JP5617456B2 - 測色チャート、色再現推定装置、色再現推定方法およびプログラム - Google Patents

測色チャート、色再現推定装置、色再現推定方法およびプログラム Download PDF

Info

Publication number
JP5617456B2
JP5617456B2 JP2010200046A JP2010200046A JP5617456B2 JP 5617456 B2 JP5617456 B2 JP 5617456B2 JP 2010200046 A JP2010200046 A JP 2010200046A JP 2010200046 A JP2010200046 A JP 2010200046A JP 5617456 B2 JP5617456 B2 JP 5617456B2
Authority
JP
Japan
Prior art keywords
color
patch
colorimetric
image forming
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010200046A
Other languages
English (en)
Other versions
JP2011087285A (ja
Inventor
澁谷 竹志
竹志 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010200046A priority Critical patent/JP5617456B2/ja
Priority to US12/923,325 priority patent/US8559078B2/en
Publication of JP2011087285A publication Critical patent/JP2011087285A/ja
Application granted granted Critical
Publication of JP5617456B2 publication Critical patent/JP5617456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/506Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0131Details of unit for transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5041Detecting a toner image, e.g. density, toner coverage, using a test patch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0158Colour registration
    • G03G2215/0161Generation of registration marks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Description

本発明は、測色チャート、色再現推定装置、色再現推定方法およびプログラムに関する。
プリンタや複写機等の画像形成装置は、画像形成対象となるメディア上の一定方向(主走査方向)に線あるいは帯状に画像を形成しつつ、これに直交する方向(副走査方向)にメディアを送ることでメディア上に面状の画像を形成する。このとき、副走査方向には、画像形成装置の構成に起因する周期的な濃度変動が生じるという問題がある。
このような副走査方向に生じる濃度変動は、画像形成装置の階調特性キャリブレーション用の測色チャートや、カラーマネジメントのための色再現特性モデルを得るための測色チャートの計測誤差の要因となる。
一般的に、電子写真方式の感光体ドラムは、オフィス用プリンタでは、φ30mm〜φ40mm程度、100ppm(ppm:page per minute)クラスの高速機ではφ60mm〜φ100mmのものが使用されることから、感光体ドラム偏芯に同期した副走査方向の濃度変動は、90mm〜300mm程度となり、A4縦方向の297mmに1〜3周期(A4横では0.5〜1.5)程度の周期変動を生じる。
このような形成画像上の濃度周期変動の内、数mmオーダーの短周期変動は、測定パッチ配置のランダム化や、統計的処理による変動成分の排除がある程度可能であり、上記した測色チャートの計測誤差を減らすことができる。
また、数10ページ周期の長周期の濃度変動に対しては、全測色が1〜4ページ程度の測色チャートを用いることにより、測定データ内で色再現性を予測するモデルを得ることができる。しかし、前述のようなページ内の数周期程度の中規模周期の濃度変動は、チャートを構成するパッチ配置のランダマイズなどにより、周期変動分を十分に排除できず、また、色再現特性をモデル化するにも十分な一様性が得られない。
このような副走査方向の周期的な濃度変動の問題に対処する従来の方法として、例えば特許文献1がある。特許文献1では、メディア上の副走査方向に発生する濃度変動周期の半分の周期で、同じ濃度階調値指定のパッチを配置し、これを計測することで、管理対象とする濃度の副走査方向の周期変動分を相殺している。
しかし、上記した特許文献1の方法では、変動周期の半分周期で検出した濃度検出値を平均化することにより変動影響をキャンセルできても、周期変動を予測し、これを補正することができない。
本発明は上記した課題に鑑みてなされたものであって、キャリブレーションや色再現特性モデルの推定誤差を低減することができる測色チャート、色再現推定装置、色再現推定方法およびプログラムを提供することにある。
本発明にかかる測色チャートは、画像形成装置の色再現特性を測定する測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列を備え、前記パッチ列は、それぞれ異なる色からなる複数のパッチを有し、前記複数のパッチは、前記異なる色のうち所定の色が前記色変動の周期内で分散するように、同一列上で、前記異なる色の配置順が異なる位相で配置されていることを特徴とする。
本発明にかかる色再現推定装置は、原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定する色再現推定装置であって、前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色部と、測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色部による前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定部と、を備え、前記推定部は、前記測色部によって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とする。
本発明にかかる色再現推定方法は、原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定する色再現推定装置で実行される色再現推定方法であって、前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色ステップと、測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色ステップによる前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定ステップと、を備え、前記推定ステップは、前記測色ステップによって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とする。
本発明にかかるプログラムは、原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定するコンピュータに実行させるためのプログラムであって、前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色ステップと、測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色ステップによる前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定ステップと、を前記コンピュータに実行させ、前記推定ステップは、前記測色ステップによって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とする。
本発明によれば、キャリブレーションや色再現特性モデルの推定誤差を低減することができるという効果を奏する。
図1は、画像形成装置の一例であるレーザプリンタの構成を示す図である。 図2は、管理PCにより実施される画像処理の流れを示す図である。 図3は、本実施の形態の測色チャートの第1の例を示す図である。 図4は、本実施の形態の測色チャートの第2の例を示す図である。 図5は、本実施の形態の測色チャートの第3の例を示す図である。 図6は、濃度変動曲線上のサンプル点を同じ周期上に重ねた図である。 図7は、再現色推定手段の構成を示す図である。 図8は、変動補正付き濃度変換関数の構築手順を示す図である。 図9は、目標階調特性と副走査方向の濃度変動関数を示す図である。 図10は、感光体ドラムの偏芯を説明する図である。 図11は、本実施の形態の測定対象となる画像形成装置を含むシステム構成を示す図である。
以下、発明の実施の形態について図面により詳細に説明する。
図11は、本実施の形態の測定対象となる画像形成装置50を含むシステム構成を示す。画像形成装置50は、管理PC41を介してネットワーク43に接続されている。管理PC41は、画像処理装置としての機能を兼ねており、同じネットワーク43に接続されたユーザPC40から送付される原稿データを、後述する画像処理プロセスを施し、画像形成装置50に転送する。また、管理PC41には、画像形成装置50の階調特性のキャリブレーションや、色再現特性の測定に使用される測色装置42が接続されている。
図1は、画像形成装置50の一例として、レーザプリンタの構成を示す。最初に現像ユニット60kの構成と動作から説明する。
感光体ドラム1kは、図1の矢印Aの方向に回転する。これに対し、まず帯電器52が、クリーニングローラ51で清掃された感光体ドラム1kの表面に、一様な電荷を付与する。次いでレーザユニット53から照射されるレーザビーム7が、露光制御装置10の信号に従って、明滅しながら感光体ドラム1kの表面を走査することで、感光体ドラム1k上に静電潜像を形成する。
このときのレーザビーム7の走査方向が主走査方向、感光体ドラム1kの回転方向Aが副走査方向となる。
形成された静電潜像は現像ローラ54により供給される逆の電位に帯電させたブラック(K)トナーによって現像されてトナー像となる。現像されたトナー像は、中間転写ベルト61に転写される。現像ユニット60c、60m、60yの構成も同様である。それぞれ、シアン(C)、マゼンタ(M)、イエロー(Y)のトナー像を形成し、逐次、中間転写ベルト61上に重ねて転写する。
転写ローラ55は、中間転写ベルト61上に重ねられたC、M、Y、Kのトナー像を給紙スタッカ57から供給される連続紙59に一括転写し、定着器56はトナー像を加熱圧着することで紙面上に定着させる。以上の作像プロセスにより画像形成された用紙は、排紙スタッカ58に排出される。
濃度変動発生のメカニズムは現像ユニットによらないので、以下の説明では、特に現像ユニット60kを例として説明する。
前述の一連のプロセスにおける各感光体ドラム1k〜1yは、通常、厳密な管理によって位置決めされているが、それでも部品の管理精度内のばらつきにより、図10(a)に示すような微小な偏芯を生じる(図10(a)では説明上、誇張して図示している)。
感光体ドラム1kに前述のような偏芯があると、現像ローラ54との間の現像ギャップ(図示せず)に周期変動が生じる。これが、出力画像の周期的濃度変動の大きな要因の一つとなる。
図10(a)の例では、特にドラム左端の回転軸交点67aと右端の回転軸交点67bが、中心軸65に対して、反対側にあるため、印刷結果としての画像上の濃度変動は、画像の(主走査方向に関する)両端で逆位相となる。
多くの場合は、感光体ドラム1kは、回転軸65に対して同じ方向に偏芯し、画像両端での濃度変動は同位相になることが多いが、これほど極端ではなくとも、画像両端の濃度変動の位相が異なる場合がある。さらに、より微細な偏芯モードとしては、図10(b)に示すように、感光体ドラム1kが中心軸65に対して微少に湾曲している曲げモードがある。この場合には、各回転位置での主走査方向(ドラム中心軸65方向)の現像ギャップの分布が線形ではなくなるので、主走査方向に高次の濃度むらが生じることになる。
図2は、管理PC41により実施される画像処理の流れを示す。画像処理のプロセスは、大きく分けて、ユーザによる原稿データ11を、C、M、Y、Kの4面分のカラー階調値(通常は0〜255の8ビット整数値)の配列であるビットマップに展開する第1の画像処理部46と、CMYK各面のビットマップを、画像形成装置50によって表現可能な階調表現の形式に変換する第2の画像処理部47で構成される。
第1の画像処理部46では、まず、フォント・線画・ビットマップなどのコンテンツを含む原稿データ11を、画像展開部12により、特定の解像度(例えば1200dpi)のCMYKあるいは、RGBの各色8ビットのビットマップデータに展開する。
このビットマップデータに対して色補正部13が、後段の第2の画像処理部47と画像形成装置50を合わせたデバイスとしての色再現特性を記述する色再現特性データ16と、sRGB(IEC61966−2−1)やISO/TC130によるJapanColorなどの出力目標となる目標色の色再現特性を記述する目標色特性データ27に基づいて、入力値のRGBあるいはCMYKデータを、後段の第2の画像処理部47および画像形成装置50を通じて、適切な色に再現するためのCMYKデータへと変換する。
このときの目標色特性データ27や、色再現特性データ16を、International Color ConsortiumによるICC profile formatのデータフォーマットとすれば、色補正部13としては、同規格に準じたカラーマネジメントモジュールを使用することができる。
続く後段の第2の画像処理部47では、階調補正部14が、1画素8ビットのCMYKそれぞれの階調データc、m、y、kを、後段の階調処理部15以降の処理を通じて画像形成装置50から出力される画像のCMYK各色の濃度階調特性が、予め定めた後述する階調特性になるよう、別途実施するキャリブレーションで設定した階調補正データ17に従って補正する。通常、この補正には、各色256個のエントリをもつLUT(Look Up Table)が使用される。
次いで、階調処理部15は、階調補正部14で補正された各CMYKの階調値を、形成される画像上の各色の画素密度あるいは面積率として再現するための変換を行う。例えば、画像形成装置が、1200dpi解像度で1画素2ビット(白地を含めて4段階)階調の場合、6×6画素で1つの網点を形成し、さらに4つの網点を組として、これらの間で巡回的に網点を成長させることにより、4網点全体での面積率で階調が表現される。この場合、6×6×4=144画素それぞれに、白地を除いて3段階の濃度表現が可能なので、結果として得られる総階調数は、144×3+1=433階調となる。
このように、階調処理による総階調数が256を超える場合に備えて、先の階調補正部14の出力レンジは10ビットとしている。
次いで、第2の画像処理部47を経て、各画素2ビット信号に変換されたCMYK信号は、画像形成装置50におけるC、M、Y、Kそれぞれの露光制御装置10(図1)に送られ、前述の作像プロセスを経て紙面上の画像として再現される。
次に、図2に破線の矢印で示した階調補正データ17および色再現特性データ16を構築する場合の処理の流れを説明する。
まず、階調補正データ17を構築する場合、色補正部13を迂回するとともに、階調補正データ17として、0〜255入力レンジを、階調処理の範囲(先の例では0〜432)に単純に線形に写像するテーブルを使用する。例えば、先の階調処理の例のレンジ幅0〜432に合わせる場合には、第n要素に、432/255×nの小数点以下を四捨五入した値を割り付ける。
この設定に対して、階調補正データ生成部18は、各CMYK単色の階調パッチを配した測色チャートから、測色装置42による濃度測定値に基づいて、第2の画像処理部47以降の画像形成装置50の階調特性が、予め定めた階調特性となるように階調補正データ17を生成する。
このとき、階調補正データ17の構築に、例えば、特許文献1に開示されている方法を用いることにより、階調特性を求める測色チャートによる測定値への副走査方向の濃度変動の影響は、平均的な意味で回避される。
次いで、色再現特性データ16の構築では、まず、先のプロセスで階調補正データ生成部18で求めた階調補正データ17を設定した上で、色補正部13を迂回し、後述する測色チャートに対する測色装置42の測定値から、本実施の形態の再現色推定部37を構築する。
色再現データ生成部19は、この再現色推定部37を用いて、第2の画像処理部47以降の画像形成装置50を合わせた特性としての色再現特性データ16を生成する。
特に、以下で詳細に説明する本実施の形態の測色チャートおよび再現色推定部37は、画像形成装置50によって測色チャート上に生じる副走査方向の濃度変動の影響を排除した再現色推定部37を実現するものである。これにより、色再現データ生成部19によって生成される色再現特性データ16も測色チャート上に生じる画像形成装置50による副走査方向の濃度変動の影響を除去したものとして構築される。
なお、第1の画像処理部46、階調補正データ生成部18、色再現データ生成部19は、通常、管理PC41に搭載されたソフトウェアによる手段として実装される。また、第2の画像処理部47は、管理PC41上のソフトウェアあるいは、画像形成装置50に組み込みのハードウェアとして実装される。
図3(a)は、本実施の形態の測色チャート20の例を示す。図3(a)の測色チャート20は、図2の再現色推定部37および階調補正データ17を構築する基礎データを取得するためのチャートである。
図3(a)の測色チャート20は、左右方向を主走査方向、上下方向を副走査方向として、画像形成装置50によりA4またはレターサイズの用紙上に出力される。
この測色チャート20は、両サイドの副走査方向に並んだ色変動検出パッチ列であるコントロールパッチ領域21a、21b、22a、22bおよびそれに挟まれた測色パッチ領域23からなる。これらの各パッチは、いずれも8mm×8mmの正方形領域であり、各1列31行のコントロールパッチ領域21a、21b、22a、22bと、19列31行(=589個)の測色パッチ領域23で、合わせて23列31行(238mm×192mm)のパッチ領域を構成している。
また、コントロールパッチ領域21a、21bは、C、M、Y、K各色100%(べた濃度)のパッチを、領域21aではC、M、Y、Kの順で、領域21bではY、K、C、Mの順で副走査方向に繰り返し配置したものであり、コントロールパッチ領域22a、22bは、C、M、Y、K各色50%(8ビット信号では128/255階調)のハーフトーンを、領域22aではC、M、Y、Kの順で、領域22bではY、K、C、Mの順で副走査方向に繰り返し配置したものである。
これらの間に配置された測色パッチ領域23に、階調補正データ17や、後述する再現色推定部37の教師データの取得を目的とした単色または混色のパッチを配置する。再現色推定部37の教師データ構築用としては、ANSIのIT8.7/3、IT8.7/4、ECI2002などに従ったパッチを配置する。
例えば、928色の混色が定義されているIT8.7/3に従う場合、2ページ分の測色チャート20の測色パッチ領域23に、これら928色の混色パッチを(例えばランダムに)割り付けることになる。この場合、測色チャート20の測色パッチ領域23は、589×2=1178パッチ使用可能で、928色に対しては、逆に250パッチ(約8列相当)余ることになる。これらの残余領域は、各ページ4列相当分の空白としても良いし、後述の推定値の検証用のパッチとして任意のパッチを配置することができる。あるいは、感光体ドラム1kなどに図10(b)に示すような曲げモードの偏芯が生じる問題がある場合には、図3(a)の21c、22cに示すような追加のコントロールパッチ領域を設けることができる。
追加コントロールパッチ領域21cは、先ほど同様に、C、M、Y、K各色100%(べた濃度)のパッチをK、C、M、Y順で副走査方向に繰り返し配置したものであり、コントロールパッチ領域22cは、C、M、Y、K各色50%のハーフトーンをK、C、M、Yの順で副走査方向に繰り返し配置したものである。
同様に、1617色が定義されているIT8.7/4に従う場合には、3枚の測色チャート20の測色パッチ領域23に1485色の混色パッチを割り付けることになるが、この場合の残余領域は、589×3−1617=150パッチ(5列弱)なので、追加コントロールパッチ領域21c、22cは、最初の2ページ分にのみ実装することが考えられる。
次に、コントロールパッチ領域22aのKパッチを例に、コントロールパッチによる濃度変動推定方法を説明する。
図3(a)の曲線24は、感光体ドラム1kの径がφ100mmの場合の測色チャート20と、感光体ドラム1kの回転周期に同期した濃度変動の関係を示す。横軸が平均からの濃度偏差で、左方向が高濃度方向に対応し、縦軸が1枚目の測色チャート20の用紙先端を基準とする非印字領域も含めた測色チャート20の副走査方向位置xに対応する。
感光体ドラム1kは、測色チャート20の書き出し位置とは非同期に回転している。曲線24上の○印は、コントロールパッチ22aのブラック(K)パッチ位置に対応する濃度変動値であり、実測濃度Diは、これに他の要因によるノイズが乗ったものとなる。これらの計測値(xi、Di)から、次式をモデルとする非線形最小二乗法によるフィッテイングを行うことで振幅(A)、位相(P)、オフセット(O)をパラメータとして、濃度値Dの変動曲線24を推定する。
D(x)=Asin(2x/d+P)+O (1)
ここで、d=100mmは、感光体ドラム1kのドラム径として既知の固定値として扱う。
図3(a)の曲線24の場合は、想定される濃度変動周期TLの領域に対して、コントロールパッチのサンプルが偏っているため、濃度変動振幅の推定精度が低下する可能性はあるが、モデル式(1)のパラメータ数に対してサンプル数は十分であり、変動をある程度近似することは可能である。しかし、感光体ドラム径dによっては、パッチ周期との関係で、変動周期内に独立なサンプルが十分に得られない場合も生じる。
図3(a)の曲線25は、感光体ドラム径dが、d=30mmの場合の濃度変動の例である。コントロールパッチ22a上には、約3周期の濃度変動が生じる。それぞれの周期Tでの曲線25上に対応する計測点を、それぞれ○、△、□印で示している。
この場合、ドラム変動周期Tとコントロールパッチ22a上のK配置の3周期分が近い関係にあるため、各○△□の計測点を、同一周期上に重ねると、図3(b)に示すように、実際に独立な計測点は、モデル式(1)を求めるのに必要なぎりぎりの3点しかなく、推定値がドラム周期変動以外のノイズの影響を受けて定まらなくなるリスクが高い状況であることが分かる。
より詳細に説明すると、以下のとおりである。図3における、感光体ドラム径d=30の例では、各コントロールパッチのパッチサイズdpをdp=8mm、また、コントロールパッチ配置の基本周期TnをCMYKの基本色数分の4パッチ周期(Tn=4)としているため、同一パッチの副走査方向(図3のx方向)の反復周期は、
Tn・dp = 32mm
となっている。
すなわち、感光体ドラム周期T=πd≒94mm と、コントロールパッチのパッチ周期Tn・dp=32mmの比Rt=πd/(Tn・dp)が、2.93と、ほぼ整数比である3に近いために、図3(b)の曲線25にプロットしたように、感光体ドラム径dに起因した濃度変動周期(T)上に、本質的に3点しかサンプル点が得られない。
また、この場合、3Tn・dp=96mmと感光体ドラム周期Tの誤差は2mm(感光体ドラム周期Tの約2%)であり、想定される濃度変動周期(感光体ドラム周期)に対しても、濃度変測色装置の測定口径(通常4φ前後)にとっても、十分な独立性があるとは言えない程度の差になっている。このことが、上記で説明したように、図3(b)に示すような独立な計測点がモデル式(1)を求めるのに必要なぎりぎりの3点しか得られないことの理由となっている。
特に、感光体ドラム周期Tとパッチ周期Tn・dpとの比Rtが、近似的に3より小さな整数比になる場合には、(1)式の解が得られないことになる。このように、周期性の一致により、サンプル点の独立性が損なわれる問題を回避するためには、感光体ドラム周期Tとパッチ周期Tn・dpとの比Rt=πd/(Tn・dp)が近似的に整数比とならないようにするか、あるいは整数比であっても十分に大きな整数比(例えば、5より大きい比等)とすることが必要である。
しかし一方で、もともと用紙上に配置可能なサンプル点数は、用紙がA4あるいはレター縦送りで、コントロールパッチのパッチ周期Tn・dp=30mm前後の場合、図3(a)に示す例のように、副走査方向の同列上に最大でもサンプル点が7点程度に限られている。
従って、感光体ドラム周期Tとパッチ周期Tn・dpとの比Rtが5以下で近似される場合、例えば、比Rt≒3の場合には、副走査方向上で、半分のパッチの位相をずらす(位相シフトする)ことは、同一感光体ドラム周期T上の独立なサンプル点を2倍の6点にすることができるため、比Rtが整数比となることを回避して独立なサンプル点を7点確保するのと、ほぼ同等の効果が得られる。
上記の様な周期性の一致によるサンプル点の損失は、dp=6mmの場合にも同様に生じるが、位相ずらしの手法は、コントロールパッチのパッチサイズdpや感光体ドラム径d、あるいはパッチ間に隙間を設けるなどの若干の装置の仕様の差やコントロールパッチのレイアウト差に対しても、感光体ドラム周期Tとパッチ周期Tn・dpとの比Rtが整数比にならないように配慮する必要がなく適用範囲が広く効果的である。
特に、K色(ブラック)用の感光体ドラムのドラム径dとその他のC,M,Y色のカラー原色の感光体ドラムのドラム径dが異なるような複数の感光体ドラム径が混在するようなプリンタに対して有効である。以下、この位相ずらしの手法について説明する。
図4(a)は、コントロールパッチの位相をページ途中でシフトして(ずらして)配置した例である。図4(a)のコントロールパッチ領域21a、21bは、矢印26a、26bの位置で2パッチ分、パッチ配置の周期をずらした配置としている。
より具体的には、パッチ列としてのコントロールパッチ領域21a,22a,21b,22bを測色チャート20の両端部に設けている。そして、コントロールパッチ領域21a,22aのコントロールパッチは、副走査方向の所定の矢印位置26aまで副走査方向に繰り返し配置され、C,M,Y,K色の順番(第1の順番)に並べた第1パッチ群と、所定の位置26aから副走査方向に繰り返し配置され、第1の順番と異なるY,K,C,Mの順番(第2の順番)並べた第2パッチ群とからなっている。
一方、コントロールパッチ領域21b,22bのコントロールパッチは、副走査方向の位置26aと水平方向に同一位置である位置26bまで副走査方向に繰り返し配置され、Y,K,C,M色の順番(第1の順番)に並べた第1パッチ群と、所定の位置26bから副走査方向に繰り返し配置され、第1の順番と異なるC,M,Y,K色の順番(第2の順番)並べた第2パッチ群とからなっている。このように、コントロールパッチ領域21a,22aと、コントロールパッチ領域21b,22bとで、互いに第1の順番、第2の順番が異なっている。
すなわち、矢印26a、26bの位置で、図3(a)のコントロールパッチ領域21aと21bから互いの下半分の入れ替えたのに相当するパッチ配置になっている。図4(a)のコントロールパッチ領域22aと22bについても同様に、矢印26a、26bの位置で2パッチ分、パッチ配置の周期をずらした配置としている。
なお、図3の測色チャート20と同様に、測色チャート20の中央付近に、さらにコントロールパッチ領域を設け、両端のコントロールパッチ領域21a,22a,21b,21bと第1の順番、第2の順番と異なる順番で複数のコントロールパッチを配置するように構成してもよい。
図4(b)は、図3(b)と同様にして、図4(a)のコントロールパッチ領域22aのKパッチのサンプル位置を一つの濃度変動周期上に重ねて表示した図を示す。これにより、濃度変動周期T内でのサンプルの位置が適度に分散され、より安定な(1)式のモデルパラメータの推定が行えることになる。
図5は、連続印刷の場合に、ページ間情報を用いて、濃度変動の推定精度を向上させる方法を、測色チャートを横置きで出力する場合の例で示す。図5の測色チャート30、31は、レター横置き出力の測色チャートであり、連続出力することを想定している。
測色チャート30が1ページ目、測色チャート31が2ページ目であり、印刷される用紙間隔Lpを、用紙上の距離換算でLp=60mmとしている。これらの測色チャート30、31は、これまでに説明した測色チャート20と同様、コントロールパッチ領域21a、21b、22a、22bを備えており、副走査方向のページ中央部の矢印26a、26bの位置で、パッチ周期を2パッチ分ずらしている。
図3(a)と同様にして、このときの濃度変動とページ位置の関係を示したのが、図5の曲線24と曲線25である。曲線24が感光体ドラム1kの直径がφ100mmの場合、曲線25が感光体ドラム1kの直径がφ30mmの場合の濃度変動に対応する。
このとき、用紙幅(副走査方向)をLW=216mmとすると、ページ間の濃度変動の位相差(ΔT)は、感光体ドラム径d=100mm(曲線24)の場合で、ΔT=TL−(Lw+Lp)=38mmとなる。これは、濃度変動周期TLのおよそ12%に相当する。同様に、感光体ドラム径d=30mm(曲線25)の場合で、ΔT=3T−(Lw+Lp)=6.6mmで、濃度変動周期Tのおよそ7%に相当する。
一方、図5の曲線24からは、感光体ドラム径dが100mmの場合、曲線24上の1ページ目の測色チャート30のコントロールパッチ領域22aのKパッチに対応するサンプル点(○印)が、変動の全振幅範囲を網羅できていないことから、その他の外乱の影響で、変動の振幅の推定精度が低下することが予想されるが、これに対して、前述の連続印刷における位相差を利用することで改善される。
すなわち、1ページ内では、感光体ドラム周期Tの一部分しかサンプリングできないので、連続印刷における位相差を利用して、ドラム周期内のサンプル点を増加している。この場合、上述のように、ページ間隙間により生じるサンプル点の位相差は、濃度変動周期(感光体ドラム周期)の1割程度のオーダであるため、単純には、ページ間のコントロールパッチの位置が相互に関連づけられてさえいれば、ほぼ、測定効率を向上させることが可能である。
図5では、1ページ目の測色チャート30の用紙先端を副走査方向xの基準点として、2ページ目の測色チャートのパッチ位置を換算し、x7〜x12としている。このように、連続印刷される測色チャートのコントロールパッチ領域22aの情報を随時追加して、(1)式の推定に使用することで、複数毎印刷を行なう場合の副走査方向の濃度変動推定精度が改善される。ベタ濃度変動推定用のコントロールパッチ領域21aおよび、右側の同様のコントロールパッチ領域21b、22bによる濃度変動推定も同様である。
図6(a)は、図5の曲線24上のサンプル点を同じ周期上に重ねてプロットした図である。○印が1ページ目の測色チャート30のKパッチのサンプル点、黒の△印が2ページ目の測色チャート31のKパッチのサンプル点に対応する。図6(a)から、2ページ分のサンプル点を使用することで、○、黒の△を合わせたサンプルにより、濃度変動(曲線24)の全振幅幅のサンプルがおよそカバーされるようになることが分かる。
同様に、図6(b)は、感光体ドラム径が30mmの場合の図5の曲線25に対して、測色チャート30および測色チャート31のKパッチのサンプル点を同じ周期上に重ねてプロットしたものである。この場合、サンプル点は全周期T上に、適度に分散され、より理想的なサンプリングデータが得られることが確認される。
もちろん、さらに安定な濃度変動推定を行なうためには、3枚以上の測色チャートを用いて推定を行なうことが理想的である。しかし、必要以上に測色チャートのページ数を増やすことは、管理の煩雑さや、測色チャート評価の工数の増大などにつながるので、測色チャートは、必要最小限とすることが望ましく、先に挙げたIT8.7/4等の標準パッチ数の場合では、A4あるいはレターサイズで3枚程度、A3との共用や、やや大きめのパッチサイズを考慮する場合で、4枚程度とするのが適切である。
このように、色変動検出パッチ列を、測色チャートの主走査方向の複数箇所に配置することにより、主走査方向に位相差や振幅差のある色周期変動を検出することが可能となる。また、複数の色変動検出パッチ列を、相互に各基本色の配置位置が異なるようにすることで、主走査方向に位相差のない色周期変動の場合の、変動検出精度を向上させることができる。さらに、色変動の検出を、複数ページの測色チャートと関連づけて行なうことで、より長周期の変動の場合の検出を可能とするとともに、これより短周期の変動の場合でも、変動検出精度を向上させることができる。
図7(a)は、前述した測色チャートによる測定値を用いて、CMYKの各階調値からCIEL*a*b*値(以降、単にLab値と記す)を推定する再現色推定部37を示す。
再現色推定部37は、図2における第2の画像処理部47のCMYK入力階調値c、m、y、kに対して、画像形成装置50から出力される出力画像45のLab値を推定する部であり、入力階調値を、中間パラメータである濃度値に変換する濃度変換関数35c、35m、35y、35kと、各色の濃度値をLab値に対応づける非線形多次元変換であるニューラルネット36で構成される。また、ニューラルネット36は、各ノード毎に内部パラメータである重み係数39を保持している。
図7(b)は、このニューラルネット36の内部パラメータである各ノードの重み係数39を最適化する教育時の動作概念図を示す。ニューラルネット36の教育時には、ニューラルネット36の入力側の濃度変換として、各色の濃度変換関数35c、35m、35y、35kの代わりに、測色パッチの主走査方向位置wおよび、副走査方向位置xに応じた変動補正付き濃度変換関数38c、38m、38y、38kの出力を用いる。
ニューラルネット36に対しては、この補正されたD’、D’、D’、D’を入力とし、もとの入力信号c、m、y、kに対応する出力画像45の測色装置42による測色値としてのLabを教師信号33として、バックプロパゲーション(誤差逆伝搬法)を用いて内部パラメータである重み係数39の最適化を行う。
このように、本実施の形態の一つの大きな特徴は、濃度変動に関する補正を、ニューラルネット36の教育時の入力信号側に対して行うことにある。これにより、ニューラルネット36自身は、濃度変動から分離して構築される。
図8は、変動補正付き濃度変換関数の構築手順を示す。まず、ステップS100の階調キャリブレーションで、予め前述の階調補正データ生成を実施し、図2の階調補正データ17を設定する。本実施の形態では、目標階調特性を、図9(a)の曲線28に示すような
D(n)=Dmax{1−(1−n/255)γ} (2)
で定義されるDmaxとγをパラメータとする2パラメータの関数で与える。ここで、nは8ビット入力階調値、D(n)は目標濃度特性であり、Dmaxは最大ベタ濃度、γはハイライト側のnに対する濃度D(n)の勾配を決定するパラメータである。
これにより、図2の第2の画像処理部47と画像形成装置50を合わせたC、M、Y、K各色の平均的な階調特性は、予め定めたγ値をもつ(2)式型の特性として補正される。
ステップS101では、IT8.7/3等に相当する混色パッチを測色パッチ領域23に配置した測色チャート20(あるいは測色チャート30、31)を出力し、測色装置42によりコントロールパッチ領域21a、21b、22a、22bの濃度および測色パッチ領域23のLab値を測定する。
ステップS102では、コントロールパッチ領域21aから、先ずC(シアン)の(1)式によるベタ変動のモデルパラメータAC255L、PC255L、OC255Lを求め、図9(b)の曲線29aに示すような、副走査方向の濃度変動関数
DC(255;x)=AC255L・sin(x/d+PC255L)+OC255L
を求める。同様に、コントロールパッチ領域22aから、図9(b)の曲線29bに示すような、50%濃度変動関数
DC(128;x)=AC128L・sin(x/d+PC128L)+OC128L
を求める。同様に、右側のコントロールパッチ領域21b、22bからもDCR(255;x)、DCR(128;x)を求める。
次のステップS103で、このDC(c;x)、DC(c;x)(c=128、255)を、c=0〜255の任意の整数値に対して拡張する。ここでは、濃度特性を予め2パラメータモデルの(2)式の特性にキャリブレーションしていたことを利用して、濃度変動影響を受けた階調特性も、同式のモデルで近似する。従って、
DC(c;x)=DC(255;x){1−(1−c/255)γCL} (3)
ただし、
γcL=−log2{1−DC(128;x)/DC(255;x)} (4)
により拡張されたDC(c;x)が得られる。DC(c;x)に関しても同様に求める。
なお、上記拡張で特に、濃度線形性が高い場合であれば、これの代わりに、より単純な3点(0、DC(0;x))、(128、DC(128;x))、(255、DC(255;x))を線分で結ぶ区分線形補間による拡張も利用可能である。
ステップS104では、さらに、wを左側コントロールパッチの主走査方向位置、wを右側コントロールパッチの主走査方向位置として、
DC(c;x、w)=(w−w)/(w−w)DC(c;x)+(w−w)/(w−w)DC(c;x)
により、主走査方向位置wに関して補間して拡張する。これにより、C(シアン)に関して、測色チャート20(あるいは測色チャート30、31)上の濃度変換関数DC(c;x、w)が構築される。
ステップS105で、その他のM、Y、Kの各色に対してステップS102〜ステップS104の処理を同様に実施することにより、シアン(C)の変動補正付き濃度変換関数38cであるDC(c;x、w)、マゼンタ(M)の変動補正付き濃度変換関数38mであるDM(m;x、w)、イエロー(Y)の変動補正付き濃度変換関数38yであるDY(y;x、w)、ブラック(K)の変動補正付き濃度変換関数38kであるDK(k;x、w)が構築される。
なお、測色チャート上にさらに中央コントロールパッチ領域21c、22cを設ける場合には、上述の線形補間の代わりに主走査方向の3点を2次補間する。
以上の実施の形態では、コントロールパッチ領域の計測値として、濃度計測値を例に説明したが、本実施の形態はこれに限定されず、例えば、紙面を基準したCIE色差ΔEを用いても同様の補正を行なうことが可能である。ΔEを採用した場合には、Lab空間内での均等性に優れた調整が容易となる。
このように、本実施の形態によれば、測色値から色変動分が適切に除去され、再現色の推定範囲にかかわる変動分の誤差が全振幅分から片振幅分へと余分な制御機構の追加をともなうことなく半減される。また、測色パッチ領域のパッチ入力値から変換される中間パラメータを、各色の濃度値そのものとすることにより、計測に容易なパラメータにより、入力階調値のように濃度変動に依存して印刷結果に影響のでることのない中間パラメータで再現色を予測する部分を、色変動の予測手段から分離することができる。
すなわち、再現色予測を行うモジュール(図7(a),(b)の場合、ニューラルネット36)の入力が、直接、入力階調値に対応しているとすると、入力階調値と、それに対応する出力濃度の関係は、プリンタの階調再現特性に依存するため、経時的に変化する。
このため、経時的に階調特性が変化したり、エンジンの個体差により階調特性が大きく異なっている場合には、最悪の場合、再現色予測を行うモジュールを構築し直さなければならなくなる問題を生じる。
このことは、特に、プリンタの開発段階では、エンジン特性が不安定で有ったり、目標とする階調特性の仕様が十分に確定していないことによる変更に対して、大きな開発作業の大きなやり直しを生じ、開発効率を低下させる原因となる。
このような問題を回避するために本実施の形態では、再現色予測をするモジュールであるニューラルネット36の入力値が、濃度変動とは無関係で計測も容易な物理量である濃度として、階調特性の変化から分離されている。
これにより、再現色予測を行うモジュールであるニューラルネット36が、装置の階調特性の個体差や経時的変動とは独立に構築されるため、装置開発上の利点として、階調特性の設計などから分離して独立開発することができる。特に、エンジン特性の個体差や時間を於いて階調特性が変動しても、再現色予測を行うモジュールに影響を及ぼさないため、当該モジュールの流用性・独立性を高められる。
さらに、本実施の形態では、中間パラメータを紙面からのΔE色差とした場合には、中間パラメータの分布が色空間で均等になるような取り扱いが容易になり、再現色の予測精度の均一性が向上する利点が得られる。さらに、この再現色予測方法において、複数ページで出力される測色チャートを関連づけて、色変動成分の位相・振幅・オフセットを推定することにより、予測精度を向上させることができる。
本実施の形態は、前述した実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(CPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても達成される。この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになる。プログラムコードを供給するための記憶媒体としては、例えば、ハードディスク、光ディスク、光磁気ディスク、不揮発性のメモリカード、ROMなどを用いることができる。また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれる。さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれる。また、本実施の形態の実施の形態の機能等を実現するためのプログラムは、ネットワークを介した通信によってサーバから提供されるものでも良い。
20 測色チャート
21 コントロールパッチ領域(ベタ)
22 コントロールパッチ領域(50%)
23 測色パッチ領域
24、25 濃度変動曲線
特開2007−264364号公報

Claims (12)

  1. 画像形成装置の色再現特性を測定する測色チャートであって、
    前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列を備え、
    前記パッチ列は、それぞれ異なる色からなる複数のパッチを有し、
    前記複数のパッチは、前記異なる色のうち所定の色が前記色変動の周期内で分散するように、同一列上で、前記異なる色の配置順が異なる位相で配置されていること
    を特徴とする測色チャート。
  2. 前記パッチ列は、
    前記副走査方向の所定の位置まで前記副走査方向に繰り返し配置され、それぞれ異なる色からなる複数のパッチを第1の順番に並べた第1パッチ群と、
    前記所定の位置から前記副走査方向に繰り返し配置され、前記複数のパッチを前記第1の順番とは異なる第2の順番で並べた第2パッチ群と、
    を備えたことを特徴とする請求項1記載の測色チャート。
  3. 前記パッチ列は、前記副走査方向と直交する主走査方向に複数配置され、
    各パッチ列において、前記第1パッチ群および前記第2パッチ群における前記順番が互いに異なることを特徴とする請求項2記載の測色チャート。
  4. 前記パッチ列は、前記測色チャートの両縁部に設けられていることを特徴とする請求項3に記載の測色チャート。
  5. さらに、前記パッチ列は、前記測色チャートの中央付近に設けられていることを特徴とする請求項4に記載の測色チャート。
  6. 前記測色チャートは、所定のページ間隔で前記画像形成装置に送出される複数ページで構成されていることを特徴とする請求項1〜3のいずれか一つに記載の測色チャート。
  7. 感光体ドラムを備えた画像形成装置の色再現特性を測定する測色チャートであって、
    前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列を備え、
    前記パッチ列は、それぞれ異なる色からなる複数のパッチを有し、
    前記複数のパッチは、前記感光体ドラムのドラム周期と、それぞれ異なる色からなる複数のパッチのパッチ周期との比Rtが非整数の周期により繰り返し配置されているか、または、前記比Rtが5以下の整数で近似される場合には、前記比Rtの周期で、かつ異なる位相で繰り返し配置されていることを特徴とする測色チャート。
  8. 原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定する色再現推定装置であって、
    前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色部と、
    測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色部による前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定部と、を備え、
    前記推定部は、前記測色部によって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とする色再現推定装置。
  9. 前記中間パラメータは、各色の濃度値、あるいは、紙面との色差であることを特徴とする請求項8に記載の色再現推定装置。
  10. 前記測色チャートは、複数ページで構成され、前記色変動成分の位相と振幅とオフセットを、前記複数ページの前記パッチ列の測定値に基づいて推定することを特徴とする請求項9に記載の色再現推定装置。
  11. 原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定する色再現推定装置で実行される色再現推定方法であって、
    前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色ステップと、
    測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色ステップによる前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定ステップと、を備え、
    前記推定ステップは、前記測色ステップによって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とする色再現推定方法。
  12. 原稿データに基づいて複数の基本色を重ねることにより、印刷媒体にカラー画像を形成する画像形成装置の色再現特性を推定するコンピュータに実行させるためのプログラムであって、
    前記画像形成装置から出力された測色チャートであって、前記画像形成装置により前記測色チャートの送出方向である副走査方向に配置され、前記画像形成装置による周期的な色変動を検出するためのパッチ列と、測色パッチ領域とを備えた前記測色チャートのパッチの色特性を測定する測色ステップと、
    測定された前記パッチの色特性の計測値に基づいて構築される内部パラメータに基づいて、前記測色ステップによる前記測色パッチ領域の前記計測値を、濃度変動に依存して尺度の変化しない中間パラメータに変換し、前記中間パラメータと前記内部パラメータに基づいて、前記画像形成装置の再現色を推定する推定ステップと、を前記コンピュータに実行させ、
    前記推定ステップは、前記測色ステップによって計測された前記パッチの色特性に含まれるカラー属性値から、特定周期に同期する基本色の色属性変動成分の位相と振幅とオフセットを推定し、前記測色パッチ領域のパッチ入力値から変換される前記中間パラメータを補正することを特徴とするプログラム。
JP2010200046A 2009-09-15 2010-09-07 測色チャート、色再現推定装置、色再現推定方法およびプログラム Active JP5617456B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010200046A JP5617456B2 (ja) 2009-09-15 2010-09-07 測色チャート、色再現推定装置、色再現推定方法およびプログラム
US12/923,325 US8559078B2 (en) 2009-09-15 2010-09-15 Colorimetric chart and color reproduction estimating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009213109 2009-09-15
JP2009213109 2009-09-15
JP2010200046A JP5617456B2 (ja) 2009-09-15 2010-09-07 測色チャート、色再現推定装置、色再現推定方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2011087285A JP2011087285A (ja) 2011-04-28
JP5617456B2 true JP5617456B2 (ja) 2014-11-05

Family

ID=43730288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200046A Active JP5617456B2 (ja) 2009-09-15 2010-09-07 測色チャート、色再現推定装置、色再現推定方法およびプログラム

Country Status (2)

Country Link
US (1) US8559078B2 (ja)
JP (1) JP5617456B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20110229A1 (it) * 2011-09-14 2013-03-15 Antonio Maccari Metodo per controllare un target di calibrazione colori.
JP5768798B2 (ja) 2012-10-24 2015-08-26 コニカミノルタ株式会社 画像形成装置
JP6011795B2 (ja) * 2012-12-07 2016-10-19 コニカミノルタ株式会社 走査ムラ解析装置、画像処理装置、および画像形成装置
JP6409308B2 (ja) * 2013-10-29 2018-10-24 株式会社リコー 画像処理装置、画像処理方法、プログラム、及び、画像処理システム
JP2016015675A (ja) * 2014-07-03 2016-01-28 株式会社リコー カラーチャート、画像評価装置、画像評価方法及び画像形成装置
KR20160079373A (ko) 2014-12-26 2016-07-06 삼성전자주식회사 화상형성장치 및 색상 보정 방법
JP6680070B2 (ja) * 2016-05-12 2020-04-15 株式会社リコー 画像形成装置、画像形成ユニット、およびプログラム
JP2018023031A (ja) 2016-08-04 2018-02-08 株式会社リコー 画像形成装置、方法およびプログラム
US10877406B2 (en) * 2017-09-27 2020-12-29 Hp Indigo B.V. Printing by printing fluid transfer
JP2019078916A (ja) 2017-10-26 2019-05-23 コニカミノルタ株式会社 画像形成装置及び故障箇所推定方法
JP7151222B2 (ja) * 2018-07-06 2022-10-12 株式会社リコー 画像形成装置、画像形成ユニットおよびプログラム
JP7183893B2 (ja) 2019-03-20 2022-12-06 株式会社リコー 画像形成装置および画像形成ユニット
JP2022112269A (ja) * 2021-01-21 2022-08-02 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155765A (ja) 1989-11-11 1991-07-03 Karante:Kk 野菜のりとその利用製品
JP3155765B2 (ja) 1991-02-22 2001-04-16 キヤノン株式会社 画像形成装置
JPH06326861A (ja) * 1993-05-14 1994-11-25 Ricoh Co Ltd 色変換パラメータ設定方法
JP2001086338A (ja) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 濃度キャリブレーションチャート
JP2002135610A (ja) * 2000-10-24 2002-05-10 Fuji Xerox Co Ltd 画像処理装置
JP4464126B2 (ja) * 2003-12-22 2010-05-19 キヤノン株式会社 画像形成装置及び当該装置における画像形成制御方法
JP2005319652A (ja) * 2004-05-07 2005-11-17 Ricoh Co Ltd 画像形成装置
JP2006047349A (ja) * 2004-07-30 2006-02-16 Canon Inc 画像形成装置
JP2006106556A (ja) 2004-10-08 2006-04-20 Konica Minolta Business Technologies Inc 画像形成装置
US7390073B2 (en) * 2005-07-29 2008-06-24 Lexmark International, Inc. Method and apparatus for performing alignment for printing with a printhead
JP2007264364A (ja) * 2006-03-29 2007-10-11 Seiko Epson Corp 画像形成装置及び画像形成濃度の調整方法
US7952774B2 (en) * 2006-08-21 2011-05-31 Ricoh Company, Limited Image forming apparatus, image formation control method, and computer program product
JP4807886B2 (ja) * 2008-03-12 2011-11-02 コニカミノルタビジネステクノロジーズ株式会社 キャリブレーションシステム及びキャリブレーション方法
JP5065118B2 (ja) * 2008-03-26 2012-10-31 キヤノン株式会社 色処理装置、色処理方法およびプログラム
JP4702567B2 (ja) * 2008-09-16 2011-06-15 富士ゼロックス株式会社 画像形成システム、画像形成装置、階調特性測定方法およびプログラム
US8335013B2 (en) * 2009-05-04 2012-12-18 Kabushiki Kaisha Toshiba System and method for color printer calibration employing measurement success feedback

Also Published As

Publication number Publication date
JP2011087285A (ja) 2011-04-28
US8559078B2 (en) 2013-10-15
US20110063697A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5617456B2 (ja) 測色チャート、色再現推定装置、色再現推定方法およびプログラム
JP5484085B2 (ja) 画像形成装置及びその画質補正方法
US7864373B2 (en) Method and system for toner reproduction curve linearization using least squares solution of monotone spline functions
CN103167214B (zh) 图像处理装置及图像处理方法
JP6665657B2 (ja) 画像形成装置及び色変換制御プログラム並びに色変換制御方法
JP6280379B2 (ja) 画像形成装置、トナー消費量の算出方法およびプログラム
CN103826029A (zh) 彩色图像处理装置及其控制方法
CN104219422A (zh) 颜色调整系统以及颜色调整方法
JP2010283687A (ja) プログラム、情報処理装置、階調補正パラメータ生成方法、記憶媒体
JP3760969B2 (ja) 画像形成装置及び方法
JP2010118927A (ja) プログラム、記録媒体、画像処理装置、画像処理方法および階調補正パラメータ生成用シート
JP2016208151A (ja) 画像処理装置、画像処理方法、画像処理装置を有する画像形成装置、及びプログラム。
JP2009230135A (ja) 画像形成装置および画像形成方法
JP6232775B2 (ja) 画像形成装置、画像形成方法および画像形成システム
JP2005131961A (ja) 画像形成装置
JP4721115B2 (ja) 画像形成装置とプリンタキャリブレーション装置
JP2017098928A (ja) 画像形成装置及び画像形成方法
JP5256148B2 (ja) 画像形成装置
JP2020153829A (ja) 画像形成情報取得方法、プロファイル作成システム及びカラーチャート
JP5107208B2 (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP6236971B2 (ja) 画像処理装置、画像形成装置、及び画像処理プログラム
EP2296364B1 (en) Methods and system for improved color characterization
JP2011151588A (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP6572568B2 (ja) 画像形成システム
JP2008040382A (ja) 画像形成装置及び画像形成装置のキャリブレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R151 Written notification of patent or utility model registration

Ref document number: 5617456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151