JP5516602B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP5516602B2
JP5516602B2 JP2011547307A JP2011547307A JP5516602B2 JP 5516602 B2 JP5516602 B2 JP 5516602B2 JP 2011547307 A JP2011547307 A JP 2011547307A JP 2011547307 A JP2011547307 A JP 2011547307A JP 5516602 B2 JP5516602 B2 JP 5516602B2
Authority
JP
Japan
Prior art keywords
power element
temperature
refrigerant
cooler
dew condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011547307A
Other languages
English (en)
Other versions
JPWO2011077720A1 (ja
Inventor
尚宏 木戸
敏行 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2011547307A priority Critical patent/JP5516602B2/ja
Publication of JPWO2011077720A1 publication Critical patent/JPWO2011077720A1/ja
Application granted granted Critical
Publication of JP5516602B2 publication Critical patent/JP5516602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、冷媒回路の構成部品に電力を供給する電力供給装置のパワー素子を冷媒によって冷却する冷凍装置に関するものである。
従来より、圧縮機等の電力供給装置に用いられるパワー素子を、冷媒回路の冷媒によって冷却する冷凍装置が知られている。例えば、特許文献1には、主回路における凝縮器と膨張弁との間から分岐して圧縮機の吸入側配管に合流する分岐流路に、パワー素子を冷却するための冷却部を配置したものが開示されている。分岐流路の冷却部よりも上流側にはキャピラリーチューブが設けられている。この冷凍装置では、凝縮器で凝縮されて膨張弁へ向かう冷媒の一部が分岐流路に流入し、キャピラリーチューブで減圧された後に冷却部に流入する。そして、冷却部に流入した冷媒は、該冷却器においてパワー素子を冷却した後、吸入側配管に合流して圧縮機に吸入される。
実開昭61−76267号公報
ところで、上記電力供給装置のパワー素子の発熱量は使用状況や環境によって大きく変化する。しかしながら、上記冷凍装置では、分岐流路の冷媒はキャピラリーチューブによって減圧されるため、その減圧量が一定である。そのため、冷却器に流入する冷媒量及び冷媒圧力は、利用側熱交換器の負荷に応じて制御される圧縮機の回転速度によって決まり、パワー素子の発熱量に応じて変更することができなかった。その結果、冷却器における冷媒の冷却能力が不足したり、過多となる虞があった。
本発明は、かかる点に鑑みてなされたものであり、その目的は、パワー素子を冷媒によって冷却するための冷却器を備えた冷凍装置において、冷却器における冷媒によるパワー素子の冷却効率の向上を図ることにある。
第1、第4、第22〜第24及び第26〜第30の発明は、圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備えている。
第1、第4、第22〜第24及び第26〜第30の発明では、主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)に冷却器(16)が設けられている。また、この発明では、冷媒回路(10)の構成部品の駆動部に対して電力供給装置(30)が電力を供給する。冷却器(16)では、分岐回路(10B)を介して流入した冷媒が、電力供給装置(30)のパワー素子(37)から吸熱して該パワー素子(37)を冷却する。また、調節機構(90)により、分岐回路(10B)を流れる冷媒の状態を調節して冷却器(16)を通過する冷媒の温度が目標温度に調節される。これにより、冷却器(16)の温度が調節される。
なお、上述の「パワー素子(37)を冷却する」には、パワー素子(37)が実装された基板等の周辺部材を介してパワー素子(37)が間接的に冷却される場合も含まれる。
また、第1、第4、第22、第23、第26、第29、第30の発明は、上記構成に加え、上記調節機構(90)は、上記分岐回路(10B)の上記冷却器(16)の一端側に接続された絞り機構(17,27)と、上記分岐回路(10B)の上記冷却器(16)の他端側に接続された開度調節可能な絞り弁(18,28)と、上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備えている。
第1、第4、第22、第23、第26、第29、第30の発明では、分岐回路(10B)の冷却器(16)の一端側では、絞り機構によって流路幅が絞られ、冷却器(16)の他端側では、開度調節部(52,59)によって開度が調節された絞り弁(18,28)によって流路幅が絞られる。また、開度調節部(52,59)が冷却器(16)における冷媒の蒸発温度が目標温度となるように絞り弁(18,28)の開度を調節することにより、冷却器(16)の温度が所望の温度に調節される。
また、第1の発明は、上記構成に加え、上記絞り弁(18)は上記冷却器(16)の下流側に設けられ、上記絞り機構(17)は、上記冷却器(16)の上流側に設けられ、運転停止の際に、少なくとも上記絞り弁(18)の開度を全閉状態に制御する停止制御部(97)を備えている。
第2の発明は、第1の発明において、上記絞り機構(17)は、開度調節可能に構成され、上記調節機構(90)は、上記冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように上記絞り機構(17)の開度を調節する絞り機構調節部(53)を備えている。
また、第4及び第26の発明は、上記構成に加え、上記絞り弁(18)は上記冷却器(16)の下流側に設けられ、上記絞り機構(17)は、上記冷却器(16)の上流側に設けられると共に、開度調節可能に構成され、上記調節機構(90)は、上記冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように上記絞り機構(17)の開度を調節する絞り機構調節部(53)を備えている。
第4及び第26の発明では、冷却器(16)の下流側の絞り弁(18)の開度を調節することによって冷却器(16)の温度が所望の温度に調節される一方、冷却器(16)の上流側の絞り機構(17)の開度が絞り機構調節部(53)によって調節されることによって冷却器(16)を通過後の冷媒の過熱度が目標過熱度となり、圧縮機(11)に導かれる冷媒の湿りが防止される。
また、第3の発明は、第2の発明において、第4の発明は、上記構成に加え、上記開度調節部(52)は、起動時に、上記絞り弁(18)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成される一方、上記絞り機構調節部(53)は、起動時に、上記絞り機構(17)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成されている。
ところで、起動時には、分岐回路(10B)に液冷媒のみが流入する訳ではなく、比較的ガス冷媒が多く含まれた冷媒が流入する。そのため、冷却器(16)において温度斑が生じ易く、パワー素子(37)を十分に冷却できない可能性が高い。また、分岐回路(10B)に流入する冷媒流量が少ないと、起動から冷却器(16)に冷媒が到達するまでに時間がかかり、その間はパワー素子(37)を冷却できない。
第3及び第4の発明では、起動時には、開度調節部(52)によって下流側の絞り弁(18)が通常運転時よりも大きな開度に調節され、絞り機構調節部(53)によって上流側の絞り機構(17)が通常運転時よりも大きな開度に調節される。このように、起動時には、上流側の絞り機構(17)の開度も下流側の絞り弁(18)の開度も通常運転時よりも大きくすることにより、分岐回路(10B)に冷媒が流入し易くなり、冷却器(16)に迅速に冷媒が到達する。
第5の発明は、第4の発明において、運転停止の際に、上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方の開度を全閉状態に制御する停止制御部(97)を備えている。
ところで、運転停止の際に絞り弁(18)及び絞り機構(17)が開いていると、分岐回路(10B)において圧力が平衡するまで冷媒が流れてしまう。そのため、運転停止後しばらくの間、パワー素子(37)が発熱しないにも拘わらず、冷却器(16)に冷媒が流入してしまうために、冷却器(16)において結露が発生してパワー素子(37)の故障を招く虞がある。
第5の発明では、運転停止の際に、停止制御部(97)によって絞り弁(18)及び絞り機構(17)の少なくとも一方の開度が全閉状態に制御される。よって、運転停止後には冷却器(16)に冷媒が流入しなくなる。よって、冷却器(16)の温度低下が抑制される。
第6の発明は、第乃至第5のいずれか1つの発明において、上記絞り機構(17)に並列に接続された固定絞り(4)を備えている。
ところで、冷却器(16)よりも上流側に設けられた絞り機構(17)は絞り機構調節部(53)によって開度調節可能に構成されているが、絞り機構(17)が故障すると、開度を調節できなくなる。そのため、絞り機構(17)が比較的小さい開度で固定されてしまった場合には、冷却器(16)の上流側において冷媒の圧力が大幅に低減される。つまり、冷却器(16)における冷媒の蒸発圧力が大幅に低下する。そのため、冷却器(16)を流通する冷媒の温度が低下し、冷却器(16)の冷却能力が過多になる虞がある。また、冷却器(16)に流入する冷媒の流量が少なくなり過ぎた場合には、冷却器(16)の冷却能力が不足する虞がある。
第6の発明では、絞り機構(17)に並列に接続された固定絞り(4)を備えている。そのため、絞り機構(17)の故障によって該絞り機構(17)が比較的小さい開度で固定されてしまった場合には、冷媒が固定絞り(4)側の流路を通過して冷却器(16)に流入することとなる。よって、絞り機構(17)の故障時であっても、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることがないため、冷却器(16)を流通する冷媒の温度が低下し過ぎない。また、冷却器(16)に流入する冷媒の流量が過少とならない。
第7の発明は、第乃至第6のいずれか1つの発明において、上記絞り弁(18)に直列に接続された固定絞り(5)を備えている。
ところで、冷却器(16)よりも下流側に設けられた絞り弁(18,28)は開度調節部(52,59)によって開度調節可能に構成されているが、絞り弁(18,28)が故障すると、開度を調節できなくなる。そのため、絞り弁(18,28)が比較的大きい開度で固定されてしまった場合には、該絞り弁(18,28)における差圧が過小になって冷却器(16)に流入する冷媒の圧力が分岐回路(10B)の出口側の圧力に近づく。つまり、冷却器(16)における冷媒の蒸発圧力が大幅に低下する。これにより、冷却器(16)の温度が低下し、冷却能力が過多になる虞がある。また、絞り弁(18,28)の開度が大きいと、冷却器(16)から流出する冷媒量が多くなるため、冷却器(16)に流入した冷媒がパワー素子(37)と十分に熱交換するまでに冷却器(16)から流出してしまう。つまり、分岐冷媒が無駄に冷却器(16)を通過してしまう。
第7の発明では、絞り弁(18,28)に直列に接続された固定絞り(5)を備えているため、絞り弁(18,28)の故障によって該絞り弁(18,28)が比較的大きい開度で固定されてしまった場合であっても、冷媒が固定絞り(5)において減圧されることとなる。よって、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることがないため、冷却器(16)を流通する冷媒の温度が低下し過ぎない。また、固定絞り(5)によって冷却器(16)から流出する冷媒量が多くなり過ぎない。そのため、冷却器(16)に流入した冷媒がパワー素子(37)と十分に熱交換してから冷却器(16)を流出することとなる。
第8の発明は、第乃至7のいずれか1つの発明において、また、第22の発明は、上記構成に加え、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する強制低減部(55)とを備えている。
第8及び第22の発明では、検出部(41,46,47,48)の検出値がパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、強制低減部(55)が開度調節部(52,29)に代わって絞り弁(18,28)の開度を強制的に低減する。これにより、冷却器(16)を通過する冷媒量が低減されるため、冷却器(16)における冷媒による吸熱量が低減してパワー素子(37)や冷却器(16)の過度の温度低下が抑制される。
第9の発明は、第8の発明において、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記強制低減部(55)は、上記温度センサ(46)の検出値が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている。
第9の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設けられた温度センサ(46)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを検出部として用いる。
ここで、電力供給装置(30)の周囲の空気の相対湿度が100%になることは現実的には有り得ないため、電力供給装置(30)の周囲の空気の露点温度は該空気の温度(電力供給装置(30)の周囲の空気の乾球温度)よりも低くなる。よって、温度センサ(46)の検出値が空気温度センサ(41)の検出値よりも低いときには、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)の温度が電力供給装置(30)の周囲の空気の露点温度に近づいており、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高くなっていると推測できる。
そこで、第9の発明では、温度センサ(46)の検出値が空気温度センサ(41)の検出値よりも低い値であるときに、強制低減部(55)が上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減することとしている。
第10の発明は、第8の発明において、また、第22の発明は、上記構成に加え、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記強制低減部(55)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている。
ところで、運転中に、冷却器(16)付近は結露が生じるような温度環境にあっても、パワー素子(37)の発熱によって、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部では結露が生じる温度環境にない場合がある。
そこで、第10及び第22の発明では、結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部の予測温度が空気温度よりも低い値であるときに、強制低減部(55)によって絞り弁(18,28)の開度を強制的に低減することとしている。
第11の発明は、第8の発明において、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記強制低減部(55)は、上記温度センサ(46)の検出値が、上記空気温度センサ(41)が検出した空気温度における予め定めた基準相対湿度に対応する露点温度よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている。
第11の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設けられた温度センサ(46)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを検出部として用いる。強制低減部(55)は、温度センサ(46)の検出値が、空気温度センサ(41)の検出値と、設置環境や使用時期等を考慮して予め電力供給装置(30)の周囲における空気の相対湿度として設定しておいた所定の基準湿度とから算出される電力供給装置(30)の周囲における空気の露点温度よりも低い値であるときに開度調節部(52,59)に代わって絞り弁(18,28)の開度を強制的に低減する。
第12の発明は、第8の発明において、上記検出部は、上記パワー素子(37)の周囲における空気の相対湿度を検出する湿度センサ(47)を備え、上記強制低減部(55)は、上記湿度センサ(47)の検出値が所定の上限値よりも高い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている。
第12の発明では、湿度センサ(47)によってパワー素子(37)の周囲の空気の相対湿度を検出し、強制低減部(55)は、上記湿度センサ(47)の検出値が所定の上限値よりも高い値であるときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する。
第13の発明は、第8の発明において、上記検出部は、上記電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを備え、上記強制低減部(55)は、上記温度センサ(46)の検出値が、上記湿度センサ(48)が検出した相対湿度と上記空気温度センサ(41)が検出した空気温度とから算出される露点温度よりも低い値であるときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている。
第13の発明では、電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを検出部として用いる。強制低減部(55)は、パワー素子(37)近傍の温度が、冷却器(16)によって冷却される前の空気(外気)の温度と湿度とから算出される該空気の露点温度よりも低いときに、上記開度調節部(52,59)に代わって絞り弁(18,28)の開度を強制的に低減する。
第14の発明は、第乃至7のいずれか1つの発明において、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露を検出する結露センサ(45)と、上記結露センサ(45)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する強制低減部(55)とを備えている。
第14の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露の生起を予測するのではなく、実際にパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起したときに強制低減部(55)が開度調節部(52,59)に代わって絞り弁(18,28)の開度を強制的に低減する。これにより、冷却器(16)を通過する冷媒量が低減するため、冷却器(16)における冷媒による吸熱量が低減してパワー素子(37)や冷却器(16)の過度の温度低下が抑制される。
また、第24の発明は、上記構成に加え、上記電力供給装置(30)への電力供給が遮断された電源遮断時に上記分岐回路(10B)を閉鎖する閉鎖手段(6)を備えている。
ところで、例えば、停電等によって電力供給装置(30)への電力供給が遮断されると、パワー素子(37)への電力供給も遮断されるため、パワー素子(37)は発熱しなくなる。一方、分岐回路(10B)では、圧力が平衡するまで冷媒が流れてしまう。その結果、パワー素子(37)が発熱しないにも拘わらず、冷却器(16)において冷媒が流通し続けるために、冷却器(16)の温度が結露が発生する温度まで低下する虞があった。
第24の発明では、電力供給装置(30)への電力供給が遮断されると、閉鎖手段(6)によって分岐回路(10B)が閉鎖される。これにより、冷却器(16)における冷媒の流通が阻止される。よって、冷却器(16)の温度低下が抑制される。
第25の発明は、第24の発明において、上記閉鎖手段(6)は、上記分岐回路(10B)に設けられて上記電源遮断時に閉状態に切り換わる電磁弁(6a)によって構成されている。
第25の発明では、電力供給装置(30)への電力供給が遮断されると、電磁弁(6a)が閉状態となって分岐回路(10B)が閉鎖される。
また、第26の発明は、上記構成に加え、上記電力供給装置(30)への電力供給が遮断された電源遮断時に上記圧縮機(11)の回転によって該圧縮機(11)の駆動部において発電された電力を用いて上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方を全閉状態に開度調節する電源遮断時調節手段(6b)を備えている。
第26の発明では、電力供給装置(30)への電力供給が遮断されると、電源遮断時調節手段(6b)によって、圧縮機(11)が回転(慣性による回転又は冷媒圧力による逆回転)することによって駆動部において発電された電力を用いて絞り弁(18)及び絞り機構(17)の少なくとも一方が全閉状態に開度調節されて分岐回路(10B)が閉鎖される。
また、第27の発明は、上記構成に加え、上記膨張機構(13)を全閉状態にすると共に上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方を全閉状態にして上記熱源側熱交換器(12)に冷媒を溜め込むポンプダウン運転を実行すると共に、上記パワー素子(37)の温度が所定の上限値を超える可能性の高い過熱状態に転じる過熱時を予測して、該過熱時までに上記ポンプダウン運転を完了させるポンプダウン制御部(98)を備えている。
ところで、上述のようなポンプダウン運転を実行する際には、絞り弁(18)及び絞り機構(17)の少なくとも一方が全閉状態となって分岐回路(10B)が閉鎖されるため、冷却器(16)に冷媒が流入しなくなる。そのため、冷却器(16)によってパワー素子(37)を冷却できなくなってパワー素子(37)の温度が上昇するにも拘わらず、冷却器(16)に冷媒が流入しないため、冷媒の状態からはパワー素子(37)の過熱状態を推測することができなくなる。その結果、ポンプダウン運転中にパワー素子(37)が過熱状態となって故障する虞がある。
そこで、第27の発明では、ポンプダウン運転を実行すると共に該ポンプダウン運転中にパワー素子(37)が過熱状態に転じる過熱時を予測して、該過熱時までにポンプダウン運転を完了させるポンプダウン制御部(98)を設けることとした。これにより、パワー素子(37)が過熱状態に転じる前に、ポンプダウン運転が終了することとなる。
また、第28の発明は、上記構成に加え、上記冷却器(16)において結露が生じる可能性が高いときには、起動を禁止する起動禁止手段(99)を備えている。
ところで、運転停止時に、環境の変化等によって冷却器(16)において結露が生じる可能性が高くなる場合がある。このような場合に起動すると、パワー素子(37)の電気接続部等において短絡が生じる虞がある。
第28の発明では、冷却器(16)において結露が生じる可能性が高いときには、起動禁止手段(99)によって起動が禁止される。よって、冷却器(16)において結露が生じる可能性が高くない場合にのみ起動が許容されることとなる。
第15の発明は、第1乃至第7のいずれか1つの発明において、また、第23、第29及び第30の発明は、上記構成に加え、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備えている。
第15、第23、第29及び第30の発明では、検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、温度上昇部(91)がパワー素子(37)の温度を上昇させる。これにより、パワー素子(37)の周辺部材(16,71)の温度も上昇する。
第16の発明は、第15の発明において、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記温度上昇部(91)は、上記温度センサ(46)の検出値が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている。
第16の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設けられた温度センサ(46)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを検出部として用いる。
ここで、電力供給装置(30)の周囲の空気の相対湿度が100%になることは現実的には有り得ないため、電力供給装置(30)の周囲の空気の露点温度は該空気の温度(電力供給装置(30)の周囲の空気の乾球温度)よりも低くなる。よって、温度センサ(46)の検出値が空気温度センサ(41)の検出値よりも低いときには、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)の温度が電力供給装置(30)の周囲の空気の露点温度に近づいており、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高くなっていると推測できる。
そこで、第16の発明では、温度センサ(46)の検出値が空気温度センサ(41)の検出値よりも低い値であるときに、温度上昇部(91)が上記パワー素子(37)の温度を上昇させることとしている。
第17の発明は、第15の発明において、また、第23の発明は、上記構成に加え、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記温度上昇部(91)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている。
ところで、運転中に、冷却器(16)付近は結露が生じるような温度環境にあっても、パワー素子(37)の発熱によって、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部では結露が生じる温度環境にない場合がある。
そこで、第17及び第23の発明では、結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部の予測温度が空気温度よりも低い値であるときに、温度上昇部(91)によってパワー素子(37)の温度を上昇させることとしている。
第18の発明は、第15の発明において、上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、上記温度上昇部(91)は、上記温度センサ(46)の検出値が、上記空気温度センサ(41)が検出した空気温度における予め定めた基準相対湿度に対応する露点温度よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている。
第18の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設けられた温度センサ(46)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを検出部として用いる。温度上昇部(91)は、温度センサ(46)の検出値が、空気温度センサ(41)の検出値と、設置環境や使用時期等を考慮して予め電力供給装置(30)の周囲における空気の相対湿度として設定しておいた所定の基準湿度とから算出される電力供給装置(30)の周囲における空気の露点温度よりも低いときに上記パワー素子(37)の温度を上昇させる。
第19の発明は、第15の発明において、上記検出部は、上記パワー素子(37)の周囲における空気の相対湿度を検出する湿度センサ(47)を備え、上記温度上昇部(91)は、上記湿度センサ(47)の検出値が所定の上限値よりも高い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている。
第19の発明では、湿度センサ(47)を検出部として用いてパワー素子(37)の周囲の空気の相対湿度を検出し、温度上昇部(91)は、湿度センサ(47)の検出値が所定の上限湿度よりも高い値であるときに上記パワー素子(37)の温度を上昇させる。
第20の発明は、第15の発明において、上記検出部は、上記電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを備え、上記温度上昇部(91)は、上記温度センサ(46)の検出値が、上記湿度センサ(48)が検出した相対湿度と上記空気温度センサ(41)が検出した空気温度とから算出される露点温度よりも低い値であるときに、上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている。
第20の発明では、電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを検出部として用いる。温度上昇部(91)は、パワー素子(37)近傍の温度が、冷却器(16)によって冷却される前の空気(外気)の温度と湿度とから算出される該空気の露点温度よりも低いときに、パワー素子(37)の温度を上昇させる。
第21の発明は、第1乃至第7のいずれか1つの発明において、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露を検出する結露センサ(45)と、上記結露センサ(45)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備えている。
第21の発明では、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露の生起を予測するのではなく、実際にパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起したときに温度上昇部(91)がパワー素子(37)の温度を上昇させる。これにより、パワー素子(37)だけでなく該パワー素子(37)の周辺部材(16,71)の温度も上昇する。
また、第29の発明は、上記構成に加え、上記温度上昇部(91)は、上記パワー素子の発熱量を増大させる発熱量増大部(56)を備えている。
第29の発明では、発熱量増大部(56)によってパワー素子(37)の発熱量を増大させることにより、パワー素子(37)の温度が上昇する。
また、第30の発明は、上記構成に加え、上記温度上昇部(91)は、上記パワー素子(37)を加熱するヒータ(95)を備えている。
第30の発明では、ヒータ(95)によってパワー素子(37)を加熱することにより、パワー素子(37)の温度が上昇する。
第31の発明は、第29の発明において、上記結露状態でなくなると、上記発熱量増大部(56)によって増大した上記パワー素子(37)の発熱量を増大前の通常状態に復帰させる発熱量復帰部(57)を備えている。
第31の発明では、発熱量増大部(56)がパワー素子(37)の発熱量を増大させた後、上記結露状態でなくなると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰する。
第32の発明は、第31の発明において、上記発熱量増大部(56)によって上記パワー素子(37)の発熱量が増大されてから所定時間が経過すると、上記発熱量増大部(56)によって増大した上記パワー素子(37)の発熱量を増大前の通常状態に強制的に復帰させる発熱量強制復帰部(58)を備えている。
ところで、パワー素子(37)は高温に発熱する一方、限界温度を超えて温度が上昇すると故障を招き易い。そのため、パワー素子(37)の発熱量が高い状態を長時間継続することはパワー素子(37)保護の観点から好ましくない。また、結露が生起する可能性が高いときに結露状態としてパワー素子(37)の発熱量を増大させることとすると、実際には結露が解消されたにも拘わらず、なおも結露状態であるとして無駄にパワー素子(37)の発熱量が大きい状態が継続される虞がある。
そこで、第32の発明では、パワー素子(37)の発熱量が増大されてから所定時間が経過すると、パワー素子(37)の発熱量を強制的に増大前の通常状態に復帰させることとしている。
第33の発明は、第29第31及び第32のいずれか1つの発明において、上記発熱量増大部(56)は、上記圧縮機(11)の電流を増大させることにより、上記パワー素子(37)のうちの上記圧縮機(11)を制御するパワー素子(37)の発熱量を増大させるように構成されている。
第33の発明では、通常、各構成部品を制御するパワー素子(37)は一纏めにして1つのパワーモジュールとして構成されている。そのため、発熱量増大部(56)が圧縮機(11)を制御するパワー素子(37)の発熱量を増大させると、パワーモジュール全体の温度が上昇することとなる。
第34の発明は、第29第31及び第32のいずれか1つの発明において、上記パワー素子(37)はスイッチング素子によって構成され、上記発熱量増大部(56)は、上記スイッチング素子のスイッチング周波数を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている。
第34の発明では、発熱量増大部(56)がスイッチング素子のスイッチング周波数を増大させると、パワー素子(37)の発熱量が増大し、パワー素子(37)及びパワー素子(37)の周辺部材(16,71)の温度が上昇する。
第35の発明は、第29第31及び第32のいずれか1つの発明において、上記パワー素子(37)はスイッチング素子によって構成され、上記発熱量増大部(56)は、上記スイッチング素子の損失を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている。
第35の発明では、発熱量増大部(56)がパワー素子(37)を構成するスイッチング素子の損失を増大させると、パワー素子(37)の発熱量が増大し、パワー素子(37)及びパワー素子(37)の周辺部材(16,71)の温度が上昇する。
第36の発明は、第29第31及び第32のいずれか1つの発明において、上記発熱量増大部(56)は、上記パワー素子(37)の導通損失を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている。
第36の発明では、発熱量増大部(56)がパワー素子(37)の導通損失を増大させると、パワー素子(37)の発熱量が増大し、パワー素子(37)及びパワー素子(37)の周辺部材(16,71)の温度が上昇する。
第1、第4、第22〜第24及び第26〜第30によれば、調節機構(90)を設けて、冷却器(16)を通過する冷媒の温度を調節可能に構成したことにより、冷却器(16)の温度を適正な温度に調節することができる。つまり、パワー素子(37)の発熱量やパワー素子(37)の設置環境の変化に応じて冷却器(16)を通過する冷媒の温度を調節することが可能となる。従って、冷却器(16)によるパワー素子(37)の冷却不足及び冷却過多を抑制することができ、冷却器(16)によるパワー素子(37)の冷却効率の向上を図ることができる。
また、第1、第4、第22、第23、第26、第29、第30の発明によれば、容易な構成によって冷却器(16)の温度を適正な温度に調節することができる。また、第4及び第26の発明によれば、パワー素子(37)を冷却して圧縮機(11)に戻る冷媒の湿りを防止することができるため、液冷媒の吸入による圧縮機(11)の故障を防止することができる。
また、第3及び第4の発明によれば、起動時に、分岐回路(10B)に通常運転の際よりも大量の冷媒を流通させることができるため、冷却器(16)の温度斑を防止することができる。また、起動後、迅速に冷却器(16)に冷媒を到達させることができる。従って、起動直後からパワー素子(37)を十分に冷却することができる。
また、第5の発明によれば、上記停止制御部(97)を設けたことにより、運転停止後の冷却器(16)への冷媒の流入を抑制することができる。これにより、冷却器(16)の温度低下が抑制されるため、冷却器(16)における結露の発生を防止して結露水の付着によるパワー素子(37)の故障を防止することができる。
また、第6の発明によれば、冷却器(16)よりも上流側に設けられた絞り機構(17)に並列に固定絞り(4)を設けることにより、絞り機構(17)の故障時に、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることを防止することができる。これにより、冷却器(16)を流通する冷媒の温度が低下し過ぎて冷却能力が過多となることを防止することができる。また、絞り機構(17)の故障時に、冷却器(16)に流入する冷媒流量が過少となることを防止することができる。そのため、冷却器(16)の冷却能力が過少となることを防止することができる。
また、第7の発明によれば、絞り弁(18,28)に直列に固定絞り(5)を設けることにより、絞り弁(18,28)の故障時に、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることを防止することができる。これにより、冷却器(16)を流通する冷媒の温度が低下し過ぎて冷却能力が過多となることを防止することができる。また、絞り弁(18,28)の故障時に、固定絞り(5)によって冷却器(16)から流出する冷媒量が多くなり過ぎないように制限することができる。これにより、分岐冷媒がパワー素子(37)と十分に熱交換することなく無駄に冷却器(16)を通過してしまうことを防止することができる。
また、第8及び第22の発明によれば、検出部(41,46,47,48)の検出値がパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、強制低減部(55)によって絞り弁(18,28)の開度が強制的に低減される。これにより、冷却器(16)を通過する冷媒量を低減して該冷却器(16)における冷媒による吸熱量を低減することができるため、パワー素子(37)や冷却器(16)の過度の温度低下を抑制することができる。従って、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、第9乃至第11の発明によれば、温度センサ(46)と空気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度よく検出することができ、結露の生起を未然に防止することができる。
また、第10及び第22の発明によれば、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部の予測温度が空気温度よりも低い値であるときに、強制低減部(55)によって絞り弁(18,28)の開度を強制的に低減することにより、冷却器(16)における冷媒温度をパワー素子(37)の電気接続部において結露が生じない温度ぎりぎりまで低下させることができる。従って、パワー素子(37)の故障を防止しつつ冷却器(16)の性能を向上させることができる。
また、第12の発明によれば、湿度センサ(47)を用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度よく検出することができ、結露の生起を未然に防止することができる。
また、第13の発明によれば、湿度センサ(48)と空気温度センサ(41)と温度センサ(46)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
また、第14の発明によれば、結露センサ(45)の検出値がパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、強制低減部(55)によって絞り弁(18,28)の開度が強制的に低減される。これにより、冷却器(16)を通過する冷媒量を低減して該冷却器(16)における冷媒による吸熱量を低減することができるため、パワー素子(37)や冷却器(16)の過度の温度低下を抑制することができる。従って、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、第24及び第25の発明によれば、上記閉鎖手段(6)を設けたことにより、例えば停電等の電源遮断時に、冷却器(16)における冷媒の流通を阻止して冷却器(16)の温度低下を抑制することができる。よって、結露の発生を防止して、結露水の付着によるパワー素子(37)の故障を防止することができる。
また、第25の発明によれば、上記閉鎖手段(6)を容易に構成することができる。
また、第26の発明によれば、上記電源遮断時調節手段(6b)を設けたことにより、例えば停電等の電源遮断時に、冷却器(16)における冷媒の流通を阻止して冷却器(16)の温度低下を抑制することができる。よって、結露の発生を防止して、結露水の付着によるパワー素子(37)の故障を防止することができる。
また、第27の発明によれば、ポンプダウン運転を実行すると共に該ポンプダウン運転中にパワー素子(37)が過熱状態に転じる過熱時を予測して、該過熱時までにポンプダウン運転を完了させるポンプダウン制御部(98)を設けたことにより、パワー素子(37)の故障を防止しつつポンプダウン運転を確実に実行することができる。
また、第28の発明によれば、起動禁止手段(99)によって冷却器(16)において結露が生じる可能性が高い場合における起動を禁止することによって、起動時におけるパワー素子(37)の電気接続部等における短絡を防止することができる。言い換えると、このような短絡の虞のない場合にのみ起動を許容することにより、起動の安全性を確保することができる。
また、第15、第23、第29及び第30の発明によれば、検出部(41,46,47,48)の検出値がパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、温度上昇部(91)によってパワー素子(37)の温度が上昇し、パワー素子(37)の周辺部材(16,71)の温度も上昇する。これにより、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、第16乃至第18の発明によれば、温度センサ(46)と空気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度よく検出することができ、結露の生起を未然に防止することができる。
また、第17及び第23の発明によれば、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部において結露が生じるおそれのないときには、温度上昇部(91)によってパワー素子(37)の温度が無駄に上昇されないようにすることができる。従って、パワー素子(37)の発熱量を無駄に増大させることなくパワー素子(37)の故障を防止することができる。
また、第19の発明によれば、湿度センサ(47)を用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度よく検出することができ、結露の生起を未然に防止することができる。
また、第20の発明によれば、湿度センサ(48)と空気温度センサ(41)と温度センサ(46)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
また、第21の発明によれば、結露センサ(45)の検出値がパワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、温度上昇部(91)によってパワー素子(37)の温度が上げられ、パワー素子(37)の周辺部材(16,71)の温度も上昇する。これにより、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、第29の発明によれば、例えば、別途加熱手段を用いることなく、パワー素子(37)の発熱量を増大させることによって容易にパワー素子(37)の温度を上昇させることができる。
また、第30の発明によれば、ヒータ(95)を用いることにより、容易にパワー素子(37)の温度を上昇させることができる。
また、第31の発明によれば、検出部によって結露状態の解消を精度よく検出し、結露状態が解消されるとすぐにパワー素子(37)の発熱量を通常状態に復帰させることができる。従って、パワー素子(37)の発熱量を増大させることによる熱損失を必要最低限に抑制することができる。
また、第32の発明によれば、パワー素子(37)の発熱量を増大させてから所定時間経過後にパワー素子(37)の発熱量を強制的に復帰させることにより、パワー素子(37)の故障を防止すると共にパワー素子(37)の熱損失を低減することができる。
また、第33の発明によれば、例えば、別途加熱手段を用いることなく、圧縮機(11)の電流を増大させて圧縮機(11)を制御するパワー素子(37)の発熱量を増大させることにより、パワーモジュール全体の温度を上昇させることができる。これにより、容易にパワー素子(37)又はパワー素子(37)の周辺部材(16,71)における結露の生起を抑制することができる。
また、第34第36の発明によれば、例えば、別途加熱手段を用いることなく、容易にパワー素子(37)の発熱量を増大させてパワー素子(37)又はパワー素子(37)の周辺部材(16,71)における結露の生起を抑制することができる。
図1は、本発明の実施形態1に係る冷凍装置の構成を示す配管系統図である。 図2は、実施形態1の電力供給装置の駆動回路である。 図3は、実施形態1のパワー素子及び冷却器付近を示す断面図である。 図4は、実施形態1の結露抑制運転制御を示すフローチャートである。 図5は、実施形態2のパワー素子及び冷却器付近を示す断面図である。 図6は、実施形態2の結露抑制運転制御を示すフローチャートである。 図7は、実施形態3の結露抑制運転制御を示すフローチャートである。 図8は、実施形態4の結露抑制運転制御を示すフローチャートである。 図9は、実施形態5のパワー素子及び冷却器付近を示す断面図である。 図10は、実施形態5の結露抑制運転制御を示すフローチャートである。 図11は、実施形態6のパワー素子及び冷却器付近を示す断面図である。 図12は、実施形態6の結露抑制運転制御を示すフローチャートである。 図13は、実施形態7に係る冷凍装置の構成を示す配管系統図である。 図14は、実施形態7の結露抑制運転制御を示すフローチャートである。 図15は、実施形態8の結露抑制運転制御を示すフローチャートである。 図16は、実施形態9の結露抑制運転制御を示すフローチャートである。 図17は、実施形態10の結露抑制運転制御を示すフローチャートである。 図18は、実施形態11の結露抑制運転制御を示すフローチャートである。 図19は、実施形態12の結露抑制運転制御を示すフローチャートである。 図20(a)は、実施形態13の通常運転制御におけるスイッチング素子のON/OFF制御を経時的に示し、図20(b)は、実施形態13の結露抑制運転制御におけるスイッチング素子のON/OFF制御を経時的に示す図である。 図21(a)及び図21(c)は、それぞれ実施形態14の電力供給装置のベース回路の一例を示し、図21(b)は、実施形態14の通常運転時及び結露抑制運転時におけるベース電圧を経時的に示す図である。 図22は、実施形態15のパワー素子の導通損失を増大させる第1の例において、各駆動回路から各駆動部に入力される電流位相とパワー素子の導通損失との関係を示す図である。 図23は、実施形態15のパワー素子の導通損失を増大させる第2の例において、通常運転制御及び結露抑制運転制御におけるエミッタコレクタ間の電圧を比較して示す図である。 図24は、実施形態15のパワー素子の導通損失を増大させる第2の例において、エミッタコレクタ間の電圧を変動させるための駆動回路の一例を示している。 図25は、実施形態16の冷凍装置の構成を示す配管系統図である。 図26は、実施形態17の冷凍装置の構成を示す配管系統図である。 図27は、実施形態18の冷凍装置の構成を示す配管系統図である。 図28は、実施形態19の冷凍装置の構成を示す配管系統図である。 図29は、実施形態20の冷凍装置の構成を示す配管系統図である。 図30は、実施形態20の冷凍装置の他の構成を示す配管系統図である。 図31は、実施形態22に係る冷凍装置の構成を示す配管系統図である。 図32は、実施形態23に係る冷凍装置の構成を示す配管系統図である。 図33は、実施形態24に係る冷凍装置の構成を示す配管系統図である。 図34は、実施形態25に係る冷凍装置の構成を示す配管系統図である。 図35は、実施形態26に係る冷凍装置の構成を示す配管系統図である。 図36は、実施形態27に係る冷凍装置の構成を示す配管系統図である。 図37は、実施形態28に係る冷凍装置の構成を示す配管系統図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
《発明の実施形態1》
−全体構成−
図1に示すように、本発明の実施形態に係る冷凍装置(1)は、熱源側ユニット(1A)と利用側ユニット(1B)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を備えている。なお、本発明に係る冷凍装置は、例えば、空気調和装置であってもよく、冷蔵庫内や冷凍庫内を冷却する冷却装置であってもよいが、本実施形態では室内の空気を冷却する空気調和装置を例として説明する。
上記冷媒回路(10)は、圧縮機(11)と熱源側熱交換器(12)と膨張弁(13)と利用側熱交換器(14)とが順に冷媒配管によって接続された主回路(10A)を備えている。なお、本実施形態1では、主回路(10A)は冷媒は一方向に循環するように構成され、逆方向には循環しないように構成されている。そのため、本実施形態では、熱源側熱交換器(12)が常に凝縮器として機能し、利用側熱交換器(14)が常に蒸発器として機能する。本実施形態1では、熱源側熱交換器(12)及び利用側熱交換器(14)は、それぞれクロスフィン式のフィン・アンド・チューブ型熱交換器によって構成され、主回路(10A)の冷媒と空気とを熱交換させる。
上記圧縮機(11)は、後述する電力供給装置(30)によって回転駆動されるモータ(11a)を備えている。詳細については後述するが、該モータ(11a)は、電力供給装置(30)によって回転速度が調節可能に構成されている。また、圧縮機(11)の吸入側には、冷媒中に含まれる液冷媒を除去してガス冷媒のみを圧縮機(11)に吸入させるためのアキュムレータ(15)が設けられている。
また、上記冷媒回路(10)は、主回路(10A)の熱源側熱交換器(12)と膨張弁(13)との間から分岐する分岐回路(10B)を有している。分岐回路(10B)の流出端は、圧縮機(11)に接続されている。なお、本実施形態1では、分岐回路(10B)の流出端は、圧縮機(11)の圧縮途中の圧縮室に連通する中間ポートに接続されている。
上記分岐回路(10B)には、後述するパワー素子(37)を冷却するための冷却器(16)が設けられている。また、分岐回路(10B)の冷却器(16)の上流側と下流側には、開度が可変である第1絞り弁(18)と第2絞り弁(17)がそれぞれ設けられている。
上記熱源側熱交換器(12)の近傍には、熱源側ファン(12a)が設けられる一方、利用側熱交換器(14)の近傍には、利用側ファン(14a)が設けられている。また、圧縮機(11)と熱源側熱交換器(12)と熱源側ファン(12a)と膨張弁(13)と分岐回路(10B)とは熱源側ユニット(1A)に設けられ、利用側熱交換器(14)と利用側ファン(14a)とは利用側ユニット(1B)に設けられている。
〈電力供給装置〉
また、上記熱源側ユニット(1A)には、上記冷媒回路(10)の各構成部品の各駆動部に電力を供給するための電力供給装置(30)が設けられている。
図2に示すように、上記電力供給装置(30)は、圧縮機(11)のモータ(11a)等の各駆動部に供給する電力の制御や変換を行うための駆動回路(31)を備えている。なお、図2では、駆動回路(31)の一例として圧縮機(11)のモータ(11a)に接続された圧縮機(11)用の駆動回路(31)を示している。駆動回路(31)は、商用電源(38)に接続された整流回路(32)と、コンデンサ回路(33)と、駆動部である圧縮機(11)のモータ(11a)に接続されたインバータ回路(34)とをそれぞれ備えている。
整流回路(32)は、三相交流電源である商用電源(38)に接続されている。整流回路(32)は商用電源(38)の交流電圧を直流電圧に変換するための回路であり、6つのダイオード(35)が三相ブリッジ結線されている。
コンデンサ回路(33)は、整流回路(32)とインバータ回路(34)との間に接続され、コンデンサ(36)を備えている。
インバータ回路(34)は、コンデンサ回路(33)の直流電圧を三相交流電圧に変換し、変換後の交流電圧を負荷となるモータ(11a)に供給するものである。インバータ回路(34)は、6つのスイッチング素子が三相ブリッジ結線されている。なお、スイッチング素子は、本発明に係るパワー素子(37)を構成し、例えば、IGBT(Insulated Gate Bipolar Transistor)やMOS−FET(MOS Field Effect Transistor)等が用いられている。インバータ回路(34)では、スイッチング素子のスイッチングが制御されることにより、モータ(11a)に出力される交流電圧及びその周波数が増減し、モータ(11a)の回転速度が調節される。なお、スイッチング素子のスイッチングは、制御装置(60)によって制御される。
このような構成により、電力供給装置(30)では、商用電源(38)の交流電圧を整流回路(32)において直流電圧に変換し、該直流電圧をインバータ回路(34)において所望の周波数の交流電圧に変換した後、圧縮機(11)のモータ(11a)等の駆動部に供給する。
なお、図3に示すように、本実施形態では、圧縮機(11)及び各構成部品の駆動回路(31)の各パワー素子(37)が一纏まりとなって1つのパワーモジュール(61)を形成している。そして、該パワーモジュール(61)は、他の電装品(図示省略)と共に熱源側ユニット(1A)内に設けられた基板(71)に実装されている。
〈冷却器〉
ところで、上記パワー素子(37)は、稼動時に高温発熱する。そのため、パワー素子(37)を冷媒回路(10)を流れる冷媒によって冷却するための冷却器(16)が設けられている。なお、上述したように、本実施形態では、各構成部品毎のパワー素子(37)が一纏りとなって1つのパワーモジュール(61)として構成されている。そのため、図3に示すように、冷却器(16)はパワーモジュール(61)を冷却するように設けられている。
冷却器(16)は、例えば、アルミ等の金属によって扁平な直方体状に形成され、内部に冷媒を流通させるための冷媒流路が形成されている。該冷媒流路は、冷媒配管の一部を挿通させることによって形成されるものであってもよく、管状の貫通孔に冷媒配管が接続されることによって形成されるものであってもよい。本実施形態では、冷却器(16)に挿通された冷媒回路(10)の分岐回路(10B)の一部によって形成されている(図1参照)。
このような構成により、冷却器(16)は、冷媒回路(10)を流れる冷媒を流通可能に構成される。また、冷却器(16)は、アルミ等の金属によって構成されることにより、内部を流通する冷媒の冷熱が外表面まで伝達されるように構成される。
〈検出部〉
図1に示すように、熱源側ユニット(1A)には、外気温度(熱源側熱交換器(12)を通過する前の空気の温度)を検出するための外気温度センサ(41)が設けられている。一方、利用側ユニット(1B)には、室内温度(利用側熱交換器(14)を通過する前の空気の温度)を検出するための室内温度センサ(42)が設けられている。
また、冷却器(16)には、該冷却器(16)における冷媒の蒸発温度を検出する蒸発温度センサ(43)が設けられている。分岐回路(10B)の上記冷却器(16)の下流側には、該冷却器(16)の出口側の冷媒温度を検出するための出口温度センサ(44)が設けられている。
さらに、図3に示すように、冷却器(16)には、該冷却器(16)における結露を検出するための結露センサ(45)が設けられている。該結露センサ(45)は、冷却器(16)の上記パワーモジュール(61)と対向する面に取り付けられている。
上記外気温度センサ(41)、室内温度センサ(42)、蒸発温度センサ(43)、出口温度センサ(44)及び結露センサ(45)はそれぞれ後述する運転制御装置(50)に接続され、該運転制御装置(50)に検出信号を送信する。
〈運転制御装置〉
上記熱源側ユニット(1A)には、冷媒回路(10)の各構成部品の駆動部を駆動制御するための運転制御装置(50)が設けられている。運転制御装置(50)は各駆動回路(31)に接続された制御装置(60)に接続され、該制御装置(60)に各駆動回路(31)を制御するための制御信号を送信する。
上記制御装置(60)は、運転制御装置(50)からの制御信号に基づいて、パワー素子(37)を構成するスイッチング素子のスイッチングを制御することにより、各駆動部に供給される交流電圧及びその周波数を制御する。具体的には、運転制御装置(50)が外気温度センサ(41)や室内温度センサ(42)等の検出値に基づいて、各駆動部が所望の状態(例えば、モータ(11a)であれば所望の回転数又は回転速度)となるように、制御装置(60)に制御信号を送信する。制御装置(60)は、該制御信号を駆動信号に変換し、該駆動信号を各駆動部の駆動回路(31)に対して出力する。該駆動信号は、各スイッチング素子のベース回路(図示省略)に入力され、各スイッチング素子のON/OFFが制御される。これにより、各駆動部に供給される交流電圧が所望の電圧及び周波数に制御され、例えばモータ(11a)等の回転数が所望の回転数となる。
また、運転制御装置(50)は、冷却器(16)を通過する冷媒の温度及び過熱度を調整して通常運転を行うための通常運転部(51)と、後述する結露抑制運転を行うための結露判定部(54)と強制低減部(55)とを備えている。上記通常運転部(51)は、第1絞り弁(18)の開度を調節する第1開度調節部(52)と、第2絞り弁(17)の開度を調節する第2開度調節部(53)とを備えている。
上記第1開度調節部(52)は、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。具体的には、第1開度調節部(52)は、上記蒸発温度センサ(43)の検出値が目標温度よりも低い場合には第1絞り弁(18)の開度を低減する一方、目標温度よりも高い場合には第1絞り弁(18)の開度を増大する。
上記第2開度調節部(53)は、冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように第2絞り弁(17)の開度を調節する。具体的には、第2開度調節部(53)は、上記出口温度センサ(44)の検出値から上記蒸発温度センサ(43)の検出値を減じた値(冷却器(16)の出口側の冷媒過熱度)が目標過熱度よりも低い場合には第2絞り弁(17)の開度を低減する一方、目標過熱度よりも高い場合には第2絞り弁(17)の開度を増大する。
上記結露判定部 (54)は、上記結露センサ(45)の検出値(結露信号)を参照し、該検出値に基づいて冷却器(16)に結露が生起した結露状態か否かを判定する。
上記強制低減部(55)は、上記結露判定部 (54)が結露状態と判定すると、上記第1開度調節部(52)に代わって上記第1絞り弁(18)の開度を強制的に低減する。
なお、本実施形態1では、上記第1絞り弁(18)と、第2絞り弁(17)と、第1開度調節部(52)と、第2開度調節部(53)とによって本発明に係る調節機構(90)が構成されている。なお、本発明に係る調節機構(90)は、第2開度調節部(53)を備えていなくてもよい。
−運転動作−
上記冷媒回路(10)の主回路(10A)では、圧縮機(11)が駆動されると、図1の矢印に示す方向に冷媒が循環し、熱源側熱交換器(12)が凝縮器として機能する一方、利用側熱交換器(14)が蒸発器として機能する蒸気圧縮式冷凍サイクルが行われる。利用側熱交換器(14)では、利用側ファン(14a)によって吸い込まれた空気が、蒸発器としての利用側熱交換器(14)を流れる冷媒に吸熱されて冷却される。そして、冷却後の空気は、利用側ファン(14a)によって室内や庫内に吹き出されて室内や庫内を冷却する。
〈パワー素子の冷却動作〉
また、圧縮機(11)が駆動されると、上記冷媒回路(10)の分岐回路(10B)には、主回路(10A)の熱源側熱交換器(12)で凝縮した高圧液冷媒の一部が分岐して流入する。分岐回路(10B)に流入した高圧液冷媒の一部は、第1絞り弁(18)を通過した後、冷却器(16)に流入する。冷却器(16)では、複数のパワー素子(37)が一纏まりとなったパワーモジュール(61)が冷却器(16)の内部を流れる冷媒に放熱することによって冷却される。
〈制御装置による制御動作〉
冷媒回路(10)の各構成部品の駆動部に供給する電力を制御する運転制御装置(50)は、以下に説明する通常運転制御と結露抑制運転制御とを行う。
《通常運転制御》
運転制御装置(50)は、室内温度センサ(42)や外気温度センサ(41)の検出値に基づいて室内温度が所望の温度になるように冷媒回路(10)の各種構成部品を駆動制御する。例えば、圧縮機(11)のモータ(11a)に関しては、室内温度が所望の温度よりも高いと圧縮機(11)のモータ(11a)の回転速度を上昇させ、室内温度が所望の温度よりも低いと圧縮機(11)のモータ(11a)の回転速度を低下させる。
また、運転制御装置(50)の通常運転部(51)は、冷却器(16)を通過する冷媒の温度及び過熱度を調節する。具体的には、第1開度調節部(52)が、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。また、第2開度調節部(53)が、冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように第2絞り弁(17)の開度を調節する。より具体的には、第1開度調節部(52)は、冷却器(16)における蒸発温度が目標温度よりも低い場合には第1絞り弁(18)の開度を低減する一方、目標温度よりも高い場合には第1絞り弁(18)の開度を増大する。また、第2開度調節部(53)は、冷却器(16)の出口側の冷媒過熱度が目標過熱度よりも低い場合には第2絞り弁(17)の開度を低減する一方、目標過熱度よりも高い場合には第2絞り弁(17)の開度を増大する。これにより、冷却器(16)を通過する冷媒の温度が目標温度となると共に圧縮機(11)に導入される冷媒の湿りが防止される。
《結露抑制運転制御》
一方、上述したように、運転条件や外気条件によって異なるが、冷却器(16)及びその周辺の部材(例えば、パワーモジュール(61)や基板(71))の温度が周囲の空気の露点温度を下回り、冷却器(16)及びその周辺の部材に結露が生起することがある。そのため、上記通常運転制御と並行して、以下のような結露抑制運転制御が所定の時間毎(例えば30秒毎)に実行される。
図4に示すように、まず、結露判定部 (54)が結露センサ(45)からの結露信号を参照し(ステップS11)、冷却器(16)に結露が生起した結露状態であるか否かを判定する(ステップS12)。そして、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)(第1調整弁)の開度を所定の値だけ強制的に低減する(ステップS13)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS11に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態1の効果−
以上より、本実施形態1によれば、調節機構(90)を設けて、冷却器(16)を通過する冷媒の温度を調節可能に構成したことにより、冷却器(16)の温度を適正な温度に調節することができる。つまり、パワー素子(37)の発熱量やパワー素子(37)の設置環境の変化に応じて冷却器(16)を通過する冷媒の温度を調節することが可能となる。従って、冷却器(16)によるパワー素子(37)の冷却不足及び冷却過多を抑制することができ、冷却器(16)によるパワー素子(37)の冷却効率の向上を図ることができる。
また、本実施形態1によれば、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する第1開度調節部(52)を設けたことにより、容易な構成によって冷却器(16)の温度を適正な温度に調節することができる。
また、本実施形態1によれば、冷却器(16)の出口側の冷媒過熱度が目標過熱度となるように第2絞り弁(17)の開度を調節する第2開度調節部(53)を設けたことにより、パワー素子(37)を冷却して圧縮機(11)に戻る冷媒の湿りを防止することができるため、液冷媒の吸入による圧縮機(11)の故障を防止することができる。
さらに、本実施形態1によれば、結露判定部(54)と強制低減部(55)とを設けたことにより、結露判定部(54)が結露状態と判定すると、強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減される。その結果、冷却器(16)に流入する冷媒量が低減されて冷却器(16)の吸熱量が低減するため、パワー素子(37)や冷却器(16)の過度の温度低下を抑制することができる。従って、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、本実施形態1によれば、結露センサ(45)を用いているため、結露の生起の有無を容易に且つ精度良く検出することができる。
ところで、通常、運転中はパワー素子(37)よりも該パワー素子(37)を冷却するための冷却器(16)の方が温度が低い。そのため、パワー素子(37)よりも冷却器(16)の方が先に結露が生起され易い。
そこで、本実施形態では、結露センサ(45)を冷却器(16)に取り付けることにより、結露の生起を比較的に早い段階において検出することとしている。そのため、例えば、冷却器(16)に結露が生起されていても未だパワー素子(37)に結露が生起されていないときに、第1絞り弁(18)の開度を低減してパワー素子(37)における結露の生起を未然に防止することができる。
なお、結露センサ(45)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
《発明の実施形態2》
図5に示すように、実施形態2に係る冷凍装置(1)は、実施形態1の結露センサ(45)の代わりにパワー素子(37)近傍に温度センサ(46)が設けられている。また、上記外気温度センサ(41)を電力供給装置(30)の周囲における空気の温度を検出する本発明に係る空気温度センサとして用いる。そして、実施形態2に係る冷凍装置(1)では、上記温度センサ(46)と上記外気温度センサ(41)とが、結露状態であるか否かを判定するための物理量を検出する検出部として用いられる。
上記温度センサ(46)は、冷却器(16)の上記パワーモジュール(61)と対向する面に取り付けられている。また、温度センサ(46)は運転制御装置(50)に接続され、該運転制御装置(50)に検出信号を送信する。そして、運転制御装置(50)の結露判定部 (54)は、上記温度センサ(46)の検出値が外気温度センサ(41)の検出値よりも低いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高い結露状態と判定する。その他の構成については実施形態1と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態1と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図6に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照し(ステップS21)、続いて、温度センサ(46)の検出値Td(冷却器(16)の温度)を参照する(ステップS22)。
次に、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS23)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが外気温度センサ(41)の検出値Taよりも低いときに結露状態と判定する。
そして、ステップS23において、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)の開度を所定の値だけ強制的に低減する(ステップS24)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS21に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態2の効果−
実施形態2では、熱源側熱交換器(12)を通過する前の空気の状態(外部空気の状態)と電力供給装置(30)の周囲における空気の状態とは概ね同じであるため、外気温度センサ(41)を本発明に係る空気温度センサとして用いている。また、パワー素子(37)近傍の冷却器(16)に設けられた温度センサ(46)と、上記外気温度センサ(41)とを検出部として用いている。
ここで、外部空気の相対湿度(電力供給装置(30)の周囲における空気の相対湿度)が100%になることは現実的には有り得ないため、外部空気の露点温度(電力供給装置(30)の周囲の空気の露点温度)は外部空気の温度(電力供給装置(30)の周囲の空気の乾球温度)よりも低くなる。そのため、温度センサ(46)の検出値Tdが外気温度センサ(41)の検出値Taよりも低い状態では、冷却器(16)の表面温度が外部空気の露点温度(電力供給装置(30)の周囲の空気の露点温度)に近づいており、パワー素子(37)や冷却器(16)において結露が生じる可能性が高くなっていると推測できる。
そこで、結露判定部 (54)は、温度センサ(46)の検出値Tdが外気温度センサ(41)の検出値Taよりも低いときに結露状態と判定することとしている。
従って、実施形態2によれば、温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
また、通常、運転中はパワー素子(37)よりも該パワー素子(37)を冷却するための冷却器(16)の方が温度が低い。そのため、温度センサ(46)を冷却器(16)に取り付けることにより、結露の生起の虞を比較的に早い段階において検出することができ、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の生起をより確実に防止することができる。
なお、温度センサ(46)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
また、実施形態2では、外気温度センサ(41)を本発明に係る空気温度センサとしても用いているが、本発明に係る空気温度センサは、外気温度センサ(41)の他、電力供給装置(30)の周囲における空気の温度が検出可能であればよく、熱源側ユニット(1A)内の電力供給装置(30)の周囲の空気温度を検出するものであってもよい。
《発明の実施形態3》
実施形態3に係る冷凍装置(1)は、実施形態2と同様に構成され、運転制御装置(50)の結露判定部 (54)による結露判定の手法が異なる。その他の構成及び動作については実施形態2と同様であるため、以下では実施形態2と異なる運転制御装置(50)による結露抑制運転制御について説明する。
図7に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照する(ステップS31)。次に、結露判定部 (54)は、外気温度センサ(41)の検出値Taに基づいて、空気温度がTaであって相対湿度がHlであるときの露点温度Twを算出する(ステップS32)。そして、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS33)。
続いて、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS34)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが上記露点温度Twよりも低いときに結露状態と判定する。
そして、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)の開度を所定の値だけ強制的に低減する(ステップS35)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS31に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態3の効果−
実施形態3では、熱源側熱交換器(12)を通過する前の空気の状態(外部空気の状態)と電力供給装置(30)の周囲における空気の状態とは概ね同じであるため、外気温度センサ(41)を本発明に係る空気温度センサとして用いている。また、パワー素子(37)近傍の冷却器(16)に設けられた温度センサ(46)と、上記外気温度センサ(41)とを検出部として用いている。
ここで、設置環境や季節や時間等によって外部空気の相対湿度(電力供給装置(30)の周囲における空気の相対湿度)は異なるが、これら設置環境や使用時期等を考慮することで予測することは可能である。そこで、実施形態3では、結露判定部 (54)に、外気温度センサ(41)の検出値Taと、予測して設定しておいた相対湿度Hl(例えば、60%)とから、熱源側ユニット(1A)の外部の空気の露点温度Twを推定し、温度センサ(46)の検出値Tdが上記露点温度Twよりも低いときに結露状態と判定することとしている。
以上により、実施形態3によれば、温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点で第1絞り弁(18)の開度が低減されて冷却器(16)の温度低下が抑制されるため、結露の生起を未然に防止することができる。
また、通常、運転中はパワー素子(37)よりも該パワー素子(37)を冷却するための冷却器(16)の方が温度が低い。そのため、温度センサ(46)を冷却器(16)に取り付けることにより、結露の生起の虞を比較的に早い段階において検出することができ、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の生起をより確実に防止することができる。
なお、温度センサ(46)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
また、実施形態3では、外気温度センサ(41)を本発明に係る空気温度センサとしても用いているが、本発明に係る空気温度センサは、外気温度センサ(41)の他、電力供給装置(30)の周囲における空気の温度が検出可能であればよく、熱源側ユニット(1A)内の電力供給装置(30)の周囲の空気温度を検出するものであってもよい。
《発明の実施形態4》
実施形態4に係る冷凍装置(1)は、実施形態2と同様に構成され、運転制御装置(50)の結露判定部 (54)による結露判定の手法が実施形態2と異なる。その他の構成及び動作については実施形態2と同様であるため、以下では実施形態2と異なる運転制御装置(50)による結露抑制運転制御について説明する。
図8に示すように、まず、結露判定部 (54)が温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS36)。次に、結露判定部 (54)は、温度センサ(46)の検出値Tdに、該温度センサ(46)の設置部分からパワー素子(37)の電気接続部までの温度上昇分ΔTを加えた温度(Td+ΔT)を算出する(ステップS37)。なお、温度上昇分ΔTは、試験において予め測定した値であってもよく、熱抵抗と熱流速から予測した値であってもよい。そして、結露判定部 (54)は、外気温度センサ(41)の検出値Ta(外気温度)を参照する(ステップS38)。
続いて、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS39)。なお、結露判定部 (54)は、上記温度(Td+ΔT)が上記外気温度Taよりも低いときに結露状態と判定する。
そして、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)の開度を所定の値だけ強制的に低減する(ステップS40)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS36に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態4の効果−
実施形態4によれば、温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点で第1絞り弁(18)の開度が低減されて冷却器(16)の温度低下が抑制されるため、結露の生起を未然に防止することができる。
また、運転中に、冷却器(16)付近は結露が生じるような温度環境にあっても、パワー素子(37)の発熱によって、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部では結露が生じる温度環境にない場合がある。そこで、上記実施形態4では、結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部の予測温度が空気温度よりも低い値であるときに、強制低減部(55)によって第1絞り弁(18)の開度を強制的に低減して結露の生起を未然に防止することとしている。これにより、冷却器(16)における冷媒温度をパワー素子(37)の電気接続部において結露が生じない温度ぎりぎりまで低下させることができる。従って、パワー素子(37)の故障を防止しつつ冷却器(16)の性能を向上させることができる。
なお、温度センサ(46)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
また、実施形態4では、外気温度センサ(41)を本発明に係る空気温度センサとしても用いているが、本発明に係る空気温度センサは、外気温度センサ(41)の他、電力供給装置(30)の周囲における空気の温度が検出可能であればよく、熱源側ユニット(1A)内の電力供給装置(30)の周囲の空気温度を検出するものであってもよい。
《発明の実施形態5》
図9に示すように、実施形態5に係る冷凍装置(1)は、実施形態1の結露センサ(45)の代わりにパワー素子(37)近傍に湿度センサ(47)が設けられ、該湿度センサ(47)を結露状態であるか否かを判定するための物理量を検出する検出部として用いるものである。
上記湿度センサ(47)は運転制御装置(50)に接続され、該運転制御装置(50)に検出信号を送信する。そして、運転制御装置(50)の結露判定部 (54)は、上記湿度センサ(47)の検出値が所定の上限値よりも高いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する結露状態と判定する。その他の構成については実施形態1と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態1と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図10に示すように、まず、結露判定部 (54)が湿度センサ(47)の検出値Hpを参照する(ステップS41)。
次に、結露判定部 (54)は、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS42)。なお、結露判定部 (54)は、湿度センサ(47)の検出値Hpが所定の上限値Hmよりも高いときに結露状態と判定する。
そして、ステップS42において結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)の開度を所定の値だけ強制的に低減する(ステップS43)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS41に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態5の効果−
実施形態5では、湿度センサ(47)を用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点で第1絞り弁(18)の開度が強制的に低減されて冷却器(16)の温度低下が抑制されるため、結露の生起を未然に防止することができる。
《発明の実施形態6》
図11に示すように、実施形態6に係る冷凍装置(1)は、実施形態2の冷凍装置(1)にさらに電力供給装置(30)の周囲における空気の温度を検出する湿度センサ(48)を設けたものである。そして、実施形態6に係る冷凍装置(1)では、上記湿度センサ(48)と上記外気温度センサ(41)と上記温度センサ(46)とが、結露状態であるか否かを判定するための物理量を検出する検出部として用いられる。
上記湿度センサ(48)は、冷却器(16)に到達する前の外気の湿度を検出するためのものであり、空気流れの冷却器(16)よりも上流側に設けられている。また、湿度センサ(48)は運転制御装置(50)に接続され、該運転制御装置(50)に検出信号を送信する。そして、運転制御装置(50)の結露判定部 (54)は、上記温度センサ(46)の検出値が湿度センサ(48)の検出値と外気温度センサ(41)の検出値とから算出される露点温度よりも低いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高い結露状態と判定する。その他の構成については実施形態2と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態2と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図12に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照すると共に湿度センサ(48)の検出値Ha(外気湿度)を参照する(ステップS44)。次に、結露判定部 (54)は、外気温度センサ(41)の検出値Taと湿度センサ(48)の検出値Haとに基づいて、空気温度がTaであって相対湿度がHaであるときの露点温度Twを算出する(ステップS45)。そして、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS46)。
次に、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS47)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが上記露点温度Twよりも低いときに結露状態と判定する。
そして、ステップS47において、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記第1開度調節部(52)に代わって第1絞り弁(18)の開度を所定の値だけ強制的に低減する(ステップS48)。
第1絞り弁(18)の開度が強制的に低減されると、分岐回路(10B)に流入する冷媒量が減少するため、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。これにより、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして強制低減部(55)によって第1絞り弁(18)の開度が強制的に低減された後、運転制御装置(50)は、再びステップS44に戻って同じ動作を繰り返す。その結果、結露判定部(54)が結露状態と判定している間は、強制低減部(55)が結露抑制運転制御を行う毎に第1絞り弁(18)の開度が低減されていく。そして、結露判定部(54)が結露状態と判定しなくなると、運転制御装置(50)は、通常運転制御を再開し、冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。
−実施形態6の効果−
実施形態6では、冷却器(16)に到達する前の外気の湿度を検出する湿度センサ(48)と、実施形態2と同様の外気温度センサ(41)と、実施形態2と同様の温度センサ(46)とを検出部として用いている。
そして、結露判定部 (54)は、冷却器(16)によって冷却される前の空気(外気)の温度と湿度とから該空気の露点温度を求め、パワー素子(37)近傍の温度が上記露点温度よりも低くなるとパワー素子(37)において結露が生じる可能性が高い結露状態と判断する。
従って、実施形態6によれば、湿度センサ(48)と外気温度センサ(41)と温度センサ(46)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
また、通常、運転中はパワー素子(37)よりも該パワー素子(37)を冷却するための冷却器(16)の方が温度が低い。そのため、温度センサ(46)を冷却器(16)に取り付けることにより、結露の生起の虞を比較的に早い段階において検出することができ、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の生起をより確実に防止することができる。
なお、温度センサ(46)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
また、実施形態6では、外気温度センサ(41)を本発明に係る空気温度センサとしても用いているが、本発明に係る空気温度センサは、外気温度センサ(41)の他、電力供給装置(30)の周囲における空気の温度が検出可能であればよく、熱源側ユニット(1A)内の電力供給装置(30)の周囲の空気温度を検出するものであってもよい。
《発明の実施形態7》
図13に示すように、実施形態7に係る冷凍装置(1)は、実施形態1の運転制御装置(50)の構成を変更したものである。
具体的には、実施形態7では、運転制御装置(50)は、実施形態1と同様の通常運転部(51)と結露判定部 (54)とを備えている。また、運転制御装置(50)は、実施形態1の強制低減部(55)の代わりに発熱量増大部(56)及び発熱量復帰部(57)を備えている。
上記発熱量増大部(56)は、上記結露判定部 (54)が結露状態と判定すると、パワー素子(37)の発熱量を増大させる。なお、本実施形態では、発熱量増大部(56)は、圧縮機(11)の電流を増大させることによって、圧縮機(11)用の駆動回路(31)のパワー素子(37)の発熱量を増大させる。
上記発熱量復帰部(57)は、上記結露判定部 (54)が結露状態でないと判定すると、発熱量増大部(56)によって増大したパワーモジュール(61)のパワー素子(37)の発熱量を増大前の通常状態に復帰させる。つまり、発熱量復帰部(57)は、圧縮機(11)のモータ(11a)の電流を増大前の通常状態に復帰させることによって、圧縮機(11)用の駆動回路(31)のパワー素子(37)の発熱量を通常状態に復帰させる。
なお、発熱量増大部(56)は、本発明に係るパワー素子(37)の温度を上昇させる温度上昇部(91)を構成する。一方、発熱量復帰部(57)は、温度上昇部(91)によって上昇したパワー素子(37)の温度を通常状態に復帰させる温度復帰部(92)を構成する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態1と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図14に示すように、まず、結露判定部 (54)が結露センサ(45)からの結露信号を参照し(ステップS51)、冷却器(16)に結露が生起した結露状態であるか否かを判定する(ステップS52)。そして、結露判定部 (54)が結露状態であると判定すると、発熱量増大部(56)がパワー素子(37)の発熱量を増大する(ステップS53)。
なお、本実施形態では、発熱量増大部(56)は、圧縮機(11)の電流を増大させることにより、圧縮機(11)用の駆動回路(31)のパワー素子(37)の発熱量を増大させる。
なお、このとき、各種パワー素子(37)のうち、圧縮機(11)用の駆動回路(31)のパワー素子(37)のみの発熱量が増大することとなる。しかしながら、各種パワー素子(37)は一纏めにして1つのパワーモジュール(61)として構成されている。そのため、圧縮機(11)を制御するパワー素子(37)の発熱量が増大することによって、パワーモジュール(61)全体の温度が上昇することとなる。よって、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のようにして圧縮機(11)用の駆動回路(31)のパワー素子(37)の発熱量が増大された後、結露判定部 (54)は結露センサ(45)からの結露信号を参照し(ステップS54)、冷却器(16)の結露状態が解消されたか否かを判定する(ステップS55)。そして、結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS54に戻り、再び結露センサ(45)の結露信号を参照する。
一方、ステップS55において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によって圧縮機(11)用の駆動回路(31)のパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS56)。そして、ステップS51に戻って上記フローを繰り返す。
−実施形態7の効果−
以上より、本実施形態7によれば、結露判定部 (54)によって冷却器(16)に結露が生起した結露状態であると判定されると、発熱量増大部(56)によってパワー素子(37)の発熱量を増大させることにより、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)の温度を上昇させることができる。その結果、パワー素子(37)及び該パワー素子(37)の周辺部材(16,71)における結露の発生を抑制することができ、これらの近傍に配置された金属製部品等の腐食及びパワー素子(37)の絶縁性能の低下を防止することができる。
また、本実施形態7によれば、結露状態を予測するのではなく、結露センサ(45)を用いて実際に冷却器(16)に結露が生起したときに結露状態と判定してパワー素子(37)の発熱量を増大する。従って、実際に結露が生起していないときに無駄にパワー素子(37)の発熱量を増大させることがなく、パワー素子(37)の発熱量を増大することによる損失を低減することができる。
さらに、本実施形態7によれば、結露センサ(45)を用いているため、結露の生起の有無を容易に且つ精度良く検出することができる。
ところで、通常、運転中はパワー素子(37)よりも該パワー素子(37)を冷却するための冷却器(16)の方が温度が低い。そのため、パワー素子(37)よりも冷却器(16)の方が先に結露が生起され易い。
そこで、本実施形態7では、結露センサ(45)を冷却器(16)に取り付けることにより、結露の生起を比較的に早い段階において検出することとしている。そのため、例えば、冷却器(16)に結露が生起されていても未だパワー素子(37)に結露が生起されていないときに、パワー素子(37)の発熱量を増大させることができる。これにより、パワー素子(37)における結露の生起を未然に防止することができる。
なお、結露センサ(45)は、パワー素子(37)(本実施形態の場合、パワーモジュール(61))又は該パワー素子(37)の周辺部材(例えば、基板(71)等)に取り付けられていてもよい。
また、本実施形態7によれば、結露センサ(45)によって結露状態の解消を精度良く検出し、結露状態が解消されるとすぐに発熱量復帰部(57)によってパワー素子(37)の発熱量を増大前の通常状態に復帰させることができる。従って、パワー素子(37)の発熱量を増大させることによる熱損失を必要最低限に抑制することができる。
さらに、本実施形態7によれば、圧縮機(11)の電流を増大することによって圧縮機(11)用のパワー素子(37)の発熱量を増大させて、各種パワー素子(37)が一纏めにされたパワーモジュール(61)全体の温度を上昇させることができる。そのため、例えば、ヒータ等の加熱手段を用いることなくパワー素子(37)の温度を容易に上昇させることができる。従って、パワー素子(37)及びパワー素子(37)の周辺部材(16,71)における結露の生起を容易に抑制することができる。
《発明の実施形態8》
実施形態8に係る冷凍装置(1)は、実施形態7の結露センサ(45)の代わりに実施形態2と同様の温度センサ(46)が設けられている(図5参照)。また、実施形態2と同様に、上記外気温度センサ(41)を電力供給装置(30)の周囲における空気の温度を検出する本発明に係る空気温度センサとして用いる。そして、実施形態8に係る冷凍装置(1)では、上記温度センサ(46)と上記外気温度センサ(41)とが、結露状態であるか否かを判定するための物理量を検出する検出部として用いられる。
運転制御装置(50)の結露判定部 (54)は、実施形態2と同様に、上記温度センサ(46)の検出値が外気温度センサ(41)の検出値よりも低いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する結露状態と判定する。その他の構成については実施形態7と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態7と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図15に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照し(ステップS61)、続いて、温度センサ(46)の検出値Td(冷却器(16)の温度)を参照する(ステップS62)。
次に、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS63)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが外気温度センサ(41)の検出値Taよりも低いときに結露状態と判定する。
そして、ステップS63において、結露判定部 (54)が結露状態であると判定すると、発熱量増大部(56)がパワー素子(37)の発熱量を増大する(ステップS64)。
発熱量増大部(56)がパワー素子(37)の発熱量を増大した後、結露判定部 (54)は、外気温度センサ(41)の検出値Taを参照し(ステップS65)、続いて、温度センサ(46)の検出値Tdを参照する(ステップS66)。
次に、結露判定部 (54)は、結露状態が解消したか否かを判定する(ステップS67)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが外気温度センサ(41)の検出値Ta以上の数値となったときに結露状態が解消したと判定する。
ステップS67において結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS65に戻り、再び外気温度センサ(41)の検出値Ta及び温度センサ(46)の検出値Tdを参照する。
一方、ステップS67において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS68)。そして、ステップS61に戻って上記フローを繰り返す。
−実施形態8の効果−
実施形態8によれば、実施形態2と同様にして温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
《発明の実施形態9》
実施形態9に係る冷凍装置(1)は、実施形態8と同様に構成され、運転制御装置(50)の結露判定部 (54)による結露判定の手法が実施形態8と異なる。なお、結露判定の手法は実施形態3と同様である。以下では実施形態8と異なる運転制御装置(50)による結露抑制運転制御について説明する。
図16に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照する(ステップS71)。次に、結露判定部 (54)は、外気温度センサ(41)の検出値Taに基づいて、空気温度がTaであって相対湿度がHlであるときの露点温度Twを算出する(ステップS72)。そして、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS73)。
続いて、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS74)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが上記露点温度Twよりも低いときに結露状態と判定する。
そして、結露判定部 (54)が結露状態であると判定すると、発熱量増大部(56)がパワー素子(37)の発熱量を増大する(ステップS75)。
発熱量増大部(56)がパワー素子(37)の発熱量を増大した後、結露判定部 (54)は、外気温度センサ(41)の検出値Taを参照する(ステップS76)。次に、結露判定部 (54)は、空気温度がTaであって相対湿度Hlであるときの露点温度Twを算出する(ステップS77)。そして、結露判定部 (54)は、温度センサ(46)の検出値Tdを参照する(ステップS78)。
続いて、結露判定部 (54)は、結露状態が解消したか否かを判定する(ステップS79)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが算出された露点温度Tw以上の数値となったときに結露状態が解消したと判定する。
ステップS79において、結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS76に戻り、再び外気温度センサ(41)の検出値Taと相対湿度Hlから露点温度Twを算出すると共に、温度センサ(46)の検出値Tdを参照する。
一方、ステップS79において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS80)。そして、ステップS71に戻って上記フローを繰り返す。
−実施形態9の効果−
実施形態9では、実施形態3と同様にして温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
《発明の実施形態10》
実施形態10に係る冷凍装置(1)は、実施形態8と同様に構成され、運転制御装置(50)の結露判定部 (54)による結露判定の手法が実施形態8と異なる。なお、結露判定の手法は実施形態4と同様である。以下では実施形態8と異なる運転制御装置(50)による結露抑制運転制御について説明する。
図17に示すように、まず、結露判定部 (54)が温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS91)。次に、結露判定部 (54)は、温度センサ(46)の検出値Tdに、該温度センサ(46)の設置部分からパワー素子(37)の電気接続部までの温度上昇分ΔTを加えた温度(Td+ΔT)を算出する(ステップS92)。なお、温度上昇分ΔTは、試験において予め測定した値であってもよく、熱抵抗と熱流速から予測した値であってもよい。そして、結露判定部 (54)は、外気温度センサ(41)の検出値Ta(外気温度)を参照する(ステップS93)。
続いて、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS94)。なお、結露判定部 (54)は、上記温度(Td+ΔT)が上記外気温度Taよりも低いときに結露状態と判定する。
そして、結露判定部 (54)が結露状態であると判定すると、発熱量増大部(56)がパワー素子(37)の発熱量を増大する(ステップS95)。
発熱量増大部(56)がパワー素子(37)の発熱量を増大した後、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS96)。次に、結露判定部 (54)は、温度センサ(46)の検出値Tdに、該温度センサ(46)の設置部分からパワー素子(37)の電気接続部までの温度上昇分ΔTを加えた温度(Td+ΔT)を算出する(ステップS97)。そして、結露判定部 (54)は、外気温度センサ(41)の検出値Ta(外気温度)を参照する(ステップS98)。
続いて、結露判定部 (54)は、結露状態が解消したか否かを判定する(ステップS99)。なお、結露判定部 (54)は、上記温度(Td+ΔT)が外気温度センサ(41)の検出値Ta以上の数値となったときに結露状態が解消したと判定する。
ステップS99において、結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS96に戻る。
一方、ステップS99において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS100)。そして、ステップS91に戻って上記フローを繰り返す。
−実施形態10の効果−
実施形態10では、実施形態4と同様にして温度センサ(46)と外気温度センサ(41)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
また、運転中に、冷却器(16)付近は結露が生じるような温度環境にあっても、パワー素子(37)の発熱によって、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部では結露が生じる温度環境にない場合がある。そこで、上記実施形態10では、結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部の予測温度が空気温度よりも低い値であるときに、温度上昇部(91)によってパワー素子(37)の温度を上昇させることとしている。これにより、実際に結露水の付着によって短絡の虞のあるパワー素子(37)の電気接続部において結露が生じるおそれのないときには、温度上昇部(91)によってパワー素子(37)の温度が無駄に上昇されないようにすることができる。従って、パワー素子(37)の発熱量を無駄に増大させることなくパワー素子(37)の故障を防止することができる。
《発明の実施形態11》
実施形態11に係る冷凍装置(1)は、実施形態7の結露センサ(45)の代わりにパワー素子(37)近傍に実施形態5と同様の湿度センサ(47)を設け(図9参照)、該湿度センサ(47)を結露状態であるか否かを判定するための物理量を検出する検出部として用いるものである。
運転制御装置(50)の結露判定部 (54)は、実施形態5と同様に、上記湿度センサ(47)の検出値が所定の上限値よりも高いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する結露状態と判定する。その他の構成については実施形態7と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態7と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図18に示すように、まず、結露判定部 (54)が湿度センサ(47)の検出値Hpを参照する(ステップS81)。
次に、結露判定部 (54)は、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS82)。なお、結露判定部 (54)は、湿度センサ(47)の検出値Hpが所定の上限値Hmよりも高いときに結露状態と判定する。
そして、ステップS82において結露判定部 (54)が結露状態であると判定すると、発熱量増大部(56)がパワー素子(37)の発熱量を増大する(ステップS83)。
発熱量増大部(56)がパワー素子(37)の発熱量を増大した後、結露判定部 (54)は湿度センサ(47)の検出値Hpを参照し(ステップS84)、結露状態が解消されたか否かを判定する(ステップS85)。なお、結露判定部 (54)は、湿度センサ(47)の検出値Hpが所定の上限値Hm以下の数値となったときに結露状態が解消したと判定する。
そして、ステップS85において結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS84に戻り、再び結露センサ(45)の結露信号を参照する。
一方、ステップS85において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS86)。そして、ステップS81に戻って上記フローを繰り返す。
−実施形態11の効果−
実施形態11では、湿度センサ(47)を用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
《発明の実施形態12》
実施形態12に係る冷凍装置(1)は、実施形態8の冷凍装置(1)にさらに実施形態6と同様の湿度センサ(48)を設け(図11参照)、該湿度センサ(48)と上記外気温度センサ(41)と上記温度センサ(46)とを、結露状態であるか否かを判定するための物理量を検出する検出部として用いるものである。
運転制御装置(50)の結露判定部 (54)は、実施形態6と同様に、上記温度センサ(46)の検出値が、湿度センサ(48)の検出値と外気温度センサ(41)の検出値とから算出される露点温度よりも低いときにパワー素子(37)及び該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高い結露状態と判定する。その他の構成については実施形態8と同様であるため説明を省略する。
冷凍サイクルの動作、パワー素子の冷却動作及び運転制御装置(50)による通常運転制御については実施形態8と同様である。以下、運転制御装置(50)による結露抑制運転制御について説明する。
図19に示すように、まず、結露判定部 (54)が外気温度センサ(41)の検出値Ta(外気温度)を参照すると共に湿度センサ(48)の検出値Ha(外気湿度)を参照する(ステップS101)。次に、結露判定部 (54)は、外気温度センサ(41)の検出値Taと湿度センサ(48)の検出値Haとに基づいて、空気温度がTaであって相対湿度がHaであるときの露点温度Twを算出する(ステップS102)。そして、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS103)。
次に、結露判定部 (54)は、冷却器(16)に結露が生起する可能性が高い結露状態であるか否かを判定する(ステップS104)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが上記露点温度Twよりも低いときに結露状態と判定する。
そして、発熱量増大部(56)がパワー素子(37)の発熱量を増大した後、結露判定部 (54)は、外気温度センサ(41)の検出値Ta(外気温度)を参照すると共に湿度センサ(48)の検出値Ha(外気湿度)を参照する(ステップS106)。次に、結露判定部 (54)は、外気温度センサ(41)の検出値Taと湿度センサ(48)の検出値Haとに基づいて、空気温度がTaであって相対湿度がHaであるときの露点温度Twを算出する(ステップS107)。そして、結露判定部 (54)は、温度センサ(46)の検出値(冷却器(16)の温度Td)を参照する(ステップS108)。
続いて、結露判定部 (54)は、結露状態が解消したか否かを判定する(ステップS109)。なお、結露判定部 (54)は、温度センサ(46)の検出値Tdが上記露点温度Tw以上の数値となったときに結露状態が解消したと判定する。
ステップS109において、結露判定部 (54)が結露状態が解消していないと判定すると、パワー素子(37)の発熱量を増大させたままステップS106に戻る。
一方、ステップS109において結露判定部 (54)が結露状態が解消したと判定すると、発熱量復帰部(57)によってパワー素子(37)の発熱量が増大前の通常状態に復帰される(ステップS110)。そして、ステップS101に戻って上記フローを繰り返す。
−実施形態12の効果−
実施形態12では、冷却器(16)に到達する前の外気の湿度を検出する湿度センサ(48)と、実施形態8と同様の外気温度センサ(41)と、実施形態8と同様の温度センサ(46)とを検出部として用いている。
そして、結露判定部 (54)は、冷却器(16)によって冷却される前の空気(外気)の温度と湿度とから該空気の露点温度を求め、パワー素子(37)近傍の温度が上記露点温度よりも低くなるとパワー素子(37)において結露が生じる可能性が高い結露状態と判断する。
従って、実施形態12によれば、湿度センサ(48)と外気温度センサ(41)と温度センサ(46)とを用いることにより、パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生起する可能性が高いことを容易に且つ精度良く検出することができる。また、結露が生起する可能性が高まった時点でパワー素子(37)の発熱量が増大されるため、結露の生起を未然に防止することができる。
《発明の実施形態13》
上記実施形態7〜12では、発熱量増大部(56)は、圧縮機(11)の電流を増大させることにより、パワー素子(37)の発熱量を増大させていた。実施形態13では、発熱量増大部(56)は、パワー素子(37)を構成する各スイッチング素子のスイッチング周波数を増大させることによりパワー素子(37)の発熱量を増大させるように構成されている。
具体的には、制御装置(60)において運転制御装置(50)からの制御信号を駆動信号に変換する際に用いる変調信号の周波数(キャリア周波数)を増大させる。これにより、制御装置(60)から各駆動回路(31)の各スイッチング素子のベース回路に入力される駆動信号の周波数が増大し、各スイッチング素子のスイッチングの周波数が増大する。つまり、図20(a)の状態から図20(b)の状態になる。その結果、スイッチングによる熱損失がスイッチング周波数が増大した分だけ増大するため、パワー素子(37)の発熱量が増大することとなる。
このような形態によっても、ヒータ等の加熱手段を用いることなく、容易にパワー素子(37)の発熱量を増大させてパワー素子(37)又はパワー素子(37)の周辺部材(16,71)における結露の生起を抑制することができる。
《発明の実施形態14》
上記実施形態7〜12では、発熱量増大部(56)は、圧縮機(11)の電流を増大させることにより、パワー素子(37)の発熱量を増大させていた。実施形態14では、発熱量増大部(56)は、パワー素子(37)を構成する各スイッチング素子のスイッチング損失を増大させることによりパワー素子(37)の発熱量を増大させるように構成されている。
具体的には、例えば、ベース回路の抵抗を増大させてベース電圧が立ち上がるまでの時間(ベース回路が電流を最大値まで到達させるまでに要するターンオン時間及びベース回路が電流を遮断するまでに要するターンオフ時間)を延ばすことによってスイッチング損失を増大させる。
より具体的には、例えば、各スイッチング素子に、図21(a)に示すようなベース回路(70)を接続する。そして、通常運転時にはスイッチA及びスイッチBを閉じる一方、結露抑制運転時にはスイッチBを開くこととする。その結果、図21(b)に示すように、各スイッチング素子のベース電圧が立ち上がるまでの時間が通常運転時よりも長くなり(図21(b)の破線から実線になる)、スイッチング損失が大きい時間が長くなる。よって、スイッチング1回あたりの損失が増大し、パワー素子(37)の発熱量が増大する。
また、例えば、ベース回路のコンデンサ容量を増大させてベース電圧が立ち上がるまでの時間(ベース回路が電流を最大値まで到達させるまでに要するターンオン時間及びベース回路が電流を遮断するまでに要するターンオフ時間)を延ばすことによってスイッチング損失を増大させるように構成してもよい。
具体的には、例えば、各スイッチング素子に、図21(c)に示すようなベース回路(80)を接続する。そして、通常運転時にはスイッチAのみを閉じてスイッチBを開き、結露抑制運転時にはスイッチBを閉じることとする。その結果、ベース回路の抵抗を増大させる場合と同様に、各スイッチング素子のベース電圧が立ち上がるまでの時間が通常運転時よりも長くなり(図21(b)の破線から実線になる)、スイッチング損失が大きい時間が長くなる。よって、スイッチング1回あたりの損失が増大し、パワー素子(37)の発熱量が増大する。
このような形態によっても、ヒータ等の加熱手段を用いることなく、容易にパワー素子(37)の発熱量を増大させてパワー素子(37)又はパワー素子(37)の周辺部材(16,71)における結露の生起を抑制することができる。
なお、図21(a)に示すベース回路(70)及び図21(c)に示すベース回路(80)は、それぞれ抵抗が可変な回路及びコンデンサ容量が可変な回路の一例であり、ベース回路(70,80)は上記のものに限られない。
《発明の実施形態15》
上記実施形態7〜12では、発熱量増大部(56)は、圧縮機(11)の電流を増大させることにより、パワー素子(37)の発熱量を増大させていた。実施形態15では、発熱量増大部(56)は、パワー素子(37)の導通損失を増大させることによりパワー素子(37)の発熱量を増大させる。
パワー素子(37)の導通損失を増大させるのはいかなる手法によってもよいが、第1の例として、結露抑制運転時に、各駆動回路(31)の各駆動部に流入する電流の位相を変動させることとしてもよい。具体的には、図22に示すように、通常運転時には、パワー素子(37)の導通損失が最も小さくなる位相P1で運転する一方、結露抑制運転時には、パワー素子(37)の導通損失がより大きくなる位相P2で運転する。このように位相をP1からP2に変動させることにより、各パワー素子(37)のコレクタ電流が増大し、パワー素子(37)の導通損失が増大することとなる。
また、パワー素子(37)の導通損失を増大させる第2の例として、結露抑制運転時に、各駆動回路(31)の各パワー素子(37)のエミッタコレクタ間の電圧を変動させることとしてもよい。具体的には、図23に示すように、通常運転時には、エミッタコレクタ間の電圧を一定にして制御する一方(図23の破線を参照)、結露抑制運転時には、エミッタコレクタ間の電圧を脈動させる(図23実線を参照)。このようにエミッタコレクタ間の電圧を脈動させることにより、コレクタ電流の実効値が増加し、パワー素子(37)の導通損失が増大することとなる。
なお、エミッタコレクタ間の電圧を変動させる方法としては、例えば、図24に示すように、各駆動回路(31)のコンデンサ回路(33)にスイッチCを設け、通常運転時にはスイッチCを閉じてエミッタコレクタ間の電圧をコンデンサ(36)によって平滑化する一方、結露抑制運転時にはスイッチCを開いてエミッタコレクタ間の電圧を脈動させることとしてもよい。
さらに、パワー素子(37)の導通損失を増大させる第3の例として、例えば、結露抑制運転時に、パワー素子(37)のベース電圧を下げることとしてもよい。パワー素子(37)のベース電圧を下げると、パワー素子(37)のオン抵抗(導通状態におけるエミッタコレクタ間の抵抗)が増大し、パワー素子(37)の導通損失が増大することとなる。
発熱量増大部(56)は、以上のような方法によってパワー素子(37)の導通損失を増大させることによっても、パワー素子(37)の発熱量を増大させることができる。従って、上記のような形態によっても、ヒータ等の加熱手段を用いることなく、容易にパワー素子(37)の発熱量を増大させてパワー素子(37)又はパワー素子(37)の周辺部材(16,71)における結露の生起を抑制することができる。
《発明の実施形態16》
図25に示すように、実施形態16に係る冷凍装置(1)は、実施形態7〜15のいずれか1つの冷凍装置(1)において、運転制御装置(50)の構成を変更したものである。
具体的には、運転制御装置(50)は、結露判定部 (54)、発熱量増大部(56)及び発熱量復帰部(57)に加えて、発熱量増大部(56)によってパワー素子(37)の発熱量が増大されてから所定時間が経過すると、パワー素子(37)の発熱量を増大前の通常状態に強制的に復帰させる発熱量強制復帰部(58)を備えている。
ところで、パワー素子(37)は高温に発熱する一方、限界温度を超えて温度が上昇すると故障を招き易い。そのため、パワー素子(37)の発熱量が高い状態を長時間継続することはパワー素子(37)保護の観点から好ましくない。また、実施形態8〜12のように結露が生起する可能性が高いときに結露状態と判定してパワー素子(37)の発熱量を増大させることとすると、実際には結露が解消されたにも拘わらず、なおも結露判定部 (54)によって結露状態と判定されるためにパワー素子(37)の発熱量が大きい状態が無駄に継続される虞がある。
そこで、実施形態16では、結露を解消するために十分な長さの時間を予め所定時間として設定し、パワー素子(37)の発熱量が増大されてから所定時間が経過すると、発熱量強制復帰部(58)によってパワー素子(37)の発熱量が強制的に増大前の通常状態に復帰されることとする。これにより、パワー素子(37)の故障を防止すると共にパワー素子(37)の熱損失を低減することができる。
また、例えば、発熱量強制復帰部(58)がパワー素子(37)の発熱量を強制的に復帰させてから所定時間経過するまでは発熱量増大部(56)に制御させないこととしてもよい。このような場合には、結露の抑制とパワー素子(37)の熱損失の低減とをバランスよく行うことができる。
《発明の実施形態17》
図26に示すように、実施形態17に係る冷凍装置(1)は、実施形態7の冷凍装置(1)において、温度上昇部(91)の構成を変更したものである。
具体的には、温度上昇部(91)は、実施形態7の発熱量増大部(56)の代わりに、パワー素子(37)を加熱するヒータ(95)と、該ヒータ(95)のON/OFFを制御するヒータ制御部(96)とによって構成されている。ヒータ(95)は、パワー素子(37)近傍に設けられ、ヒータ制御部(96)は運転制御装置(50)に設けられている。なお、実施形態7における温度復帰部(92)も上記ヒータ(95)とヒータ制御部(96)とによって構成される。その他の構成については実施形態7と同様であるため説明を省略する。
また、運転動作についても実施形態7とほぼ同様であるが、運転制御装置(50)による結露抑制運転制御において、ステップS53において上記ヒータ制御部(96)がヒータ(95)をON制御することによりパワー素子(37)の温度を上昇させる点、及び、ステップS56において上記ヒータ制御部(96)がヒータ(95)をOFF制御することによってパワー素子(37)の温度を上昇前の通常状態に復帰させる点について異なる。
このように、ヒータ(95)を用いてパワー素子(37)の温度を上昇させることによってパワー素子(37)及び該パワー素子の周辺部材(16,71)における結露の生起を防止することとしてもよい。
また、実施形態8〜12の冷凍装置(1)について、上述と同様にして温度上昇部(91)の構成を変更することとしてもよい。
《発明の実施形態18》
図27に示すように、実施形態18に係る冷凍装置(1)は、上記各実施形態において、冷媒回路(10)の分岐回路(10B)の流出端の接続先を変更したものである。具体的には、実施形態18では、分岐回路(10B)の流出端が圧縮機(11)の吸入側の配管に接続されている。その他の構成については各実施形態と同様である。なお、図27では、一例として実施形態1を変更したものを示している。
以上のように、分岐回路(10B)の流出端が圧縮機(11)の吸入側の配管に接続された場合においても、分岐回路(10B)では、第1開度調節部(52)が冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。また、第2開度調節部(53)が冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように第2絞り弁(17)の開度を調節する。これにより、冷却器(16)を通過する冷媒の温度が目標温度となると共に圧縮機(11)に導入される冷媒の湿りが防止される。
また、結露抑制運転制御では、結露判定部(54)によって結露状態と判定されると、第1開度調節部(52)に代わって強制低減部(55)が第1絞り弁(18)の開度を強制的に低減すること、又は温度上昇部(91)がパワー素子(37)の温度を上昇させることにより、パワー素子(37)及び冷却器(16)における結露の発生を抑制することができる。
従って、実施形態18においても各実施形態と同様の効果を奏することができる。
《発明の実施形態19》
図28に示すように、実施形態19に係る冷凍装置(1)は、上記各実施形態において、冷媒回路(10)に四路切換弁(19)を設け、主回路(10A)における冷媒循環が可逆に構成されている。なお、図28では、一例として実施形態1を変更したものを示している。
具体的には、四路切換弁(19)の第1ポート(P1)には圧縮機(11)の吐出側に接続されたガス配管が接続されている。四路切換弁(19)の第2ポート(P2)には、熱源側熱交換器(12)の一端に接続されたガス配管が接続されている。四路切換弁(19)の第3ポート(P3)には、圧縮機(11)の吸入側に接続されたガス配管が接続されている。四路切換弁(19)の第4ポート(P4)には、利用側熱交換器(14)の一端に接続されたガス配管が接続されている。
また、分岐回路(10B)の流入端は、2つの流入配管(21,22)によって構成されている。該2つの流入配管(21,22)は、上記熱源側熱交換器(12)と利用側熱交換器(14)とを接続する液配管の膨張弁(13)の前後にそれぞれ接続されている。また、流入配管(21)には、主回路(10A)から流入配管(21)への冷媒の流入のみを許容する逆止弁(23)が設けられる一方、流入配管(22)には、主回路(10A)から流入配管(22)への冷媒の流入のみを許容する逆止弁(24)が設けられている。その他の構成は、上記各実施形態と同様である。
上記構成により、実施形態19の冷凍装置(1)では、主回路(10A)における冷媒循環が可逆となり、例えば、空気調和装置であれば、室内の冷房運転と暖房運転とが切換可能となる。具体的には、四路切換弁(19)を第1ポート(P1)と第2ポート(P2)とが連通すると共に第3ポート(P3)と第4ポート(P4)とが連通する第1の状態に切り換えると(図28の実線参照)、熱源側熱交換器(12)が凝縮器となって利用側熱交換器(14)が蒸発器となる冷房運転が実行される。一方、四路切換弁(19)を第1ポート(P1)と第4ポート(P4)とが連通すると共に第2ポート(P2)と第3ポート(P3)とが連通する第2の状態に切り換えると(図28の破線参照)、利用側熱交換器(14)が凝縮器となって熱源側熱交換器(12)が蒸発器となる暖房運転が実行される。
また、分岐回路(10B)には、膨張弁(13)の上流側に接続された流入配管(21,22)から高圧液冷媒の一部が流入する。具体的には、上記冷房運転中には、膨張弁(13)の上流側に接続されることとなる流入配管(22)を介して高圧液冷媒の一部が分岐回路(10B)に流入する。一方、上記暖房運転中には、膨張弁(13)の上流側に接続されることとなる流入配管(21)を介して高圧液冷媒の一部が分岐回路(10B)に流入する。
そして、分岐回路(10B)では、第1開度調節部(52)が冷却器(16)における冷媒の蒸発温度が目標温度となるように第1絞り弁(18)の開度を調節する。また、第2開度調節部(53)が冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように第2絞り弁(17)の開度を調節する。これにより、冷却器(16)を通過する冷媒の温度が目標温度となると共に圧縮機(11)に導入される冷媒の湿りが防止される。
また、結露抑制運転制御では、結露判定部(54)によって結露状態と判定されると、第1開度調節部(52)に代わって強制低減部(55)が第1絞り弁(18)の開度を強制的に低減すること、又は温度上昇部(91)がパワー素子(37)の温度を上昇させることにより、パワー素子(37)及び冷却器(16)における結露の発生を抑制することができる。
以上より、実施形態19においても各実施形態と同様の効果を奏することができる。また、実施形態19によれば、冷房運転時にも暖房運転時にも分岐回路(10B)に高圧液冷媒の一部を流入させることができる。よって、冷却器(16)の温度を容易に制御することができると共に、冷却器(16)周辺における結露を容易に抑制することができる。
《発明の実施形態20》
図29に示すように、実施形態20に係る冷凍装置(1)は、上記各実施形態において、本発明に係る調節機構(90)の構成を変更したものである。なお、一例として、図29では実施形態1を変更したものを示し、図30では実施形態7を変更したものを示している。
具体的には、調節機構(90)は、上記第1絞り弁(18)、第2絞り弁(17)、第1開度調節部(52)及び第2開度調節部(53)の代わりに、分岐回路(10B)に設けられたキャピラリーチューブ(27)及び絞り弁(28)と、該絞り弁(28)の開度を調節する開度調節部(59)とによって構成されている。
上記キャピラリーチューブ(27)は、分岐回路(10B)の冷却器(16)の上流側に設けられ、本発明に係る絞り機構を構成している。一方、上記絞り弁(28)は分岐回路(10B)の冷却器(16)の下流側に設けられている。
また、上記開度調節部(59)は、運転制御装置(50)の通常運転部(51)に設けられ、上記絞り弁(28)の開度を調節する。具体的には、開度調節部(59)は、冷却器(16)における冷媒の蒸発温度が目標温度となるように絞り弁(28)の開度を調節する。
さらに、図29に示すように、運転制御装置(50)が強制低減部(55)を備える場合、該強制低減部(55)は、結露判定部 (54)が結露状態と判定すると、上記開度調節部(59)に代わって上記絞り弁(28)の開度を強制的に低減するように構成されている。一方、図30に示すように、運転制御装置(50)が温度上昇部(91)を備える場合、該温度上昇部(91)は上記各実施形態と同様に構成される。
そして、分岐回路(10B)では、開度調節部(59)が冷却器(16)における冷媒の蒸発温度が目標温度となるように絞り弁(28)の開度を調節する。これにより、冷却器(16)を通過する冷媒の温度が目標温度となるように調節される。
また、結露抑制運転制御では、図29に示すように、運転制御装置(50)が強制低減部(55)を備えている場合、結露判定部(54)によって結露状態と判定されると、開度調節部(59)に代わって強制低減部(55)が絞り弁(28)の開度を強制的に低減する。これにより、絞り弁(28)の上流側の圧力が上昇し、分岐回路(10B)に流入する冷媒量が減少する。その結果、冷却器(16)における冷媒の吸熱量が減少し、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
一方、図30に示すように、運転制御装置(50)が温度上昇部(91)を備えている場合、結露判定部(54)によって結露状態と判定されると、上記温度上昇部(91)が上記各実施形態と同様にしてパワー素子(37)の温度を上昇させる。その結果、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
以上より、実施形態20においても各実施形態と同様の効果を奏することができる。
《発明の実施形態21》
実施形態21に係る冷凍装置(1)は、上記実施形態1乃至19における第1開度調節部(52)及び第2開度調節部(53)について、起動時に、第1絞り弁(18)及び第2絞り弁(17)がそれぞれ通常運転の際の開度調節範囲よりも大きい開度に調節されるように構成したものである。
具体的には、本実施形態21では、第1開度調節部(52)は、起動運転の際には、冷却器(16)における冷媒の蒸発温度が通常運転の際の所定の目標温度よりも低い温度となるように第1絞り弁(18)の開度を調節するように構成されている。一方、第2開度調節部(53)は、起動運転の際には、冷却器(16)の出口側の冷媒の過熱度が通常運転の際の所定の目標過熱度よりも低くなるように第2絞り弁(17)の開度を調節するように構成されている。これにより、起動時には、通常運転の際よりも第1絞り弁(18)及び第2絞り弁(17)の開度が大きくなる。
ところで、起動時には、分岐回路(10B)に液冷媒のみが流入する訳ではなく、比較的ガス冷媒が多く含まれた冷媒が流入する。そのため、冷却器(16)において温度斑が生じ易く、パワー素子(37)を十分に冷却できない可能性が高い。また、分岐回路(10B)に流入する冷媒流量が少ないと、起動から冷却器(16)に冷媒が到達するまでに時間がかかり、その間はパワー素子(37)を冷却できない。
そのため、上述のように第1開度調節部(52)及び第2開度調節部(53)を構成することにより、起動時には、第1開度調節部(52)によって第1絞り弁(18)の開度が通常運転の際の開度調節範囲よりも大きな開度に調節され、第2開度調節部(53)によって第2絞り弁(17)の開度が通常運転の開度調節範囲よりも大きな開度に調節される。その結果、起動時に、分岐回路(10B)に通常運転の際よりも大量の冷媒を流通させることができるため、冷却器(16)の温度斑を防止することができる。また、起動後、迅速に冷却器(16)に冷媒を到達させることができる。従って、起動直後からパワー素子(37)を十分に冷却することができる。
なお、第1開度調節部(52)は、起動時に、通常運転における調節開度範囲よりも大きな所定の起動時開度に第1絞り弁(18)の開度を調節するように構成されていてもよい。また、第2開度調節部(53)が、同様に、起動時に、通常運転における調節開度範囲よりも大きな所定の起動時開度に第2絞り弁(17)の開度を調節するように構成されていてもよい。
また、本実施形態21と同様に、上記実施形態20における開度調節部(59)について、起動時に、絞り弁(28)が通常運転の際の開度調節範囲よりも大きい開度に調節されるように構成することとしてもよい。
《発明の実施形態22》
図31に示すように、実施形態22に係る冷凍装置(1)は、上記実施形態1乃至19及び21において、運転制御装置(50)に、運転停止の際に分岐回路(10B)を閉鎖する閉鎖手段として停止制御部(97)を加えたものである。なお、図31では、一例として実施形態1を変更したものを示している。
具体的には、本実施形態22では、停止制御部(97)は、運転停止の際に、第1開度調節部(52)に代わって第1絞り弁(18)の開度を全閉状態に制御するように構成されている。これにより、本実施形態22では、運転停止が選択されると、停止制御部(97)によって第1絞り弁(18)の開度が全閉状態に制御される。
ところで、運転停止の際に第1絞り弁(18)及び第2絞り弁(17)が開いていると、分岐回路(10B)において圧力が平衡するまで冷媒が流れてしまう。そのため、運転停止後しばらくの間、パワー素子(37)が発熱しないにも拘わらず、冷却器(16)に冷媒が流入してしまうために、冷却器(16)において結露が発生してパワー素子(37)の故障を招く虞がある。
しかし、本実施形態22では、運転停止の際に、停止制御部(97)によって第1絞り弁(18)の開度が全閉状態に制御される。これにより、運転停止後には冷却器(16)に冷媒が流入しなくなる。よって、冷却器(16)の温度低下が抑制される。
上記停止制御部(97)を設けたことにより、運転停止後の冷却器(16)への冷媒の流入を抑制することができる。これにより、冷却器(16)の温度低下が抑制されるため、冷却器(16)における結露の発生を防止して、結露水の付着によるパワー素子(37)の故障を防止することができる。また、冷却器(16)よりも下流側の第1絞り弁(18)を全閉状態にすることによって、運転停止後に冷却器(16)内が低圧圧力状態にならないため、冷却器(16)の温度低下をより抑制することができる。よって、パワー素子(37)の故障をより防止することができる。
なお、停止制御部(97)は、運転停止の際に、第2開度調節部(53)に代わって第2絞り弁(17)の開度を全閉状態に制御するように構成されていてもよく、また、第1開度調節部(52)及び第2開度調節部(53)に代わって第1絞り弁(18)及び第2絞り弁(17)の両方の開度を全閉状態に制御するように構成されていてもよい。
また、本実施形態22と同様に、上記実施形態20における運転制御装置(50)に、運転停止の際に、開度調節部(59)に代わって絞り弁(28)の開度を全閉状態に制御する停止制御部(97)を加えてもよい。このような場合であっても、上述の場合と同様の効果を奏することができる。
《発明の実施形態23》
図32に示すように、実施形態23に係る冷凍装置(1)は、上記実施形態1乃至19、21及び22において、分岐回路(10B)に設けられた絞り弁のうち、上流側の第2絞り弁(17)に並列に固定絞りとしてのキャピラリーチューブ(4)を接続したものである。なお、図32では、一例として実施形態1を変更したものを示している。
ところで、第2絞り弁(17)は第2開度調節部(53)によって開度調節可能に構成されているが、第2絞り弁(17)が故障すると、開度を調節できなくなる。そのため、第2絞り弁(17)が比較的小さい開度で固定されてしまった場合には、冷却器(16)の上流側において冷媒の圧力が大幅に低減される。つまり、冷却器(16)における冷媒の蒸発圧力が大幅に低下する。そのため、冷却器(16)を流通する冷媒の温度が低下し、冷却器(16)の冷却能力が過多になる虞がある。また、冷却器(16)に流入する冷媒の流量が少なくなり過ぎた場合には、冷却器(16)の冷却能力が不足する虞がある。
そこで、本実施形態23では、上述のように、第2絞り弁(17)に並列にキャピラリーチューブ(4)を接続することとした。これにより、第2絞り弁(17)の故障によって該第2絞り弁(17)が比較的小さい開度で固定されてしまった場合には、冷媒がキャピラリーチューブ(4)側の流路を通過して冷却器(16)に流入することとなる。よって、第2絞り弁(17)の故障時に、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることを防止することができる。これにより、冷却器(16)を流通する冷媒の温度が低下し過ぎて冷却能力が過多となることを防止することができる。また、第2絞り弁(17)の故障時に、冷却器(16)に流入する冷媒流量が過少となることを防止することができる。そのため、冷却器(16)の冷却能力が過少となることを防止することができる。
《発明の実施形態24》
図33に示すように、実施形態24に係る冷凍装置(1)は、上記実施形態1乃至23において、分岐回路(10B)に設けられた絞り弁のうち、下流側の第1絞り弁(18)(実施形態20では絞り弁(28)であるため、以下まとめて絞り弁(18,28)と称する。)に直列に固定絞りとしてのキャピラリーチューブ(5)を接続したものである。なお、図33では、一例として実施形態1を変更したものを示している。
ところで、絞り弁(18,28)は、第1開度調節部(52)(実施形態20では開度調節部(59))によって開度調節可能に構成されているが、絞り弁(18,28)が故障すると、開度を調節できなくなる。そのため、絞り弁(18,28)が比較的大きい開度で固定されてしまった場合には、該絞り弁(18,28)における差圧が過小になって冷却器(16)に流入する冷媒の圧力が分岐回路(10B)の出口側の圧力に近づく。つまり、冷却器(16)における冷媒の蒸発圧力が大幅に低下する。これにより、冷却器(16)の温度が低下し、冷却能力が過多になる虞がある。また、絞り弁(18,28)の開度が大きいと、冷却器(16)から流出する冷媒量が多くなるため、冷却器(16)に流入した冷媒がパワー素子(37)と十分に熱交換するまでに冷却器(16)から流出してしまう。つまり、分岐冷媒が無駄に冷却器(16)を通過してしまう。
そこで、本実施形態24では、上述のように、絞り弁(18,28)のさらに下流側にキャピラリーチューブ(5)を接続することとした。これにより、絞り弁(18,28)の故障によって該絞り弁(18,28)が比較的大きい開度で固定されてしまった場合であっても、冷媒がキャピラリーチューブ(5)において減圧されることとなる。よって、絞り弁(18,28)の故障時に、冷却器(16)における冷媒の蒸発圧力が低くなり過ぎることを防止することができる。これにより、冷却器(16)を流通する冷媒の温度が低下し過ぎて冷却能力が過多となることを防止することができる。また、絞り弁(18,28)の故障時に、キャピラリーチューブ(5)によって冷却器(16)から流出する冷媒量が多くなり過ぎないように制限することができる。これにより、分岐冷媒がパワー素子(37)と十分に熱交換することなく無駄に冷却器(16)を通過してしまうことを防止することができる。
《発明の実施形態25》
図34に示すように、実施形態25に係る冷凍装置(1)は、上記実施形態1乃至19及び24において、例えば停電等によって電力供給装置(30)への電力供給が遮断された電源遮断時に、分岐回路(10B)を閉鎖する本発明に係る閉鎖手段を加えたものである。なお、図34では、一例として実施形態1を変更したものを示している。
具体的には、上記閉鎖手段は、分岐回路(10B)に設けられて電源ONで開状態に切り換わる一方、電源OFFで閉状態に切り換わる電磁弁(6a)によって構成されている。これにより、例えば停電等によって電力供給装置(30)への電力供給が遮断された場合には、電磁弁(6a)が閉状態となることにより、分岐回路(10B)が閉鎖されて冷媒が流通しなくなる。
ところで、例えば、停電等の電源遮断時には、パワー素子(37)への電力供給も遮断されるため、パワー素子(37)が発熱しなくなる。一方、上述のような閉鎖手段を備えていない場合、各絞り弁(17,18,28)の開度が電源遮断時のまま固定されてしまう。そのため、分岐回路(10B)では、圧力が平衡するまで冷媒が流れてしまう。その結果、パワー素子(37)が発熱しないにも拘わらず、冷却器(16)において冷媒が流通し続けるために、冷却器(16)の温度が結露が発生する温度まで低下する虞があった。
そこで、本実施形態25では、上記電源遮断時には、閉鎖手段としての電磁弁(6a)によって分岐回路(10B)を閉鎖することとした。これにより、例えば停電等の電源遮断時に、冷却器(16)における冷媒の流通を阻止して冷却器(16)の温度低下を抑制することができる。よって、結露の発生を防止して、結露水の付着によるパワー素子(37)の故障を防止することができる。
また、閉鎖手段を電磁弁(6a)によって構成することにより、容易に分岐回路(10B)を閉鎖することができる。
《発明の実施形態26》
図35に示すように、実施形態26に係る冷凍装置(1)は、上記実施形態25において、電磁弁(6a)の代わりに、蓄電器(7)と電源遮断時調節部(6b)とを設けたものである。
具体的には、蓄電器(7)は、電源遮断時に、圧縮機(11)のモータ(11a)が慣性によって回転することによって発生させた電力を蓄積するように構成されている。一方、電源遮断時調節部(6b)は、電源遮断時に、蓄電器(7)に蓄積された電力を用いて絞り弁(18,28)を全閉状態に開度調節するように構成されている。これにより、上記電源遮断時には、電源遮断時調節部(6b)が、圧縮機(11)のモータ(11a)の回転によって発生させた電力を利用して絞り弁(18,28)を全閉状態にする。その結果、分岐回路(10B)が閉鎖され、冷却器(16)における冷媒の流通が阻止される。
このような構成により、実施形態26では、電源遮断時に、電源遮断時調節部(6b)によって絞り弁(18,28)を全閉状態にして分岐回路(10B)を閉塞することによって、冷却器(16)における冷媒の流通を阻止して冷却器(16)の温度低下を抑制することができる。従って、本実施形態26においても、結露の発生を防止して、結露水の付着によるパワー素子(37)の故障を防止することができる。
なお、本実施形態26では、電源遮断時に、電源遮断時調節手段(6b)によって第2絞り弁(17)の開度を全閉状態に制御することとしてもよい。この場合であっても同様の効果を奏することができる。
また、蓄電器(7)は、電源遮断時に、圧縮機(11)のモータ(11a)が冷媒の圧力差によって逆回転することによって発生させた電力を蓄積するように構成されていてもよい。
《発明の実施形態27》
図36に示すように、実施形態27に係る冷凍装置(1)は、上記実施形態1乃至26の運転制御装置(50)に、熱源側熱交換器(12)に冷媒を溜め込むポンプダウン運転を実行するポンプダウン制御部(98)を加えたものである。なお、図36では、一例として実施形態1を変更したものを示している。
具体的には、ポンプダウン制御部(98)は、膨張弁(13)を全閉状態にすると共に絞り弁(第1絞り弁(18)、絞り弁(28))を全閉状態にして熱源側熱交換器(12)に冷媒を溜め込むポンプダウン運転を実行するように構成されている。また、ポンプダウン制御部(98)は、予め設定されたポンプダウン運転開始からパワー素子(37)の温度が所定の上限値を超える可能性の高い過熱状態に転じる過熱時までの時間を計時するタイマを備え、タイマが計時を終了するまでにポンプダウン運転を完了させる。より具体的には、ポンプダウン制御部(98)は、タイマの計時が終了するまでにポンプダウン運転が完了するように圧縮機(11)のモータ(11a)の回転速度を変更する。
ところで、上述のようなポンプダウン運転を実行する際には、絞り弁(18,28)が全閉状態となって分岐回路(10B)が閉鎖されるため、冷却器(16)において冷媒が流入しなくなる。そのため、冷却器(16)によってパワー素子(37)を冷却できなくなってパワー素子(37)の温度が上昇するにも拘わらず、冷却器(16)に冷媒が流入しないため、冷媒の状態からはパワー素子(37)の過熱状態を推測することができなくなる。その結果、ポンプダウン運転中にパワー素子(37)が過熱状態となって故障する虞がある。
そこで、本実施形態27では、ポンプダウン制御部(98)を、上記ポンプダウン運転を実行すると共に該ポンプダウン運転中にパワー素子(37)が過熱状態に転じる過熱時を予測して、該過熱時までにポンプダウン運転を完了させるように構成した。これにより、パワー素子(37)が過熱状態に転じる前に、ポンプダウン運転を完了させることができるため、パワー素子(37)の故障を防止しつつポンプダウン運転を確実に実行することができる。
なお、上記ポンプダウン制御部(98)は、上記タイマを備えずに、パワー素子(37)の熱容量と発熱量とが入力されてこれらから上記過熱時を予測する予測部を備えていてもよい。
《発明の実施形態28》
図37に示すように、実施形態28に係る冷凍装置(1)は、上記実施形態1乃至28において、冷却器(16)において結露が生じる可能性が高いときには、起動を禁止する起動禁止手段を加えたものである。なお、図37では、一例として実施形態1を変更したものを示している。
具体的には、起動禁止手段は、冷却器(16)の温度が所定の下限値以下となると起動を禁止する温度スイッチ(99)によって構成されている。温度スイッチ(99)は、冷却器(16)に取り付けられると共に運転制御装置(50)に接続されている。そして、温度スイッチ(99)は、冷却器(16)の温度を検出すると共に該検出温度が上記所定の下限値以下となると、運転制御装置(50)に対して起動禁止信号を送信することによって起動を禁止する。なお、上記所定の下限値は、冷却器(16)において結露が生じる可能性が高い温度に設定されている。
運転停止時に、環境の変化等によって冷却器(16)において結露が生じる可能性が高くなる場合があり、このような場合に起動すると、パワー素子(37)の電気接続部等において短絡が生じる虞がある。
しかしながら、本実施形態28では、上記温度スイッチ(99)を備えているため、冷却器(16)において結露が生じる可能性が高いときには、温度スイッチ(99)によって起動が禁止される。このように、温度スイッチ(99)によって冷却器(16)において結露が生じる可能性が高い場合における起動を禁止することによって、起動時におけるパワー素子(37)の電気接続部等における短絡を防止することができる。言い換えると、このような短絡の虞のない場合にのみ起動を許容することにより、起動の安全性を確保することができる。
なお、本発明に係る起動禁止手段は上記温度スイッチ(99)に限られず、起動前に冷却器(16)において結露が生じる可能性が高いか否かを判定して可能性が高い場合に起動を禁止できるものであればいかなるものであってもよい。
《その他の実施形態》
上記各実施形態は、以下のように構成してもよい。
上記実施形態20では、分岐回路(10B)の冷却器(16)の上流側に本発明に係る絞り機構(例えば、キャピラリーチューブ(27)等)を設け、冷却器(16)の下流側に本発明に係る絞り弁(28)を設けていたが、絞り機構(27)と絞り弁(28)とを逆に配置することとしてもよい。このとき、開度調節部(59)は、通常運転において、冷却器(16)における蒸発温度が目標温度となるように絞り弁の開度を調節するように構成する。
上記構成により、開度調節部(59)によって絞り弁(28)の開度が調節されて冷却器(16)における冷媒の蒸発温度が目標温度に制御される。一方、結露判定部 (54)が結露状態であると判定すると、強制低減部(55)が、上記開度調節部(59)に代わって絞り弁(28)の開度を所定の値だけ強制的に低減する。これにより、分岐回路(10B)に流入する冷媒量が減少し、冷却器(16)における冷媒の吸熱量(パワーモジュール(61)の放熱量)が減少する。その結果、パワーモジュール(61)及びその周辺部材(16,71)の結露が抑制されると共に冷却器(16)の結露が解消される。
上述のような形態であっても、調節機構(90)(絞り弁(28)、絞り機構(27)、開度調節部(59))を設けて、冷却器(16)を通過する冷媒の温度を調節可能に構成したことにより、冷却器(16)の温度を適正な温度に調節することができる。つまり、パワー素子(37)の発熱量やパワー素子(37)の設置環境の変化に応じて冷却器(16)を通過する冷媒の温度を調節することが可能となる。従って、冷却器(16)によるパワー素子(37)の冷却不足及び冷却過多を抑制することができ、冷却器(16)によるパワー素子(37)の冷却効率の向上を図ることができる。
なお、以上の各実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、冷媒回路の構成部品に電力を供給する電力供給装置のパワー素子を冷媒によって冷却する冷凍装置について有用である。
1 冷凍装置
4 キャピラリーチューブ(固定絞り)
5 キャピラリーチューブ(固定絞り)
6 閉鎖手段
6a 電磁弁
6b 電源遮断時調節部(電源遮断時調節手段)
10 冷媒回路
10A 主回路
10B 分岐回路
11 圧縮機
12 熱源側熱交換器
13 膨張弁(膨張機構)
14 利用側熱交換器
16 冷却器
17 第2絞り弁(絞り機構)
18 第1絞り弁(絞り弁)
27 キャピラリーチューブ(絞り機構)
28 絞り弁
30 電力供給装置
37 パワー素子
41 外気温度センサ(空気温度センサ)
42 室内温度センサ
43 蒸発温度センサ
44 出口温度センサ
45 結露センサ
46 温度センサ
47 湿度センサ
48 湿度センサ
52 第1開度調節部(開度調節部)
53 第2開度調節部(絞り機構調節部)
54 結露判定部
55 強制低減部
56 発熱量増大部
57 発熱量復帰部
58 発熱量強制復帰部
59 開度調節部
90 冷媒温度調節機構
91 温度上昇部
92 温度復帰部
95 ヒータ
97 停止制御部
98 ポンプダウン制御部
99 温度スイッチ(起動禁止手段)

Claims (36)

  1. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の上流側に接続された絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の下流側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備え、
    運転停止の際に、少なくとも上記絞り弁(18)の開度を全閉状態に制御する停止制御部(97)を備えている
    ことを特徴とする冷凍装置。
  2. 請求項1において、
    上記絞り機構(17)は、開度調節可能に構成され、
    上記調節機構(90)は、上記冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように上記絞り機構(17)の開度を調節する絞り機構調節部(53)を備えている
    ことを特徴とする冷凍装置。
  3. 請求項2において、
    上記開度調節部(52)は、起動時に、上記絞り弁(18)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成される一方、
    上記絞り機構調節部(53)は、起動時に、上記絞り機構(17)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成されている
    ことを特徴とする冷凍装置。
  4. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の上流側に接続された開度調節可能な絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の下流側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)と、
    上記冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように上記絞り機構(17)の開度を調節する絞り機構調節部(53)とを備え、
    上記開度調節部(52)は、起動時に、上記絞り弁(18)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成される一方、
    上記絞り機構調節部(53)は、起動時に、上記絞り機構(17)の開度を通常運転の際の開度調節範囲よりも大きい開度に調節するように構成されている
    ことを特徴とする冷凍装置。
  5. 請求項4において、
    運転停止の際に、上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方の開度を全閉状態に制御する停止制御部(97)を備えている
    ことを特徴とする冷凍装置。
  6. 請求項乃至5のいずれか1つにおいて、
    上記絞り機構(17)に並列に接続された固定絞り(4)を備えている
    ことを特徴とする冷凍装置。
  7. 請求項乃至6のいずれか1つにおいて、
    上記絞り弁(18)に直列に接続された固定絞り(5)を備えている
    ことを特徴とする冷凍装置。
  8. 請求項乃至7のいずれか1つにおいて、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、
    上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する強制低減部(55)とを備えている
    ことを特徴とする冷凍装置。
  9. 請求項8において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記強制低減部(55)は、上記温度センサ(46)の検出値が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  10. 請求項8において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記強制低減部(55)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  11. 請求項8において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記強制低減部(55)は、上記温度センサ(46)の検出値が、上記空気温度センサ(41)が検出した空気温度における予め定めた基準相対湿度に対応する露点温度よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  12. 請求項8において、
    上記検出部は、上記パワー素子(37)の周囲における空気の相対湿度を検出する湿度センサ(47)を備え、
    上記強制低減部(55)は、上記湿度センサ(47)の検出値が所定の上限値よりも高い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  13. 請求項8において、
    上記検出部は、上記電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを備え、
    上記強制低減部(55)は、上記温度センサ(46)の検出値が、上記湿度センサ(48)が検出した相対湿度と上記空気温度センサ(41)が検出した空気温度とから算出される露点温度よりも低い値であるときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  14. 請求項乃至7のいずれか1つにおいて、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露を検出する結露センサ(45)と、
    上記結露センサ(45)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する強制低減部(55)とを備えている
    ことを特徴とする冷凍装置。
  15. 請求項乃至7のいずれか1つにおいて、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、
    上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備えている
    ことを特徴とする冷凍装置。
  16. 請求項15において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記温度上昇部(91)は、上記温度センサ(46)の検出値が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  17. 請求項15において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記温度上昇部(91)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  18. 請求項15において、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記温度上昇部(91)は、上記温度センサ(46)の検出値が、上記空気温度センサ(41)が検出した空気温度における予め定めた基準相対湿度に対応する露点温度よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  19. 請求項15において、
    上記検出部は、上記パワー素子(37)の周囲における空気の相対湿度を検出する湿度センサ(47)を備え、
    上記温度上昇部(91)は、上記湿度センサ(47)の検出値が所定の上限値よりも高い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  20. 請求項15において、
    上記検出部は、上記電力供給装置(30)の周囲における空気の相対湿度を検出する湿度センサ(48)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)と、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)とを備え、
    上記温度上昇部(91)は、上記温度センサ(46)の検出値が、上記湿度センサ(48)が検出した相対湿度と上記空気温度センサ(41)が検出した空気温度とから算出される露点温度よりも低い値であるときに、上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  21. 請求項乃至7のいずれか1つにおいて、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)における結露を検出する結露センサ(45)と、
    上記結露センサ(45)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じたことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備えている
    ことを特徴とする冷凍装置。
  22. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の一端側に接続された絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の他端側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備え、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46)と、
    上記検出部(41,46)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減する強制低減部(55)とを備え、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記強制低減部(55)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記開度調節部(52,59)に代わって上記絞り弁(18,28)の開度を強制的に低減するように構成されている
    ことを特徴とする冷凍装置。
  23. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の一端側に接続された絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の他端側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備え、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46)と、
    上記検出部(41,46)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備え、
    上記検出部は、上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に設置された温度センサ(46)と、上記電力供給装置(30)の周囲における空気の温度を検出する空気温度センサ(41)とを備え、
    上記温度上昇部(91)は、上記温度センサ(46)の検出値に、予め定めた上記温度センサ(46)の設置部分から上記パワー素子(37)の電気接続部までの温度上昇分を加えた温度が上記空気温度センサ(41)の検出値よりも低い値であるときに上記結露状態であるとして上記パワー素子(37)の温度を上昇させるように構成されている
    ことを特徴とする冷凍装置。
  24. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記電力供給装置(30)への電力供給が遮断された電源遮断時に上記分岐回路(10B)を閉鎖する閉鎖手段(6)を備えている
    ことを特徴とする冷凍装置。
  25. 請求項24において、
    上記閉鎖手段(6)は、上記分岐回路(10B)に設けられて上記電源遮断時に閉状態に切り換わる電磁弁(6a)によって構成されている
    ことを特徴とする冷凍装置。
  26. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の上流側に接続された開度調節可能な絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の下流側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)と、
    上記冷却器(16)の出口側の冷媒の過熱度が目標過熱度となるように上記絞り機構(17)の開度を調節する絞り機構調節部(53)とを備え、
    上記電力供給装置(30)への電力供給が遮断された電源遮断時に上記圧縮機(11)の回転によって該圧縮機(11)の駆動部において発電された電力を用いて上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方を全閉状態に開度調節する電源遮断時調節手段(6b)を備えている
    ことを特徴とする冷凍装置。
  27. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記膨張機構(13)を全閉状態にすると共に上記絞り弁(18)及び上記絞り機構(17)の少なくとも一方を全閉状態にして上記熱源側熱交換器(12)に冷媒を溜め込むポンプダウン運転を実行すると共に、上記パワー素子(37)の温度が所定の上限値を超える可能性の高い過熱状態に転じる過熱時を予測して、該過熱時までに上記ポンプダウン運転を完了させるポンプダウン制御部(98)を備えている
    ことを特徴とする冷凍装置。
  28. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記冷却器(16)において結露が生じる可能性が高いときには、起動を禁止する起動禁止手段(99)を備えている
    ことを特徴とする冷凍装置。
  29. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の一端側に接続された絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の他端側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備え、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、
    上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備え、
    上記温度上昇部(91)は、上記パワー素子の発熱量を増大させる発熱量増大部(56)を備えている
    ことを特徴とする冷凍装置。
  30. 圧縮機(11)と熱源側熱交換器(12)と膨張機構(13)と利用側熱交換器(14)とが接続されて冷凍サイクルを行う主回路(10A)と該主回路(10A)を流れる高圧液冷媒の一部を分岐させて上記主回路(10A)の高圧圧力状態よりも低い圧力状態の冷媒中に導く分岐回路(10B)とを有する冷媒回路(10)と、パワー素子(37)を有して上記冷媒回路(10)の構成部品の駆動部に電力を供給する電力供給装置(30)と、上記分岐回路(10B)に接続されて該分岐回路(10B)を流れる冷媒によって上記パワー素子(37)を冷却する冷却器(16)とを備えた冷凍装置であって、
    上記分岐回路(10B)を流れる冷媒の状態を調節して上記冷却器(16)を通過する冷媒の温度を目標温度に調節する調節機構(90)を備え、
    上記調節機構(90)は、
    上記分岐回路(10B)の上記冷却器(16)の一端側に接続された絞り機構(17,27)と、
    上記分岐回路(10B)の上記冷却器(16)の他端側に接続された開度調節可能な絞り弁(18,28)と、
    上記冷却器(16)における冷媒の蒸発温度が目標温度となるように上記絞り弁(18,28)の開度を調節する開度調節部(52,59)とを備え、
    上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)において結露が生じる可能性の指標となる物理量を検出する検出部(41,46,47,48)と、
    上記検出部(41,46,47,48)の検出値が上記パワー素子(37)又は該パワー素子(37)の周辺部材(16,71)に結露が生じる可能性が高いことを示す値となる結露状態のときに、上記パワー素子(37)の温度を上昇させる温度上昇部(91)とを備え、
    上記温度上昇部(91)は、上記パワー素子(37)を加熱するヒータ(95)を備えている
    ことを特徴とする冷凍装置。
  31. 請求項29において、
    上記結露状態でなくなると、上記発熱量増大部(56)によって増大した上記パワー素子(37)の発熱量を増大前の通常状態に復帰させる発熱量復帰部(57)を備えている
    ことを特徴とする冷凍装置。
  32. 請求項31において、
    上記発熱量増大部(56)によって上記パワー素子(37)の発熱量が増大されてから所定時間が経過すると、上記発熱量増大部(56)によって増大した上記パワー素子(37)の発熱量を増大前の通常状態に強制的に復帰させる発熱量強制復帰部(58)を備えている
    ことを特徴とする冷凍装置。
  33. 請求項2931及び32のいずれか1つにおいて、
    上記発熱量増大部(56)は、上記圧縮機(11)の電流を増大させることにより、上記パワー素子(37)のうちの上記圧縮機(11)を制御するパワー素子(37)の発熱量を増大させるように構成されている
    ことを特徴とする冷凍装置。
  34. 請求項2931及び32のいずれか1つにおいて、
    上記パワー素子(37)はスイッチング素子によって構成され、
    上記発熱量増大部(56)は、上記スイッチング素子のスイッチング周波数を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている
    ことを特徴とする冷凍装置。
  35. 請求項2931及び32のいずれか1つにおいて、
    上記パワー素子(37)はスイッチング素子によって構成され、
    上記発熱量増大部(56)は、上記スイッチング素子の損失を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている
    ことを特徴とする冷凍装置。
  36. 請求項2931及び32のいずれか1つにおいて、
    上記発熱量増大部(56)は、上記パワー素子(37)の導通損失を増大させることにより、上記パワー素子(37)の発熱量を増大させるように構成されている
    ことを特徴とする冷凍装置。
JP2011547307A 2009-12-22 2010-12-22 冷凍装置 Active JP5516602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547307A JP5516602B2 (ja) 2009-12-22 2010-12-22 冷凍装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009290935 2009-12-22
JP2009290935 2009-12-22
JP2011547307A JP5516602B2 (ja) 2009-12-22 2010-12-22 冷凍装置
PCT/JP2010/007442 WO2011077720A1 (ja) 2009-12-22 2010-12-22 冷凍装置

Publications (2)

Publication Number Publication Date
JPWO2011077720A1 JPWO2011077720A1 (ja) 2013-05-02
JP5516602B2 true JP5516602B2 (ja) 2014-06-11

Family

ID=44195273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011547307A Active JP5516602B2 (ja) 2009-12-22 2010-12-22 冷凍装置

Country Status (5)

Country Link
US (1) US20120255318A1 (ja)
EP (1) EP2518422A4 (ja)
JP (1) JP5516602B2 (ja)
CN (1) CN102667368B (ja)
WO (1) WO2011077720A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138130A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 電力変換装置及び空気調和装置
WO2018211556A1 (ja) * 2017-05-15 2018-11-22 三菱電機株式会社 冷凍サイクル装置
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置
JP2020507735A (ja) * 2017-02-10 2020-03-12 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置
US11112130B2 (en) 2016-09-16 2021-09-07 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2766676B1 (en) * 2011-09-16 2018-03-21 Danfoss A/S Motor cooling and sub-cooling circuits for compressor
CN103906983A (zh) * 2011-10-21 2014-07-02 丰田自动车株式会社 冷却装置和冷却装置的控制方法
DE102012102404A1 (de) * 2012-03-21 2013-09-26 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
US8950201B2 (en) * 2012-03-30 2015-02-10 Trane International Inc. System and method for cooling power electronics using heat sinks
JP5827933B2 (ja) * 2012-09-18 2015-12-02 東芝三菱電機産業システム株式会社 半導体電力変換装置および半導体電力変換装置の湿度管理方法
JP6300393B2 (ja) * 2012-11-20 2018-03-28 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
US9982929B2 (en) * 2012-11-20 2018-05-29 Samsung Electronics Co., Ltd. Air conditioner
CN104736981B (zh) * 2012-12-12 2017-12-22 富士电机株式会社 半导体芯片温度推定装置及过热保护装置
CN103925753A (zh) * 2013-01-16 2014-07-16 珠海格力电器股份有限公司 空调设备
JP5790736B2 (ja) * 2013-10-29 2015-10-07 ダイキン工業株式会社 空気調和装置
ITMI20131947A1 (it) * 2013-11-22 2015-05-23 Aggradi Walter Ferrari Sistema di climatizzazione, relativa unità periferica di climatizzazione e procedimento di riqualificazione di rete idraulica per riscaldamento.
JP6320731B2 (ja) * 2013-11-26 2018-05-09 三菱重工サーマルシステムズ株式会社 空気調和機
US10830509B2 (en) 2014-07-03 2020-11-10 Danfoss A/S Refrigerant cooling for variable speed drive
CN104596142A (zh) * 2015-01-21 2015-05-06 广东美的制冷设备有限公司 空调器及其控制方法
CN104819595B (zh) * 2015-05-12 2017-11-07 广东美的暖通设备有限公司 制冷系统、控制方法及装置和空调器
EP3929503A3 (en) 2015-06-29 2022-03-30 Trane International Inc. Heat exchanger with refrigerant storage volume
CN105402961A (zh) * 2015-12-21 2016-03-16 美的集团武汉制冷设备有限公司 空调器及其控制方法
WO2017130319A1 (ja) * 2016-01-27 2017-08-03 三菱電機株式会社 冷凍サイクル装置
JP2017141987A (ja) * 2016-02-08 2017-08-17 三菱重工業株式会社 冷凍サイクル装置
EP3421902B1 (en) * 2016-02-24 2020-04-22 Mitsubishi Electric Corporation Air conditioning device
CN106196425A (zh) * 2016-06-29 2016-12-07 珠海格力电器股份有限公司 一种功率元器件防凝露方法、装置及系统
JP2018028407A (ja) * 2016-08-18 2018-02-22 三菱重工サーマルシステムズ株式会社 冷凍サイクル装置
JP6639685B2 (ja) * 2016-09-02 2020-02-05 三菱電機株式会社 空気調和装置
CN106440432B (zh) * 2016-09-15 2019-03-05 华中科技大学 一种热电回热系统
CN106524612B (zh) * 2016-10-28 2019-04-02 珠海格力电器股份有限公司 防止空调压缩机液击的控制系统、控制方法及空调系统
WO2018100711A1 (ja) * 2016-12-01 2018-06-07 三菱電機株式会社 冷凍装置
CN106686948B (zh) * 2016-12-30 2019-04-30 广东美的暖通设备有限公司 冷媒散热装置及其的控制方法
DE102017204526A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren zum Kühlen eines Umrichters, insbesondere eines Frequenzumrichters in einem Wärmepumpenkreislauf
WO2018198203A1 (ja) * 2017-04-25 2018-11-01 三菱電機株式会社 二元冷凍装置
JP6436196B1 (ja) * 2017-07-20 2018-12-12 ダイキン工業株式会社 冷凍装置
US11262108B2 (en) * 2017-10-10 2022-03-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN110398083A (zh) * 2018-04-25 2019-11-01 杭州三花研究院有限公司 热管理系统及其控制方法
CN110398082B (zh) * 2018-04-25 2021-10-29 三花控股集团有限公司 热管理系统及其控制方法
CN109028452B (zh) * 2018-06-20 2021-03-23 广东美的暖通设备有限公司 空调系统及其冷媒散热装置和方法
DE102019001632A1 (de) * 2019-03-08 2020-09-10 Stiebel Eltron Gmbh & Co. Kg Wärmepumpeneinrichtung, Heizungs- und/oder Warmwasserbereitungssystem und Verfaheren
JP7313867B2 (ja) * 2019-04-02 2023-07-25 三菱重工サーマルシステムズ株式会社 冷却構造及びこれを備えた電装ユニット並びに室外機
CN112460755B (zh) * 2019-09-06 2022-07-19 中车株洲电力机车研究所有限公司 一种空调机组的变频器热管理系统、空调机组及控制方法
CN110793151B (zh) * 2019-11-19 2021-08-27 宁波奥克斯电气股份有限公司 一种多联机冷媒控制方法、装置、空调器及存储介质
JP7224503B2 (ja) * 2020-02-03 2023-02-17 三菱電機株式会社 冷凍サイクル装置
WO2021166204A2 (ja) * 2020-02-21 2021-08-26 三菱電機株式会社 空気調和装置
US11736000B2 (en) * 2020-06-05 2023-08-22 Fuji Electric Co., Ltd. Power converter with thermal resistance monitoring
DE102020115492A1 (de) 2020-06-10 2021-12-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Kraftwärmemaschine
EP4184077A4 (en) * 2020-07-15 2023-09-13 Mitsubishi Electric Corporation REFRIGERANT CIRCUIT DEVICE
DE102020211295A1 (de) 2020-09-09 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Wärmepumpensystem und Verfahren zum Betrieb eines Wärmepumpensystems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650966U (ja) * 1979-09-26 1981-05-06
JPH038921Y2 (ja) * 1985-02-08 1991-03-06
JPH03175230A (ja) * 1989-09-20 1991-07-30 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH0634208A (ja) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp 空気調和機の電気品箱冷却装置
JP2000283569A (ja) * 1999-03-15 2000-10-13 Carrier Corp 可変周波数駆動装置用の冷却装置及び冷却方法
WO2009150824A1 (ja) * 2008-06-12 2009-12-17 ダイキン工業株式会社 冷凍装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176267U (ja) 1984-10-25 1986-05-22
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
US5220809A (en) * 1991-10-11 1993-06-22 Nartron Corporation Apparatus for cooling an air conditioning system electrical controller
JPH06159738A (ja) * 1992-11-25 1994-06-07 Daikin Ind Ltd 空気調和機の発熱素子の冷却装置
DE19925744A1 (de) * 1999-06-05 2000-12-07 Mannesmann Vdo Ag Elektrisch angetriebenes Kompressionskältesystem mit überkritischem Prozeßverlauf
DE10128307B4 (de) * 2001-06-12 2004-03-18 Siemens Ag Klimaanlage
US6874329B2 (en) * 2003-05-30 2005-04-05 Carrier Corporation Refrigerant cooled variable frequency drive and method for using same
CN1752685A (zh) * 2004-09-20 2006-03-29 乐金电子(天津)电器有限公司 冰箱的除霜操作方法
US7730729B2 (en) * 2005-02-10 2010-06-08 Panasonic Corporation Refrigerating machine
KR100732717B1 (ko) * 2005-12-29 2007-06-27 삼성전자주식회사 모터시스템 및 그 제어방법과, 이를 이용한 압축기
JP5446064B2 (ja) * 2006-11-13 2014-03-19 ダイキン工業株式会社 熱交換システム
KR100922222B1 (ko) * 2007-12-24 2009-10-20 엘지전자 주식회사 공기조화 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650966U (ja) * 1979-09-26 1981-05-06
JPH038921Y2 (ja) * 1985-02-08 1991-03-06
JPH03175230A (ja) * 1989-09-20 1991-07-30 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH0634208A (ja) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp 空気調和機の電気品箱冷却装置
JP2000283569A (ja) * 1999-03-15 2000-10-13 Carrier Corp 可変周波数駆動装置用の冷却装置及び冷却方法
WO2009150824A1 (ja) * 2008-06-12 2009-12-17 ダイキン工業株式会社 冷凍装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138130A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 電力変換装置及び空気調和装置
JPWO2017138130A1 (ja) * 2016-02-10 2018-09-13 三菱電機株式会社 電力変換装置及び空気調和装置
US10211753B2 (en) 2016-02-10 2019-02-19 Mitsubishi Electric Corporation Power conversion device and air-conditioning apparatus
US11112130B2 (en) 2016-09-16 2021-09-07 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置
JP2020507735A (ja) * 2017-02-10 2020-03-12 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置
US11199349B2 (en) 2017-02-10 2021-12-14 Daikin Industries, Ltd. Heat source unit and air conditioner having the heat source unit
US11530827B2 (en) 2017-02-10 2022-12-20 Daikin Industries, Ltd. Heat source unit and air conditioner having the heat source unit
WO2018211556A1 (ja) * 2017-05-15 2018-11-22 三菱電機株式会社 冷凍サイクル装置
JPWO2018211556A1 (ja) * 2017-05-15 2019-11-07 三菱電機株式会社 冷凍サイクル装置
US11149999B2 (en) 2017-05-15 2021-10-19 Mitsubishi Electric Corporation Refrigeration cycle apparatus having foreign substance release control

Also Published As

Publication number Publication date
EP2518422A1 (en) 2012-10-31
EP2518422A4 (en) 2016-11-02
CN102667368B (zh) 2015-01-07
CN102667368A (zh) 2012-09-12
WO2011077720A1 (ja) 2011-06-30
US20120255318A1 (en) 2012-10-11
JPWO2011077720A1 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5516602B2 (ja) 冷凍装置
EP2458305B1 (en) Heat pump device
JP6486335B2 (ja) 空気調和機及びその除霜運転方法
JP5092829B2 (ja) 空気調和装置
JP5626439B2 (ja) 冷凍装置
US8522567B2 (en) Air conditioner and method for controlling the same
JP6071648B2 (ja) 空気調和装置
WO2009119023A1 (ja) 冷凍装置
EP3650769B1 (en) Heat exchange unit for air conditioning device and air conditioning device
WO2009150824A1 (ja) 冷凍装置
WO2008018381A1 (fr) Mécanisme de réfrigération
CN1973168A (zh) 空调装置
CN109716035B (zh) 用于空气调节和热水供给的系统
JPWO2018138796A1 (ja) 冷凍サイクル装置
EP2918921B1 (en) Hot water generator
JP2018173260A (ja) 暖房および/または冷房用の循環システムならびに暖房および/または冷房運転方法
KR101203995B1 (ko) 공기조화기 및 그 제상운전방법
JP2010025374A (ja) 冷凍装置
JP2013029307A (ja) 冷凍装置
JP2009299987A (ja) 冷凍装置
JP2021055931A (ja) ヒートポンプサイクル装置
CN110836555A (zh) 热泵系统的控制方法
JP2010025373A (ja) 冷凍装置
JP6881424B2 (ja) 冷凍装置
JPWO2016166873A1 (ja) ヒートポンプシステム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5516602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151