JP5670194B2 - 多種類の標的を検出するためのマイクロ流体プラットフォーム - Google Patents

多種類の標的を検出するためのマイクロ流体プラットフォーム Download PDF

Info

Publication number
JP5670194B2
JP5670194B2 JP2010528975A JP2010528975A JP5670194B2 JP 5670194 B2 JP5670194 B2 JP 5670194B2 JP 2010528975 A JP2010528975 A JP 2010528975A JP 2010528975 A JP2010528975 A JP 2010528975A JP 5670194 B2 JP5670194 B2 JP 5670194B2
Authority
JP
Japan
Prior art keywords
nanostructure
nanostructures
nucleic acid
hybridization
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010528975A
Other languages
English (en)
Other versions
JP2011500025A5 (ja
JP2011500025A (ja
Inventor
チャン,シュエ−チア
ゴードン,ジェイソン
セナパティ,サティアジョティ
ギャグノン,ザチャリー
バスライ サグニク
バスライ サグニク
Original Assignee
ユニヴァーシティー オブ ノートル ダム デュ ラック
ユニヴァーシティー オブ ノートル ダム デュ ラック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニヴァーシティー オブ ノートル ダム デュ ラック, ユニヴァーシティー オブ ノートル ダム デュ ラック filed Critical ユニヴァーシティー オブ ノートル ダム デュ ラック
Publication of JP2011500025A publication Critical patent/JP2011500025A/ja
Publication of JP2011500025A5 publication Critical patent/JP2011500025A5/ja
Application granted granted Critical
Publication of JP5670194B2 publication Critical patent/JP5670194B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Description

本発明は、マイクロ流体デバイスに関し、より詳細には多標的検出用のマイクロ流体プラットフォームに関する。
診断アッセイは、病原体(たとえば有害バクテリア、ウイルス、有機体等)及び/若しくは異常細胞の検出並びに識別に利用可能な生化学的手法である。一の知られた診断アッセイにはポリメラーゼ鎖反応(PCR)の利用が含まれる。PCRは、DNAポリメラーゼを用いてDNA片-つまり標的DNA-を試験管内の酵素複製によって増幅する。PCRは、最初わずかな濃度で存在するDNAシーケンスを迅速に増幅し、最終的に数百万の同一DNA分子を生成することで、各DNAシーケンス/標的に対する検出感度を指数関数的に増大させることが可能とする。
一部の診断アッセイもまた、検出標的-たとえば増幅されたDNAシーケンス、バイオメーカー分子、病原体、及び/又は他の標的-を選択的に捕獲する手順、前記標的を大きな試料から取り除く手順、及び前記標的を分子プローブに結合する手順をも有する。結合した標的は様々な手法-蛍光タグ又は放出、ラマン分光、及びIR又はUV分光を含む光センサに基づく光センサ手法を含む-によって検出することが可能である。
これらの診断アッセイは、医療診断試験室における遺伝子診断手法で用いられている。それに加えて食料品店は、たとえば生鮮食料品に含まれる大腸菌のようなバクテリアを検出する酵素結合イムノソルベントアッセイのような診断アッセイを用いる。これらの手法は、バクテリアの検出、又は他のDNA、バイオマーカー、若しくは他の標的の検出にとっては有用だが、これらの手法では、一般的に高価でかさばる実験設備の負担が求められ、大抵の場合手動での監視及び処理が必要となり、かつ結果が出るのに数日以上が必要となる(たとえばTBバクテリアは培養に1週間必要である)。
小型PCRキットも市販されているが、これらのアッセイは少なくとも1時間の応答時間を有する。1時間の応答時間は、小型で利用するデバイス又は高処理能力バイオマーカースクリーニングにとっては一般的に長すぎる。それに加えて従来のアッセイキットは、低処理能力のバッチ形式を用いた単一標的検出を行う。この方法は標的計数が少なく、かつこの方法の感度には疑問が生じる。
記載された典型的なデバイス及び方法は、1つ以上の標的-たとえば病原菌及び/又は異常細胞-の検出に関する。典型的な方法は、第1標的を含む試料をマイクロ流体デバイス内部に設ける手順、及び前記第1標的の複数のコピーと複数のナノ構造とのハイブリダイゼーションを起こす手順を有する。当該方法は、前記複数のナノ構造に交流電流を印加する手順、及び電気電流によって発生する電場を用いて前記ナノ構造を捕獲し、かつ移動させる手順を有する。前記捕獲によって、前記ナノ構造全体にわたって試料を迅速に流すことが可能になることで、たとえば100μlよりも多い試料溶液から標的を捕獲することが可能となる。続いて前記ナノ構造は、前記第1標的の存在又は不存在-たとえば前記第1標的の量の決定も含まれて良い-を判断するために分類及び評価される。
さらに、たとえばメカニカルシリンジポンプ、手動シリンジポンプ、マイクロポンプ、及び/又は他の適切なデバイスによって供給される外的又は内的に印加された圧力によって、試料流は駆動する。圧力によって駆動する連続流によって、大容量の試料のサンプリングが可能となり、かつ残骸物によるチャネル及びオリフィスの目詰まりが防止されるので、圧力によって駆動する連続流は高処理能力の小型デバイスにとって望ましい。よって本明細書に記載された典型的な方法及びシステムの分類、捕獲、並びに他の態様は加圧下で行われるので、詰まり、残骸物、及び/又は他の障害物に対して耐性を有する。換言すると、圧力が増大しても、本明細書に記載された典型的な方法又はシステムの動作は妨害されない。
標的検出ユニットとして機能する典型的なデバイスは、第1標的の試料が内部に設けられたマイクロ流体デバイス、及び複数の前記第1標的のコピーと複数のナノ構造とを結合させるハイブリダイゼーションチャンバを有する。それに加えて当該デバイスは、前記ナノ構造を集める集合装置、前記ナノ構造を分類する分類装置、及び前記の分類されたナノ構造を収集するトラップを有する。
他の典型的な標的検出器は、標的が複製されることで増幅された混合物が生成される複製チャンバ、及び、ナノ構造を含むマイクロ流体チャンバであって、前記ナノ構造は該ナノ構造に対して官能化する分子プローブを有する流体チャンバを有する。前記標的検出器は、マイクロ流体チャンバ内にナノ構造を保持するフィルタ、前記の増幅した混合物が貫流して前記の増幅した混合物中で前記ナノ構造と標的のハイブリダイゼーションを起こすチャネル、及び、前記標的の存在又は不存在を判断する検出器をも有する。
複数の標的を検出するさらに他の典型的な方法は、1つ以上の標的を含む試料をマイクロ流体デバイスへ挿入する手順、前記標的を容器内に保持する手順、前記標的を複数の検出管に通過させる手順、及び前記標的のハイブリダイゼーションを行う手順を有する。当該方法は、任意の適切な検出デバイス及び/又は方法によって前記標的の存在又は不存在を検出する手順をも有する。
多標的を検出するさらに他の典型的な標的検出器は、1つ以上の標的を含む試料を受け入れてマイクロ流体デバイスへ注入する注入孔、前記標的を保持する容器、該容器とやり取り可能なように結合する複数の検出管、及び該複数の検出管内に設けられたハイブリダイゼーションチャンバを有する。さらなる典型的な標的検出器は、前記標的の存在又は不存在を検出する検出器を同様に有する。
本明細書に記載された典型的なデバイス及び方法の動作は、たとえば防衛、本土すなわち国家の安全保証、医療、研究、環境、プロセス制御の用途又は他の適切な目的のための検査を行うため、患者及び/又は環境から試料を取得する手順を有する。試料の中には、検査が完了する前に前処理を必要とするものがあるだろう。前処理にはたとえば、前記試料から残骸物及び/又は抑制物質を物理的、化学的、又は他の手法により除去するため、濾過、試薬による沈殿、及び/又は、物理的な残骸物及び/又は化学的な抑制物質の分解が含まれて良い。前処理はまた場合により、多数の他の様々な手法を有しても良い。
分子検出標的が試料に加えられる。分子検出標的はたとえばバイオマーカー又は遺伝子を有して良い。典型的バイオマーカーの中には、生物学的小胞、ペプチド、及び/又は他の非DNA分子を有するものがある。遺伝子はDNA及び/又はRNAストランドを有する。一部の例では、標的が遺伝子を含む場合には、PCRが、試料中のDNA及び/又はRNAストランドを複製/増幅するのに用いられて良い。
検出標的は、ナノ構造に対する官能基となる(つまりナノ構造に付着する)相補的分子プローブとのハイブリダイゼーション(つまり結合)を起こす。ナノ構造上での標的のハイブリダイゼーションは、たとえばAC電流によって発生する電場の存在によって促進されて良い。電場の存在は、ハイブリダイゼーションに必要な時間を顕著に短縮する。一部の例では、検出標的がナノ構造に導入されることで、ハイブリダイゼーションを1秒未満で起こすことができる。ハイブリダイゼーションの時間が短縮されることは、高処理能力の小型デバイスにとって有利である。典型的なナノ構造には、カーボンナノチューブ(CNT)、ナノビーズ、ナノワイヤ、ナノコロイド、ナノ粒子、ナノロッド、量子ドット、ナノ結晶、リポゾーム、シリカビーズ、ラテックスビーズ、金コロイド、及び/又はサブミクロンスケール-つまり1μm未満-の寸法を有する他の形状を備えた構造が含まれる。ナノ構造の官能基となることが可能な分子プローブにはたとえば、オリゴマー、プローブ、蛍光プローブ、カルボキシル基、ストレプトアビジン/アビジン、又はマイクロ構造を親水性にする他の適切な(複数の)分子プローブが含まれて良い。様々なナノ構造を分子プローブとして利用することには様々な利点がある。たとえばサイズが均一なラテックス粒子が容易に合成されると同時に、様々な化学及び物理プローブによるシリカナノビーズの官能化が一般的になる。CNTへのプローブ及び蛍光プローブの付着もまた相対的に容易になる。ナノワイヤは容易なコーディング(たとえば様々なナノワイヤ上での蛍光色素及び/又は他の形跡の付加)を可能にする。そして静電相互作用により分子は無差別にCNT上に吸着しないので、CNTは良好な選択性を供する。標的がハイブリダイゼーションを起こすという事象は大きなインピーダンス信号を発生させるので、CNTのコンダクタンスは分子のハイブリダイゼーションに対しても敏感である。さらに様々な蛍光色素は、コロイド、リポゾーム、又はナノワイヤに順次付着することで、本明細書に記載されているような蛍光バーコード又は他の形跡を供して良い。
以降で詳述するように、検出標的のハイブリダイゼーションを起こすことが可能な手法には様々なものが存在する。たとえば遺伝子は、水素結合を介することによって相補的分子プローブ(たとえばオリゴ-ヌクレオチド-これもDNAである-)とのハイブリダイゼーションが可能である。バイオマーカーが検出標的として用いられる場合、バイオマーカーはナノ構造と結合する。よってハイブリダイゼーションは、バイオマーカー分子とナノ構造上の相補的分子との間で生じる。バイオマーカーが分子である例においては、ハイブリダイゼーションは、バイオマーカーそれ自身とナノ構造上の相補的分子との間で起こる。係るハイブリダイゼーションには、水素結合又は他の適切な化学及び/若しくは物理結合機構が含まれる。他の典型的なハイブリダイゼーションには、後述するビオチン-ストレプトアビジンが含まれる。
検出標的は様々な方法で検出されて良い。たとえば一部の例では、誘電泳動(DEP)が結合したナノ構造に用いられることで前記ナノ構造を電場に従わせて、前記ナノ構造を様々なパターンで移動させ、かつ/又は前記ナノ構造を含む溶液のインピーダンスを測定する。他の例では、ナノ構造を含む溶液のたとえば蛍光特性(たとえば強度)の光学的観察を介して検出が行われる。他の例では、蛍光とインピーダンスの両方の測定及び/又は観察が行われて良い。
標的の検出に利用可能な一の典型的な診断キット又は検出デバイスは、集積された連続流誘電泳動プラットフォームを有する。DEP-これには粒子に力を付与するAC電場の利用が含まれる-に基づくマイクロ/ナノ構造のプラットフォームはナノ構造を操作することで、マイクロ流体プラットフォームが標的の検出及び特定を行う。具体的にはDEPは、電場勾配の影響下での粒子(帯電している必要はない)のマイグレーションを指称する。電場は、個々のナノ構造が不均一な電場に曝露されているとき、個々のナノ構造の各々の上に粒子双極子を誘起する。ナノ構造は、制御されたマイグレーションを引き起こす正味の力を受ける。前記制御されたマイグレーションは、そのマイグレーションが高電場領域へ向かうか、又は遠ざかるのかに依存して、正のDEP(p-DEP)又は負のDEP(n-DEP)と表される。印加される周波数が増大することで、ほとんどのナノ構造はp-DEPからn-DEPへ切り替わる。ナノ構造が切り替わる地点は「クロスオーバー」地点である。ナノ構造間での「クロスオーバー」周波数の差異を利用することで、各独立した(複数の)ナノ構造に各異なる粒子の力-たとえば各異なる方向に作用する力-を迅速に与える方法が供される。
ナノ構造のDEP方向は分子結合によって反転させることが可能である。たとえば結合は、表面コンダクタンス及び官能化されたナノ構造の実効サイズを変化させる。係る変化は、不均一なAC電場内で誘起されるナノ構造の双極子モーメントを変化させる。その結果ナノ構造は、結合/ハイブリダイゼーションの発生に依存する不均一なAC電場において、各独立した様々なパターンに集められる。
A-Fは、四重極電極付近に位置する典型的な結合及び未結合ナノ構造によって形成された典型的パターンの像である。 集積された多重連続流誘電泳動分類デバイスの典型例の概略図である。 典型的な結合したナノ構造の拡大されたトラップの写真である。 各々のサイズが異なる典型的な結合したナノ構造について、クロスオーバー周波数に対する伝導率をプロットするグラフである。 典型的な結合したナノ構造の極の電荷の拡大像である。 2つの異なる検出手法を表す迅速な標的検出デバイスの典型例の概略図である。 典型的な検出デバイス上の典型的なマイクロ流体チャネルの一部を図示している。 典型的なガラススライド上に図7の典型的なマイクロチャネルを作製する典型的な方法を図示している。 典型的な図8のガラススライド上に典型的なフィルタを作製する典型的な方法を図示している。 典型的なナノ構造上に典型的なオリゴマープローブを官能化させる典型的な方法を図示している。 図6の典型的な検出デバイスのより詳細な図、並びに、典型的なフィルタ及びマイクロチャネルの拡大図が共に示された典型的なデバイスの像を示している。 遺伝子ハイブリダイゼーションを用いた典型的な多標的検出ユニットの概略図である。 図12の検出ユニットの典型的な検出サブユニットの概略図である。 図13の典型的な検出サブユニットの典型的な膜及び電極対の概略図である。 図13の典型的な検出サブユニットの典型的なインピーダンス検出器の概略図である。 図15の典型的なインピーダンス検出器の典型的な電極グリッドの拡大図である。 図16の典型的な電極グリッドの典型的なアレイ交差点の拡大図である。 典型的な像検出器の概略図である。 図18の典型的な像検出器から得られた典型的な像を概略的に表している。 選択的ハイブリダイゼーションを用いた典型的な多標的検出ユニットの概略図である。 図20の検出ユニットの典型的な検出サブユニットの概略図である。
たとえば図1A-Fは、四重極電極の付近でのナノ構造の懸濁物を図示している。ナノ構造の懸濁物は、図1A-Cでは結合していないが、図1D-Fでは結合している。それに加えて、図1A及び1Dは周波数300kHzでのナノ構造の懸濁物を図示し、図1B及び1Eは周波数700kHzでのナノ構造の懸濁物を図示し、かつ図1C及び1Fは周波数2.1MHzでのナノ構造の懸濁物を図示する。図1A-Fに図示されているように、DNA-オリゴマーのハイブリダイゼーションを起こすナノ構造の懸濁物と上記ハイブリダイゼーションを起こさないナノ構造の懸濁物(つまり結合するものと結合しないもの)は、様々なAC周波数で各独立した様々なパターンを示す。そのパターンは、ラベリング又はタグ用試薬を用いることなく迅速にハイブリダイゼーションを特定するのに用いることが可能である。検出は、共焦点蛍光顕微鏡に代わって、携帯型光学顕微鏡によって行われて良い。ハイブリダイゼーション(つまりナノ構造への検出標的の結合)がより明確になり、かつそのハイブリダイゼーションがより大きくなることで、元の試料中すなわち患者又は環境中での標的の存在がより顕著になる。このことは、たとえば防衛、本土すなわち国家の安全保証、医療、研究、環境、プロセス制御の用途又は他の適切な目的のための有用な情報を供することができる。
ナノ構造が電場の下で移動するので、力の方向の差異は、前記ナノ構造の分離及び分類、又は場合によっては後述するように前記ナノ構造を所定の位置に保持するのに用いられて良い。それに加えて、DEP分類は、サイトメトリとは異なり、分類の前にナノ構造を特定することを要しない。この手法は、DNA-オリゴマーハイブリダイゼーション、タンパク質-DNA、抗体-抗原(たとえば後述するビオチン-ストレプトアビジン)、及び、ラベリング又は他の試薬を必要としない、表面が官能化されたナノ構造を含む他の分子結合アッセイに適用されて良い。
それに加えて、ナノ構造の2元、3元、又は4元懸濁物は、多標的検出に使用可能である相当に豊富なパターンのスペクトルを供することができる。たとえば様々な形状及びサイズのナノ構造を有する懸濁物は複雑性にも寄与すると考えられる。最後に生体認証の統合によって、大規模のパターンのライブラリを生成することができる。本明細書で詳述されているように、パターンのライブラリへアクセスすることで、観測されたパターンと既知のパターンとを比較して、1つ以上の標的の存在又は不存在を判断する標的検出が支援される。
本明細書に記載された典型的なDEPプラットフォーム-たとえば動電的に流れを制御する部品-は極めて軽量である。その理由は小型バッテリーと小型変成器しか必要ないからである。オンチップの光センサが電子的に制御されるので、デバイス/チップ全体のための十分に集積された電子制御構造が、最小限のアクチュエータ及びセンサで実装されて良い。それに加えて機械的に可動な部分は最小に維持される。たとえば一部の例では、機械的に可動な部分だけが数個のボールバルブである。機械的に可動な部分の数を減らすことで、チップの製造コストが減少する。さらにフィードバック制御及び自動化が、制御小型回路構造によって実装されて良い。
図2は、センサ不要のナノ構造の分類及び識別を可能にする、典型的な集積多重連続流DEP分類デバイス/チップ200を図示している。この例では、チップ200は、3つの異なっていて連続するDEP部品を有し、かつ3つの異なるナノ構造を、たとえば約100個のナノ構造/秒の速度で、3つの異なるチャネルに分類することができる。チップ200及び任意の周辺機器はハンドヘルド型であり、使い捨てで、かつ低コスト-たとえば約1米ドル未満-での製造が可能である。分類されたナノ構造は、マイクロフィルタを用いることなく、各チャネル内部のDEPトラップによって捕獲可能である。集められたナノ構造はさらに、オンチップ又はオフチップのセンサ及び検出器によって検知されて良い。ナノ構造はまた、たとえば1つ以上のトラップ用電極のインピーダンスを測定することによってカウントされて良い。
それに加えて、1つ以上の典型的なチップ200が、直列又は並列に接続し、かつモジュール形式で用いられることで、大量の並列スクリーニングを実現することが可能である。このモジュール形式は、試料の調査を大量の異なる標的のレベルにまで拡大することを可能にする。このような構成はまた側方流及び循環流をも可能にする。
典型的な集積DEPチップモジュール200の様々な部品は、様々なナノ構造によって生じる様々な方向の様々な粒子の力を利用して、微小電極付近で高電場を発生させる。上述したように、典型的なチップ200は、粗いDEP残骸物フィルタ210(上述したように試料の前処理に用いることができる)の下流に3つのステージを有する。第1ステージ220は、全ての粒子のn-DEP領域で動作する集合ユニットである。集合ステージ220は電極222の側部アレイを2つ有する。これらのアレイのギャップ幅は徐々に減少し、ほとんどのナノ構造のクロスオーバー周波数よりも高い周波数が印加される。ギャップ224の開口部が減少することで、連続流中の実質的にすべてのナノ構造は、チャネル中央部のたとえば約10μm幅未満の領域に集められる。集められたナノ構造は、1つの1次元列キューを生成し、かつ下流にて個別に取得されて良い。第2ユニット230は3つのDEPシーケンサを有する。各シーケンサは、上部基板に設けられた斜め電極と底部基板に設けられたミラーイメージ電極(図示されていない)からなる。電極対間のギャップは高電場を維持する。この高電場は、n-DEPナノ構造をはねつけてp-DEPナノ構造の通過を可能にすることでこれらのナノ構造の分離を実現することを可能にする。n-DEPナノ構造は、斜め電極対に沿って移動し、続いてp-DEPナノ構造から、各異なる流線234a-dに位置する次のシーケンサへ解放される。従ってナノ構造は、分類ユニット230の後に続く4つの取り得る流線234a-dを占めることができる。前記4つの取り得る流線とは、元の集束した流線と、3つのシーケンサの先端部を通過する流線である。これらの流線234a-dは4つの異なるチャネル236へ供給されて良い。図2の例に示された集合ユニット220の解像度が与えられると、3つの分類チャネルだけが高処理能力動作条件で用いられる。各異なるゲートで各異なる周波数を用いることによって、3つの異なるナノ構造を3つの別なチャネルに分類することができる。最終ステージでは、3Dトラップ240が各チャネル内で全てのナノ構造を捕獲するように作製される一方で、溶液は外部からの流体力学的抵抗を受けることなくギャップを流れる。
大規模な並列化又は直列化が行われるとき、この連続流チップ200は、顕著な流体力学的抵抗を導入する分子のふるいすなわちマイクロフィルタを用いることなく高処理能力を有するラベル不要の分類を可能にする。ある特定のナノ構造に対して固有な周波数を用いることによって、集積されたシーケンサ232及びトラップ240は、ナノサイズの分子のふるいよりもはるかに高い選択性を供する。トラップ電極でのインピーダンス測定によって、捕獲されるナノ構造の数を推定することが可能である。ナノ構造のキューの典型的な捕獲は図3に表されている。この例では、毎秒約100個の粒子を2種類に分離する場合であれば、ほぼ80%の分離効率を実現することが可能である。従って2つ又は3つのモジュールを直列に用いればほぼ99%の純度を実現することができる。
抗原が結合したナノ構造(すなわち遺伝子とのハイブリダイゼーションが行われたナノ構造)を未結合のナノ構造から分類することによって、上のユニットは、光センシング又は蛍光ラベリングを用いることなく(又はそれに加えて)、様々なナノ構造による連続流で多標的検出を行う単純な手段を供する。結合したナノ構造は、未結合のナノ構造とは、顕著に異なるDEP移動度及び/又はクロスオーバー周波数を有する。DEP移動度はサイズに敏感で、小さなナノ構造ほどDNA標的の分子固定に対してより敏感になるとはいえ、たとえばナノ構造は小さすぎてはいけないし、さもなければ移動度は重要でなくなってしまう。最適なサイズは約50〜500nmであって良い。このサイズはたとえば、DEP速度を約100μm/sにすることが可能である。DEP移動度はサイズに敏感であるため、結合した分子と同一の寸法を有するナノ構造は異なるDEP移動度を有していなければならない。またDNAは伝導性分子で、これらの結合は、小さなナノ粒子の粒子伝導度を、緩衝溶液の伝導度に対して顕著に増大させることができる。たとえば図4は、それぞれ異なるサイズのナノ構造についてのクロスオーバー周波数の差異は不均衡を増大させる。たとえばサイズ比が約6である2つのナノ構造のクロスオーバー周波数の違いは、約1mS/m未満の伝導度では、約5倍にすぎない。伝導度が高い場合では、2つのナノ構造間のクロスオーバー周波数は約2桁異なると考えられる。
図5は、ナノ構造の極の典型的な帯電を図示している。その極、ではるかな高蛍光強度によって明らかとなるように、帯電蛍光色素は、各半サイクルで対向する極に集まり、かつその濃度を(たとえば約6桁だけ)増大させる。電気二重層が一定電位であること、接線方向のマイグレーション、及び極に集中する機構は、ナノ構造の一の極に負に帯電したDNAを集中させることができる。これらの結合したナノ構造は、順次その極で後続の伝導性分極を変化させ、かつそのナノ構造のクロスオーバー周波数に影響を及ぼす。よってハイブリダイゼーションが起こったナノ構造懸濁物もハイブリダイゼーションが起こらないナノ構造懸濁物も同一周波数で様々なパターンを示す(図1A-F参照)。よって結合したナノ構造と未結合のナノ構造の間ではクロスオーバー周波数に差異が存在し、かつDEPプラットフォーム200はセンサを必要とすることなくこれら2つのナノ構造を実効的に分類することができる。
それに加えて、本明細書で詳述するように、ナノ構造の形状及び材料、緩衝溶液の誘電率、伝導度、及びイオン価数、並びにナノ構造-ナノ構造相互作用のすべてが、そのナノ構造のDEP挙動に影響を及ぼし、かつ分類にも影響を及ぼす。図示された例では、プローブ232の長さは、クロスオーバーが起こる周波数に影響を及ぼす。ナノ構造の中には、たとえばCNTや細長いナノワイヤのように、(細長い形状による電場集束に起因して)はるかにDEP移動度が大きく、分子捕獲の選択性がより高く、色素吸着が無視できる程度であり、そのため一部の典型的なDEPプラットフォームにとって好ましいナノ構造となるものがある。それに加えて、CNT及び細長いナノワイヤもまた相対的にバーコードを付すのが容易である。事実、CNTはナノ球よりもはるかにすぐバクテリアと結合し、結合したCNTは実際に凝集体のDEPを促進し、かつ標的-たとえば病原体-のDEP輸送体となる。
それに加えて、たとえば両性イオン、イオン液体、及び他の添加物が媒質の誘電率や伝導度を変化させる状況では、緩衝溶液の調製が行われる必要がある。
図6は、患者、環境、又は他のものに含まれるバクテリア、ウイルス、及び他の有害種を検出することで、たとえば流行病、テロリズム、生物兵器等を監視する、従来のDNAマイクロアレイ又はリアルタイムPCRの能力を超えた、迅速に標的を検出するデバイス600の別な例のブロック図を示している。典型的な迅速に標的を検出するデバイス600は、ストレプトアビジン/アビジンとビオチンの選択的で強い結合特性を利用する修正PCR法に基づく検出法、及び、先の細いマイクロ流体製造法を有する。ストレプトアビジンは、最近である放線菌(Streptmyces avidinii)から精製された四量体タンパク質である。ビタミンH又はB7としても知られているビオチン(C10H16N2O3S)は水溶性のビタミンB複合体である。ストレプトアビジンはビオチンに対して極度に強い親和力を有する。ビオチン-ストレプトアビジン複合体の解離定数は約10-15mol/Lのオーダーであり、このオーダーは既知の非共有相互作用であって最も強いものの1つに属する。よって本明細書で記載されているように、強いストレプトアビジン-ビオチン結合が、様々な生体分子を互いに付着させる、又は様々な生体分子の検出を助ける固体の支持体(たとえばナノ構造)上に付着させるのに用いられて良い。
PCRプロトコル中、2つの異なるラベルが付されたプライマー-一のプライマーはビオチニル化された602で、他のプライマーは蛍光ラベルが付された604である-が、試料/標的DNA608を備えたPCRチャンバ606に加えられ、かつ、関心対象である標的DNAを増幅して、試料中の単一ストランドDNA(ssDNA)の量を増やすのに用いられる。よって増幅された標的DNA610は、二重螺旋DNA(dsDNA)の一端を介してビオチン基に付着し、かつdsDNAの他端を介して蛍光ラベルが付された色素に付着する。
ストレプトアビジン/アビジンは、デバイス/チップチャネル上で、又は、該チップ内に含まれるナノ/マイクロビーズ、磁性ナノ粒子、カーボンナノチューブ、ナノワイヤ、ナノロッド、及び/若しくは他のナノ構造(本明細書の他の例で示されている)上で官能基化する。PCR生成物の迅速な検出を実現するため、続いて、たとえばその増幅されたDNA610を、マイクロ流体チップ614内のチャネル612内部で捕獲されたストレプトアビジン/アビジンによって官能化されたナノ構造に通過させることで、増幅されたsdDNAは、ストレプトアビジン/アビジンによって官能化されたナノ構造に曝露され、ビオチンとストレプトアビジンとの間、又はビオチンとアビジンとの間で強い相互作用が生じる。チャネル612内部の捕獲されたナノ構造にビオチン化された増幅DNA610を通過させることによって、拡散長は減少し、かつナノ構造の表面に付着したストレプトアビジンとの迅速な相互作用が可能となる。蛍光ラベルが付されたビオチン化されたdsDNAだけが、ナノ構造の表面に対して選択的、迅速、かつ強固に付着する。
強い結合のため、相互作用の反応速度は極端に速く、かつナノ構造プラットフォームは輸送時間を顕著に減少させる。しかもナノ構造を用いることで、ビオチンとストレプトアビジン/アビジン部分とが相互作用する面積が大きくなり、その結果検出感度が改善される。ビオチン-ストレプトアビジン/アビジン結合は、オリゴ-DNA二重ストランド生成よりも選択的であり、かつ大きな試料に対してより安定で正確なアッセイ法を可能にする。それに加えて、強いハイブリダイゼーションは、流速の速い大規模処理能力を有するチップにおいて特に有利となる。このチップでは、流体力学的剪断力は通常、弱く結合するハイブリダイゼーションしたDNAを取り去る。さらに結合が強くて選択的であるため、ハイブリダイゼーション手順に続いて、すぐに洗浄用緩衝溶液を用いて全ての付着していない蛍光色素分子608を取り除くことができる。
最終的に、ナノ構造の蛍光強度を測定することによって検出が実現可能となる。それに加えて、官能化されたカーボンナノ構造-高いコンダクタンスを有する-もまた、本明細書で述べられているように、光センサを用いることなく増幅された生成物を迅速に検出するインピーダンス測定を助ける。
図7-11は、単一標的の遺伝子識別用のナノ構造に基づくハイブリダイゼーションプラットフォームの別な例を図示している。図7は、マイクロ流体チャネル700の一部を図示している。図示された例においては、マイクロ流体チャネル700は、プローブによって官能化されたシリカビーズとして図示されているが、任意の適切なナノ構造が用いられて良い。プローブによって官能化されたナノ構造(たとえばシリカビーズ)は、たとえばハイブリダイゼーション緩衝溶液である4倍濃縮の標準クエン酸-生理食塩水(SSC)である緩衝溶液を適切に通すことによって捕獲及び密封される。ナノ構造704の密封に成功した後、たとえば容積が100μlのビオチン化したssDNA706は、ナノ構造(たとえばシリカ)表面上で官能基化した相補的オリゴマーとのハイブリダイゼーションを行うため、たとえば約50℃の温度にて、たとえば約0.5ml/hの流速で密封されたチャンバ702を通過する。DNA706が密封されたチャンバ702を通過することで、標的DNAとナノ構造704の表面上のオリゴマープローブとの間隔が短くなるので、ハイブリダイゼーション時間が減少する。それに加えてこのナノ構造システムは、ハイブリダイゼーションを起こすため、はるかに大きな面積を供するので、検出感度が改善される。
洗浄溶液又は他の液体-たとえば-純水又は蒸留水-は、チャンバ702から、ナノ構造704の表面又はフィルタ(後述)のいずれかに結合したハイブリダイゼーションしていないすなわち非選択的DNAを洗浄するために加えられる。よって強いストレプトアビジン-ビオチン結合反応の利点が得られる。続いて余剰色素708は、たとえば燐酸緩衝された生理食塩水(PBS)の緩衝溶液によってチャネルから洗い流され、蛍光710のパターン及び/又は強度が測定及び/又は観測される。チャネル700にDNA706を通過させることが検出の開始点だとすると、後述するように、検出時間はこの例では約2〜3時間であって良く、かつ検出感度は、約100pM-nMの範囲である。
本明細書に記載された典型的なナノ構造に基づく検出手法は複数の要素を有する。前記複数の要素とはたとえば、(i)ガラススライド800上にマイクロチャネル700を作製すること(図8)、(ii)メタクリラートフォトポリマーの混合物を用いることによってマイクロチャネル700内部にフィルタを作製すること(図9)、(iii)ナノ構造-たとえばシリカビーズ-上へのオリゴマープローブの官能化(図10)、(iv)非対称PCRを行うことで、最終的には、デバイス/チップ内部の密封されたナノ構造マイクロチャネルに標的DNA溶液を通過させることによってハイブリダイゼーションを成功させる(図7)。上述したように、ナノ構造上での標的のハイブリダイゼーションは、たとえばAC電流によって生成される電場の存在によって促進することができる。電場の存在によって、ハイブリダイゼーションに必要な時間が顕著に短縮される。一部の例では、検出標的がナノ構造に導入されることで、ハイブリダイゼーションを1秒以内デ起こすことが可能となる。ハイブリダイゼーション時間を短縮することは、高処理能力の小型デバイスにとって有利である。
図8は、ガラススライド800上にマイクロチャネル700を作製する様子を図示している。チャネル700の流入及び流出ポート802の穴が開けられる。マスクレイアウト804はガラススライド800と結合し、スペーサタップ806はカバースリップ808と結合する。カバースリップ808には、UV硬化可能な接着剤-たとえばロックタイト(Loctite)(登録商標)363接着剤-が素子を結合するために加えられる。その接着剤は、たとえばUVエネルギーによって約5秒間ベーキングされて良い。続いてチャネル700はアセトンやメタノールのような溶媒によって洗浄されて、たとえば2分30秒間最終UVベーキングが行われて良い。
フィルタ900の作製(図9)が、トルエンとイソブタノール(ポロジェン)の混合物と共にメタクリラートフォトポリマー(モノマー)を用いることによって、マイクロチャネル700内部で行われる。モノマーとポロジェンの比を変化させることによって、フィルタ900の孔の直径を操作することができる。例によっては、孔のサイズが約2μmであるフィルタが、約10μmのサイズのナノ構造と併用される。それに加えて、マスクもまた結合され、その結合はたとえば約1分間のUV照射に基づく。ベーキング後、マスクは取り外され、かつチャネル700はたとえば約2時間メタノールによって洗浄される。一貫したUVベーキング-つまり硬化重合プロセス-は、マイクロチャネル700の作製プロセス及びマイクロフィルタ900の作製プロセスの両方で用いられることで、フィルタ900とマイクロチャネル700との強い結合が可能となる。
この例では、ナノ構造の官能化、PCRの設計、及びハイブリダイゼーションの検出は、上述の例の一部又は全部を用いることによって可能となる。より詳細にはこの例では、アミン共役である27-merのオリゴプローブが、水溶性カルボジイミド(EDC)及びN-ヒドロキシスクシイミド(NHS)と結合させることによって、ナノ構造(たとえばカルボキシル化シリカビーズ)に対して官能基化する。この結合例は図10に図示されている。
一部の例では、ナノ構造に基づくハイブリダイゼーションプラットフォームを単純にするため、及び標的DNAの変性を回避するため、変性ssDNAが、マイクロチャネル内部で捕獲された、プローブによって官能化したナノ構造に到達して相互作用する前に、変性ssDNAは共に再結合することで、単一ストランドDNAを生成するように非対称PCRが行われる。この方法では、(たとえば通常の対称PCRとは対照的に)複数のプライマーの濃度が等しくないことが利用される。最初、増幅が指数関数的に始まるが、低濃度のプリマーが排出されることで、高濃度のプライマーが増幅し続けることで、単一ストランドDNAを生成する。
この例では、チャネル702にナノ構造704を加える前に、たとえば2%の牛血清アルブミン(BSA)溶液のような溶液がマイクロチャネル700を通過することで、フィルタ900及びチャネル700表面への標的DNA及び蛍光色素708の非選択的結合を防止することができる。
図11は、一体型の小型PCR検出チップ800のより詳細な図である。フィルタ900が、チップ800の上部に設けられたチャネル700内に図示されている。図7-11に図示された例はたとえば30分間で単一標的検出を実行して良い。このときほとんどの時間がPCRサイクルに用いられる。図11から分かるように、捕獲されたナノ構造706からの蛍光信号は、共焦点設備を用いることなく、小型のデジタルカメラによって容易に拾うことができる。この使い捨てチップ800は、ダイオードセンサのみならず、オンチップのポンプ及びバルブをも含む。よってチップ800は内蔵型小型遺伝子識別デバイス/キットである。
検出に関しては、オリゴによって官能化されたナノ構造の単位体積あたりの表面積が大きいため、ミリメータ寸法の微小容器が、ピコモーラーの感度で、立方センチメートルの容積の試料中に含まれる全標的DNAを捕獲することが可能である。しかしすべての蛍光分子はμl容積内部に集まるので、蛍光強度は極端に高くなる。参照用として、DNAマイクロアレイ(たとえば図15-17)上の単一画素は10-2cm2の面積を有し、かつμlのマイクロビーズ(体積比50%)中の面積は4桁大きくなる。このとき蛍光強度は比例して大きくなる。この改善によって、レーザー励起及び共焦点検出を取り外すことが可能となる。ここで図示されているように、デジタルカメラ、ダイオードセンサ、又はCCDカメラに備えられた単純な光フィルタが、陽性と陰性の識別にとって適切であると考えられる。迅速で小型の陽性-陰性診断は、予備スクリーニング手順として、多くの重要な診察現場で利用するという用途を有する。そのような用途とはたとえば、空港での流行病の制御、鶏肉輸入の際の鳥インフルエンザの監視、環境モニタリング等である。
図12-19は、一体化したPCR/検出ユニットを備えた多標的DNA検出ユニットとして利用可能な他の典型的な実施例を図示している。図12-19に図示された例は、さらに高い処理能力を備えた連続流形式へも拡張可能である。
図示された例は、インピーダンス検出又は可視化のいずれかを用いることによる、ナノ構造上でのハイブリダイゼーションの検出及び測定である。上述したようにナノ構造には、インピーダンス信号がハイブリダイゼーション前後で非常に敏感であるCNTが含まれる。上述するように、いずれの検出法も、ナノ構造技術のハイブリダイゼーションの迅速性及び感度、並びに、ハイブリダイゼーションによるナノ構造の伝導度、サイズ、誘起された双極子及び誘電泳動移動度の変化を利用している。
図12-19に図示された例では、ハイブリダイゼーションは、上述したように、ストレプトアビジンによって官能化されたナノ構造と、各独立したプライマーと各独立してPCR反応するビオチン化されたssDNAを用いる一般的なものである。この例では、複製すなわちPCRモジュール1200は、取り外し可能なように結合できる管のアレイボックスを有する。そのアレイボックスは複数の検出用ガラス瓶すなわち管1204を有する。検出用ガラス瓶すなわち管1204の1つが図13で詳細に図示されている。シリンジすなわちポンプ1206は、注入孔1208を介して検出用標的を含む試料をPCRモジュール1200へ供給するのに用いられて良い。試料はPCRモジュール1200へ注入されて容器1210へ入り込む。それに加えて、PCRモジュール1200は、温度をたとえば約50-90℃に維持するための熱源を供する加熱素子(図示されていない)を有する。
図13及び14に図示されているように、容器1210内の検出標的1212は、少なくとも第1電極又は第1対の電極1216に結合する第1膜1214に束縛される。第1膜1214は、ナノ多孔性であるか又はヒドロゲルで、かつ透水性であるが、他の分子は通さない。つまり検出標的は膜1214を通過することができない。特に検出用ガラス瓶が気泡を逃がすのには小さすぎる場合には、膜1214は透水性でなければならない。膜1214に用いられる材料の一例はナフィオン(Nafion)(登録商標)である。しかし半径1mmよりも大きな管1204では、膜は水の透過が可能でなくても良い。第1電極1216にわたる電場及び/又は電圧は、第1膜1214の機能を弱めることで、検出標的1212の分子を輸送させる少なくとも1つ孔を開く。
検出標的1212が第1膜1214を通過した後、検出標的1212は、特定の検出管1204で特定のプライマー/酵素とPCR反応する。各PCRガラス瓶-つまり検出管1204-の単位複製配列は、特定の標的ssDNAが存在する場合には、その特定の標的ssDNAによって支配され、かつ各単位複製配列は各独立した検出ユニットへ供給されるので、識別段階で選択的である必要がない。
増幅された検出標的は、少なくとも第2電極又は第2組の電極1220と結合する第2膜1218に束縛される。この機能は、第1膜1214及び(複数の)第1電極1216と同様である。
第2電極にわたって電圧が印加された後、第2膜は弱められ、かつ検出標的1212はPCR層からハイブリダイゼーション及び検出層へ通り抜ける。ここで検出標的1212は、上述したように、ストレプトアビジンによって官能化したナノ構造を用いることによってハイブリダイゼーションを起こすことで、結合した分子プローブすなわち結合したナノ構造1222が生成される。この反応はたとえば略室温で起こる。
ハイブリダイゼーション後、結合した分子プローブ1222はインピーダンス検出器1224に束縛される(図13及び15)。本明細書に記載されているように、インピーダンス検出器1224で測定されるインピーダンスの値は、検出標的1212の存在又は不存在を表す。図16は、図13及び15に図示されたインピーダンス検出器1224の一部の拡大図である。微小電極グリッド1228は複数の画素1230を有する。複数の画素1230のうちの1つを拡大したものが図17に図示されている。画素1230はアドレス指定可能であり、かつある実施例では同時にアドレス指定することが可能であり、他の実施例では同時にアドレス指定することができない。各画素1230は、2つの1次元アレイ1234の交差点に誘電スペーサ1232を有する。誘電スペーサ1232は、2つの1次元アレイ1234の交差点に高電場を発生させることを可能にする。上述したように、その電場は結合したナノ構造1226の運動を操作することが可能である。結合したナノ構造1226は、可視化又はインピーダンスの読み取りを行うため、集まるように移動する。
図18は典型的な可視化検出ユニット1800を図示している。典型的な可視化検出ユニット1800では、カメラ1802は、1つ以上の電極グリッド1228の光学的に透明なカバーレンズ又はカバースリップ1804を介して像を取得する。グリッド1228の像は、複数の結合したナノ構造1226が集まるか否かを表している。図19は典型的な像1900を表している。典型的な像1900は、結合したナノ構造1226が集まる密な領域1902、及び結合したナノ構造1226が集まらない疎な領域1904を表している。
あるいはその代わりに、図20-21に図示された例では、標的ssDNAと、ナノ構造上で官能化する相補的オリゴとのハイブリダイゼーションは標的に固有であって良い。この代替例では、典型的な代替複製ユニットすなわちPCRユニット2000内でPCRが実行される。PCRユニット2000は、すべての可能な標的ssDNAが増幅された検出標的2002を生成するためのすべてのプライマーを有する容器を有する。よって容器は、試料中に含まれる全種類の標的についての全種類の単位複製配列の集合体を含む。マイクロポンプ/マイクロバルブ2004は、増幅された検出標的2002を有する試料を、複数の各独立した検出管又はガラス瓶2008を有するハイブリダイゼーション/検出ユニット2006へ輸送する。複数の各独立した検出管又はガラス瓶2008の1つを拡大したものが図21に図示されている。一部の例では、マイクロバルブ1604は一度だけ開きさえすればよい。PCR単位増幅配列の集合体は各独立したガラス瓶2008の全てに送られる。各独立したガラス瓶2008の各々は特定のオリゴによって官能化されたナノ構造を含む。一部の例では、上述したように、検出標的2002は、電極にわたる電場又は電圧の存在によって膜が開いている状態で、ハイブリダイゼーション層内のナノ構造から分離される。一旦検出標的2002がハイブリダイゼーション層へ入り込むと、上述したようにハイブリダイゼーションが起こる。この例ではハイブリダイゼーションは約70℃で起こる。
検出標的2002とナノ構造とのハイブリダイゼーションが起こることで結合プローブすなわち結合したナノ構造2010が生成された後、結合したナノ構造2010はインピーダンス検出器2012に束縛されることが可能である。インピーダンス検出器2012は、上述したように、インピーダンス検出器1124と同様に、検出標的2002の存在又は不存在を検出する。それに加えて、像検出器1800もまた、この例では、検出標的2002の存在又は不存在を検出するのに用いられて良い。
本明細書に記載された典型的な診断デバイス/検出ユニットによって多くの利点が実現される。たとえば本明細書に記載された例は、病原体の診断を、より迅速、選択的、高感度、かつ現場で行えるようにする。患者の製造率を顕著に向上させる利点は多数ある。そのような多数の利点にはたとえば、早期かつ迅速な癌の検出、又は深刻な感染-たとえば敗血症-の迅速かつ病原体に固有な診断が含まれる。速度と選択性に加えて、本明細書に記載された典型的なデバイス及び方法は、現場での使用を可能にする高い携帯性を有する。このことは、現場での使用-たとえば流行病の制御-及び世界の健康を脅かす恐れのある多種類の感染症の病原菌の識別にとって特に有用となりうる。感染症の病原菌にはたとえば、鳥インフルエンザ、SARS、溶血性尿素症症候群及び出血性下痢(大腸菌O157:H7)、結核(ヒト型結核菌)、炭疽病(炭疽菌)、肺炎(肺炎球菌)、マラリア(変形体)、肝炎(肝炎A、B、C、D、及びEウイルス)、及び出血熱(エボラウイルス)が含まれる。本明細書に記載された典型的なデバイス及び方法は、食物及び水資源中の大腸菌の検出、並びに、抗生物質に対して耐性を有する再発生する病原体の識別にも用いられて良い。そのような病原体とはたとえば、たとえば第3正解諸国における肝炎球菌、腸球菌、ブドウ球菌、熱帯マラリア変形体、及びヒト型結核菌又はマラリアバクテリアである。コンシューマ向け診断デバイス/キットでは、典型的な小型デバイスの試料と接する部品は使い捨てであって良い。それに加えて、典型的なデバイスは高い感度を有する。このことは、たとえばバイオテロや環境の用途で直面する少数の標的を含む病原体の検出にとって有用である。
本明細書に記載された実施例は、ラボ・オン・チップのマイクロ流体プラットフォームである。そのラボ・オン・チップのマイクロ流体プラットフォームは、人間による介入なしに、単一チップ内において、一のステーションから次のステーションへ、各独立した試料又は連続流を移動させることによって、高処理能力の連続流を可能にする。それに加えて、デバイスの選択性が改善される。その理由は上述したように、所望の標的(たとえば特定DNA断片)は、マイクロ流体手段及びDEPによってプローブ付近に集中するからである。
それに加えて、上述したAC動電的プラットフォームは、携帯電話に用いられているような小型の電源によって駆動させることが可能であるため、極端に小型である。高周波(たとえば約100kHzよりも高い周波数)AC電場は典型的には、それぞれの電圧のファラデー反応時間よりも短い周期を有し、かつその結果として、気泡及びイオン性物質の正味の発生が電極では起こらない。そのようなものとして、より厳密な流体制御を可能にするため、電極は典型的なデバイス内部に埋め込まれて良い。
さらに本明細書に記載された実施例に係る主要な利点の1つは、多標的診断に典型的なデバイスを用いることが可能なことである。たとえ1つの標的(たとえば1つの病原体)だけを検出する場合でも、大抵の場合、そのゲノムから得られる多数のDNA標的を正確に識別することが求められる。
それに加えて、寸法が小さく、多数存在し、かつ体積に対する表面積の割合が大きなサブミクロンナノ構造の表面上に分子プローブを官能化させることで、検出感度が増大する。たとえば1%のナノ構造(たとえばミクロンサイズのコロイド)の懸濁物の100μl試料は、全表面積である1cm2に10億のナノ構造を含む。従来のDNAマイクロアレイの画素面積1mm2と比較して、これらのナノ構造は、8桁よりも大きな捕獲面積、及び同程度に増大する感度を供する。さらに同じ試料では、ナノ構造間での平均間隔は、試料の1次元の寸法よりも3桁小さい。存在する検出標的数が少ない場合、この結果、拡散時間は最大で6桁短縮される。このことは、対流によって促進される質量移行速度よりもはるかに大きい。
このナノ構造プラットフォームには他にも潜在的な利点が存在する。これらのナノ構造がマイクロチャネル内部で集められ、かつ分散される場合、これらのナノ構造は、マイクロCSTR、マイクロクロマトグラフ、及びマイクロ栓流反応装置を形成して良く、よってこれらの反応装置設計の利点をもたらす。その利点とは、オープンフローのCSTRでの熱力学的歩留まりよりも良好な歩留まり、並列結合反応の選択性を改善するための間隔、及び不可逆反応の歩留まりを改善するための低分散である。
それに加えて、PCR法がストレプトアビジン/アビジンとビオチンの強い相互作用と組み合わせられるこれらの例では、検出標的種の遺伝子識別は、より単純、迅速、確か、かつ高感度になる。本明細書に記載された実施例は、感度を向上させながら応答時間を顕著に短縮させる。よって本明細書に記載された小型PCRチップ又は他のデバイスは現場で利用できる。本明細書に記載された実施例ではまた、実験室での熟練した技術及び実験室設備を必要とする蛍光検出の、攪拌、洗浄、及び清浄化の多段階手順が不要となる。それに加えて、本明細書に記載された実施例及び方法では、検出を支援するための実験室に備え付けられた共焦点設備、及び時スケールのハイブリダイゼーション時間が不要となる。また光フィルタ及びシリコンフォトダイオードと結合する発光ダイオード(LED)は、光検出プラットフォームをさらに改善及び小型化するのに用いられて良い。
さらに本明細書に記載された典型的なマイクロチャネル及びナノ構造の形状は、従来のマイクロ流体設計が直面する感度及び携帯性の制限を緩和する。マイクロチャネル内部での体積に対する表面積の比が大きくなることで、プローブがチャネル壁の官能基となることが可能となる。これによりわずかな濃度で存在する標的を捕獲する確率が増大するので、各対応するアッセイ法の感度が改善される。感染症の病原体を検出する典型的なデバイスの能力は、病原体が引き起こす病気の発生に応じて迅速かつ有効に設置することが可能なことである。操作者-たとえば臨床微生物学者、看護師、又は他の技師-は、試料(臨床用試料、食物試料、環境試料等)中に病原体が存在するか否かを判断することが可能である。そして存在する場合には、病原体の種類及び量を特定する。特定される病原体は数個(5個未満)〜数百個であって良い。各種類の個数は数桁のオーダー-たとえばmlの試料中における数個〜数百個のコロニー形成単位(CFU)-で変化して良い。

Claims (14)

1つ以上の核酸を検出する方法であって:
核酸又は非核酸のうちの少なくとも1つを含む試料溶液を、第1電極を備える第1表面と、前記第1表面からある距離だけ離れて前記第1電極に対向する第2電極を備える第2表面を有するマイクロ流体デバイスを通り抜けるように連続的に流す手順;
前記マイクロ流体デバイスに溶液中のナノ構造を供する手順;
前記試料溶液と前記のナノ構造を供する溶液との混合させる手順;
前記第1電極及び第2電極に電流を印加する手順;
前記の第1電極及び第2電極に印加された電流によって発生する電場を用いて前記ナノ構造を移動させる手順;
前記電場内部で前記ナノ構造を捕獲する手順;
前記電場が存在する中で前記核酸と前記ナノ構造とのハイブリダイゼーションを起こす手順;
前記非核酸又は弱いハイブリダイゼーションを起こした核酸のうちの少なくとも1つを、前記ナノ構造から流体力学的剪断力によって取り去る手順;
前記第1電極と第2電極との間の電気インピーダンスを測定することによって、前記の捕獲されたナノ構造を評価することで、前記核酸の存在、不存在、又は量のうちの少なくとも1つを決定する手順;
を有する方法。
前記電流は誘電泳動を誘起する、請求項1に記載の方法。
圧力の増大によって妨害されない、請求項1に記載の方法。
前記の複数の核酸のコピーがポリメラーゼ鎖反応を介して生成される、請求項1に記載の方法。
前記電場が少なくとも、第1電流で第1周波数を有し、かつ第2電流で第2周波数を有し、
ナノ構造は、前記第1周波数では第1方向に移動し、かつ前記第2周波数では第2方向に移動する、
請求項1に記載の方法。
複数のナノ構造をさらに有し、かつ、前記複数のナノ構造が前記電場の周波数に依存するパターンを形成する、請求項1に記載の方法。
前記核酸の存在又は不存在が、病原体、ガン細胞、生物学的小胞、ペプチド、DNA、RNA、若しくは非DNA分子のうちの少なくとも1つの存在又は不存在を示す、請求項1に記載の方法。
前記電流が前記マイクロ流体デバイスにわたって不均一な電場を発生させる、請求項1に記載の方法。
前記ナノ構造が、カーボンナノチューブ、ナノビーズ、ナノワイヤ、ナノコロイド、ナノ粒子、ナノロッド、量子ドット、ナノ結晶、リポゾーム、シリカビーズ、ラテックスビーズ、金コロイド、及び/又は1μm未満の寸法を有する他の形状を備えた構造のうちの1つ以上である、請求項1に記載の方法。
前記核酸とのハイブリダイゼーションを起こす前に前記複数のナノ構造上で1つ以上の分子プローブを官能化させる手順をさらに有する、請求項1に記載の方法。
前記1つ以上の分子プローブが、オリゴマー、蛍光プローブ、カルボキシル基、又はストレプトアビジンのうちの1つ以上を有する、請求項10に記載の方法。
前記試料を前処理する手順をさらに有する、請求項1に記載の方法。
前記前処理は抑制物質のフィルタリング及び/又は除去を有する、請求項12に記載の方法。
前記試料中に第2核酸を供する手順;
前記マイクロ流体デバイスに溶液中の第2ナノ構造を供する手順;
前記第2ナノ構造を分類する手順;
前記第2核酸と前記第2ナノ構造とのハイブリダイゼーションを起こす手順;及び
前記の分類された複数のナノ構造を評価することで、前記第2標的の存在、不存在、又は量のうちの少なくとも1つを決定する手順;
をさらに有する請求項1に記載の方法であって、
前記ナノ構造に電流を印加することで、前記核酸とハイブリダイゼーションを起こす前記ナノ構造が第1方向に移動し、前記第2核酸とハイブリダイゼーションを起こす前記ナノ構造が第2方向に移動し、かつ
前記核酸及び第2核酸が、前記第1又は第2方向に基づいて分類される、
方法。
JP2010528975A 2007-10-09 2008-10-07 多種類の標的を検出するためのマイクロ流体プラットフォーム Expired - Fee Related JP5670194B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US97854407P 2007-10-09 2007-10-09
US60/978,544 2007-10-09
US12781208P 2008-05-15 2008-05-15
US61/127,812 2008-05-15
PCT/US2008/079094 WO2009048878A2 (en) 2007-10-09 2008-10-07 Microfluidic platforms for multi-target detection

Publications (3)

Publication Number Publication Date
JP2011500025A JP2011500025A (ja) 2011-01-06
JP2011500025A5 JP2011500025A5 (ja) 2011-11-24
JP5670194B2 true JP5670194B2 (ja) 2015-02-18

Family

ID=40523592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010528975A Expired - Fee Related JP5670194B2 (ja) 2007-10-09 2008-10-07 多種類の標的を検出するためのマイクロ流体プラットフォーム

Country Status (10)

Country Link
US (1) US8771938B2 (ja)
EP (1) EP2198003A4 (ja)
JP (1) JP5670194B2 (ja)
KR (1) KR20100085911A (ja)
CN (1) CN101896599B (ja)
AU (1) AU2008310993A1 (ja)
CA (1) CA2702276C (ja)
RU (1) RU2010118611A (ja)
TW (1) TW200928364A (ja)
WO (1) WO2009048878A2 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI322032B (en) * 2007-06-20 2010-03-21 Nat Univ Chung Cheng Microfluid mixer
GB0818609D0 (en) 2008-10-10 2008-11-19 Univ Hull apparatus and method
US20110192726A1 (en) * 2008-10-31 2011-08-11 Agency For Science ,Technology And Research Device and method for detection of analyte from a sample
WO2010141131A1 (en) 2009-06-04 2010-12-09 Lockheed Martin Corporation Multiple-sample microfluidic chip for dna analysis
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
WO2012027302A2 (en) * 2010-08-21 2012-03-01 The Regents Of The University Of California Systems and methods for detecting antibiotic resistance
AU2011315951B2 (en) 2010-10-15 2015-03-19 Lockheed Martin Corporation Micro fluidic optic design
CN102250751B (zh) * 2011-03-22 2013-05-22 博奥生物有限公司 一种用于生物芯片的接口装置
DE102011050254A1 (de) * 2011-05-10 2012-11-15 Technische Universität Dortmund Verfahren zur Separation polarisierbarer Biopartikel
US8808518B2 (en) * 2011-05-16 2014-08-19 National Cheng Kung University Microbial identification and manipulation of nanoscale biomolecules
JP5851155B2 (ja) * 2011-08-23 2016-02-03 株式会社日立製作所 細胞濃縮装置、および細胞濃縮方法
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
CN102719353B (zh) * 2012-06-13 2014-07-30 湖南大学 一种用于外周血中循环癌细胞的特异性捕获的装置及方法
US20150192537A1 (en) * 2012-06-25 2015-07-09 Bioengineering Laboratories, Llc Enzyme Electrode
EP2887058B1 (en) 2012-08-17 2017-11-29 Quantum Biosystems Inc. Sample analysis method
JP5663541B2 (ja) * 2012-09-19 2015-02-04 株式会社日立ハイテクノロジーズ 反応容器,並列処理装置、及びシーケンサ
ES2706761T3 (es) * 2012-12-13 2019-04-01 One Biomed Pte Ltd Métodos sin marcadores para el aislamiento y análisis de ácidos nucleicos en dispositivos en fase sólida
JP6282036B2 (ja) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 物質の移動速度の制御方法および制御装置
TWI497065B (zh) * 2013-07-04 2015-08-21 Univ Nat Cheng Kung 利用介電泳力以針對混合物進行量測之裝置與方法
WO2015031586A1 (en) * 2013-08-29 2015-03-05 Apocell, Inc. Method and apparatus for isolation, capture and molecular analysis of target particles
CA2929929A1 (en) 2013-09-18 2015-03-26 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2016094333A1 (en) 2014-12-08 2016-06-16 Berkeley Lights, Inc. Actuated microfluidic structures for directed flow in a microfluidic device and methods of use thereof
JP6383015B2 (ja) * 2015-01-22 2018-08-29 アークレイ株式会社 ターゲット分析チップおよびターゲット分析方法
KR20170109242A (ko) 2015-01-30 2017-09-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 마이크로유체 감지
US10081015B2 (en) 2015-07-12 2018-09-25 International Business Machines Corporation Trapping at least one microparticle
US9962714B2 (en) * 2015-07-12 2018-05-08 International Business Machines Corporation Microchannel, microfluidic chip and method for processing microparticles in a fluid flow
CN105018075B (zh) * 2015-07-21 2017-08-25 湖北工业大学 一类荧光纳米球及其制备方法
KR101741104B1 (ko) 2015-09-01 2017-05-30 한국과학기술연구원 대용량 수인성 병원체 현장 포집 및 농축시스템
WO2017204442A2 (ko) * 2016-05-26 2017-11-30 서울대학교 산학협력단 비대칭 입자를 이용한 표적 물질 검출 키트 및 방법
US10955380B2 (en) 2016-11-14 2021-03-23 University Of Notre Dame Du Lac Methods and apparatus for a shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection
JP6901084B2 (ja) 2017-05-12 2021-07-14 マックエンジニアリング株式会社 卓上連続撹拌槽型反応器
WO2019088429A1 (ko) * 2017-10-30 2019-05-09 울산대학교 산학협력단 동형2기능성 이미도에스터를 이용한 액체생검 유래 생체물질의 추출 방법
CN108485972B (zh) * 2018-03-28 2021-06-25 东南大学 一种用于细胞组织培养与实时监测的微流控芯片及其使用方法
JP6742618B2 (ja) * 2018-06-11 2020-08-19 シャープ株式会社 生体粒子観察装置および生体粒子観察方法
US11634702B2 (en) * 2018-11-06 2023-04-25 Arizona Board Of Regents On Behalf Of Arizona State University Cell signaling pathway activation by local AC electric field
US11389799B2 (en) 2019-01-17 2022-07-19 The Regents Of The University Of Michigan Microfluidic device for size and deformability measurements and applications thereof
WO2020236435A1 (en) 2019-05-23 2020-11-26 Battelle Memorial Institute Fluidic impedance platform for in-situ detection and quantification of pfas in groundwater
WO2021240208A1 (en) * 2020-05-26 2021-12-02 Crestoptics S.P.A. Microfluidic method for the detection of nucleic acids
CN115253835B (zh) * 2022-08-01 2024-03-05 中南大学 一种微流控混合装置及其一步式制备靶向脂质体的方法
KR20240037439A (ko) * 2022-09-14 2024-03-22 연세대학교 원주산학협력단 전기유전영동 핀셋을 이용한 표면전하 의존 다중검출법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387510A (en) * 1991-10-02 1995-02-07 Eastman Kodak Company Detection of amplified nucleic acid using secondary capture oligonucleotides and test kit
US5849486A (en) * 1993-11-01 1998-12-15 Nanogen, Inc. Methods for hybridization analysis utilizing electrically controlled hybridization
US6017696A (en) * 1993-11-01 2000-01-25 Nanogen, Inc. Methods for electronic stringency control for molecular biological analysis and diagnostics
US6168948B1 (en) * 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
US6984491B2 (en) * 1996-07-29 2006-01-10 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
CN1181337C (zh) * 2000-08-08 2004-12-22 清华大学 微流体系统中实体分子的操纵方法及相关试剂盒
WO2001018246A1 (en) * 1999-08-26 2001-03-15 The Trustees Of Princeton University Microfluidic and nanofluidic electronic devices for detecting changes in capacitance of fluids and methods of using
JP2004503758A (ja) * 2000-06-14 2004-02-05 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム 誘電性に設計された微粒子
US6780584B1 (en) * 2000-09-27 2004-08-24 Nanogen, Inc. Electronic systems and component devices for macroscopic and microscopic molecular biological reactions, analyses and diagnostics
US6663615B1 (en) * 2001-09-04 2003-12-16 The Ohio State University Dual stage microvalve and method of use
FR2831084B1 (fr) * 2001-10-22 2004-08-27 Centre Nat Rech Scient Procede et systeme pour manipuler par dielectrophorese des particules dielectriques, en particulier des cellules biologiques
US20030119057A1 (en) * 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
US20040011650A1 (en) * 2002-07-22 2004-01-22 Frederic Zenhausern Method and apparatus for manipulating polarizable analytes via dielectrophoresis
GB2392977A (en) * 2002-09-13 2004-03-17 Suisse Electronique Microtech A fluidic dielectrophoretic system and method for analysing biomolecules
US20040209353A1 (en) * 2002-12-12 2004-10-21 Chiron Corporation Biological sample storage device and method for biological sample contamination testing
JP2006512092A (ja) * 2002-12-30 2006-04-13 ザ・リージェンツ・オブ・ジ・ユニバーシティ・オブ・カリフォルニア 病原体の検出および分析のための方法および装置
US20040248109A1 (en) * 2003-06-09 2004-12-09 Lawrence Greenfield Methods for selecting protein binding moieties
KR100580639B1 (ko) 2003-12-30 2006-05-16 삼성전자주식회사 미세유체 검출을 위한 형광검출기
JP2005341913A (ja) * 2004-06-04 2005-12-15 Sony Corp インピーダンスマッチングを利用するハイブリダイゼーション検出装置及び検出方法。
JP4645110B2 (ja) * 2004-09-15 2011-03-09 ソニー株式会社 誘電泳動を利用するハイブリダイゼーション検出部と該検出部を備えるセンサーチップ、並びにハイブリダイゼーション検出方法
WO2006058245A2 (en) * 2004-11-29 2006-06-01 The Regents Of The University Of California Dielectrophoretic particle sorter
US7704362B2 (en) * 2005-03-04 2010-04-27 Wisconsin Alumni Research Foundation Apparatus for transport and analysis of particles using dielectrophoresis
JP5030110B2 (ja) * 2005-12-21 2012-09-19 サムスン エレクトロニクス カンパニー リミテッド バイオメモリディスクドライブ装置及びそれを用いた分析方法
KR100787234B1 (ko) * 2006-02-17 2007-12-21 한국기계연구원 입자 분리 장치 및 입자 분리 방법

Also Published As

Publication number Publication date
RU2010118611A (ru) 2011-11-20
WO2009048878A3 (en) 2009-06-04
WO2009048878A2 (en) 2009-04-16
AU2008310993A1 (en) 2009-04-16
CA2702276C (en) 2019-04-02
TW200928364A (en) 2009-07-01
US20090092989A1 (en) 2009-04-09
CN101896599B (zh) 2018-04-27
CA2702276A1 (en) 2009-04-16
CN101896599A (zh) 2010-11-24
KR20100085911A (ko) 2010-07-29
JP2011500025A (ja) 2011-01-06
US8771938B2 (en) 2014-07-08
EP2198003A4 (en) 2018-02-28
EP2198003A2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5670194B2 (ja) 多種類の標的を検出するためのマイクロ流体プラットフォーム
Burger et al. Detection methods for centrifugal microfluidic platforms
US6887362B2 (en) Dielectrophoretic separation and immunoassay methods on active electronic matrix devices
US9533305B2 (en) Systems and methods for automated reusable parallel biological reactions
US10900896B2 (en) Flow cells utilizing surface-attached structures, and related systems and methods
Meighan et al. Bioanalytical separations using electric field gradient techniques
US20060068412A1 (en) Integrated multistep bioprocessor and sensor
Fu et al. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens
JP2005533502A (ja) 膜法による微生物の捕捉と検出
JP5596568B2 (ja) アナライトの検出
WO2006098752A9 (en) Ultrasensitive sensor and rapid detection of analytes
Oita et al. Microfluidics in macro-biomolecules analysis: macro inside in a nano world
Akhtarian et al. Nanopore sensors for viral particle quantification: current progress and future prospects
Yang et al. Dielectrophoresis assisted high-throughput detection system for multiplexed immunoassays
Fournier-Wirth et al. Nanotechnologies for pathogen detection: future alternatives?
Wang et al. Microfluidic sampling and biosensing systems for foodborne Escherichia coli and Salmonella
Fischer et al. Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms
Chang Nanobead electrokinetics: The enabling microfluidic platform for rapid multi-target pathogen detection
Zeid et al. Advances in miniaturized nanosensing platforms for analysis of pathogenic bacteria and viruses
Cady et al. Micro-and nanotechnology-based approaches to detect pathogenic agents in food
Liu et al. Biospecies capture and detection at low concentration
US11525829B2 (en) Method for capturing target cells or molecules in solution
KR20170115157A (ko) 임피던스를 이용한 유전자 분석용 비표지 전기적 센서 및 이를 이용한 랩온어칩 시스템
Nasrin et al. Fluorometric sensing platform based on localized surface plasmon resonance using quantum dots-gold nanocomposites optimizing the linker length variation
JP2006046950A (ja) 生体高分子の検出装置及び検出方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141217

R150 Certificate of patent or registration of utility model

Ref document number: 5670194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees