 | 工作機械のパレット移送装置 |
CN103124939B (zh) | 2011-03-31 | 2014-02-26 | 小松Ntc株式会社 | 曲轴铣床及曲轴的制造方法 |
CN102211330A (zh) * | 2011-06-09 | 2011-10-12 | 许晓华 | 多自由度工作台 |
US9073152B2 (en) * | 2011-11-04 | 2015-07-07 | General Electric Company | Elliptical bearing manipulator |
US9272793B2 (en) * | 2013-06-25 | 2016-03-01 | The Boeing Company | Modular stanchion system |
-
2013
- 2013-10-28 JP JP2013223591A patent/JP5710730B1/ja active Active
-
2014
- 2014-10-21 US US14/519,544 patent/US9527176B2/en active Active
- 2014-10-23 DE DE102014115481.9A patent/DE102014115481B4/de active Active
- 2014-10-28 CN CN201410587591.7A patent/CN104570922B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US20150115514A1 (en) | 2015-04-30 |
JP2015087820A (ja) | 2015-05-07 |
US9527176B2 (en) | 2016-12-27 |
CN104570922B (zh) | 2016-09-07 |
DE102014115481A1 (de) | 2015-04-30 |
CN104570922A (zh) | 2015-04-29 |
DE102014115481B4 (de) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5710730B1 (ja) | 回転割り出し装置を備えた工作機械の制御装置 | |
US9235199B2 (en) | Warm-up control device for machine tool | |
WO1991009358A1 (en) | Servo motor control method | |
JP6457435B2 (ja) | 研削ロボットシステム | |
US11529709B2 (en) | Control device and control system for machine tool | |
US20160116896A1 (en) | Numerical control device | |
JP2005313280A (ja) | 数値制御装置 | |
WO2018029812A1 (ja) | 摩擦圧接方法及び摩擦圧接装置 | |
JP4193799B2 (ja) | ネジ切り制御方法及びその装置 | |
JP5777931B2 (ja) | 主軸ユニット駆動装置、及び主軸ユニット駆動方法 | |
JP6457778B2 (ja) | 数値制御装置 | |
WO2018119844A1 (zh) | 一种数控机床及主轴电机的转速调整方法 | |
JP6490520B2 (ja) | モータ駆動制御装置およびこれを備えた工作機械 | |
JP4692046B2 (ja) | 心押台の制御方法及びその装置 | |
JP3505175B2 (ja) | ねじ継手締付方法および装置 | |
JP2005115433A (ja) | 数値制御装置 | |
JP2009129395A (ja) | 数値制御装置、コンピュータプログラム及び記憶媒体 | |
JP2010030022A (ja) | ねじ状砥石の位相合わせ方法及びその装置 | |
JP4110959B2 (ja) | 主軸同期制御方法及びその装置 | |
JP4233559B2 (ja) | 数値制御工作機械 | |
US20180157237A1 (en) | Servo motor controller, servo motor control method, and non-transitory computer-readable medium storing computer program | |
JPH06289917A (ja) | 推定外乱負荷トルクによるサーボモータ制御方法 | |
WO2022249317A1 (ja) | 工作機械の制御装置 | |
JP2005032279A (ja) | 数値制御装置 | |
WO2023026368A1 (ja) | 数値制御装置、及び記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150205 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5710730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |