JP5681419B2 - 電気電子機器部品搬送用ケース - Google Patents

電気電子機器部品搬送用ケース Download PDF

Info

Publication number
JP5681419B2
JP5681419B2 JP2010205717A JP2010205717A JP5681419B2 JP 5681419 B2 JP5681419 B2 JP 5681419B2 JP 2010205717 A JP2010205717 A JP 2010205717A JP 2010205717 A JP2010205717 A JP 2010205717A JP 5681419 B2 JP5681419 B2 JP 5681419B2
Authority
JP
Japan
Prior art keywords
propylene
weight
parts
electronic equipment
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010205717A
Other languages
English (en)
Other versions
JP2012062067A (ja
Inventor
浩介 中野
浩介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2010205717A priority Critical patent/JP5681419B2/ja
Publication of JP2012062067A publication Critical patent/JP2012062067A/ja
Application granted granted Critical
Publication of JP5681419B2 publication Critical patent/JP5681419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wrappers (AREA)
  • Packaging Frangible Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電気電子機器部品搬送用ケースに関し、詳しくは、搬送の際にも性能低下を起こさないクリーン性に優れ、かつケースの防塵性に優れた電気電子機器部品搬送用ケースに関する。
プロピレン系樹脂は、耐熱性、成形性、透明性、耐薬品性に優れるという特徴により、各種工業材料、各種容器、日用品、フィルムおよび繊維など様々な用途に幅広く使用されている。
電気電子機器には、シリコンウエハー、ハードディスク、ディスク基板、ICチップ、光記憶用ディスク、LCD用高機能基板ガラス、LCDカラーフィルター、ハードディスク磁気ヘッド素子、CCD素子等々の各種部品が使用されているが、電気電子機器の組み立てにおいては、これら部品を組み立てラインに供するため、これら部品を運搬、移送する必要性があり、そのための搬送用ケースが用いられる。従来、ポリプロピレン等の熱可塑性樹脂の搬送用ケースがこの目的のため用いられてきた。
近年、電気電子機器部品は、その微細化、高性能化、高容量化にともない、製造環境、保管、移動中に発生、接触する汚染物質が、電気電子機器製品の歩留まり、品質、信頼性に大きな影響を及ぼすようになってきた。樹脂が含有する低分子量成分や残留物質に由来する揮発成分は、加工時の発煙、異臭等の発生原因になるばかりか、加工後でも臭気、色相に悪影響を与えることがあるが、電気電子機器部品の微細化・高密度化・高集積化が進むにつれて、より高度な清浄空間が必要になる。
また、電気電子機器部品の微細化が進むにつれ、微細な埃の付着が問題となってきている。帯電防止剤を添加することにより、埃の付着は改善できるものの、帯電防止剤の添加は、帯電防止剤に由来する揮発成分の発生や、表面の汚染が問題となるため実現されていなかった。
前記帯電防止剤としては、導電剤であるカーボンブラックや、界面活性剤であるグリセリンステアレート、アルコール、アルキルアミン等の低分子量型帯電防止剤が知られている。しかしながらこのような低分子量型帯電防止剤を用いたトレイは、帯電防止剤がブリードすることによって帯電防止性能を発現するため、ブリードした帯電防止剤によって電子部品が汚染されてしまうという問題や、帯電防止性能を長期間維持できないという問題があった。
そして、搬送用ケースに収納された上記部品に、性能上の不具合が発生する頻度が増加する問題が生じてきている。例えば、記憶ディスクに有機物や酸性ガスが付着することからくる記憶ディスクの動作不良等の不具合があげられる(例えば、非特許文献1参照。)。搬送用ケースの樹脂材料から発生する有機物汚染ガスや水分の発生を抑えることにより、製品の歩留まり、貯蔵、移動中における品質の低下を防止し、信頼性を向上させることが期待される。
ポリプロピレン系樹脂に係わるこのような問題を解決するために、重合後に低分子量成分を洗浄除去する方法(例えば、特許文献1、2参照。)や、塊状重合後の液相部分を分離除去する方法(例えば、特許文献3、4参照。)が提案されているが、いずれの方法を用いても、得られた樹脂中のオリゴマー成分量やこれに由来する揮発成分量は、十分といえるレベルではなく、品質の優れたプロピレン系樹脂の出現が望まれていた。
超クリーン化技術 東レリサーチセンター(2005年7月)
特公昭53−4107号公報 特公昭58−41283号公報 特開平10−17612号公報 特開平10−17613号公報
本発明の目的は、かかる従来技術の状況において、揮発性成分量が極めて少なく、電気電子機器部品の搬送の際にも性能低下を起こさない、防塵性に優れた、生産性の高い電気電子機器部品搬送用ケースを提供することにある。
本発明者らは、鋭意検討を行い、搬送用ケース材料から発生する炭化水素等の微量ガスが電気電子機器部品に作用し、沈着して、上記不具合を発生させることに着目した。そして、特定のポリプロピレン系樹脂に特定の帯電防止剤を所定の割合で添加することにより、これを用いた搬送用ケースは、揮発性成分量が、構成される材料配合から予測される量に対し極めて少なく、電気電子機器部品の搬送の際にも性能低下を起こさず、防塵性に優れることを見出し、本発明を完成するに至った。
すなわち、本発明の第1の発明によれば、メタロセン触媒を使用して製造されたプロピレン系樹脂90〜95重量%と高分子型帯電防止剤5〜10重量%からなる混合物100重量部に対し、フェノール系酸化防止剤を0.03〜0.2重量部配合してなり、揮発性成分の量が10重量ppm以下であるプロピレン系樹脂材料を用いたことを特徴とする電気電子機器部品搬送用ケースが提供される。
また、本発明の第2の発明によれば、第1の発明において、高分子型帯電防止剤が、ポリエーテル/ポリオレフィンブロック共重合体であることを特徴とする電気電子機器部品搬送用ケースが提供される。
また、本発明の第3の発明によれば、第1の発明において、プロピレン系樹脂材料のナトリウムおよびカリウム溶出量が、それぞれ10重量ppm以下であることを特徴とする電気電子機器部品搬送用ケースが提供される。
さらに、本発明の第4の発明によれば、第1の発明において、プロピレン系樹脂材料のナトリウムおよびカリウム溶出量が、それぞれ1重量ppm以下であることを特徴とする電気電子機器部品搬送用ケースが提供される。
本発明の電気電子機器部品搬送用ケースは、従来の搬送用ケースと比べ極めて内容物の汚染が生じにくく、搬送の際にも性能低下を起こさず、クリーン性に優れた電気電子機器部品搬送用ケースを提供でき、特に高集積回路用半導体等の搬送に非常に有用である。
本発明の電気電子機器部品搬送用ケースは、メタロセン触媒を使用して製造されたプロピレン系樹脂に、高分子型帯電防止剤およびフェノール系酸化防止剤をそれぞれ特定量配合してなり、揮発性成分の量が特定量以下であるプロピレン系樹脂材料を用いたことを特徴とする。
以下、本発明の電気電子機器部品搬送用ケースに用いるプロピレン系樹脂材料の各構成成分及び電気電子機器部品搬送用ケースの製造法について、詳細に説明する。
[I]プロピレン系樹脂材料を構成する成分
(1)プロピレン系樹脂(A)
本発明におけるプロピレン系樹脂とは、プロピレンの単独重合体、あるいはプロピレンとエチレンおよび/または炭素数4〜20のα−オレフィンとの共重合体を意味する。それらの中で、プロピレン単独重合体およびプロピレンとエチレンとのランダム共重合体が好ましい。プロピレンとエチレンのランダム共重合体の場合、好ましくはプロピレン単位を90〜99.5重量部、さらに好ましくは92〜99重量部、エチレン単位を好ましくは0.5〜10重量部、さらに好ましくは1〜8重量部含んでなるものである。
本発明で用いるプロピレン系樹脂材料は、揮発性成分量が10重量ppm以下であることが必要であるが、このためプロピレン系樹脂も、揮発性成分量が10重量ppm以下であることが必要であり、好ましくは8重量ppm以下であり、より好ましくは6.5重量ppm以下である。揮発性成分量が10重量ppmより多いと、揮発性成分が電気電子機器部品へ付着し、部品性能の不具合発生頻度の上昇をもたらす。
本発明における揮発性成分は、特に限定されるものではないが、未反応モノマー、低分子量化合物、重合溶媒、溶剤等のプロピレンの重合工程に起因する揮発性成分、あるいは、酸化防止剤のような重合後のポリプロピレンに添加される各種添加剤等に起因する揮発性の成分等が挙げられる。
揮発性成分の発生原因としては、多くのことが考えられるが、プロピレン系樹脂の重合法、製造法の違いに起因する場合が多い。
チーグラー触媒によって製造されたプロピレン系樹脂は、GPCによる重量平均分子量(Mw)と数平均分子量(Mn)を測定して、Mw/Mn(分子量分布の指標)を求めると、触媒の種類、重合条件により若干異なるが、約4〜9であるのに対して、メタロセン触媒によるプロピレン系樹脂は約2〜3であり、分子鎖の長さが非常に揃っているといえる。揮発性成分の発生の原因になると考えられる未反応モノマー、ダイマー、低分子量化合物、非晶質成分、オリゴマーなどの、比較的低分子量の成分の含有量が、通常は5ppm以下、3ppm以下、好ましくは1ppm以下と少ないために、メタロセン触媒によるプロピレン系樹脂を使用することが揮発性成分の発生の原因を原料の段階で、10重量ppm以下に止めることが、より容易に可能である。
一方、チーグラー触媒によるプロピレン系樹脂の場合には、分子量分布が比較的広く、低分子量域を潜在的に多く含むために、揮発性成分をプロピレン系樹脂という、いわゆる成形用ポリマーの原料段階で、12ppm、16ppm、19ppmというような多量に含まれている場合が多い。したがって、本発明におけるプロピレン系樹脂材料には、メタロセン触媒を使用して製造されたプロピレン系樹脂を使用する。
勿論、揮発性成分は、プロピレン系樹脂の副生成物ばかりでなく、重合溶媒、共重合に供されるモノマーであるエチレン、プロピレン、1−ブテン、1−ヘキセン等のα−オレフィン、触媒、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン等の不活性飽和炭化水素溶剤や液状α−オレフィン等のポリマー洗浄溶液、回収溶剤のような重合体の製造の段階で混入するものもありえる。さらに、酸化防止剤、加工助剤のような各種添加剤から混入することも想定できるので、プロピレン系樹脂の揮発成分を10重量ppm以下とするには、重合、重合体の洗浄、抽出、添加剤を含むあらゆる工程、観点からの対策を留意する必要がある。
また、本発明で用いるプロピレン系樹脂は、ポリマー内に含まれるハロゲン含有量、例えば、塩素の含有量が10重量ppm以下であることがこのましく、より好ましくは5重量ppm以下である。ハロゲン含有量が多いと腐食性を発現することになるので、好ましくない。
上記したように、本発明で用いるプロピレン系樹脂は、メタロセン触媒を用いて製造される。
メタロセン触媒としては、公知のメタロセン触媒系が使用できるが、好ましくは、メチルアルモキサンなどの有機アルミニウムオキシ化合物やフッ素含有ホウ素化合物を助触媒として使用しない触媒系が用いられる。
アルミニウムオキシ化合物を用いて重合すると生成ポリマー中に存在するアルミニウム量が多くなり、また、フッ素含有ホウ素化合物を用いて重合すると生成ポリマー中に存在するハロゲン量が多くなる。上記した好ましいハロゲン含有量のプロピレン系樹脂を得るためには、触媒除去工程の負荷を非常に大きくせねばならず、実用的でない。
メタロセン触媒としては、担持型ものが好ましい。
担持型メタロセン触媒の特に好ましい例としては、担体が助触媒の機能を兼ねたイオン交換性層状ケイ酸塩が挙げられる。具体的には、以下に述べる成分[A]、成分[B]および必要に応じて添加される成分[C]を組み合わせて得られる。
成分[A]メタロセン錯体
共役五員環配位子を少なくとも一個有する周期律表第4〜6族の遷移金属化合物
成分[B]助触媒
イオン交換性層状ケイ酸塩
成分[C]有機アルミニウム化合物
・成分[A]メタロセン錯体
上記の成分[A]としては、具体的には、次の一般式[I]で表される化合物を使用することができる。
Q(C4−a )(C4−b )MXY ・・・[I]
一般式[I]において、Qは、二つの共役五員環配位子を架橋する結合性基を表す。
Mは、周期律表第4〜6族遷移金属を表し、中でもチタン、ジルコニウム、ハフニウムが好ましい。
XおよびYは、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20の酸素含有炭化水素基、炭素数1〜20の窒素含有炭化水素基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20の珪素含有炭化水素基を示す。
およびRは、それぞれ独立して、炭素数1〜20の炭化水素基、ハロゲン基、炭素数1〜20のハロゲン含有炭化水素基、アルコキシ基、アリールオキシ基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基またはホウ素含有炭化水素基を示す。また、隣接する2個のRまたは2個のRがそれぞれ結合してC4〜C10環を形成していてもよい。特には、6員環、7員環を形成して、上記共役五員環と共に、インデン環、アズレン環を形成することが好ましい。
aおよびbは、0≦a≦4、0≦b≦4を満足する整数である。
2個の共役五員環配位子の間を架橋する結合性基Qは、例として、アルキレン基、アルキリデン基、シリレン基、ゲルミレン基等が挙げられる。これらは水素原子がアルキル基、ハロゲン等で置換されたものであってもよい。特には、シリレン基が好ましい。
メタロセン錯体として、具体的には次の化合物を好ましく挙げることができる。
(1)メチレンビス(シクロペンタジエニル)ジルコニウムジクロリド
(2)メチレン(シクロペンタジエニル)(3,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド
(3)イソプロピリデン(シクロペンタジエニル)(3,4−ジメチルシクロペンタジエニル)ジルコニウムジクロリド
(4)エチレン(シクロペンタジエニル)(3,5−ジメチルペンタジエニル)ジルコニウムジクロリド
(5)メチレンビス(インデニル)ジルコニウムジクロリド
(6)エチレンビス(2−メチルインデニル)ジルコニウムジクロリド
(7)エチレン1,2−ビス(4−フェニルインデニル)ジルコニウムジクロリド
(8)エチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド
(9)ジメチルシリレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)ジルコニウムジクロリド
(10)ジメチルシリレンビス(インデニル)ジルコニウムジクロリド
(11)ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ジルコニウムジクロリド
(12)ジメチルシリレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド
(13)ジメチルシリレン(シクロペンタジエニル)(オクタヒドロフルオレニル)ジルコニウムジクロリド
(14)メチルフェニルシリレンビス[1−(2−メチル−4,5−ベンゾ(インデニル)]ジルコニウムジクロリド
(15)ジメチルシリレンビス[1−(2−メチル−4,5−ベンゾインデニル)]ジルコニウムジクロリド
(16)ジメチルシリレンビス[1−(2−メチル−4H−アズレニル)]ジルコニウムジクロリド
(17)ジメチルシリレンビス[1−(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド
(18)ジメチルシリレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド
(19)ジメチルシリレンビス[1−(2−エチル−4−ナフチル−4H−アズレニル)]ジルコニウムジクロリド
(20)ジフェニルシリレンビス[1−(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド
(21)ジメチルシリレンビス[1−(2−メチル−4−(フェニルインデニル))]ジルコニウムジクロリド
(22)ジメチルシリレンビス[1−(2−エチル−4−(フェニルインデニル))]ジルコニウムジクロリド
(23)ジメチルシリレンビス[1−(2−エチル−4−ナフチル−4H−アズレニル)]ジルコニウムジクロリド
(24)ジメチルゲルミレンビス(インデニル)ジルコニウムジクロリド
(25)ジメチルゲルミレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド
また、チタニウム化合物、ハフニウム化合物などの他の第4、5、6族遷移金属化合物についても上記と同様の化合物が好ましく挙げられる。本発明の触媒成分および触媒については、これらの化合物を併用してもよい。
・成分[B]助触媒(イオン交換性層状ケイ酸塩)
イオン交換性層状ケイ酸塩は、天然産のものに限らず、人工合成物であってもよい。
イオン交換性層状ケイ酸塩として粘土化合物を使用することができ、粘土化合物の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
(1)1:1型構造が主要な構成層であるディッカイト、ナクライト、カオリナイト、アノーキサイト、メタハロイサイト、ハロイサイト等のカオリン族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族
(2)2:1型構造が主要な構成層であるモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群
本発明で使用する珪酸塩は、上記(1)、(2)の混合層を形成した層状珪酸塩であってもよい。
本発明においては、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトであることが特に好ましい。
これら珪酸塩を酸、塩、アルカリ、酸化剤、還元剤、有機溶剤などで化学処理することにより活性向上を図ることができる。
酸処理は、イオン交換性層状珪酸塩粒子の表面の不純物を除く、あるいは層間陽イオンの交換を行うほか、結晶構造のAl、Fe、Mg等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸としては、塩酸、硝酸、硫酸などが挙げられるが、好ましくは無機酸、特に好ましくは硫酸である。
酸処理条件に特に制限はないが、好ましくは5〜50重量部の酸の水溶液を60〜100℃の温度で1〜24時間反応させるような条件であり、その途中で酸の濃度を変化させてもよい。酸処理した後、通常洗浄が行われる。洗浄とは処理系内に含まれる酸をイオン交換性層状珪酸塩から分離除去する操作である。
塩類処理で用いられる塩類としては、特定の陽イオンを含有するものを選択して使用することが好ましい。陽イオンの種類については1から4価の金属陽イオンが好ましく、特にLi、Ni、Zn、Hfの陽イオンが好ましい。
具体的な塩類としては、次のものを例示することができる。
陽イオンがLiのものとしては、LiCl、LiBr、LiSO、Li(PO)、Li(ClO)、Li(C)、LiNO、Li(OOCCH)、Li(C)等を挙げることができる。
陽イオンがNiのものとしては、NiCO、Ni(NO、NiC、Ni(ClO、NiSO、NiCl、NiBr等を挙げることができる。
陽イオンがZnのものとしては、Zn(OOCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、ZnBr、ZnI等を挙げることができる。
陽イオンがHfのものとしては、Hf(OOCCH、Hf(CO、Hf(NO、Hf(SO、HfOCl、HfF、HfCl、HfBr、HfI等を挙げることができる。
化学処理後は、乾燥を行うが、一般的には、乾燥温度は100〜800℃で実施可能であり、構造破壊を生じるような高温条件(加熱時間にもよるが、例えば800℃以上)は好ましくない。構造破壊されなくとも乾燥温度により特性が変化するために、用途に応じて乾燥温度を変えることが好ましい。乾燥時間は、通常1分〜24時間、好ましくは5分〜4時間であり、雰囲気は乾燥空気、乾燥窒素、乾燥アルゴン、または減圧下である。乾燥方法に関しては特に限定されず各種方法で実施可能である。
・成分[C]有機アルミニウム化合物
成分[C]の有機アルミニウム化合物は、必要に応じて任意的に使用される成分であり、下記一般式[II]で示される化合物が適当である。
(AlR 3−p・・・[II]
式[II]中、Rは、炭素数1〜20の炭化水素基を示し、Xは、ハロゲン、水素、アルコキシ基、アミノ基を示す。pは1〜3の、qは1〜2の整数である。
としては、アルキル基が好ましく、またXは、それがアルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が好ましい。
これらのうち、好ましくは、p=3、q=1のトリアルキルアルミニウムおよびジアルキルアルミニウムヒドリドである。さらに好ましくは、Rが炭素数1〜8であるトリアルキルアルミニウムである。
有機アルミニウム化合物は、単独又は複数種混合して、あるいは併用して使用することができる。また、有機アルミニウム化合物は、触媒調製時だけでなく、予備重合あるいは本重合時にも添加して使用することができる。
本発明に使用されるメタロセン触媒は、本重合が行われる前に予備重合処理することが望ましい。予備重合に供されるモノマーとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン等のα−オレフィン、1,3−ブタジエン等のジエン化合物、スチレン、ジビニルベンゼン等のビニル化合物を用いることができる。
この予備重合は、不活性溶媒中で穏和な条件で行うことが好ましく、固体触媒(成分[A]と成分[B]の合計)1gあたり、0.01〜1,000g、好ましくは0.1〜100gの重合体が生成するように行うことが望ましい。
重合反応は、ブタン、ペンタン、ヘキサン、ヘプタン、トルエン、シクロヘキサン等の不活性炭化水素や液化α−オレフィン等の溶媒存在下、あるいは不存在下に行われる。本発明においては、固体触媒(固体触媒を予備重合処理した場合は、予備重合で生成した重合体を含まない。)当たりのポリマー生成量をできるだけ大きくすることが望ましい。ポリマー生成量を大きくするために、重合温度、重合圧力はいずれも高めに設定することが望ましい。
通常、重合温度は60〜90℃、重合圧力は1.5〜4MPa程度から選択される。特に、バルク重合の場合、重合温度は60〜80℃で、重合圧力は温度と相関して2.5〜4MPa程度から選択することが好ましい。一方、気相重合の場合は、重合温度は70〜90℃で、1.5〜4MPa程度から選択することが好ましい。
さらに、固体触媒の滞留時間を長くすることによっても、固体触媒当たりのポリマー生産量を上げることが可能であるが、あまり長くし過ぎると生産性に影響を与える。好ましい滞留時間は、1〜8時間、さらに好ましくは1〜6時間である。担体を含めた固体触媒1gあたりのポリマー生産量は20kg以上、好ましくは25kg以上、さらに好ましくは30kg以上となるように、重合条件を設定することが望ましい。
また、重合系内に分子量調節剤として水素を存在させてもよい。更に、重合温度、分子量調節剤の濃度等を変えて多段階で重合させてもよい。
本発明においては、重合終了後、得られたプロピレン系樹脂を、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンなどの不活性飽和炭化水素溶剤や液状α−オレフィンなどを用いて、さらに好ましくは炭素数3または4の不活性炭化水素溶剤や液状α−オレフィンを用いて、洗浄を行うことが好ましい。
洗浄方法としては、特に制限はなく、撹拌槽での接触処理後上澄みのデカンテーション、向流洗浄、サイクロンによる洗浄液との分離など、公知の方法を用いることができる。
また、洗浄前あるいは洗浄と同時に、失活剤を添加してもよい。失活剤に関しては、特に制限はなく、水、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類など、あるいはこれらの混合物を用いることができる。
(2)高分子型帯電防止剤(B)
高分子型帯電防止剤(B)としては、少なくとも2以上の繰返し単位を有する帯電防止剤であり、好ましくは、例えば、数平均分子量1,000以上高分子型の帯電防止剤であれば、使用でき、非イオン性、カチオン性あるいはアニオン性の高分子型帯電防止剤でも制限はされない。
このうち、非イオン性のものが好ましく、特に、親水性セグメントを有し、その親水性セグメントの吸湿性によって制電性が付与された高分子型帯電防止剤が好ましい。
こうした高分子型帯電防止剤としては、ポリエーテル/ポリオレフィンブロック共重合体等の親油性ポリマー/親水性ポリマーブロック共重合体等が好ましく挙げられる。
ポリエーテル/ポリオレフィンブロック共重合体では、ポリエーテルのブロックが親水性セグメントとして機能するとともに、ポリオレフィンのブロックが親油性セグメントとして機能する。すなわち、親水性セグメントは、その吸湿性によって成形体の表面抵抗を低下させる作用を奏し、親油性セグメントは、基材であるプロピレン系樹脂との相溶性を高める作用を奏することから、特に優れた帯電防止剤である。
ポリエーテル/ポリオレフィンブロック共重合体を構成するポリエーテルとしては、ポリエーテルジオール、ポリエーテルジアミン、及びこれらの変性物、並びにポリエーテル含有親水性ポリマー等が含まれる。ポリエーテル含有親水性ポリマーとしては、ポリエーテルジオールのセグメントを有するポリエーテルエステルアミド、ポリエーテルジオールのセグメントを有するポリエーテルアミドイミド、ポリエーテルジオールのセグメントを有するポリエーテルエステル、ポリエーテルジアミンのセグメントを有するポリエーテルアミド、及びポリエーテルジオール又はポリエーテルジアミンのセグメントを有するポリエーテルウレタンが含まれる。
ポリエーテルを構成するオキシアルキレン基は、例えばアルキレンの炭素数が2〜4のオキシアルキレン基であるエチレン基、プロピレン基、トリメチレン基、テトラメチレン基等が挙げられる。ポリエーテルを構成するオキシアルキレン鎖中におけるオキシエチレン基の占める割合は、制電性を高めるという観点から、好ましくは5質量%以上、より好ましくは10〜100質量%、さらに好ましくは60〜100質量%である。なお、ポリエーテルの数平均分子量は150〜20,000が好ましい。
ポリエーテル/ポリオレフィンブロック共重合体を構成するポリオレフィンとしては、好ましくは炭素数2〜30のオレフィンから選ばれる少なくとも一種を重合して得られるポリオレフィン、より好ましくはエチレン及びプロピレンの少なくとも一種を重合して得られるポリオレフィンである。
ポリエーテル/ポリオレフィンブロック共重合体を構成するポリエーテルのブロックと、ポリオレフィンのブロックとの繰り返し単位の平均繰り返し数は、制電性を付与する作用を考慮すると、好ましくは2〜50、より好ましくは2.3〜30、さらに好ましくは2.7〜20、最も好ましくは3〜10である。この平均繰り返し数は、特許文献3に記載の方法で求めることができる。
また、ポリエーテル/ポリオレフィンブロック共重合体を構成するポリエーテルの割合は、ポリエーテルとポリオレフィンとの合計質量を基準として好ましくは20〜90質量%、より好ましくは25〜80質量%、さらに好ましくは30〜70質量%である。
ポリエーテル/ポリオレフィンブロック共重合体の数平均分子量は、好ましくは2,000〜60,000、より好ましくは5,000〜40,000、さらに好ましくは8,000〜30,000である。
使用する高分子型帯電防止剤(B)は、高分子型帯電防止剤からの揮発性成分やナトリウム、カリウムイオン溶出量が問題とならない範囲で、使用することが好ましい。
このような高分子型帯電防止剤を用いることにより、プロピレン系樹脂との分散性が良好となり、成形性に優れ、かつ成形体の帯電防止性が長期間に渡り良好となる。
高分子型帯電防止剤(B)の数平均分子量は、好ましくは1,000〜100,000、より好ましくは2,000〜60,000、さらに好ましくは3,000〜30,000である。
このような高分子型帯電防止剤としては、例えば商品名「ペレスタット」(三洋化成工業(株)製商品名)や「スタットライト」(The Lubrizol Corporation社製商品名)が挙げられる。
高分子型帯電防止剤の添加量は1〜15重量部の範囲である。より好ましくは5〜10重量部の範囲である。高分子型帯電防止剤の添加量が1重量部未満であると十分な帯電防止性能が得られないため不適である。高分子型帯電防止剤の添加量が15重量部を超えると、成形品の強度が低下し、揮発成分が増加し、さらに製造費用が高くなるため不適である。
(3)フェノール系酸化防止剤(C)
本発明に用いられるプロピレン系樹脂材料には、各種フェノール系酸化防止剤を配合する。フェノール系酸化防止剤としては、具体的には、2,6−ジ−t−ブチル−4−メチルフェノール(ブチレ−テッドヒドロキシトルエン)、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト]メタン、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、2−〔1−(2−ヒドロキシ−3,5−ジ−t−ペンチルフェニル)エチル〕−4,6−ジ−t−ペンチルフェニルアクリレ−ト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等を好ましく挙げることができる。
本発明の効果を阻害しない範囲で、他の酸化防止剤を併用することも可能であるが、リン、硫黄を含む酸化防止剤を使用すると、含まれるリン、硫黄が内容物に対し悪影響を及ぼし、製品性能を損なう可能性があるため望ましくない。
フェノール系酸化防止剤(C)の添加量は、プロピレン系樹脂100重量部に対し、0.03〜0.2重量部の範囲である。フェノール系酸化防止剤の添加量が0.03重量部未満であると、熱によるポリプロピレンの劣化を防止できず、揮発性成分量が増加する。添加量が0.2重量部を超えると、酸化防止剤に由来するアウトガスの発生が懸念され、製造費用が高くなり、製品の色合いが悪化する懸念がある。また、配合量が多くなれば、ブルーミングにより、半導体内容物を直接汚染するばかりでなく、揮発性成分として認識される場合も有り得るので注意を要する。
また、本発明に用いられるフェノール系酸化防止剤の添加量(重量部)の下限は、プロピレン系樹脂100重量部に対し、下記式を満足するように調整されていることが望ましい。
3×10−3T―0.67
(但し、単位は重量部、Tは成形温度(℃)である。また、0.03未満の値は、0.03とする。)
これは、射出成形において、本発明の電気電子機器部品搬送用ケースを得る際、該ケースが大きいものや薄肉のもの、複雑な形状の場合、成形温度を高くする必要がある。しかし、成形温度が高温であるほど熱劣化は促進され、揮発性成分が増加するため、フェノール系酸化防止剤は多く必要となる。反面、フェノール系酸化防止剤を多く加えるほど、色相は悪化する。そこで、製品の実用上要求される成形性、揮発性成分量および色相を考慮したときに、上記式で表されるフェノール系酸化防止剤の添加量が最も効果的となる。なお、ここで成形温度は、(射出)成形機のシリンダー設定温度をさす。
(4)その他の成分
本発明に用いられるプロピレン系樹脂材料には、本発明の効果を著しく損なわない範囲で、他の付加的任意成分を配合することもできる。このような任意成分としては、防曇剤、金属不活性剤、紫外線吸収剤、分散剤、充填剤、難燃剤、着色剤、顔料、蛍光増白剤等を挙げることができる。
(II)プロピレン系樹脂材料の特性
本発明で用いるプロピレン系樹脂材料は、揮発性成分量が10重量ppm以下であることが必要であり、好ましくは8重量ppm以下であり、より好ましくは6重量ppm以下である。揮発性成分量が10重量ppmより多いと、揮発性成分が電気電子機器部品へ付着し、部品性能の不具合発生頻度の上昇をもたらす。
なお、揮発性成分の測定方法については、後記実施例に詳記する方法で行う。
また、プロピレン系樹脂材料は、水により洗浄した後の表面固有抵抗の変化率が20%以内であることが必要である。水により洗浄した後での表面固有抵抗値が、洗浄前の表面抵抗値よりも20%を超えて大きくなることは、帯電防止性能が維持されていないことになる。水により洗浄することで帯電防止性が失われると、容器を洗浄して繰り返し使用する場合に求められる帯電防止性が得られないことが懸念される。その結果、防塵性が不足するために内容物への埃の付着が生じるためである。水洗浄前後の表面固有抵抗値の変化率は、好ましくは10%以内、より好ましくは5%以内、特には5%以内であることが好ましい。
なお、表面固有抵抗変化率の測定方法については、後記実施例に詳記する方法で行う。
また、プロピレン系樹脂材料のナトリウムおよびカリウム溶出量は、それぞれ10重量ppm以下であることが好ましく、より好ましくは5重量ppm以下、より好ましくは3重量ppm以下、特に好ましくは1ppm以下である。ナトリウムおよびカリウム溶出量が増加すると、電気電子機器部品搬送用ケースに保管した内容物にケースが触れた場合、その部分で電気特性が変化し内容物に欠損が生じる可能性が高まるためである。
なお、ナトリウムおよびカリウム溶出量の測定方法については、後記実施例に詳記する方法で行う。
(III)搬送用ケースの成形方法
本発明の電気電子機器部品搬送用ケースを製造するには、上記で説明したプロピレン系樹脂に上述した添加剤を含有したプロピレン系樹脂材料を、公知の方法で射出成形等により所望形状のケースに成形する。搬送用ケースとは、各種マガジン、トレイ、ボックス、容器等の各種形態のものを含む。
なお、ここで電気電子機器部品とは、特に制限されないが、例えば、シリコンウエハー、ハードディスク、ディスク基板、ICチップ、光磁気ディスク(MO)、DVD、BD、各種メモリー、LCD用高機能基板ガラス、LCDカラーフィルター、ハードディスク用磁気抵抗ヘッド、CCD、CCDデバイス、光学機器半導体部品等の各種電気電子機器用の部品をいう。
以下、本発明を実施例及び比較例を挙げて、詳細に説明するが、本発明はこれらの実施例で限定されるものではない。
なお、以下の実施例、比較例において、重合体の物性測定は下記の方法に従ったものである。
また、実施例3は、参考例である。
(1)プロピレン系樹脂のメルトフローレート(MFR):
JIS−K6921−2:1997付属書(230℃、21.18N荷重)に準拠して測定した。
(2)プロピレン系樹脂のエチレン含有量:
エチレンコモノマー由来のポリマー中のエチレン単位含有量(単位:重量部)は、得られたポリマーをプレスし、シート状に成形したものをIR法により測定した。具体的には730cm−3付近に観測されるメチレン鎖由来ピーク高さから算出した。
(3)揮発性成分量:
試料200mgをGERSTEL社製TDS管に充填、TDS管をGERSTEL社製TDS−A装置に挿入し、ヘリウムガスを流しながら100℃で30分間加熱し、加熱時間中、ガスはTENAXを充填したGERSTEL社製CIS4に導入され、CIS4を−150℃に冷却することにより試料より発生した揮発成分を捕集した。
捕集された成分は320℃まで急速に加熱気化させることにより、ガスクロマトグラムに導入した。導入されたガスは次の条件でガスクロマトグラム/質量分析法で測定した。
装置:HP6890
カラム:DB−5ms 0.25mm×30m
温度:40℃×5min→10℃/min〜300℃×15min
検出器:HP5973N
炭化水素量の定量は、n−ヘプタンを溶媒として、濃度が1、5及び10μg/mlの炭素数20の脂肪族直鎖飽和炭化水素を、試料と同条件で測定を行い、ガスクロマトグラム/質量分析法で測定し、検量線を作成し、定量は炭素数20の脂肪族直鎖飽和炭化水素換算で行った。
(4)表面固有抵抗:
ダイアインスツルメンツ社製ハイレスタIP高抵抗率計(MCP−HT260)を用い、印加電圧は10V、電極は、2重リング法(HRSプローブ)を採用した。電圧印加後、10秒後の値を測定値として採用した。
各実施例/比較例で得られたシート状成形体を、水による洗浄の前と後に測定した。
なお、結果の表中、OR(オーバーレンジ)は、1013Ωより高い値を持つため、測定不可であることを示す。
(5)溶出Na、K量:
電子工業用高純度硝酸(三菱化学社製)を超純水で希釈して1.0×10−3規定硝酸を調製した。この硝酸20mLを超純水で洗浄した内容積約80mLのテトラフルオロエチレン製試験管に入れ、上部の開口部を超純水で洗浄したテトラフルオロエチレン製の栓で軽く蓋をし、試験管の硝酸が入っていない部分を加熱しないようにオイルバス中80℃で1時間加熱した。次いで、この硝酸溶液を白金皿に取り出し、窒素雰囲気下石英管中赤外線加熱炉で徐々に昇温して乾固させた。白金皿上の残留物に、電子工業用高純度塩酸1.0mLを加え、溶解させ、超純水で希釈した後、高分解能ICP−MS(サーモクエスト社製)を用いて、Na、Kの元素の含有量を測定した。
(6)ヘイズ(HAZE):
厚さ2mmの射出試験片を用い、JIS K7105に準拠して測定を行った。
(製造例1)
(1)触媒の調製
以下の操作は、不活性ガス下、脱酸素、脱水処理された溶媒、モノマーを使用して実施した。
(i)イオン交換性層状珪酸塩の化学処理
酸処理:
ゼパラブルフラスコに蒸留水1130g、96%硫酸750gを加え、内温を90℃に保ち、そこに平均粒径25μmの造粒スメクタイト(水沢化学社製ベンクレイSL)300gを添加し、5時間反応させた。
洗浄:
1時間で室温まで冷却し、蒸留水でpH=3.69まで洗浄した。このときの洗浄倍率は1/10,000以下であった。この段階の固体を一部乾燥させて、酸処理による溶出率を求めたところ33.5%であった。
塩類処理:
硫酸リチウム1水和物211gを蒸留水521gに溶かし、さらに上記酸処理で得られた固体100g(乾燥重量)を加え、室温で120分撹拌した。このスラリーを濾過し、得られた固体に蒸留水3000g加え、5分間室温で撹拌した。更に、このスラリーを濾過した。得られた固体に蒸留水2500gを加え、5分間撹拌後再び濾過した。この操作をさらに4回繰り返した。得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去しさらに200℃で2時間減圧乾燥することにより、化学処理スメクタイトを得た。
(ii)珪酸塩の活性化処理
上記の化学処理スメクタイト200gを、内容積3Lの攪拌翼のついたガラス製反応器に導入し、ノルマルヘプタン750ml、さらに、トリノルマルオクチルアルミニウムのヘプタン溶液(500mmol)を加え、室温で攪拌した。1時間後、ノルマルヘプタンにて洗浄(残液率1%未満)し、スラリーを2000mLに調製した。
(iii)予備重合触媒の調製
次に、(r)−ジメチルシリレンビス[2−メチル−4−(4−クロロフェニル)−4H−アズレニル]ジルコニウムジクロリド3mmolのトルエンスラリー870mLとトリイソブチルアルミニウム(15mmol)のヘプタン溶液42.6mLを、あらかじめ室温にて1時間反応させておいた混合液を、上記の化学処理スメクタイトスラリーに加え、1時間攪拌した。続いて、窒素で十分置換を行った内容積10Lの攪拌式オートクレーブに、ノルマルヘプタン2.1Lを導入し、40℃に保持した。そこに、先に調製したモンモリロナイト/錯体スラリーを導入した。温度が40℃に安定したところで、プロピレンを100g/時間の速度で供給し、その温度を維持した。4時間後、プロピレンの供給を停止し、さらに2時間維持した。回収した予備重合触媒スラリーから、上澄みを約3L除き、トリイソブチルアルミニウム(30mmol)のヘプタン溶液を170mL添加し、10分間撹拌した後に、40℃にて減圧下熱処理した。この操作により触媒1g当たりポリプロピレン2.30gを含む予備重合触媒が得られた。
(2)プロピレン系樹脂の製造
内容積270Lの攪拌装置付き液相重合槽、内容積400Lの失活槽、スラリー循環ポンプ、循環ライン液力分級器、濃縮器、向流ポンプおよび洗浄液受け槽からなる失活洗浄システム、二重管式熱交換器と流動フラッシュ槽からなる高圧脱ガスシステム、さらに低圧脱ガス槽および乾燥器などを含む後処理系を組み込んだプロセスにより、プロピレン−エチレン共重合体の連続製造を実施した。
上記で製造した予備重合触媒を流動パラフィン(東燃社製商品名「ホワイトレックス335」)に濃度15重量部で分散させて、触媒成分として0.35g/hrで液相重合槽に導入した。さらに、この重合槽に液状プロピレンを40kg/hr、エチレンを0.4kg/hr、水素を0.25g/hr、トリイソブチルアルミニウムを18g/hrで連続的に供給し、内温を70℃に保持し、重合を行った。液相重合槽からポリマーと液状プロピレンの混合スラリーをポリマーとして12.0kg/hrとなるように失活洗浄槽に抜き出した。このとき重合槽の触媒の平均滞留時間は、1.3時間であった。失活洗浄槽には、失活剤としてエタノールを21.0g/hrで供給した。さらに液状プロピレンを40kg/hr供給し、ジャケットによる加熱で内温を50℃に保った。ポリマーは分級器の下部から高圧脱ガス槽へ抜き出し、さらに低圧脱ガス槽を経て、乾燥器で乾燥を行った。乾燥器の内温80℃、滞留時間が1時間となるように調整し、さらに室温の乾燥窒素をパウダーの流れの向流方向に12m/hrの流量で流した。乾燥後のポリマーは、ホッパーから取り出した。
一方、分級器、濃縮器を経て、ポリマーと分離された液状プロピレンは、40kg/hrで洗浄液受け槽に抜き出した。得られた重合体の固体触媒1g当たりの収量は34.3kg、エチレン含量=0.75wt%、MFR=30.6g/10分、Tm=141.7℃であった。
(製造例2)
(1)触媒の調整
(i)チーグラー触媒の調整
攪拌翼、温度計、ジャケット、冷却コイルを備えた100Lの反応器に、Mg(OEt):30molを仕込み、次いで、Ti(OBu)を、仕込んだMg(OEt)中のマグネシウムに対して、Ti(OBu)/Mgのモル比が0.60となるように仕込んだ。さらに、トルエンを19.2kg仕込み、攪拌しながら昇温した。139℃で3時間反応させた後、130℃に降温して、MeSi(OPh)のトルエン溶液を、先に仕込んだMg(OEt)中のマグネシウムに対して、MeSi(OPh)/Mgのモル比が0.67になるように添加した。なお、ここで用いたトルエン量は、7.8kgであった。添加終了後、130℃で2時間反応させ、その後、室温に降温し、Si(OEt)を添加した。Si(OEt)の添加量は、先に仕込んだMg(OEt)中のマグネシウムに対して、Si(OEt)/Mgのモル比が0.056となるようにした。
次に、得られた反応混合物に対して、マグネシウム濃度が、0.57(mol/L・TOL)になるように、トルエンを添加した。さらに、フタル酸ジエチル(DEP)を、先に仕込んだMg(OEt)中のマグネシウムに対して、DEP/Mgのモル比が0.10になるように添加した。得られた混合物を、引き続き攪拌しながら−10℃に冷却し、TiClを2時間かけて滴下して、均一溶液を得た。なお、TiClは、先に仕込んだMg(OEt)中のマグネシウムに対して、TiCl/Mgのモル比が4.0になるようにした。TiCl添加終了後、攪拌しながら0.5℃/minで15℃まで昇温し、同温度で1時間保持した。次いで、再び0.5℃/minで50℃まで昇温し、同温度で1時間保持した。さらに、1℃/minで118℃まで昇温し、同温度で1時間処理を行った。処理終了後、攪拌を停止し、上澄み液を除去した後、トルエンで、残液率=1/73になるように洗浄し、スラリーを得た。
次に、ここで得られたスラリーに、室温で、トルエンとTiClを添加した。なお、TiClは、先に仕込んだMg(OEt)中のマグネシウムに対して、TiCl/Mg(OEt)のモル比が5.0となるようにした。また、トルエンは、TiCl濃度が、2.0(mol/L・TOL)になるように調製した。このスラリーを攪拌しながら昇温し、118℃で1時間反応を行った。反応終了後、攪拌を停止し、上澄み液を除去した後、トルエンで、残液率=1/150となるように洗浄し、固体成分のスラリーを得た。さらに上記で得られた固体成分のうち、400gを、攪拌翼、温度計、冷却ジャケットを有する別の反応器に移送し、ノルマルヘキサンを加えて、固体成分の濃度として5.0(g/l)になるように希釈した。得られたスラリーを攪拌しながら、15℃で、トリメチルビニルシラン、トリエチルアルミ(TEA)およびt−ブチルメチルジエトキシシラン(TBMDES)を添加した。なお、TEA、トリメチルビニルシラン、TBMDESの添加量は、それぞれ、上記固体成分中の固体成分1gに対して、3.1(mmol)、0.2(ml)、0.2(ml)となるようにした。添加終了後、引き続き攪拌しながら、15℃で1時間保持し、さらに、30℃に昇温して、同温度で2時間攪拌した。
(ii)予備重合
次に、再び15℃に降温し、同温度を保持しながら、反応器の気相部に、1.2kgのプロピレンガスを72分かけて定速でフィードして予備重合を行った。フィード終了後、攪拌を停止して上澄み液を除去した後、ノルマルヘキサンで洗浄を行い、予備重合触媒成分のスラリーを得た。なお、残液率は、1/12とした。得られた予備重合触媒成分は、上記固体成分1gあたり、3.1gのプロピレン重合体を有していた。
(2)プロピレン系樹脂の製造
重合は製造例1で用いたのと同じ反応器システムを用いて行った。上記で得られた予備重合触媒成分を流動パラフィン(東燃社製商品名「ホワイトレックス335」)に濃度2重量部で分散させて、触媒成分として0.2g/hrで導入した。この反応器に液状プロピレンを32.8kg/hr、エチレンを0.26kg/hr、水素を4.0g/hr、トリエチルアルミニウムを6.6g/hr、t−ブチルメチルジエトキシシラン(TBEDMS)を0.011g/hrで連続的に供給し、内温を70℃に保持し重合を行った。
液相重合槽からポリマーと液状プロピレンの混合スラリーを、ポリマーとして13.8kg/hrとなるように失活洗浄槽に抜き出した。このとき重合槽の触媒の平均滞留時間は、1.3時間であった。失活洗浄槽には、失活剤としてエタノールを21.0g/hrで供給した。さらに液状プロピレンを40kg/hr供給し、ジャケットによる加熱で内温を50℃に保った。ポリマーは分級器の下部から高圧脱ガス槽へ抜き出し、さらに低圧脱ガス槽を経て、乾燥器で乾燥を行った。乾燥器の内温80℃、滞留時間が1時間となるように調整し、さらに室温の乾燥窒素をパウダーの流れの向流方向に12m/hrの流量で流した。乾燥後のポリマーは、ホッパーから取り出した。一方、分級器、濃縮器を経て、ポリマーと分離された液状プロピレンは、40kg/hrで洗浄液受け槽に抜き出した。得られた重合体の固体触媒1g当たりの収量は69.0kg、エチレン含量=4.2wt.%、MFR=25.5g/10分、Tm=140.1℃であった。
<帯電防止剤>
以下の実施例/比較例で使用した帯電防止剤は、以下のとおりである。
(i)高分子型帯電防止剤−1:
ポリエーテル/ポリオレフィンブロック共重合体
三洋化成工業社製商品名「ペレスタットHC250」
(ii)高分子型帯電防止剤−2:
ポリエーテル/ポリオレフィンブロック共重合体
三洋化成工業社製商品名「ペレスタット201」
(iii)高分子型帯電防止剤−3:
ポリエーテル系熱可塑性ポリウレタン
The Lubrizol Corporation社製商品名「スタットライトX5567」
(iv)帯電防止剤−4:(比較例用)
グリセリンモノステアレート
花王(株)社製商品名「エレクトロストリッパーTS5」
(実施例1)
(1)樹脂材料の製造
製造例1で得られたメタロセン触媒によるプロピレン系樹脂パウダーを95重量部、上記帯電防止剤−1を5重量部、フェノール系酸化防止剤のペンタエリスチル−テトラキス[3−(3,5−t−ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製商品名「RA1010」、以下「RA1010」と略す。)0.03重量部を添加し、スーパーミキサーで窒素シール後、3分間混合した。その後、パウダーは東芝機械社製2軸押出機(TEM35)を用い、ホッパーを窒素シールしながら、シリンダー温度200℃、スクリュー回転数150rpm、押出量15kg/hで造粒し、プロピレン系樹脂材料のペレットを得た。
このペレットを、東芝機械社製IS100GN成形機を用い、シリンダー温度200℃、金型温度40℃の条件下で、100mm×100mm、厚み2mmのシート状の成形体を成形し、揮発性成分量、表面固有抵抗、NaおよびK溶出量、ヘイズの測定を行った。また得られたシート成形体を水を用い洗浄後、乾燥させ表面固有抵抗を測定した。
得られた結果を表1に示す。
(実施例2)
製造例1で得られたプロピレン系樹脂パウダーを90重量部、帯電防止剤−1を10重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
得られた結果を表1に示す。
(実施例3)
製造例1で得られたプロピレン系樹脂パウダーを85重量部、帯電防止剤−1を15重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
得られた結果を表1に示す。
(実施例4)
製造例1で得られたプロピレン系樹脂パウダーを90重量部、帯電防止剤−2を10重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
得られた結果を表1に示す。
(実施例5)
製造例1で得られたプロピレン系樹脂パウダーを90重量部、帯電防止剤−3を10重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
得られた結果を表1に示す。
(比較例1)
製造例2で得られたチーグラー系触媒によるプロピレン系樹脂パウダーを使用する以外は実施例2と同様にして、樹脂材料、射出成形体を得た。得られた結果を表1に示す。
(比較例2)
製造例1で得られたプロピレン系樹脂パウダーを80重量部、帯電防止剤−1を20重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
得られた結果を表1に示す。
(比較例3)
製造例1で得られたプロピレン系樹脂パウダーを99.85重量部、帯電防止剤−を0.15重量部の比率とする以外は実施例1と同様にして、樹脂材料、射出成形体を得た。
Figure 0005681419
(参考例1)
製造例1で得られたメタロセン触媒によるプロピレン系樹脂パウダー100重量部に対しフェノール系酸化防止剤「RA1010」0.03重量部を添加し、スーパーミキサーで窒素シール後、3分間混合した。その後、パウダーは東芝機械社製2軸押出機(TEM35)を用い、ホッパーを窒素シールしながら、シリンダー温度200℃、スクリュー回転数150rpm、押出量15kg/hで造粒し、プロピレン系樹脂材料のペレットを得た。
このペレットを、東芝機械社製IS100GN成形機を用い、シリンダー温度200℃、金型温度40℃の条件下で、100mm×100mm、厚み2mmのシート状の成形体を成形し、揮発性成分量の測定を行った。得られた結果を表2に示す。
(参考例2)
帯電防止剤−1のペレットを用い、揮発性成分量の測定を行った。得られた結果を表2に示す。
(参考例3)
帯電防止剤−3のペレットを用い、揮発性成分量の測定を行った。得られた結果を表2に示す。
Figure 0005681419
実施例1〜5では高分子型帯電防止剤を所定量添加しているため、揮発性成分量が10ppm以下と低減され、かつ表面固有抵抗が水洗前、水洗後ともに1013Ω以下であり、帯電防止性も付与されている。さらに帯電防止剤−1を用いた実施例1〜3ではNa溶出量が低減されていること、ヘイズが小さい値を示すことからより好ましい結果であった。
この結果はプロピレン系樹脂パウダーと高分子型帯電防止剤の配合比率から予期される揮発性成分量と比べ非常に低減されている。例えば、製造例1のプロピレン系樹脂パウダーを90重量部、帯電防止剤−1を10重量部用いた場合、予期される揮発性成分は12ppmであるが、同物質を同量用いた実施例2では4.8ppmであった。
一方、比較例1は、チーグラー系触媒によるプロピレン系樹脂パウダーを用いているため揮発性成分量が極めて多い。比較例2は、高分子型帯電防止剤の割合が多いため、高分子型帯電防止剤に由来する揮発性成分量が増大した。比較例3では低分子量の帯電防止剤を用いているため揮発性成分量が高く、また水洗後の表面固有抵抗がオーバーレンジとなっており、帯電防止性が維持されなかった。これら要因により、電気電子機器部品搬送用ケースには不適である。
本発明のプロピレン系樹脂材料を用い製造された電気電子機器部品搬送用ケースは、揮発性成分量が非常に少なく、帯電防止性が付与されたプロピレン系樹脂から射出成形で成形されているので、従来のケースと比べ極めて内容物の汚染が生じにくく、高集積回路用半導体等の搬送に有効に用いることができる。
本発明の電気電子機器部品搬送用ケースは、搬送の際にも性能低下を起こさないクリーン性に優れ、帯電防止性を有していることから防塵性に優れた生産性の高い搬送用ケースであるので、電気電子機器部品の歩留まり、搬送中における品質の低下を防止できるので、産業上の利用性は非常に高いものがある。

Claims (4)

  1. メタロセン触媒を使用して製造されたプロピレン系樹脂90〜95重量%と高分子型帯電防止剤5〜10重量%からなる混合物100重量部に対し、フェノール系酸化防止剤を0.03〜0.2重量部配合してなり、揮発性成分の量が10重量ppm以下であるプロピレン系樹脂材料を用いたことを特徴とする電気電子機器部品搬送用ケース。
  2. 高分子型帯電防止剤が、ポリエーテル/ポリオレフィンブロック共重合体であることを特徴とする請求項1に記載の電気電子機器部品搬送用ケース。
  3. プロピレン系樹脂材料のナトリウムおよびカリウム溶出量が、それぞれ10重量ppm以下であることを特徴とする請求項1に記載の電気電子機器部品搬送用ケース。
  4. プロピレン系樹脂材料のナトリウムおよびカリウム溶出量が、それぞれ1重量ppm以下であることを特徴とする請求項1に記載の電気電子機器部品搬送用ケース。
JP2010205717A 2010-09-14 2010-09-14 電気電子機器部品搬送用ケース Active JP5681419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205717A JP5681419B2 (ja) 2010-09-14 2010-09-14 電気電子機器部品搬送用ケース

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205717A JP5681419B2 (ja) 2010-09-14 2010-09-14 電気電子機器部品搬送用ケース

Publications (2)

Publication Number Publication Date
JP2012062067A JP2012062067A (ja) 2012-03-29
JP5681419B2 true JP5681419B2 (ja) 2015-03-11

Family

ID=46058202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205717A Active JP5681419B2 (ja) 2010-09-14 2010-09-14 電気電子機器部品搬送用ケース

Country Status (1)

Country Link
JP (1) JP5681419B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370390B2 (ja) * 2011-02-14 2013-12-18 Jnc株式会社 ポリオレフィン系帯電防止繊維およびそれからなる不織布
WO2016117233A1 (ja) 2015-01-19 2016-07-28 株式会社Adeka 帯電防止性樹脂組成物ならびにこれを用いた容器および包装材
JP6750244B2 (ja) * 2016-02-17 2020-09-02 日本ポリプロ株式会社 プロピレン系樹脂組成物及び成形品
JP6707902B2 (ja) * 2016-02-26 2020-06-10 日本ポリプロ株式会社 電子機器部品搬送部材用プロピレン系樹脂組成物及び成形品
JP2017171884A (ja) * 2016-03-18 2017-09-28 日本ポリプロ株式会社 プロピレン系樹脂組成物及び成形品
JP2018150476A (ja) * 2017-03-14 2018-09-27 日本ポリプロ株式会社 プロピレン系樹脂組成物及び成形品
KR102204102B1 (ko) 2017-12-21 2021-01-18 아이세로미림화학 주식회사 친수성 블록 및 소수성 블록을 포함하는 블록 공중합체성 대전방지제, 이를 포함하는 대전방지성 폴리올레핀 필름 및 이의 제조 방법
JP2019197010A (ja) * 2018-05-11 2019-11-14 株式会社協同 プローブカード収納ケース

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004041678A1 (ja) * 2002-11-06 2006-03-09 冨士ベークライト株式会社 クリーンルーム用容器
JP4982168B2 (ja) * 2006-12-21 2012-07-25 日本ポリプロ株式会社 静電防止シートおよびそれを用いた成型体
JP2009120797A (ja) * 2007-10-24 2009-06-04 Japan Polypropylene Corp 押出しシートおよびそれからなる包装製品
JP2009209342A (ja) * 2008-02-08 2009-09-17 Japan Polypropylene Corp プロピレン系樹脂組成物およびその成形品

Also Published As

Publication number Publication date
JP2012062067A (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5681419B2 (ja) 電気電子機器部品搬送用ケース
KR0178977B1 (ko) 열가소성 올레핀 중합체 및 이의 제조 방법
US7915359B2 (en) Propylene resin composition
KR20100090308A (ko) 프로필렌 중합체 조성물
JP2008540752A (ja) ポリオレフィンブレンドを製造するための重合方法
JP5036964B2 (ja) プロピレン系重合体及びその用途
JP2008184498A (ja) プロピレン系ブロック共重合体の製造方法
JP2008106089A (ja) ポリプロピレン系射出成形半導体関連部品搬送ケース
JP2012020761A (ja) 電気電子機器部品搬送用ケース
JP5907477B2 (ja) プロピレン系ブロック共重合体の製造方法
JP2006188563A (ja) 柔軟性に優れたポリプロピレン系樹脂組成物
JP2008156562A (ja) プロピレン−エチレンブロック共重合体
JP6213179B2 (ja) 押出しラミネート用ポリプロピレン系樹脂組成物および積層体
JP2013040304A (ja) 電気電子機器部品搬送ケース用ポリプロピレン系樹脂
JP5201944B2 (ja) 熱可塑性樹脂重合粒子
JP5352188B2 (ja) プロピレン−エチレンブロック共重合体の製造方法
JP2011162210A (ja) 半導体関連部品搬送ケース
JP5811911B2 (ja) 半導体関連部品搬送ケース
JP2021091881A (ja) プロピレン系重合体組成物及び成形品
JP5110747B2 (ja) ポリプロピレン系無延伸フィルム
JP2010242077A (ja) 高純度薬品容器用ポリエチレン、その製造方法、及び高純度薬品容器
JP5559954B2 (ja) プロピレン系共重合体、その製造方法及び成形体
JP2009263594A (ja) プロピレン系樹脂組成物及びその樹脂組成物からなる医療部材
JP5628126B2 (ja) プロピレン系ブロック共重合体の製造方法
JP6750244B2 (ja) プロピレン系樹脂組成物及び成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250