JP5614711B2 - 蒸気システム - Google Patents

蒸気システム Download PDF

Info

Publication number
JP5614711B2
JP5614711B2 JP2010155968A JP2010155968A JP5614711B2 JP 5614711 B2 JP5614711 B2 JP 5614711B2 JP 2010155968 A JP2010155968 A JP 2010155968A JP 2010155968 A JP2010155968 A JP 2010155968A JP 5614711 B2 JP5614711 B2 JP 5614711B2
Authority
JP
Japan
Prior art keywords
steam
compressor
sensor
pressure
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010155968A
Other languages
English (en)
Other versions
JP2012017700A (ja
Inventor
真嘉 金丸
真嘉 金丸
昭典 川上
昭典 川上
昭生 森田
昭生 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2010155968A priority Critical patent/JP5614711B2/ja
Publication of JP2012017700A publication Critical patent/JP2012017700A/ja
Application granted granted Critical
Publication of JP5614711B2 publication Critical patent/JP5614711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、蒸気圧縮機を備えた蒸気システムに関するものである。
従来、下記特許文献1に開示されるように、ヒートポンプ(10)、蒸気圧縮機(30)、および排ガスボイラ(130)を備えた蒸気システム(S1)が提案されている。
特開2008−45807号公報
しかしながら、従来技術では、その[0025]に記載のとおり、蒸気圧縮機(30)は、タンク(47)内の圧力に基づき制御される。従って、蒸気使用設備における蒸気の使用負荷の変化に応じて、蒸気圧縮機(30)からの蒸気量や、排ガスボイラ(130)からの蒸気量を調整できるものではない。
本発明が解決しようとする課題は、蒸気の使用負荷の変化に対応できる蒸気システムを提供することにある。
請求項1に記載の発明は、蒸気を吸入し圧縮して吐出する蒸気圧縮機と、この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、前記蒸気圧縮機からの蒸気に、ボイラからの蒸気がボイラ蒸気供給弁を介して合流するよう構成され、前記第一センサは、前記蒸気圧縮機からの蒸気と前記ボイラからの蒸気との合流蒸気の圧力を検出可能な位置に設けられ、前記蒸気圧縮機は、前記第一センサの検出値を第一設定値に維持するよう制御され、前記ボイラ蒸気供給弁は、それより下流側の圧力を第三設定値に維持するよう開閉または開度が調整され、前記第三設定値は、前記第一設定値よりも低く設定されることを特徴とする蒸気システムである。
請求項1に記載の発明によれば、蒸気圧縮機とボイラの双方から蒸気使用設備へ蒸気が供給可能とされ、しかもボイラからの蒸気路に設けたボイラ蒸気供給弁の設定圧力を、蒸気圧縮機の制御圧力よりも下げておくことで、蒸気圧縮機の運転を優先することができる。また、蒸気圧縮機から蒸気を吐出できないか、あるいは蒸気圧縮機からの蒸気だけでは足りない状況になっても、ボイラから蒸気使用設備へ安定して蒸気を供給することができる。
請求項2に記載の発明は、蒸気を吸入し圧縮して吐出する蒸気圧縮機と、この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、前記蒸気圧縮機からの蒸気に、ボイラからの蒸気が合流するよう構成され、前記第一センサは、前記蒸気圧縮機からの蒸気と前記ボイラからの蒸気との合流蒸気の圧力を検出可能な位置に設けられ、前記蒸気圧縮機は、前記第一センサの検出値を第一設定値に維持するよう制御され、前記ボイラは、前記第一センサの検出値を第三設定値に維持するよう制御され、前記第三設定値は、前記第一設定値よりも低く設定されることを特徴とする蒸気システムである。
請求項2に記載の発明によれば、蒸気圧縮機とボイラの双方から蒸気使用設備へ蒸気が供給可能とされ、しかもボイラの設定圧力を、蒸気圧縮機の制御圧力よりも下げておくことで、蒸気圧縮機の運転を優先することができる。また、蒸気圧縮機から蒸気を吐出できないか、あるいは蒸気圧縮機からの蒸気だけでは足りない状況になっても、ボイラから蒸気使用設備へ安定して蒸気を供給することができる。
請求項3に記載の発明は、蒸気を吸入し圧縮して吐出する蒸気圧縮機と、この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、単段または複数段の蒸気圧縮式ヒートポンプをさらに備え、単段または最下段のヒートポンプの蒸発器に熱源流体が通され、単段または最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して蒸気を発生させ、この凝縮器からの蒸気を、前記蒸気圧縮機が吸入し圧縮して吐出し、単段または最上段のヒートポンプの凝縮器の冷媒の圧力、またはその凝縮器から前記蒸気圧縮機へ送られる蒸気の圧力を検出する第三センサを備え、前記第一センサの検出値に基づき前記蒸気圧縮機を制御すると共に、単段または最上段のヒートポンプの圧縮機は、前記第三センサの検出値に基づき制御され、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御されることを特徴とする蒸気システムである。
請求項3に記載の発明によれば、単段または複数段のヒートポンプと蒸気圧縮機とを備える蒸気システムにおいて、最上段の蒸気圧縮機の出口側の蒸気の圧力に基づき制御することができる。
請求項4に記載の発明は、蒸気を吸入し圧縮して吐出する蒸気圧縮機と、この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、単段または複数段の蒸気圧縮式ヒートポンプをさらに備え、単段または最下段のヒートポンプの蒸発器に熱源流体が通され、単段または最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して蒸気を発生させ、この凝縮器からの蒸気を、前記蒸気圧縮機が吸入し圧縮して吐出し、単段または最下段のヒートポンプの蒸発器の入口側または出口側において、熱源流体の圧力または温度を検出する第二センサと、単段または最上段のヒートポンプの凝縮器の冷媒の圧力、またはその凝縮器から前記蒸気圧縮機へ送られる蒸気の圧力を検出する第三センサとを備え、前記第一センサに基づく制御に代えて、前記第二センサの検出値に基づき単段または最下段のヒートポンプの圧縮機を制御すると共に、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、前記蒸気圧縮機は、前記第三センサの検出値に基づき制御されることを特徴とする蒸気システムである。
請求項4に記載の発明によれば、単段または複数段のヒートポンプと蒸気圧縮機とを備える蒸気システムにおいて、ヒートポンプの熱源流体の圧力または温度に基づき制御することができる。
請求項5に記載の発明は、蒸気を吸入し圧縮して吐出する蒸気圧縮機と、この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、複数段の蒸気圧縮機を備え、前記各蒸気圧縮機は、一つ下段の蒸気圧縮機からの蒸気を吸入し圧縮して吐出し、前記第一センサは、最上段の蒸気圧縮機の出口側において蒸気の圧力を検出することを特徴とする蒸気システムである。
請求項5に記載の発明によれば、複数段の蒸気圧縮機により、蒸気を効率よく昇圧することができる。
請求項6に記載の発明は、前記第一センサの検出値に基づき最上段の蒸気圧縮機を制御すると共に、それより下段の各蒸気圧縮機は、その出口側の蒸気の圧力に基づき制御されることを特徴とする請求項5に記載の蒸気システムである。
請求項6に記載の発明によれば、複数段の蒸気圧縮機を備える蒸気システムにおいて、最上段の蒸気圧縮機の出口側の蒸気の圧力に基づき制御することができる。
請求項7に記載の発明は、最下段の蒸気圧縮機の入口側において圧力または温度を検出する第二センサを備え、前記第一センサに基づく制御に代えて、前記第二センサの検出値に基づき最下段の蒸気圧縮機を制御すると共に、それより上段の各蒸気圧縮機は、その入口側の蒸気の圧力に基づき制御されることを特徴とする請求項5に記載の蒸気システムである。
請求項7に記載の発明によれば、複数段の蒸気圧縮機を備える蒸気システムにおいて、最下段の蒸気圧縮機の入口側の圧力または温度に基づき制御することができる。
本発明によれば、蒸気の使用負荷の変化に対応できる蒸気システムを実現することができる。
本発明の蒸気システムの実施例1を示す概略図である。 第一センサの検出圧力、ボイラ蒸気供給弁の開閉状態、および蒸気圧縮機の動作状態の対応関係を示す概略図である。 図2の変形例を示す図である。 第二センサの検出圧力または検出温度、および蒸気圧縮機の動作状態の対応関係を示す概略図である。 図4の変形例を示す図である。 本発明の蒸気システムの実施例2を示す概略図である。 本発明の蒸気システムの実施例3を示す概略図である。 本発明の蒸気システムの実施例4を示す概略図である。
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の蒸気システムの実施例1を示す概略図である。
本実施例の蒸気システム1は、蒸気圧縮機2を備え、好ましくはさらにボイラ3を備える。
蒸気圧縮機2は、蒸気を吸入し圧縮して吐出する装置である。蒸気圧縮機2は、その構成を特に問わないが、たとえばスクリュ式の蒸気圧縮機とされる。スクリュ式の蒸気圧縮機は、互いにかみ合って回転するスクリュロータ間に蒸気を吸入して、スクリュロータの回転により圧縮して吐出する装置である。但し、蒸気圧縮機2は、蒸気を圧縮して吐出するものであれば、スクリュ式に限らず、レシプロ式などであってもよい。
蒸気圧縮機2は、蒸気圧縮機本体とその駆動装置とを備え、駆動装置はエンジン(典型的にはガスエンジンまたはディーゼルエンジン)および/またはモータから構成される。蒸気圧縮機2の制御の具体的態様としては、たとえば、駆動装置がオンオフ制御される。あるいは、蒸気圧縮機本体と駆動装置との間に、駆動装置から蒸気圧縮機本体への動力伝達装置(クラッチおよび/または変速機)を設けておき、駆動装置から蒸気圧縮機本体への動力伝達の有無や量を変更するように、動力伝達装置が制御される。あるいは、駆動装置を構成するモータをインバータで制御して、モータの回転数(回転速度ともいえる)を変える。あるいは、駆動装置を構成するエンジンのアクセルを制御して、エンジンの出力を変える。これらの内、複数のものを組み合わせて、蒸気圧縮機2を制御してもよい。なお、駆動装置としてモータを用いる場合、後述するSOFC(固体酸化物形燃料電池)の電力でモータを駆動してもよい。
ボイラ3は、典型的には燃料焚きボイラまたは電気ボイラである。燃料焚きボイラは、燃料の燃焼により水を蒸気化する装置であり、蒸気圧を所望に維持するように、燃焼の有無や量が調整される。また、電気ボイラは、電気ヒータにより水を蒸気化する装置であり、蒸気圧を所望に維持するように、電気ヒータへの給電の有無や量が調整される。
但し、ボイラ3は、燃料焚きボイラまたは電気ボイラに限らず、廃熱ボイラであってもよい。廃熱ボイラは、廃熱を用いて水を蒸気化する装置であり、蒸気圧を所望に維持するように、廃熱ボイラへの廃熱の供給の有無や量が調整可能とされるのがよい。廃熱ボイラの場合、その熱源は特に問わず、たとえば、蒸気圧縮機2のエンジンなどからの排ガス、またはSOFC(固体酸化物形燃料電池)からの廃熱を用いることができる。
蒸気圧縮機2からの第一蒸気路4と、ボイラ3からの第二蒸気路5とは、合流するよう構成される。この合流は、蒸気ヘッダを用いて行うこともできる。そして、蒸気圧縮機2やボイラ3からの蒸気は、一または複数の蒸気使用設備(図示省略)へ送られる。
本実施例では、第一蒸気路4には、合流部よりも上流側に、逆止弁6が設けられる。これにより、蒸気圧縮機2が停止中、ボイラ3からの蒸気が蒸気圧縮機2へ逆流するのが防止される。
また、本実施例では、第二蒸気路5には、合流部よりも上流側に、ボイラ蒸気供給弁7が設けられる。ボイラ蒸気供給弁7は、本実施例では自力式の減圧弁(二次圧力調整弁)とされる。なお、ボイラ蒸気供給弁7より上流側は、下流側よりもボイラ3により高圧に維持される。
蒸気圧縮機2からの蒸気とボイラ3からの蒸気との合流蒸気の圧力を検出可能な位置には、圧力センサからなる第一センサ8が設けられる。本実施例では、第一蒸気路4と第二蒸気路5とが合流された後の第三蒸気路9に、第一センサ8が設けられるが、蒸気圧縮機2からの蒸気とボイラ3からの蒸気とを蒸気ヘッダで合流させる場合、その蒸気ヘッダに第一センサ8を設けてもよい。また、合流蒸気の圧力を検出可能であれば、第一蒸気路4の内、合流部よりも上流側に設けてもよいし、第二蒸気路5の内、合流部よりも上流側に設けてもよい。但し、第一蒸気路4に逆止弁6を設ける場合には、逆止弁6より下流側に設けられ、第二蒸気路5にボイラ蒸気供給弁7または後述する逆止弁を設ける場合には、ボイラ蒸気供給弁7または逆止弁より下流側に設けられる。
蒸気圧縮機2は、供給路10を介して蒸気を吸入し、圧縮して吐出する。より具体的には、図示例の場合、蒸気圧縮機2は、中空容器状のセパレータタンク11と、供給路10を介して接続されている。そして、セパレータタンク11には、流入路12を介して蒸気(たとえばフラッシュ蒸気、未利用蒸気、低圧蒸気)が供給され、その蒸気の凝縮水は、セパレータタンク11から排出路13を介して適宜排水され、蒸気が供給路10を介して蒸気圧縮機2へ送られる。このように、セパレータタンク11は、気液分離部として機能する。なお、セパレータタンク11に代えて、単にT字継手を用いてもよい。
蒸気使用設備のドレンからフラッシュ蒸気を生成して、そのフラッシュ蒸気を蒸気圧縮機2で昇圧する例について説明する。この場合、蒸気使用設備のドレンは、第一蒸気トラップ(図示省略)を介して、流入路12からセパレータタンク11へ排出される。高圧高温のドレンが第一蒸気トラップを介して低圧下に排出されることで、フラッシュ蒸気およびその凝縮水となり、セパレータタンク11で気液分離が図られる。そして、蒸気圧縮機2は、セパレータタンク11内の蒸気を吸入し圧縮して吐出する。一方、セパレータタンク11で分離された水は、排出路13から適宜排水される。そのために、セパレータタンク11からの排出路13には、第二蒸気トラップ(図示省略)を設けておくのが好ましい。
セパレータタンク11内の圧力または温度を検出可能な位置には、圧力センサまたは温度センサからなる第二センサ14が設けられる。本実施例では、第二センサ14は、セパレータタンク11に設けられるが、場合により、蒸気圧縮機2への供給路10に設けてもよい。
蒸気圧縮機2は、第一センサ8と第二センサ14との一方または双方の検出値に基づき制御される。具体的には、(1)第一センサ8による制御、(2)第二センサ14による制御、(3)第一センサ8と第二センサ14との切替制御のいずれかが行われる。以下、それぞれの制御について、順に説明する。なお、第一センサ8による制御を行う場合には、所望により第二センサ14の設置を省略することができ、逆に、第二センサ14による制御を行う場合には、所望により第一センサ8の設置を省略することができる。
〈(1)第一センサ8による制御〉
図2は、第一センサ8の検出圧力、ボイラ蒸気供給弁7の開閉状態、および蒸気圧縮機2の動作状態の対応関係を示す概略図である。ここでは、蒸気圧縮機2は、第一設定値(第一設定圧力)P1でオンオフされ、ボイラ蒸気供給弁7は、第三設定値(第三設定圧力)P3で開閉される。
具体的には、第一センサ8の検出圧力が第三設定値P3未満であると、蒸気圧縮機2は駆動されていると共にボイラ蒸気供給弁7は開放している。これにより、蒸気圧縮機2およびボイラ3からの蒸気が蒸気使用設備へ供給される。そして、第三設定値P3以上になると、ボイラ蒸気供給弁7が閉鎖し、ボイラ3からの蒸気供給は停止され、蒸気圧縮機2から蒸気供給される。第一センサ8の検出圧力が第一設定値P1以上になると、蒸気圧縮機2が停止し、蒸気圧縮機2からの蒸気供給も停止される。そして、第一センサ8の検出圧力が第一設定値P1未満になると、蒸気圧縮機2が駆動され、その後、蒸気圧縮機2による蒸気だけでは賄い切れず、第三設定値P3未満になると、ボイラ蒸気供給弁7が開いてボイラ3からも蒸気が供給される。なお、ボイラ蒸気供給弁7が自力式の減圧弁の場合、ボイラ蒸気供給弁7は、これらの動作を機械的に自力で行う。
第一設定値P1および第三設定値P3には、所望によりそれぞれディファレンシャル(動作隙間)が設定されるのは言うまでもない。また、蒸気圧縮機2は、その駆動と停止のオンオフ制御でなく、たとえば回転数を調整されることで、比例制御やPID制御されてもよい。さらに、ボイラ蒸気供給弁7を電磁弁や電動弁により構成し、第一センサ8の検出圧力に基づき、第三設定値P3でボイラ蒸気供給弁7を開閉したり、第三設定値P3に維持するようにボイラ蒸気供給弁7を開度調整したりしてもよい。
これらの場合について、図3に基づき説明する。なお、図3では、第一設定値P1のディファレンシャル(または比例帯)P1H〜P1Lと、第三設定値P3のディファレンシャル(または比例帯)P3H〜P3Lとはオーバーラップしていないが、一部をオーバーラップさせてもよい。つまり、第三上限圧力P3Hは、第一下限圧力P1Lよりも高圧に設定されてもよい。
まず、第一設定値P1および第三設定値P3に、それぞれディファレンシャルが設定されたオンオフ制御を説明する。この場合、第一設定値P1については、第一上限圧力P1Hと第一下限圧力P1Lとが設定され、圧力上昇時、第一センサ8の検出圧力が第一上限圧力P1H以上になると蒸気圧縮機2が停止し、圧力下降時、第一センサ8の検出圧力が第一下限圧力P1L未満になると蒸気圧縮機2が駆動する。また、第三設定値P3については、第三上限圧力P3Hと第三下限圧力P3Lとが設定され、圧力上昇時、第三上限圧力P3H以上になるとボイラ蒸気供給弁7が閉鎖し、圧力下降時、第三下限圧力P3L未満になるとボイラ蒸気供給弁7が開放する。
次に、蒸気圧縮機2とボイラ蒸気供給弁7を比例制御する場合の一例について説明する。この場合、第一センサ8の検出圧力に基づき、第一上限圧力P1Hと第一下限圧力P1Lとの範囲で、且つその第一上限圧力P1Hを設定値(目標値)として蒸気圧縮機2を比例制御する。また、第一センサ8の検出圧力に基づき、第三上限圧力P3Hと第三下限圧力P3Lとの範囲で、且つその第三上限圧力P3Hを設定値(目標値)としてボイラ蒸気供給弁7を比例制御する。ここで、第一上限圧力P1H以上では、蒸気圧縮機2は停止し、第一下限圧力P1L未満では、蒸気圧縮機2は全負荷運転する。また、第三上限圧力P3H以上では、ボイラ蒸気供給弁7は全閉し、第三下限圧力P3L未満では、ボイラ蒸気供給弁7は全開する。なお、比例制御ではなくPID制御を行ってもよい。
いずれにしても、第三設定値P3を第一設定値P1よりも低く設定しておくことで、蒸気圧縮機2の運転を優先しつつ、蒸気使用設備へ蒸気を安定して供給することができる。つまり、蒸気圧縮機2の運転を優先させつつ、それでは足りない場合にボイラ3からの蒸気を蒸気使用設備へ送ることができる。
いずれの場合も、第二センサ14により圧力または温度を監視し、この圧力または温度が下端値未満になると、蒸気圧縮機2を運転しても所望の蒸気を得られないので、蒸気圧縮機2を停止させるのがよい。
ところで、ボイラ蒸気供給弁7の設置を省略する代わりに、第一センサ8の検出圧力に基づき、ボイラ3を制御してもよい。この場合、図2において、蒸気圧縮機2は、第一設定値P1でオンオフされ、ボイラ3は、第三設定値P3でオンオフされる。
具体的には、第一センサ8の検出圧力が第三設定値P3未満であると、蒸気圧縮機2は駆動されていると共にボイラ3も駆動されている。これにより、蒸気圧縮機2およびボイラ3からの蒸気が蒸気使用設備へ供給される。そして、第三設定値P3以上になると、ボイラ3が停止し、蒸気圧縮機2から蒸気供給される。第一センサ8の検出圧力が第一設定値P1以上になると、蒸気圧縮機2が停止し、蒸気圧縮機2からの蒸気供給も停止される。そして、第一センサ8の検出圧力が第一設定値P1未満になると、蒸気圧縮機2が駆動され、その後、蒸気圧縮機2による蒸気だけでは賄い切れず、第三設定値P3未満になると、ボイラ3が駆動してボイラ3からも蒸気が供給される。
この場合も、図3と同様に、第一設定値P1および第三設定値P3には、所望によりそれぞれディファレンシャル(動作隙間)が設定されるのは言うまでもない。また、蒸気圧縮機2は、その駆動と停止のオンオフ制御でなく、たとえば回転数を調整されることで、比例制御やPID制御されてもよい。また、ボイラ3も、オンオフ制御(たとえば燃料焚きボイラでは燃焼とその停止)ではなく、三位置制御(たとえば燃料焚きボイラでは高燃焼、低燃焼、停止)、または比例制御やPID制御(たとえば燃料焚きボイラでは燃焼量の調整)されてもよい。なお、燃料焚きボイラを三位置制御する場合、低燃焼時の設定圧が第三設定値P3に相当し、高燃焼時の設定圧はそれより低圧に設定される。
まず、第一設定値P1および第三設定値P3に、それぞれディファレンシャルが設定されたオンオフ制御を説明する。この場合、第一設定値P1については、第一上限圧力P1Hと第一下限圧力P1Lとが設定され、圧力上昇時、第一センサ8の検出圧力が第一上限圧力P1H以上になると蒸気圧縮機2が停止し、圧力下降時、第一センサ8の検出圧力が第一下限圧力P1L未満になると蒸気圧縮機2が駆動する。また、第三設定値P3については、第三上限圧力P3Hと第三下限圧力P3Lとが設定され、圧力上昇時、第三上限圧力P3H以上になるとボイラ3が停止し、圧力下降時、第三下限圧力P3L未満になるとボイラ3が駆動する。
次に、蒸気圧縮機2とボイラ3を比例制御する場合の一例について説明する。この場合、第一センサ8の検出圧力に基づき、第一上限圧力P1Hと第一下限圧力P1Lとの範囲で、且つその第一上限圧力P1Hを設定値(目標値)として蒸気圧縮機2を比例制御する。また、第一センサ8の検出圧力に基づき、第三上限圧力P3Hと第三下限圧力P3Lとの範囲で、且つその第三上限圧力P3Hを設定値(目標値)としてボイラ3を比例制御する。これには、燃料焚きボイラの場合には燃焼量を調整し、電気ボイラの場合には電気ヒータへの給電量を調整し、廃熱ボイラの場合には供給熱量を調整すればよい。ここで、第一上限圧力P1H以上では、蒸気圧縮機2は停止し、第一下限圧力P1L未満では、蒸気圧縮機2は全負荷運転する。また、第三上限圧力P3H以上では、ボイラ3は停止し、第三下限圧力P3L未満では、ボイラ3は全負荷運転する。なお、比例制御ではなくPID制御を行ってもよい。
いずれの場合も、第二センサ14により圧力または温度を監視し、この圧力または温度が下端値未満になると、蒸気圧縮機2を運転しても所望の蒸気を得られないので、蒸気圧縮機2を停止させるのがよい。
ところで、ボイラ蒸気供給弁7の設置を省略する代わりに、第一センサ8の検出圧力に基づきボイラ3を制御する場合、ボイラ3からの第二蒸気路5には、蒸気圧縮機2からの第一蒸気路4との合流部よりも上流側に、逆止弁を設けておくのが好ましい。これにより、ボイラ3が停止中、蒸気圧縮機2からの蒸気がボイラ3へ逆流するのが防止される。
〈(2)第二センサ14による制御〉
図4は、第二センサ14の検出圧力または検出温度、および蒸気圧縮機2の動作状態の対応関係を示す概略図である。ここでは、蒸気圧縮機2は、第二設定値(第二設定圧力P2または第二設定温度T2)でオンオフされる。
なお、以下では、第二センサ14が圧力センサとされ、第二設定値が圧力値P2として設定され、蒸気圧縮機2が圧力制御される場合について説明するが、第二センサ14が温度センサとされ、第二設定値が温度値T2として設定され、蒸気圧縮機2が温度制御されてもよい。その場合、P2をT2、PHをTHと読み替えれば、同様に制御可能である。
第二センサ14の検出圧力が第二設定値P2未満であると、蒸気圧縮機2を運転しても所望の蒸気を得られないとして、蒸気圧縮機2を停止している。そして、第二センサ14の検出圧力が第二設定値P2以上になると、蒸気圧縮機2を駆動させ、蒸気圧縮機2から蒸気を送り出す。その後、万一、第二センサ14の検出圧力がさらに上昇して上端値PH以上になると、蒸気圧縮機2を強制停止してもよい。一方、第二センサ14の検出圧力が第二設定値P2未満になると、蒸気圧縮機2を停止させる。
第二設定値P2には、所望によりディファレンシャル(動作隙間)が設定されるのは言うまでもない。また、蒸気圧縮機2は、その駆動と停止のオンオフ制御でなく、たとえば回転数を調整されることで、比例制御やPID制御されてもよい。この場合について、図5に基づき説明する。なお、図5において、第二上限圧力P2Hと第二下限圧力P2Lとの範囲が、第二設定値P2のディファレンシャルまたは比例帯である。
まず、第二設定値P2に、ディファレンシャルが設定されたオンオフ制御を説明する。この場合、第二設定値P2については、第二上限圧力P2Hと第二下限圧力P2Lとが設定され、圧力上昇時、第二上限圧力P2H以上になると蒸気圧縮機2が駆動し、圧力下降時、第二下限圧力P2L未満になると蒸気圧縮機2が停止する。
次に、蒸気圧縮機2を比例制御する場合の一例について説明する。この場合、第二センサ14の検出圧力に基づき、第二上限圧力P2Hと第二下限圧力P2Lとの範囲で、且つその第二下限圧力P2Lを設定値(目標値)として蒸気圧縮機2を比例制御する。ここで、第二下限圧力P2L未満では、蒸気圧縮機2は停止し、第二上限圧力P2H以上では、蒸気圧縮機2は全負荷運転する。なお、比例制御ではなくPID制御を行ってもよい。
いずれの場合も、第一センサ8により蒸気圧を監視し、この圧力が上端値以上になると、蒸気圧縮機2を運転して蒸気を発生させる必要はないので、蒸気圧縮機2を停止させるのがよい。
第二センサ14の検出圧力に基づき蒸気圧縮機2を制御する場合、第一センサ8の検出圧力に基づき蒸気圧縮機2を制御する場合のように、蒸気圧縮機2にて発生させる蒸気量を直接には制御できないが、前述したようにボイラ蒸気供給弁7などにより、ボイラ3からの蒸気供給を調整することで、蒸気使用設備へは安定して蒸気を供給することができる。
〈(3)第一センサ8と第二センサ14との切替制御〉
第一センサ8と第二センサ14との切替制御は、図3による制御と、図5による制御との組合せといえる。具体的には、まず、蒸気圧縮機2は、第一センサ8の検出圧力に基づき、第一上限圧力P1Hと第一下限圧力P1Lとの範囲で、且つその第一上限圧力P1Hを設定値として比例制御可能とされる。また、蒸気圧縮機2は、第二センサ14の検出圧力に基づき、第二上限圧力P2Hと第二下限圧力P2Lとの範囲で、且つその第二下限圧力P2Lを設定値として比例制御可能とされる。そして、設定タイミング(たとえば設定時間ごと)で、次式により第一偏差率η1と第二偏差率η2とを求め、第一センサ8による制御と第二センサ14による制御との内、偏差率の小さい方の制御に適宜切り替えて、蒸気圧縮機2を制御すればよい。具体的には、η1<η2の関係にある場合、第一センサ8の検出圧力に基づき蒸気圧縮機2を比例制御すればよく、η1>η2の関係にある場合、第二センサ14の検出圧力に基づき蒸気圧縮機2を比例制御すればよい。なお、次式において、現在圧力Pは、第一センサ8により検出され、現在圧力P´は、第二センサ14により検出される。
第一偏差率η1=(第一上限圧力P1H−現在圧力P)/(第一上限圧力P1H−第一下限圧力P1L)
第二偏差率η2=(現在圧力P´−第二下限圧力P2L)/(第二上限圧力P2H−第二下限圧力P2L)
偏差率が小さいほど、目標値に近いので、蒸気圧縮機2の操作量は小さくなる。仮に、偏差率が大きい方、つまり操作量が大きい方で蒸気圧縮機2を制御しようとすると、偏差率が小さい方、つまり操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、偏差率の小さい方の制御に適宜切り替えて制御することで、蒸気圧縮機2が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、圧力制御か温度制御かを手動設定する必要もない。
この制御中、第二センサ14の検出圧力が下端値未満になったり、第二センサ14の検出圧力が上端値以上になったり、第一センサ8の検出圧力が上端値以上になったりすると、蒸気圧縮機2を停止させるのがよい。なお、比例制御ではなくPID制御を行ってもよい。
また、第二センサ14による制御では、第二センサ14が圧力センサとされ、第二設定値が圧力値P2(第二上限圧力P2H,第二下限圧力P2L)で設定される場合について説明したが、第二センサ14が温度センサとされ、第二設定値が温度値T2(第二上限温度T2H,第二下限温度T2L)で設定されてもよい。その場合、現在温度T´を第二センサ14により検出して、次式を用いて第二偏差率η2を算出して、同様に制御すればよい。
第二偏差率η2=(現在温度T´−第二下限温度T2L)/(第二上限温度T2H−第二下限温度T2L)
なお、第一上限圧力P1Hを第一上限値、第一下限圧力P1Lを第一下限値、第二上限圧力P2Hおよび第二上限温度T2Hを第二上限値、第二下限圧力P2Lおよび第二下限温度T2Lを第二下限値、第一センサおよび第二センサの各検出値を現在値ということで、第一偏差率η1と第二偏差率η2の算定式を次のようにまとめることができる。
第一偏差率η1=(第一上限値−現在値)/(第一上限値−第一下限値)
第二偏差率η2=(現在値−第二下限値)/(第二上限値−第二下限値)
第一センサ8による制御と第二センサ14による制御とは、上述したように偏差率に基づき切り替える以外に、蒸気圧縮機2の操作量に基づき切り替えてもよい。この場合も、蒸気圧縮機2は、第一センサ8の検出圧力に基づき、第一上限圧力P1Hと第一下限圧力P1Lとの範囲で、且つその第一上限圧力P1Hを設定値として比例制御またはPID制御可能とされる。また、蒸気圧縮機2は、第二センサ14の検出圧力(または検出温度)に基づき、第二上限圧力P2H(または第二上限温度T2H)と第二下限圧力P2L(または第二下限温度T2L)との範囲で、且つその第二下限圧力P2L(または第二下限温度T2L)を設定値として比例制御またはPID制御可能とされる。
そして、設定タイミング(たとえば設定時間ごと)で、第一センサ8による制御における蒸気圧縮機2の操作量と、第二センサ14による制御における蒸気圧縮機2の操作量とを求め、第一センサ8による制御と第二センサ14による制御との内、操作量の小さい方で蒸気圧縮機2を制御すればよい。たとえば、第一センサ8による制御では操作量Xとする必要がある一方、第二センサ14による制御では操作量Yとする必要がある場合において、X<Yの関係にある場合、第一センサ8の検出圧力に基づき蒸気圧縮機2を制御すればよく、X>Yの関係にある場合、第二センサ14の検出圧力(または検出温度)に基づき蒸気圧縮機2を制御すればよい。
第一センサ8による制御と第二センサ14による制御とを操作量に基づき切り替える場合も、前述した偏差率に基づき切り替える場合と同様に、蒸気圧縮機2が停止する頻度を少なくすることができると共に、停止するにしても停止状態へ緩やかに移行することができる。
図6は、本発明の蒸気システム1の実施例2を示す概略図である。本実施例2の蒸気システム1も、基本的には前記実施例1と同様である。そこで、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
本実施例2の蒸気システム1は、蒸気圧縮機2の入口側に、蒸気圧縮式のヒートポンプ15を備える。蒸気圧縮式のヒートポンプ15は、周知のとおり、圧縮機16、凝縮器17、膨張弁18および蒸発器19が順次環状に接続されて構成される。そして、圧縮機16は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器17は、圧縮機16からのガス冷媒を凝縮液化する。さらに、膨張弁18は、凝縮器17からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器19は、膨張弁18からの冷媒の蒸発を図る。
従って、ヒートポンプ15は、蒸発器19において、冷媒が外部から熱を奪って気化する一方、凝縮器17において、冷媒が外部へ放熱して凝縮することになる。これを利用して、ヒートポンプ15は、蒸発器19において、温水(たとえば工場などから排出される排温水)、空気(外気の他、空気圧縮機からの吐出空気のように熱を持った空気を含む)、または排ガスなどから熱をくみ上げ、凝縮器17において、水を加温して蒸気を発生させる。凝縮器17への給水としては、凝縮器17を構成する熱交換器内へのスケール(水中の硬度分が析出したもの)の付着を防止するために、純水または軟水であるのが好ましい。
圧縮機16は、圧縮機本体とその駆動装置とを備え、駆動装置はエンジン(典型的にはガスエンジンまたはディーゼルエンジン)および/またはモータから構成される。圧縮機16の制御の具体的態様としては、たとえば、駆動装置がオンオフ制御される。あるいは、圧縮機本体と駆動装置との間に、駆動装置から圧縮機本体への動力伝達装置(クラッチおよび/または変速機)を設けておき、駆動装置から圧縮機本体への動力伝達の有無や量を変更するように、動力伝達装置が制御される。あるいは、駆動装置を構成するモータをインバータで制御して、モータの回転数を変える。あるいは、駆動装置を構成するエンジンのアクセルを制御して、エンジンの出力を変える。あるいは、圧縮機本体の冷媒吐出流量(吸込側を調整することにより吐出流量を変える場合も含む)を機械的に調整するために、圧縮機本体が制御される。これらの内、複数のものを組み合わせて、圧縮機16を制御してもよい。なお、駆動装置としてモータを用いる場合、SOFC(固体酸化物形燃料電池)の電力でモータを駆動してもよい。
凝縮器17は、冷媒と水とを混ぜることなく熱交換する構成であれば、その具体的構成を特に問わない。たとえば、プレート式熱交換器またはシェルアンドチューブ式熱交換器が用いられる。凝縮器17には給水路20を介して水が供給可能とされ、凝縮器17には所望量の水が貯留される。そして、その水が、ヒートポンプ15の冷媒で加熱され、蒸気化される。
蒸発器19は、温水、空気または排ガスなどの熱源流体と、ヒートポンプ15の冷媒とを混ぜることなく熱交換する構成であれば、凝縮器17の場合と同様に、その具体的構成を特に問わない。
ヒートポンプ15に用いる冷媒は、特に問わないが、炭素数が4以上のハイドロフルオロカーボン(HFC)またはこれに水および/または消火液を加えたもの、アルコール(たとえばエチルアルコールまたはメチルアルコール)またはこれに水および/または消火液を加えたもの、または水(たとえば純水または軟水)が好適に用いられる。
ヒートポンプ15には、凝縮器17から膨張弁18への冷媒と、蒸発器19から圧縮機16への冷媒とを混ぜることなく熱交換する液ガス熱交換器(図示省略)を設けてもよい。液ガス熱交換器を設けることで、蒸発器19から圧縮機16への冷媒は、凝縮器17から膨張弁18への冷媒で過熱される。このようにして、圧縮機16の入口側のエンタルピを高めて、そしてそれにより圧縮機16の出口側のエンタルピも高めることで、ヒートポンプ15の成績係数(COP)を高めることができる。しかも、圧縮機16へ液冷媒が供給される不都合も防止できる。
ヒートポンプ15には、凝縮器17と膨張弁18との間に、所望によりサブクーラ21を設けてもよい。サブクーラ21は、凝縮器17から膨張弁18への冷媒と、凝縮器17への給水とを混ぜることなく熱交換する間接熱交換器である。サブクーラ21により、凝縮器17への給水で、凝縮器17から膨張弁18への冷媒を過冷却することができると共に、凝縮器17から膨張弁18への冷媒で、凝縮器17への給水を加温することができる。また、冷媒と水との熱交換は、顕熱による熱交換部としてのサブクーラ21と、主として潜熱による熱交換部としての凝縮器17とに分けられるので、伝熱効率を向上することができる。
液ガス熱交換器とサブクーラ21との双方を設ける場合、凝縮器17からの冷媒は、液ガス熱交換器を通過後にサブクーラ21に通してもよいし、サブクーラ21を通過後に液ガス熱交換器に通してもよいし、液ガス熱交換器とサブクーラ21とに並行に通してもよい。
ヒートポンプ15には、膨張弁18と蒸発器19との間に、所望によりサブヒータ(図示省略)を設けてもよい。サブヒータは、膨張弁18から蒸発器19への冷媒と、蒸発器19を通された後の熱源流体とを混ぜることなく熱交換する間接熱交換器である。サブヒータにより、蒸発器19を通された後の熱源流体で、膨張弁18から蒸発器19への冷媒の加温を図ることができる。
ヒートポンプ15は、以上のような構成であるから、温水、空気または排ガスなどの熱源流体が蒸発器19に通され、熱源流体から熱をくみ上げ、凝縮器17において水を加熱して蒸気を発生させる。そして、その蒸気は、供給路10を介して蒸気圧縮機2へ送られ、蒸気圧縮機2は、その蒸気を吸入し圧縮して吐出する。
本実施例2の場合、蒸発器19への熱源流体の供給路22、または蒸発器19からの熱源流体の排出路23に、圧力センサまたは温度センサからなる第二センサ14が設けられる。たとえば、蒸気使用設備のドレンが、第一蒸気トラップ(図示省略)を介してフラッシュ蒸気およびその凝縮水とされた後、少なくともその蒸気が蒸発器19に通され、蒸発器19を通過後に第二蒸気トラップ(図示省略)を介して大気圧下に排出される場合には、蒸発器19の入口側または出口側において、両蒸気トラップ間の圧力または温度を検出するように第二センサ14を設ければよい。また、その第二蒸気トラップの設置を省略する場合や、単に蒸発器19に温水を通す場合には、蒸発器19からの排出路23に温度センサからなる第二センサ14を設けるのが好ましい。
また、本実施例2の場合、凝縮器17から蒸気圧縮機2への蒸気の供給路10には、圧力センサからなる第三センサ24が設けられる。但し、この第三センサ24は、凝縮器17と蒸気圧縮機2との間の蒸気圧を監視するのではなく、ヒートポンプ15の凝縮器17の冷媒の圧力を監視してもよい。凝縮器17の冷媒の圧力は、圧縮機16出口から膨張弁18入口までのいずれの箇所で検知してもよい。
本実施例2でも、(1)第一センサ8による制御、(2)第二センサ14による制御、(3)第一センサ8と第二センサ14との切替制御のいずれかが行われる。
〈(1)第一センサ8による制御〉
第一センサ8による制御は、基本的には前記実施例1と同様に、第一センサ8の検出圧力に基づき、蒸気圧縮機2とボイラ蒸気供給弁7を制御すればよい。この際、前記実施例1と同様、ボイラ蒸気供給弁7は、第一センサ8の検出圧力に基づき制御される以外に、自力式の減圧弁により構成されてもよい。また、ボイラ蒸気供給弁7を設置してこれを制御する代わりに、ボイラ蒸気供給弁7の設置を省略して、ボイラ3自体を制御してもよい。
図6において破線で示すように、第一センサ8の検出圧力に基づき蒸気圧縮機2を制御する場合、ヒートポンプ15の圧縮機16は、第三センサ24の検出圧力に基づき制御される。第三センサ24の検出圧力に基づき圧縮機16を制御する場合の目標圧力は、予め設定されている。
〈(2)第二センサ14による制御〉
第二センサ14による制御は、前記実施例1では、第二センサ14の検出値に基づき蒸気圧縮機2を制御したが、本実施例2では、第二センサ14の検出値に基づきヒートポンプ15の圧縮機16が制御される。つまり、図4において、蒸気圧縮機2ではなく、ヒートポンプ15の圧縮機16が、第二設定値(第二設定圧力P2または第二設定温度T2)でオンオフされる。
すなわち、第二センサ14の検出圧力が第二設定値P2未満であると、圧縮機16を運転しても所望の蒸気を得られないとして、圧縮機16を停止している。そして、第二センサ14の検出圧力が第二設定値P2以上になると、圧縮機16を駆動させ、凝縮器17にて蒸気を発生させる。その後、万一、第二センサ14の検出圧力がさらに上昇して上端値PH以上になると、圧縮機16を強制停止してもよい。一方、第二センサ14の検出圧力が第二設定値P2未満になると、圧縮機16を停止させる。
また、第二設定値P2に、ディファレンシャルが設定されたオンオフ制御の場合、第二設定値P2については、第二上限圧力P2Hと第二下限圧力P2Lとが設定され、圧力上昇時、第二上限圧力P2H以上になると圧縮機16が駆動し、圧力下降時、第二下限圧力P2L未満になると圧縮機16が停止する。
また、圧縮機16を比例制御またはPID制御する場合、第二センサ14の検出圧力に基づき、第二上限圧力P2Hと第二下限圧力P2Lとの範囲で、且つその第二下限圧力P2Lを設定値(目標値)として圧縮機16を制御する。ここで、第二下限圧力P2L未満では、圧縮機16は停止し、第二上限圧力P2H以上では、圧縮機16は全負荷運転する。
以上では、第二センサ14は圧力センサとされ、第二設定値が圧力値P2として設定され、圧縮機16が圧力制御される場合について説明したが、第二センサ14が温度センサとされ、第二設定値が温度値T2として設定され、圧縮機16が温度制御されてもよい。
図6において一点鎖線で示すように、第二センサ14の検出値に基づき圧縮機16を制御する場合、蒸気圧縮機2は、第三センサ24の検出値に基づき制御される。第三センサ24の検出値に基づき蒸気圧縮機2を制御する場合の目標圧力は、予め設定されている。
〈(3)第一センサ8と第二センサ14との切替制御〉
第一センサ8と第二センサ14との切替制御は、本実施例2における上述した第一センサ8による制御と、本実施例2における上述した第二センサ14による制御との切替制御であり、その切り替えの仕方は、前記実施例1と同様である。
すなわち、第一センサ8による制御では、蒸気圧縮機2は、第一センサ8の検出圧力に基づき、第一上限圧力P1Hと第一下限圧力P1Lとの範囲で、且つその第一上限圧力P1Hを設定値として比例制御またはPID制御可能とされる。そして、この際、ヒートポンプ15の圧縮機16は、第三センサ24の検出圧力に基づき制御される。
一方、第二センサ14による制御では、ヒートポンプ15の圧縮機16は、第二センサ14の検出圧力(または検出温度)に基づき、第二上限圧力P2H(または第二上限温度T2H)と第二下限圧力P2L(または第二下限温度T2L)との範囲で、且つその第二下限圧力P2L(または第二下限温度T2L)を設定値として比例制御またはPID制御可能とされる。そして、この際、蒸気圧縮機2は、第三センサ24の検出圧力に基づき制御される。
そして、設定タイミング(たとえば設定時間ごと)で、前記実施例1と同様に、第一偏差率η1と第二偏差率η2とを求め、第一センサ8による制御と第二センサ14による制御との内、偏差率の小さい方の制御に適宜切り替えて制御すればよい。この場合、第一偏差率η1は、蒸気圧縮機2について求められ、第二偏差率η2は、圧縮機16について求められることになる。
また、前記実施例1と同様、偏差率η1,η2に基づき切り替える以外に、蒸気圧縮機2および圧縮機16の操作量に基づき切り替えてもよい。この場合、設定タイミング(たとえば設定時間ごと)で、第一センサ8による制御における蒸気圧縮機2の操作量(第一操作量y1)と、第二センサ14による制御における圧縮機16の操作量(第二操作量y2)とから、第一操作量y1の第二操作量y2に対する比の値y1/y2を求め、この値が予め設定された定数未満なら、第一センサ8による制御を行う一方、前記定数以上なら第二センサ14による制御を行えばよい。その他の構成および制御は、前記実施例1と同様のため、説明は省略する。
図7は、本発明の蒸気システム1の実施例3を示す概略図である。本実施例3の蒸気システム1も、基本的には前記実施例2と同様である。そこで、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
前記実施例2では、ヒートポンプ15は単段とされたが、本実施例3では、ヒートポンプ15が複数段とされる。図示例では、ヒートポンプ15(15A,15B)は二段とされるが、三段以上に構成してもよい。
ヒートポンプ15が複数段の場合も、それを構成する各段のヒートポンプ15は、基本的には図6で示した単段のヒートポンプ15と同様である。ヒートポンプ15を複数段にする場合、隣接する段のヒートポンプ15,15同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。前者の場合、下段ヒートポンプ15Aの圧縮機16Aからの冷媒と上段ヒートポンプ15Bの膨張弁18Bからの冷媒とを受けて、両冷媒を混ぜることなく熱交換する間接熱交換器を備え、この間接熱交換器が下段ヒートポンプ15Aの凝縮器17Aであると共に上段ヒートポンプ15Bの蒸発器19Bとなる。一方、後者の場合、下段ヒートポンプ15Aの圧縮機16Aからの冷媒と上段ヒートポンプ15Bの膨張弁18Bからの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプ15Aの凝縮器17Aであると共に上段ヒートポンプ15Bの蒸発器19Bとなる。
このように、複数段(多段)のヒートポンプ15には、複数元(多元)のヒートポンプ、一元多段のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。いずれにしても、ヒートポンプ15が複数段の場合、最下段のヒートポンプ15Aの蒸発器19Aにおいて、外部から熱をくみ上げ、最上段のヒートポンプ15Bの凝縮器17Bにおいて、水を加温して蒸気を発生させる。
なお、複数段のヒートポンプ15の内の一部または全部のヒートポンプ15において、所望により前述した液ガス熱交換器を設けてもよい。また、複数段のヒートポンプ15の内の最上段のヒートポンプ15Bにおいて、凝縮器17Bと膨張弁18Bとの間に、所望により前述したサブクーラ21を設けてもよい。さらに、複数段のヒートポンプ15の内の最下段のヒートポンプ15Aにおいて、膨張弁18Bと蒸発器19Bとの間に、所望により前述したサブヒータを設けてもよい。
本実施例3の場合、第二センサ14は、最下段のヒートポンプ15Aの蒸発器19Aの入口側または出口側において、熱源流体の圧力または温度を検出する。また、第三センサ24は、最上段のヒートポンプ15Bの凝縮器17Bから蒸気圧縮機2への蒸気の圧力、または最上段のヒートポンプ15Bの凝縮器17Bの冷媒の圧力を検出する。
本実施例3でも、(1)第一センサ8による制御、(2)第二センサ14による制御、(3)第一センサ8と第二センサ14との切替制御のいずれかが行われる。
〈(1)第一センサ8による制御〉
第一センサ8による制御は、本実施例3でも、第一センサ8の検出値に基づき蒸気圧縮機2が制御される。その制御の具体的内容は、前記実施例2で述べたのと同様である。そして、図7において破線で示すように、第一センサ8の検出値に基づき蒸気圧縮機2を制御する場合、最上段のヒートポンプ15Bの圧縮機16Bは、第三センサ24の検出値に基づき制御され、それより下段の各ヒートポンプ15Aの圧縮機16Aは、その段の凝縮器17Aまたは一つ上段の蒸発器19Bの冷媒の圧力(冷媒圧センサ25の検出値)に基づき制御される。なお、後述する第二センサ14による制御でも同様であるが、凝縮器17の冷媒の圧力は、圧縮機16出口から膨張弁18入口までのいずれの箇所で検知してもよく、また蒸発器19の冷媒の圧力は、膨張弁18出口から圧縮機16入口までのいずれの箇所で検知してもよい。
〈(2)第二センサ14による制御〉
第二センサ14による制御は、本実施例3では、第二センサ14の検出値に基づき最下段のヒートポンプ15Aの圧縮機16Aが制御される。その制御の具体的内容は、前記実施例2で述べたのと同様である。そして、図7において一点鎖線で示すように、第二センサ14の検出値に基づき最下段のヒートポンプ15Aの圧縮機16Aを制御する場合、それより上段の各ヒートポンプ15Bの圧縮機16Bは、その段の蒸発器19Bまたは一つ下段の凝縮器17Aの冷媒の圧力(冷媒圧センサ25の検出値)に基づき制御され、蒸気圧縮機2は、第三センサ24の検出値に基づき制御される。
〈(3)第一センサ8と第二センサ14との切替制御〉
第一センサ8と第二センサ14との切替制御は、本実施例3における上述した第一センサ8による制御と、本実施例3における上述した第二センサ14による制御との切替制御であり、その切り替えの仕方は、前記実施例2と同様である。すなわち、蒸気圧縮機2について求めた第一偏差率η1と、最下段のヒートポンプ15Aの圧縮機16Aについて求めた第二偏差率η2との内、偏差率の小さい方の制御に適宜切り替えればよい。あるいは、第一センサ8による制御における蒸気圧縮機2の操作量(第一操作量y1)と、第二センサ14による制御における最下段のヒートポンプ15Aの圧縮機16Aの操作量(第二操作量y2)とから、第一操作量y1の第二操作量y2に対する比の値y1/y2を求め、この値が予め設定された定数未満なら、第一センサ8による制御を行う一方、前記定数以上なら第二センサ14による制御を行えばよい。その他の構成および制御は、前記実施例2と同様のため、説明は省略する。
図8は、本発明の蒸気システム1の実施例4を示す概略図である。本実施例4の蒸気システム1も、基本的には前記各実施例(特に前記実施例2)と同様である。そこで、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
前記実施例1では、蒸気圧縮機2は単段とされたが、本実施例4では、蒸気圧縮機2は複数段とされる。図示例では、蒸気圧縮機2(2A,2B)は二段とされるが、三段以上に構成してもよい。
蒸気圧縮機2が複数段の場合、最下段の蒸気圧縮機2Aは、セパレータタンク11からの蒸気を吸入し圧縮して吐出し、それより上段の各蒸気圧縮機2Bは、一つ下段の蒸気圧縮機2Aからの蒸気を吸入し圧縮して吐出する。
本実施例4の場合、第二センサ14は、実施例1と同様に、セパレータタンク11またはそこから最下段の蒸気圧縮機2Aへの供給路10に設けられる。
本実施例4でも、(1)第一センサ8による制御、(2)第二センサ14による制御、(3)第一センサ8と第二センサ14との切替制御のいずれかが行われる。
〈(1)第一センサ8による制御〉
第一センサ8による制御は、本実施例3では、第一センサ8の検出値に基づき最上段の蒸気圧縮機2Bが制御される。そして、図8において破線で示すように、第一センサ8の検出値に基づき最上段の蒸気圧縮機2Bを制御する場合、それより下段の各蒸気圧縮機2Aは、その出口側の蒸気の圧力(図示例では第四センサ26の検出値)に基づき制御される。制御の具体的内容は、ヒートポンプ15の圧縮機16に代えて蒸気圧縮機2を制御する点が異なるだけで、前記実施例2や前記実施例3で述べたのと同様である。
〈(2)第二センサ14による制御〉
第二センサ14による制御は、本実施例3では、第二センサ14の検出値に基づき最下段の蒸気圧縮機2Aが制御される。そして、図8において一点鎖線で示すように、第二センサ14の検出値に基づき最下段の蒸気圧縮機2Aを制御する場合、それより上段の各蒸気圧縮機2Aは、その入口側の蒸気の圧力(図示例では第四センサ26の検出値)に基づき制御される。制御の具体的内容は、ヒートポンプ15の圧縮機16に代えて蒸気圧縮機2を制御する点が異なるだけで、前記実施例2や前記実施例3で述べたのと同様である。
〈(3)第一センサ8と第二センサ14との切替制御〉
第一センサ8と第二センサ14との切替制御は、本実施例4における上述した第一センサ8による制御と、本実施例4における上述した第二センサ14による制御との切替制御であり、その切り替えの仕方は、前記実施例2や前記実施例3と同様である。すなわち、最上段の蒸気圧縮機2Bについて求めた第一偏差率η1と、最下段の蒸気圧縮機2Aについて求めた第二偏差率η2との内、偏差率の小さい方の制御に適宜切り替えればよい。あるいは、第一センサ8による制御における最上段の蒸気圧縮機2Aの操作量(第一操作量y1)と、第二センサ14による制御における最下段の蒸気圧縮機2Bの操作量(第二操作量y2)とから、第一操作量y1の第二操作量y2に対する比の値y1/y2を求め、この値が予め設定された定数未満なら、第一センサ8による制御を行う一方、前記定数以上なら第二センサ14による制御を行えばよい。その他の構成および制御は、前記実施例2や前記実施例3と同様のため、説明は省略する。
前記実施例1では、単段の蒸気圧縮機2、前記実施例2では、単段の蒸気圧縮機2と単段のヒートポンプ15、前記実施例3では、単段の蒸気圧縮機2と複数段のヒートポンプ15A,15B、前記実施例4では、複数段の蒸気圧縮機2A,2Bを備える構成について説明したが、複数段の蒸気圧縮機2A,2Bと単段または複数段のヒートポンプ15(15A,15B)を備える構成としてもよい。すなわち、図6および図7において、蒸気圧縮機2を図8のように複数段としてもよい。
そして、第一センサ8の検出値に基づき最上段の蒸気圧縮機2Bを制御する場合、それより下段の各蒸気圧縮機2Aは、その出口側の蒸気の圧力に基づき制御される。そして、図6に示すように、ヒートポンプ15が単段の場合には、そのヒートポンプ15の圧縮機16は、第三センサ24の検出値に基づき制御され、図7に示すように、ヒートポンプ15が複数段の場合には、最上段のヒートポンプ15Bの圧縮機16Bは、第三センサ24の検出値に基づき制御され、それより下段の各ヒートポンプ15Aの圧縮機16Aは、その段の凝縮器17Aまたは一つ上段の蒸発器19Bの冷媒の圧力に基づき制御される。
また、ヒートポンプ15が単段の場合には、第二センサ14の検出値に基づき単段のヒートポンプ15の圧縮機16を制御すると共に、最下段の蒸気圧縮機2Aは、第三センサ24の検出値に基づき制御され、それより上段の各蒸気圧縮機2Bは、その入口側の蒸気の圧力に基づき制御される。一方、ヒートポンプ15が複数段の場合には、第二センサ14の検出値に基づき最下段のヒートポンプ15Aの圧縮機16Aを制御すると共に、それより上段の各ヒートポンプ15Bの圧縮機16Bは、その段の蒸発器19Bまたは一つ下段の凝縮器17Aの冷媒の圧力に基づき制御され、最下段の蒸気圧縮機2Aは、第三センサ24の検出値に基づき制御され、それより上段の各蒸気圧縮機2Bは、その入口側の蒸気の圧力に基づき制御される。
そして、この場合も、第一センサ8と第二センサ14との切替制御を、前記各実施例と同様に行うことができる。このように、蒸気圧縮機2とヒートポンプ15の段数は特に問わず、制御については、蒸気圧縮機2と、ヒートポンプ15の圧縮機16とを、同等にとらえることができる。
本発明の蒸気システム1は、前記各実施例の構成に限らず、適宜変更可能である。特に、前記各実施例では、蒸気圧縮機2にボイラ3を併設した例を示したが、ボイラ3は必ずしも必要ではない。すなわち、前記各実施例では、蒸気圧縮機2からの蒸気にボイラ3からの蒸気を合流するよう構成したが、ボイラ3からの蒸気の合流は適宜省略可能である。
また、前記各実施例において、蒸気圧縮機2またはその入口もしくは出口において、適宜注水を図ってもよい。この際、その蒸気圧縮機2の回転数に基づき、あるいは蒸気圧縮機2の入口側または出口側の蒸気圧と蒸気圧縮機2の回転数とに基づき、注水量を調整するのがよい。たとえば、前記実施例1では、蒸気圧縮機2の回転数、および所望によりさらに第一センサ8または第二センサ14の検出値に基づき、蒸気圧縮機2への注水量を調整すればよい。
1 蒸気システム
2 蒸気圧縮機
3 ボイラ
7 ボイラ蒸気供給弁
8 第一センサ
14 第二センサ
15 ヒートポンプ
16 圧縮機
17 凝縮器
18 膨張弁
19 蒸発器
24 第三センサ
25 冷媒圧センサ

Claims (7)

  1. 蒸気を吸入し圧縮して吐出する蒸気圧縮機と、
    この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、
    この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、
    前記蒸気圧縮機からの蒸気に、ボイラからの蒸気がボイラ蒸気供給弁を介して合流するよう構成され、
    前記第一センサは、前記蒸気圧縮機からの蒸気と前記ボイラからの蒸気との合流蒸気の圧力を検出可能な位置に設けられ、
    前記蒸気圧縮機は、前記第一センサの検出値を第一設定値に維持するよう制御され、
    前記ボイラ蒸気供給弁は、それより下流側の圧力を第三設定値に維持するよう開閉または開度が調整され、
    前記第三設定値は、前記第一設定値よりも低く設定される
    ことを特徴とする蒸気システム。
  2. 蒸気を吸入し圧縮して吐出する蒸気圧縮機と、
    この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、
    この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、
    前記蒸気圧縮機からの蒸気に、ボイラからの蒸気が合流するよう構成され、
    前記第一センサは、前記蒸気圧縮機からの蒸気と前記ボイラからの蒸気との合流蒸気の圧力を検出可能な位置に設けられ、
    前記蒸気圧縮機は、前記第一センサの検出値を第一設定値に維持するよう制御され、
    前記ボイラは、前記第一センサの検出値を第三設定値に維持するよう制御され、
    前記第三設定値は、前記第一設定値よりも低く設定される
    ことを特徴とする蒸気システム。
  3. 蒸気を吸入し圧縮して吐出する蒸気圧縮機と、
    この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、
    この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、
    単段または複数段の蒸気圧縮式ヒートポンプをさらに備え、
    単段または最下段のヒートポンプの蒸発器に熱源流体が通され、
    単段または最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して蒸気を発生させ、
    この凝縮器からの蒸気を、前記蒸気圧縮機が吸入し圧縮して吐出し、
    単段または最上段のヒートポンプの凝縮器の冷媒の圧力、またはその凝縮器から前記蒸気圧縮機へ送られる蒸気の圧力を検出する第三センサを備え、
    前記第一センサの検出値に基づき前記蒸気圧縮機を制御すると共に、単段または最上段のヒートポンプの圧縮機は、前記第三センサの検出値に基づき制御され、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御される
    ことを特徴とする蒸気システム。
  4. 蒸気を吸入し圧縮して吐出する蒸気圧縮機と、
    この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、
    この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、
    単段または複数段の蒸気圧縮式ヒートポンプをさらに備え、
    単段または最下段のヒートポンプの蒸発器に熱源流体が通され、
    単段または最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して蒸気を発生させ、
    この凝縮器からの蒸気を、前記蒸気圧縮機が吸入し圧縮して吐出し、
    単段または最下段のヒートポンプの蒸発器の入口側または出口側において、熱源流体の圧力または温度を検出する第二センサと、
    単段または最上段のヒートポンプの凝縮器の冷媒の圧力、またはその凝縮器から前記蒸気圧縮機へ送られる蒸気の圧力を検出する第三センサとを備え、
    前記第一センサに基づく制御に代えて、前記第二センサの検出値に基づき単段または最下段のヒートポンプの圧縮機を制御すると共に、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、前記蒸気圧縮機は、前記第三センサの検出値に基づき制御される
    ことを特徴とする蒸気システム。
  5. 蒸気を吸入し圧縮して吐出する蒸気圧縮機と、
    この蒸気圧縮機の出口側において蒸気の圧力を検出する第一センサとを備え、
    この第一センサの検出値に基づき前記蒸気圧縮機を制御する蒸気システムにおいて、
    複数段の蒸気圧縮機を備え、
    前記各蒸気圧縮機は、一つ下段の蒸気圧縮機からの蒸気を吸入し圧縮して吐出し、
    前記第一センサは、最上段の蒸気圧縮機の出口側において蒸気の圧力を検出する
    ことを特徴とする蒸気システム。
  6. 前記第一センサの検出値に基づき最上段の蒸気圧縮機を制御すると共に、それより下段の各蒸気圧縮機は、その出口側の蒸気の圧力に基づき制御される
    ことを特徴とする請求項5に記載の蒸気システム。
  7. 最下段の蒸気圧縮機の入口側において圧力または温度を検出する第二センサを備え、
    前記第一センサに基づく制御に代えて、前記第二センサの検出値に基づき最下段の蒸気圧縮機を制御すると共に、それより上段の各蒸気圧縮機は、その入口側の蒸気の圧力に基づき制御される
    ことを特徴とする請求項5に記載の蒸気システム。
JP2010155968A 2010-07-08 2010-07-08 蒸気システム Active JP5614711B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155968A JP5614711B2 (ja) 2010-07-08 2010-07-08 蒸気システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155968A JP5614711B2 (ja) 2010-07-08 2010-07-08 蒸気システム

Publications (2)

Publication Number Publication Date
JP2012017700A JP2012017700A (ja) 2012-01-26
JP5614711B2 true JP5614711B2 (ja) 2014-10-29

Family

ID=45603127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155968A Active JP5614711B2 (ja) 2010-07-08 2010-07-08 蒸気システム

Country Status (1)

Country Link
JP (1) JP5614711B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632410B2 (ja) * 2012-03-13 2014-11-26 月島機械株式会社 加熱処理設備及び方法
JP5949383B2 (ja) * 2012-09-24 2016-07-06 三浦工業株式会社 蒸気発生システム
JP6321437B2 (ja) * 2014-04-17 2018-05-09 三浦工業株式会社 蒸気システム
WO2022266622A2 (en) * 2021-06-16 2022-12-22 Colorado State University Research Foundation Air source heat pump system and method of use for industrial steam generation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336467A (ja) * 1989-06-29 1991-02-18 Ebara Corp 高温ヒートポンプ
JP4901321B2 (ja) * 2006-06-14 2012-03-21 鹿島建設株式会社 蒸発装置
JP5130676B2 (ja) * 2006-08-15 2013-01-30 東京電力株式会社 蒸気発生システム
JP5157224B2 (ja) * 2007-04-05 2013-03-06 東京電力株式会社 蒸気生成システム
JP5448419B2 (ja) * 2008-11-06 2014-03-19 株式会社神戸製鋼所 蒸気圧縮装置
JP2010133696A (ja) * 2008-11-06 2010-06-17 Kobe Steel Ltd 蒸気圧縮装置

Also Published As

Publication number Publication date
JP2012017700A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5482519B2 (ja) 蒸気システム
JP5594650B2 (ja) 蒸気システム
JP5404333B2 (ja) 熱源システム
JP6819407B2 (ja) エンジン駆動式空気調和装置
JP5633731B2 (ja) ヒートポンプ式蒸気発生装置
JP6613759B2 (ja) エンジン駆動式空気調和装置
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
JP5652371B2 (ja) ヒートポンプ式蒸気発生装置
KR20120048395A (ko) 공조 겸용 급탕 장치 및 그 운전방법
JP5517667B2 (ja) 熱源システムおよびその制御方法
WO2009147826A1 (ja) 冷凍サイクル装置
JP5742079B2 (ja) 蒸気システム
JP5594645B2 (ja) 蒸気システム
JP5614711B2 (ja) 蒸気システム
CN102725596B (zh) 热泵系统
JP2009236397A (ja) 空気調和装置
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
JP5640815B2 (ja) 蒸気システム
KR101635701B1 (ko) 공기 조화기 및 이를 제어하는 방법
JP5545595B2 (ja) 蒸気システム
JP4179595B2 (ja) 空気調和機
JP5590313B2 (ja) 蒸気システム
CN109341132B (zh) 热泵系统及其控制方法
JP2012017925A (ja) 蒸気システム
JP2014169845A (ja) 給水加温システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5614711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140831

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250