WO2018198203A1 - 二元冷凍装置 - Google Patents

二元冷凍装置 Download PDF

Info

Publication number
WO2018198203A1
WO2018198203A1 PCT/JP2017/016407 JP2017016407W WO2018198203A1 WO 2018198203 A1 WO2018198203 A1 WO 2018198203A1 JP 2017016407 W JP2017016407 W JP 2017016407W WO 2018198203 A1 WO2018198203 A1 WO 2018198203A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
condenser
refrigerant
source
refrigeration cycle
Prior art date
Application number
PCT/JP2017/016407
Other languages
English (en)
French (fr)
Inventor
靖弘 鬼頭
健一 秦
悠介 有井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/016407 priority Critical patent/WO2018198203A1/ja
Priority to EP17907290.5A priority patent/EP3617612B1/en
Priority to JP2019514925A priority patent/JP6727422B2/ja
Publication of WO2018198203A1 publication Critical patent/WO2018198203A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Definitions

  • the present invention relates to a binary refrigeration apparatus used for freezing or refrigeration.
  • a refrigeration system in a low-temperature refrigeration warehouse or a refrigerated warehouse includes a high-source refrigeration cycle that is a refrigeration cycle apparatus for circulating a high-temperature side refrigerant, and a low-source refrigeration that is a refrigeration cycle apparatus for circulating a low-temperature side refrigerant.
  • a binary refrigeration system with a cycle is used.
  • a low-source refrigeration cycle and a high-source refrigeration cycle are configured by a cascade condenser configured to exchange heat between a low-source side condenser in the low-source refrigeration cycle and a high-source side evaporator in the high-source refrigeration cycle
  • a refrigeration cycle is connected to form a multistage configuration.
  • the refrigerant in the low-source refrigeration cycle is cooled by the cascade condenser of the cascade heat exchanger, that is, the condenser of the low-side refrigerant circuit. For this reason, when the low-side compressor is stopped, the refrigerant in the low-side refrigeration cycle does not flow inside the low-side condenser. Therefore, for example, if the refrigerant is condensed to some extent and the inside of the low-side condenser of the low-source refrigeration cycle is filled with liquid refrigerant in the cascade heat exchanger, it cannot be cooled sufficiently and the temperature inside the low-source refrigeration cycle rises Insufficient suppression of pressure rise due to.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a binary refrigeration apparatus in which a pressure increase associated with a temperature increase in a low-source refrigeration cycle is suppressed with a simple configuration.
  • the binary refrigeration apparatus includes a high-source refrigeration unit in which a high-side compressor, a high-side condenser, a high-side expansion valve, and a high-side evaporator are sequentially connected to a pipe and the high-side refrigerant circulates.
  • the cycle, the low-side compressor, the low-side first condenser, the low-side second condenser, the low-side receiver, the low-side first expansion valve, and the low-side evaporator sequentially A high-side refrigerant that is connected and has a low-source refrigeration cycle through which the low-side refrigerant circulates, the high-side evaporator and the low-side second condenser, and flows through the high-side evaporator.
  • a cascade condenser for performing heat exchange with the low-side refrigerant flowing through the low-side second condenser, wherein the low-side refrigeration cycle includes the low-side refrigeration cycle.
  • a vapor refrigerant pipe that connects the first condenser and the second low-side second condenser to the low-side liquid receiver and is provided with a check valve in the middle. And it has natural circulation circuit in which is provided.
  • a natural circulation circuit having a vapor refrigerant pipe is provided.
  • the low-source side compressor stops in addition to operating the high-source refrigeration cycle, the low-source side refrigerant circulates in the natural circulation circuit. Therefore, the pressure increase of the refrigerant in the low-source refrigeration cycle can be suppressed, and there is no need to set the device design pressure high. As a result, the cost of systems such as local piping, unit coolers, and showcases can be reduced. Moreover, since an expansion tank is not required, there is no restriction on the installation of the refrigeration apparatus.
  • FIG. FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus in Embodiment 1 of the present invention.
  • the binary refrigeration apparatus 100 includes a high refrigeration cycle 101 and a low refrigeration cycle 102.
  • the high-source refrigeration cycle 101 and the low-source refrigeration cycle 102 are thermally connected by a cascade capacitor 30.
  • Each element constituting the high-source refrigeration cycle 101 and the low-source refrigeration cycle 102 is accommodated in an outdoor unit 1 or a cooling unit 2 described later.
  • the refrigerant sealed in the low-source refrigeration cycle 102 in consideration of refrigerant leakage, carbon dioxide having a small influence on global warming, that is, CO 2 is used.
  • CO 2 carbon dioxide having a small influence on global warming
  • R410A, R32, R404A, HFO-1234yf, propane, isobutane, carbon dioxide, ammonia or the like is used as the refrigerant sealed in the high-source refrigeration cycle 101.
  • the refrigerant sealed in the low-source refrigeration cycle 102 is referred to as a low-source side refrigerant
  • the refrigerant sealed in the high-source refrigeration cycle 101 is referred to as a high-source side refrigerant.
  • the high-source refrigeration cycle 101 is a refrigeration cycle in which high-side refrigerant circulates.
  • a high-side compressor 10 a high-side condenser 11, a high-side expansion valve 12, and a high-side evaporator 13 are sequentially connected via a refrigerant pipe, and a refrigerant circuit is connected. It is configured.
  • the refrigerant circuit of the high-source refrigeration cycle 101 is referred to as a high-source-side refrigerant circuit.
  • the low-source refrigeration cycle 102 is a refrigeration cycle in which the low-source side refrigerant circulates.
  • the low element refrigeration cycle 102 the low element side compressor 20, the low element side first condenser 21, the low element side second condenser 22, the low element side receiver 24, and the low element side first expansion.
  • the valve 25 and the low-side evaporator 26 are sequentially connected by a refrigerant pipe to constitute a refrigerant circuit.
  • the low-source refrigeration cycle 102 includes a low-source side second expansion valve 23 provided between the low-source-side second condenser 22 and the low-source-side liquid receiver 24.
  • the refrigerant circuit of the low-source refrigeration cycle 102 is referred to as a low-source-side refrigerant circuit.
  • the binary refrigeration apparatus 100 includes the cascade capacitor 30 described above.
  • the cascade condenser 30 the high-end evaporator 13 and the low-end side are arranged so that heat exchange is possible between the refrigerant passing through the high-end side evaporator 13 and the refrigerant passing through the low-end side second condenser 22.
  • the second condenser 22 is combined. That is, the cascade capacitor 30 is an inter-refrigerant heat exchanger.
  • the high-side compressor 10 sucks the refrigerant flowing through the high-side refrigerant circuit, compresses the drawn refrigerant, and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the high-end compressor 10 is configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the refrigerant discharge amount, for example.
  • the high-side condenser 11 performs heat exchange between, for example, air, brine, and the refrigerant flowing through the high-side refrigerant circuit to condense and liquefy the refrigerant.
  • the high-side condenser 11 performs heat exchange between the outside air and the refrigerant.
  • the binary refrigeration apparatus 100 has a high-end condenser fan (not shown). Outside air is blown to the high-side condenser 11 by the high-side condenser fan, and heat exchange in the high-side condenser 11 is promoted.
  • the high-end condenser fan is a type of fan that can adjust the air volume.
  • the high-side expansion valve 12 decompresses and expands the refrigerant flowing through the high-side refrigerant circuit, and is configured by, for example, a refrigerant flow rate control means such as an electronic expansion valve or a refrigerant flow rate adjustment means. That is, the high-side expansion valve 12 is configured by a pressure reducing device or a throttle device that can control the throttle amount.
  • the high-side evaporator 13 evaporates and gasifies the refrigerant flowing through the high-side refrigerant circuit by heat exchange.
  • the high-side evaporator 13 is configured by, for example, a heat transfer tube through which the refrigerant flowing through the high-side refrigerant circuit passes in the cascade capacitor 30. In the cascade capacitor 30, heat exchange is performed between the refrigerant flowing through the high-side evaporator 13 and the refrigerant flowing through the low-side refrigerant circuit.
  • the low-side compressor 20 sucks the refrigerant flowing through the low-side refrigerant circuit, compresses the drawn refrigerant, and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the low-source compressor 20 is configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the refrigerant discharge amount, for example.
  • the low-side first condenser 21 performs heat exchange between, for example, air, brine, and the refrigerant flowing through the high-side refrigerant circuit to condense and liquefy the refrigerant.
  • the low-source side first condenser 21 performs heat exchange between the outside air and the refrigerant.
  • the binary refrigeration apparatus 100 includes a low-side condenser fan (not shown).
  • the low air side condenser fan blows outside air to the low water side first condenser 21 and promotes heat exchange in the low water side first condenser 21.
  • the low-side condenser fan is a type of fan that can adjust the air volume.
  • the low-source-side second condenser 22 further condenses the refrigerant condensed and liquefied by the low-element-side first condenser 21 to form a supercooled refrigerant.
  • the low-source side second condenser 22 is configured by, for example, a heat transfer tube through which the refrigerant flowing through the low-side refrigerant circuit in the cascade capacitor 30 passes. In the cascade capacitor 30, heat exchange is performed between the refrigerant flowing through the low-source side second condenser 22 and the refrigerant flowing through the high-side refrigerant circuit.
  • the low-side second expansion valve 23 is for decompressing and expanding the refrigerant flowing through the low-side refrigerant circuit, and is constituted by, for example, a refrigerant flow rate control means such as an electronic expansion valve or a refrigerant flow rate adjustment means. That is, the low-source side second expansion valve 23 is configured by a pressure reducing device or a throttle device that can control the throttle amount.
  • the low element side liquid receiver 24 is provided on the downstream side of the low element side second condenser 22 and the low element side second expansion valve 23.
  • the low-source side liquid receiver 24 temporarily stores the refrigerant.
  • the low-side first expansion valve 25 is for decompressing and expanding the refrigerant flowing through the low-side refrigerant circuit, and is composed of, for example, a refrigerant flow rate control means such as an electronic expansion valve or a refrigerant flow rate adjustment means. That is, the low-source-side first expansion valve 25 is configured by a pressure reducing device or a throttle device that can control the throttle amount.
  • the low-side evaporator 26 evaporates and gasifies the refrigerant flowing through the high-side refrigerant circuit by heat exchange.
  • the object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant in the low-side evaporator 26.
  • the low-source refrigeration cycle 102 includes a natural circulation circuit 40.
  • the natural circulation circuit 40 includes a supercooling refrigerant pipe 31 and a vapor refrigerant pipe 32.
  • the supercooled refrigerant pipe 31 connects between the low-source-side second condenser 22 and the low-source-side second expansion valve 23 and between the low-source-side second expansion valve 23 and the low-source-side liquid receiver 24. is doing.
  • the vapor refrigerant pipe 32 connects between the low element side second expansion valve 23 and the low element side liquid receiver 24 and between the low element side first condenser 21 and the low element side second condenser 22.
  • a capillary tube 33 is provided in the middle of the supercooling refrigerant pipe 31.
  • the capillary tube 33 is the pressure adjusting means of the present invention.
  • a check valve 34 is provided in the middle of the vapor refrigerant pipe 32.
  • the cooling unit 2 is used as, for example, a refrigerated freezer showcase or a unit cooler.
  • the low-side second condenser 22, the low-side side second expansion valve 23, the low-side side liquid receiver 24, the supercooling refrigerant pipe 31, the vapor refrigerant pipe 32, the capillary tube 33, and the check valve 34 are an outdoor unit. 1 is housed. Further, the low element side first expansion valve 25 and the low element side evaporator 26 are accommodated in the cooling unit 2.
  • the outdoor unit 1 and the cooling unit 2 are connected by two pipes, that is, a liquid pipe 3 and a gas pipe 4.
  • FIG. 2 is a device layout diagram of the natural circulation circuit according to the first embodiment of the present invention.
  • the low-source-side second condenser 22 of the cascade capacitor 30 is disposed above the outdoor unit 1, and the low-source-side liquid receiver 24 is disposed below the intermediate unit.
  • the low expansion side second expansion valve 23 is disposed at the bottom and is sequentially connected by piping as described above. That is, the low-side second condenser 22 is positioned above the low-side liquid receiver 24 in the vertical direction of the outdoor unit 1.
  • the supercooling refrigerant pipe 31 and the vapor refrigerant pipe 32 are connected as described above, and provide a height difference in the circuit. As shown in FIG. 2, the vapor refrigerant pipe 32 is disposed above the supercooling refrigerant pipe 31 in the vertical direction of the outdoor unit 1.
  • the check valve 34 of the vapor refrigerant pipe 32 prevents the refrigerant discharged from the low-side compressor 20 shown in FIG. 1 and flowing out from the low-side first condenser 21 from flowing into the vapor refrigerant pipe 32. Is.
  • the high-end side compressor 10 sucks in the high-end side refrigerant, compresses it, and discharges it in the state of a high-temperature and high-pressure gas refrigerant.
  • the discharged high-side refrigerant flows into the high-side condenser 11.
  • the high-source side condenser 11 performs heat exchange between outside air supplied from a high-side condenser fan (not shown) and the high-side refrigerant that is a gas refrigerant, and condenses and liquefies the high-side refrigerant.
  • the high-side refrigerant that has been condensed and liquefied passes through the high-side expansion valve 12.
  • the high-side expansion valve 12 decompresses the high-side refrigerant that has been condensed and liquefied.
  • the reduced high-side refrigerant flows into the high-side evaporator 13 of the cascade condenser 30.
  • the high-side evaporator 13 evaporates and converts the high-side refrigerant into a gas by heat exchange with the low-side refrigerant that passes through the low-side second condenser 22.
  • the high-side refrigerant that has been vaporized is sucked into the high-side compressor 10.
  • the low-side compressor 20 sucks the low-side refrigerant, compresses it, and discharges it into a high-temperature and high-pressure gas refrigerant.
  • the discharged low-side refrigerant flows into the low-side first condenser 21.
  • the low original side first condenser 21 performs heat exchange between the outside air supplied from a low original side condenser fan (not shown) and the low original side refrigerant, condenses the low original side refrigerant, It flows into the low-source-side second condenser 22.
  • the low original side second condenser 22 further condenses the low original side refrigerant by the heat exchange with the high original side refrigerant passing through the high original side evaporator 13, and liquefies it.
  • the supercooled liquefied low-side refrigerant passes through the low-side second expansion valve 23.
  • the low-source side second expansion valve 23 depressurizes the supercooled and liquefied low-source side refrigerant to obtain an intermediate-pressure refrigerant.
  • the low-source-side refrigerant that has been reduced to the intermediate pressure further passes through the low-source-side receiver 24, passes through the low-source-side first expansion valve 25, and is reduced in pressure to become a low-pressure refrigerant.
  • the low-source side refrigerant depressurized to a low pressure flows into the low-source side evaporator 26.
  • the low-side evaporator 26 exchanges heat between the air in the freezer warehouse and the low-side refrigerant, and evaporates the low-side refrigerant.
  • the low-source side refrigerant that has been vaporized is sucked into the low-source side compressor 20.
  • the stop of the low-source refrigeration cycle 102 described here mainly refers to a state where the low-source side compressor 20 is stopped.
  • the binary refrigeration apparatus 100 operates the high-source side refrigerant circuit of the high-source refrigeration cycle 101 with a separate power source even when the low-source refrigeration cycle 102 is stopped due to a power failure or the like.
  • the low-side refrigerant is cooled by the high-side evaporator 13 of the cascade capacitor 30 and the pressure rise due to the temperature rise of the low-side refrigerant is suppressed.
  • the high-source refrigeration cycle 101 since only the operation of the high-source refrigeration cycle 101 does not circulate the low-source-side refrigerant, the low-source-side refrigerant cannot be sufficiently cooled, and the suppression of the pressure increase in the low-source-side refrigerant circuit is insufficient.
  • the above-described natural circulation circuit 40 is provided in the low-source refrigeration cycle 102 to circulate the low-source-side refrigerant.
  • the supercooled refrigerant heat-exchanged by the cascade condenser 30 passes through the low-element side second expansion valve 23 and the pipe connecting the low-element side second expansion valve 23 or the supercooled refrigerant pipe 31. Then, it is dropped into the low-source side liquid receiver 24. At this time, as shown in FIG. 2, the supercooling refrigerant pipe 31 and the vapor refrigerant pipe 32 have a height difference in the vertical direction, and the supercooling refrigerant falls to the low-source side receiver 24 by its own weight. Therefore, the supercooling refrigerant does not flow through the vapor refrigerant pipe 32 to which the low-source-side second condenser 22 is connected on the upper side.
  • the low-source side second condenser 22 Since the volume of the supercooling refrigerant above the low-source side second condenser 22 is reduced as the supercooling refrigerant is dropped on the low-source side liquid receiver 24 which is the lower side, the low-source side second condenser 22 is reduced.
  • the upper side is a negative pressure
  • the low-source side liquid receiver 24 side is a positive pressure.
  • the vapor refrigerant stored in the low-side liquid receiver 24 is branched from the pipe connecting the low-side second expansion valve 23 and the low-side liquid receiver 24 and this pipe. It passes through the vapor refrigerant pipe 32 and is sucked up to the upper side where the low-source side second condenser 22 is located.
  • the refrigerant flowing through the natural circulation circuit 40 repeats such natural circulation and effectively suppresses the pressure increase in the low-source side refrigerant circuit.
  • the supercooling refrigerant pipe 31 is provided to circulate the supercooling refrigerant even when the low-source side second expansion valve 23, which is an electronic expansion valve, is closed during a power failure or failure. Further, the capillary tube 33 provided in the middle of the supercooling refrigerant pipe 31 is used when the supercooling refrigerant flowing out from the low-source side second condenser 22 of the cascade condenser 30 bypasses the supercooling refrigerant pipe 31 during normal cooling operation. Is also provided in order to depressurize the low-side refrigerant, like the low-side second expansion valve 23.
  • FIG. 3 is a device layout diagram of the natural circulation circuit according to the first embodiment of the present invention.
  • the capillary tube 33 provided in the middle of the supercooling refrigerant pipe 31 can be replaced with an electromagnetic valve 35 as shown in FIG.
  • the electromagnetic valve 35 is a pressure adjusting means of the present invention.
  • the solenoid valve 35 is replaced, the solenoid valve 35 is closed during normal cooling operation, and the solenoid valve 35 is opened during a power failure.
  • the supercooling refrigerant flowing out from the low-side second condenser 22 of the cascade capacitor 30 is prevented from flowing into the low-side receiver 24 through the supercooling refrigerant pipe 31. Is done.
  • the low-source side second expansion valve 23 is closed during a power failure or failure, the low-source side refrigerant bypasses the supercooled refrigerant pipe 31 and flows into the low-source side liquid receiver 24.
  • the capillary tube 33 or the electromagnetic valve 35 described above may not be provided depending on the low pressure side second expansion valve 23 and the pipe pressure loss of the pipe connecting the low level side second expansion valve 23.
  • the binary refrigeration apparatus 100 operates the high-source refrigeration cycle 101 with a separate power source even when the low-source refrigeration cycle 102 is stopped, and the low-concentration side second condensation of the cascade capacitor 30
  • the low-side refrigerant in the low-side refrigerant circuit is cooled by the vessel 22.
  • the natural circulation circuit 40 is provided in the low-source refrigeration cycle 102 to naturally circulate the low-source-side refrigerant, thereby effectively suppressing the pressure increase accompanying the temperature rise. This eliminates the need to set a high design pressure for systems such as local piping, unit coolers, and showcases, thereby reducing equipment costs.
  • FIG. FIG. 4 is a device layout diagram of the natural circulation circuit according to the second embodiment of the present invention.
  • FIG. 4 shows the equipment arrangement of the natural circulation circuit 40a of the binary refrigeration apparatus 100a according to the second embodiment.
  • the configuration and operation of the natural circulation circuit 40a will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the difference from the above-described first embodiment will be mainly described, and description of functions and configurations similar to those in the first embodiment such as a refrigerant circuit configuration will be omitted.
  • the natural circulation circuit 40a of the binary refrigeration apparatus 100a includes a supercooling refrigerant pipe 31 and a vapor refrigerant pipe 32a.
  • the supercooled refrigerant pipe 31 connects between the low-source-side second condenser 22 and the low-source-side second expansion valve 23 and between the low-source-side second expansion valve 23 and the low-source-side liquid receiver 24. is doing.
  • the vapor refrigerant pipe 32 a connects the low-source side second condenser 22 and the low-source-side second expansion valve 23 to the low-source-side liquid receiver 24. That is, the vapor refrigerant pipe 32 a is directly connected to the low-source side liquid receiver 24.
  • the connection position of the vapor refrigerant pipe 32a is provided in the low-source side liquid receiver 24.
  • the supercooled refrigerant dripped by the heat exchange of the cascade condenser 30 and the vapor refrigerant sucked up from the low-source side receiver 24 are connected to the low-side second expansion valve 23, the low-side receiver 24,
  • the pipes that connect are no longer crossed.
  • pressure loss can be reduced, and the refrigerant flowing through the natural circulation circuit 40a can be naturally circulated more efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

二元冷凍装置は、高元冷凍サイクルと低元冷凍サイクルとカスケードコンデンサとを備える。高元冷凍サイクルにおいて、高元側圧縮機、高元側凝縮器、高元側膨張弁及び高元側蒸発器が順次、配管接続され、高元側冷媒が循環する。低元冷凍サイクルにおいて、低元側圧縮機、低元側第1凝縮器、低元側第2凝縮器、低元側受液器、低元側第1膨張弁、及び低元側蒸発器が順次、配管接続され、低元側冷媒が循環する。カスケードコンデンサは、高元側蒸発器と低元側第2凝縮器とを有し、高元側蒸発器を流れる高元側冷媒と、低元側第2凝縮器を流れる低元側冷媒との間で熱交換を行わせる。低元冷媒サイクルには、低元側第1凝縮器と低元側第2凝縮器との間と、低元側受液器とを接続し、途中に逆止弁が設けられている蒸気冷媒配管を有している自然循環回路が設けられている。

Description

二元冷凍装置
 本発明は、冷凍若しくは冷蔵の用途に利用する二元冷凍装置に関するものである。
 従来、低温の冷凍倉庫や冷蔵倉庫の冷凍装置には、高温側冷媒を循環するための冷凍サイクル装置である高元冷凍サイクルと、低温側冷媒を循環するための冷凍サイクル装置である低元冷凍サイクルとを備える二元冷凍装置が使用されている。例えば、二元冷凍装置では、低元冷凍サイクルにおける低元側凝縮器と、高元冷凍サイクルにおける高元側蒸発器とを熱交換できるように構成したカスケードコンデンサによって低元冷凍サイクルと、高元冷凍サイクルとを連結し、多段構成としている。
 このような二元冷凍装置において、除霜運転中、2次側冷凍サイクルの圧縮機、すなわち低元冷凍サイクルの低元側圧縮機が停止しているとき、1次側冷凍サイクル、すなわち高元冷凍サイクルを運転しているものがある(例えば、特許文献1参照)。特許文献1に記載のこの二元冷凍装置では、高元冷凍サイクルの蒸発器によるカスケード熱交換器の冷却により低元冷凍サイクルの低元側凝縮器を冷却して、低元冷凍サイクル内の圧力上昇を抑制している。
 また、低元側圧縮機が停止中に、低元冷凍サイクル内の圧力上昇を抑制するために、低元冷凍サイクル内に膨張タンクを備えた冷凍装置がある(例えば、特許文献2参照)。
特開2004-190917号公報 国際公開第2014/064744号
 特許文献1に記載の二元冷凍装置では、カスケード熱交換器のカスケード凝縮器、すなわち、低元側冷媒回路の凝縮器で、低元冷凍サイクル内の冷媒を冷却するようにしている。このため、低元側圧縮機が停止しているときには、低元冷凍サイクル内の冷媒は低元側凝縮器内部で流動しない。従って、例えば、ある程度冷媒が凝縮し、カスケード熱交換器において低元冷凍サイクルの低元側凝縮器内部が液冷媒で満たされてしまうと、十分に冷却できず、低元冷凍サイクル内の温度上昇に伴う圧力上昇の抑制が不十分となる。その結果、現地配管、ユニットクーラー、ショーケース等のシステムの設計圧力が高くなり、コストが増加するという課題がある。また、低元冷凍サイクル内の冷媒の圧力が、設計圧力以上に上昇した場合には、安全弁から冷媒が放出される場合がある。この場合、低元冷凍サイクル内に冷媒を補充する必要が生じる。
 また、特許文献2の冷凍装置では、膨張タンクを備えるための設置スペースを確保する必要があり、冷凍装置の設置に制約を受ける可能性がある。
 本発明は、上記のような課題を解決するためになされたものであり、簡易な構成で低元冷凍サイクル内の温度上昇に伴う圧力上昇が抑制される二元冷凍装置を提供することを目的とする。
 本発明に係る二元冷凍装置は、高元側圧縮機、高元側凝縮器、高元側膨張弁及び高元側蒸発器が順次、配管接続され、高元側冷媒が循環する高元冷凍サイクルと、低元側圧縮機、低元側第1凝縮器、低元側第2凝縮器、低元側受液器、低元側第1膨張弁、及び低元側蒸発器が順次、配管接続され、低元側冷媒が循環する低元冷凍サイクルと、前記高元側蒸発器と前記低元側第2凝縮器とを有し、前記高元側蒸発器を流れる前記高元側冷媒と、前記低元側第2凝縮器を流れる前記低元側冷媒との間で熱交換を行わせるカスケードコンデンサとを備える二元冷凍装置であって、前記低元冷凍サイクルには、前記低元側第1凝縮器と前記低元側第2凝縮器との間と、前記低元側受液器とを接続し、途中に逆止弁が設けられている蒸気冷媒配管を有している自然循環回路が設けられているものである。
 本発明に係る二元冷凍装置によると、蒸気冷媒配管を有する自然循環回路が設けられている。低元側圧縮機が停止した場合において、高元冷凍サイクルを運転することに加え、自然循環回路で低元側冷媒が循環する。従って、低元冷凍サイクル内における冷媒の圧力上昇を抑えることができ、機器の設計圧力を高く設定する必要がない。その結果、現地配管、ユニットクーラー、ショーケース等のシステムのコストを削減することができる。また、膨張タンクを必要としないため、冷凍装置の設置に制約を受けることがない。
本発明の実施の形態1における二元冷凍装置の冷媒回路図である。 本発明の実施の形態1における自然循環回路の機器配置図である。 本発明の実施の形態1における自然循環回路の機器配置図である。 本発明の実施の形態2における自然循環回路の機器配置図である。
 以下に、本発明における二元冷凍装置の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1における二元冷凍装置の冷媒回路図である。二元冷凍装置100は、高元冷凍サイクル101と低元冷凍サイクル102とを備えている。高元冷凍サイクル101と低元冷凍サイクル102は、カスケードコンデンサ30により熱的に接続されている。高元冷凍サイクル101及び低元冷凍サイクル102を構成する各要素は、後述する室外ユニット1若しくは冷却ユニット2に収納されている。
 低元冷凍サイクル102に封入される冷媒には、冷媒漏れを考慮し、地球温暖化に対する影響が小さい二酸化炭素、すなわちCOを用いる。高元冷凍サイクル101に封入される冷媒として、例えばR410A、R32、R404A、HFO-1234yf、プロパン、イソブタン、二酸化炭素、アンモニア等を用いる。本明細書では、低元冷凍サイクル102に封入される冷媒を低元側冷媒といい、高元冷凍サイクル101に封入される冷媒を高元側冷媒という。
 高元冷凍サイクル101は、高元側冷媒が循環する冷凍サイクルである。高元冷凍サイクル101において、高元側圧縮機10と、高元側凝縮器11と、高元側膨張弁12と、高元側蒸発器13とが順次、冷媒配管で接続され、冷媒回路が構成されている。本明細書では、高元冷凍サイクル101の冷媒回路を高元側冷媒回路という。
 低元冷凍サイクル102は、低元側冷媒が循環する冷凍サイクルである。低元冷凍サイクル102において、低元側圧縮機20と、低元側第1凝縮器21と、低元側第2凝縮器22と、低元側受液器24と、低元側第1膨張弁25と、低元側蒸発器26とが順次、冷媒配管で接続され、冷媒回路が構成されている。また、低元冷凍サイクル102は、低元側第2凝縮器22と低元側受液器24との間に設けられた低元側第2膨張弁23を有している。本明細書では、低元冷凍サイクル102の冷媒回路を低元側冷媒回路という。
 二元冷凍装置100は、上述のカスケードコンデンサ30を備えている。カスケードコンデンサ30において、高元側蒸発器13を通過する冷媒と低元側第2凝縮器22を通過する冷媒との間で熱交換が可能なように、高元側蒸発器13と低元側第2凝縮器22とが結合されて構成されている。すなわち、カスケードコンデンサ30は、冷媒間熱交換器である。カスケードコンデンサ30を設けることにより、低元側冷媒回路と高元側冷媒回路とは多段構成となっている。
 高元側圧縮機10は、高元側冷媒回路を流れる冷媒を吸入し、吸入した冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施の形態1において、高元側圧縮機10は、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。
 高元側凝縮器11は、例えば、空気、ブライン等と高元側冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施の形態1において、高元側凝縮器11は外気と冷媒との熱交換を行うものである。二元冷凍装置100は、図示省略の高元側凝縮器ファンを有している。高元側凝縮器ファンにより、高元側凝縮器11に外気が送風され、高元側凝縮器11における熱交換が促される。高元側凝縮器ファンは風量を調整できるタイプのファンで構成されている。
 高元側膨張弁12は、高元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、高元側膨張弁12は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
 高元側蒸発器13は、熱交換により、高元側冷媒回路を流れる冷媒を蒸発させガス化するものである。本実施の形態1では、高元側蒸発器13は、例えばカスケードコンデンサ30において高元側冷媒回路を流れる冷媒が通過する伝熱管等により構成される。そして、カスケードコンデンサ30において、高元側蒸発器13を流れる冷媒と低元側冷媒回路を流れる冷媒との間で熱交換が行われる。
 低元側圧縮機20は、低元側冷媒回路を流れる冷媒を吸入し、吸入した冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施の形態1において、低元側圧縮機20は、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。
 低元側第1凝縮器21は、例えば、空気、ブライン等と高元側冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施の形態1において、低元側第1凝縮器21は外気と冷媒との熱交換を行うものである。二元冷凍装置100は、図示省略の低元側凝縮器ファンを有している。低元側凝縮器ファンにより、低元側第1凝縮器21に外気が送風され、低元側第1凝縮器21における熱交換が促される。低元側凝縮器ファンは風量を調整できるタイプのファンで構成されている。
 低元側第2凝縮器22は、低元側第1凝縮器21で凝縮され液化された冷媒をさらに凝縮させ、過冷却冷媒にするものである。本実施の形態1では、低元側第2凝縮器22は、例えばカスケードコンデンサ30において低元側冷媒回路を流れる冷媒が通過する伝熱管等により構成される。そして、カスケードコンデンサ30において、低元側第2凝縮器22を流れる冷媒と高元側冷媒回路を流れる冷媒との間で熱交換が行われる。
 低元側第2膨張弁23は、低元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、低元側第2膨張弁23は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
 低元側受液器24は、低元側第2凝縮器22及び低元側第2膨張弁23の下流側に設けられている。低元側受液器24は、冷媒を一時的に貯留するものである。
 低元側第1膨張弁25は、低元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、低元側第1膨張弁25は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
 低元側蒸発器26は、熱交換により、高元側冷媒回路を流れる冷媒を蒸発させガス化するものである。低元側蒸発器26における冷媒との熱交換により、冷却対象は直接又は間接に冷却されることになる。
 本実施の形態1において、低元冷凍サイクル102は自然循環回路40を備えている。自然循環回路40は、過冷却冷媒配管31と蒸気冷媒配管32とを有している。過冷却冷媒配管31は、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側第2膨張弁23と低元側受液器24との間を接続している。蒸気冷媒配管32は、低元側第2膨張弁23と低元側受液器24との間と、低元側第1凝縮器21と低元側第2凝縮器22との間を接続している。過冷却冷媒配管31の途中には毛細管33が設けられている。毛細管33は、本発明の圧力調整手段である。蒸気冷媒配管32の途中には逆止弁34が設けられている。
 上述した二元冷凍装置100の各構成要素は、室外ユニット1又は冷却ユニット2に収納されている。冷却ユニット2は、例えば、冷蔵冷凍ショーケース若しくはユニットクーラーとして使用される。本実施の形態1において、高元側圧縮機10、高元側凝縮器11、高元側膨張弁12、高元側蒸発器13、低元側圧縮機20、低元側第1凝縮器21、低元側第2凝縮器22、低元側第2膨張弁23、低元側受液器24、過冷却冷媒配管31、蒸気冷媒配管32、毛細管33、及び逆止弁34は、室外ユニット1に収納されている。また、低元側第1膨張弁25及び低元側蒸発器26は、冷却ユニット2に収納されている。そして、室外ユニット1と冷却ユニット2は、2つの配管、すなわち液配管3及びガス配管4で接続されている。
 図2は、本発明の実施の形態1における自然循環回路の機器配置図である。本実施の形態1において、自然循環回路40において、室外ユニット1の上部にカスケードコンデンサ30の低元側第2凝縮器22が配置され、下部に低元側受液器24が配置され、中間部に低元側第2膨張弁23が配設され、上述のように順次、配管で接続されている。すなわち、室外ユニット1の上下方向において、低元側第2凝縮器22は低元側受液器24よりも上側に位置づけられている。また、過冷却冷媒配管31と蒸気冷媒配管32は上述のように接続されており、回路に高低差を設けている。図2に示されるように、室外ユニット1の上下方向において、蒸気冷媒配管32は過冷却冷媒配管31より上側に配置されている。
 蒸気冷媒配管32の逆止弁34は、図1に示す低元側圧縮機20から吐出され、低元側第1凝縮器21から流出した冷媒が、蒸気冷媒配管32に流入するのを防止するものである。
(通常の冷却運転動作の概要)
 以上のような構成の二元冷凍装置100において、冷却対象である空気を冷却する通常の冷却運転における各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。
(高元冷凍サイクルの動作)
 まず、図1を参照しながら、高元冷凍サイクル101の動作について説明する。高元側圧縮機10は、高元側冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された高元側冷媒は高元側凝縮器11へ流入する。高元側凝縮器11は、図示省略の高元側凝縮器ファンから供給される外気とガス冷媒である高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮し液化する。凝縮液化された高元側冷媒は高元側膨張弁12を通過する。高元側膨張弁12は凝縮液化した高元側冷媒を減圧する。減圧された高元側冷媒はカスケードコンデンサ30の高元側蒸発器13に流入する。高元側蒸発器13は、低元側第2凝縮器22を通過する低元側冷媒との熱交換により高元側冷媒を蒸発ガス化する。蒸発ガス化された高元側冷媒は高元側圧縮機10に吸入される。
(低元冷凍サイクルの動作)
 次に、図1を参照しながら、低元冷凍サイクル102の動作について説明する。低元側圧縮機20は、低元側冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された低元側冷媒は低元側第1凝縮器21へ流入する。低元側第1凝縮器21は、図示省略の低元側凝縮器ファンから供給される外気と低元側冷媒との間で熱交換を行い、低元側冷媒を凝縮し、カスケードコンデンサ30の低元側第2凝縮器22に流入する。低元側第2凝縮器22は、高元側蒸発器13を通過する高元側冷媒との熱交換により、さらに低元側冷媒を凝縮し、過冷却液化する。過冷却液化された低元側冷媒は低元側第2膨張弁23を通過する。低元側第2膨張弁23は過冷却液化された低元側冷媒を減圧し、中間圧の冷媒にする。中間圧まで減圧された低元側冷媒はさらに、低元側受液器24を通り、低元側第1膨張弁25を通過し、減圧されて低圧の冷媒となる。低圧まで減圧された低元側冷媒は低元側蒸発器26に流入する。低元側蒸発器26は冷凍倉庫の庫内空気と低元側冷媒とを熱交換させ、低元側冷媒を蒸発ガス化する。蒸発ガス化した低元側冷媒は低元側圧縮機20に吸入される。
(低元冷凍サイクル停止時における高元冷凍サイクル及び自然循環回路の動作)
 ここで、低元冷凍サイクル102停止時における、低元側冷媒回路の圧力上昇の抑制方法について述べる。ここで述べる低元冷凍サイクル102の停止とは、主に低元側圧縮機20が停止中の状態のことをいうものとする。
 本実施の形態1に係る二元冷凍装置100は、停電時などにより低元冷凍サイクル102が停止中であっても、別電源にて高元冷凍サイクル101の高元側冷媒回路を運転させる。これにより、カスケードコンデンサ30の高元側蒸発器13によって低元側冷媒を冷却し、低元側冷媒の温度上昇に伴う圧力上昇を抑制する。しかし、高元冷凍サイクル101の運転のみでは低元側冷媒の循環がないため、低元側冷媒の冷却が十分にできず、低元側冷媒回路の圧力上昇の抑制が不十分である。このため、本実施の形態1では、低元冷凍サイクル102内に上述の自然循環回路40を設けて、低元側冷媒を循環させる。
 自然循環回路40では、カスケードコンデンサ30によって熱交換された過冷却冷媒は、低元側第2膨張弁23、及び低元側第2膨張弁23を接続する配管、若しくは過冷却冷媒配管31を通り、低元側受液器24に滴下される。このとき、図2に示すように、過冷却冷媒配管31と蒸気冷媒配管32とは上下方向において高低差があり、過冷却冷媒は自重で低元側受液器24に落ちる。そのため、低元側第2凝縮器22が上側に接続されている蒸気冷媒配管32に過冷却冷媒が流通することはない。
 過冷却冷媒が下側である低元側受液器24に滴下されるにつれて、低元側第2凝縮器22より上側の過冷却冷媒の容積が減少するため、低元側第2凝縮器22より上側が負圧、低元側受液器24側が正圧となる。これにより、低元側受液器24内に貯蔵されている蒸気冷媒が、低元側第2膨張弁23と低元側受液器24とを接続する配管、及びこの配管から分岐している蒸気冷媒配管32を通り、低元側第2凝縮器22が位置している上側に吸上げられる。上側に吸上げられた蒸気冷媒は低元側第2凝縮器22に流入し、低元側第2凝縮器22において再び熱交換されて過冷却冷媒となり、低元側受液器24に滴下される。自然循環回路40を流通する冷媒は、このような自然循環を繰り返して、低元側冷媒回路の圧力上昇を効果的に抑制する。
 過冷却冷媒配管31は、停電時や故障時に、例えば電子式膨張弁である低元側第2膨張弁23が閉塞となった場合においても、過冷却冷媒を流通させるために設けられている。また、過冷却冷媒配管31の途中に設ける毛細管33は、通常の冷却運転時にカスケードコンデンサ30の低元側第2凝縮器22から流出する過冷却冷媒が、過冷却冷媒配管31にバイパスした場合においても、低元側第2膨張弁23と同様に低元側冷媒を減圧させるために設けている。
 図3は、本発明の実施の形態1における自然循環回路の機器配置図である。過冷却冷媒配管31の途中に設ける毛細管33は、図3に示すように電磁弁35に置き換えることができる。電磁弁35は、本発明の圧力調整手段である。電磁弁35に置き換えた場合、通常の冷却運転時に電磁弁35を閉、停電時に電磁弁35を開とする。これにより、通常の冷却運転時は、カスケードコンデンサ30の低元側第2凝縮器22から流出する過冷却冷媒が過冷却冷媒配管31を通り、低元側受液器24に流入することが防止される。また停電時や故障時において、低元側第2膨張弁23が閉塞となった場合は、低元側冷媒が過冷却冷媒配管31にバイパスし、低元側受液器24に流入する。
 上述の毛細管33または電磁弁35は、低元側第2膨張弁23、及び低元側第2膨張弁23を接続する配管の配管圧損によっては設けなくてもよい。
 本実施の形態1に係る二元冷凍装置100は、低元冷凍サイクル102が停止中であっても、別電源にて高元冷凍サイクル101を運転させ、カスケードコンデンサ30の低元側第2凝縮器22によって低元側冷媒回路の低元側冷媒を冷却する。さらに、低元冷凍サイクル102内に自然循環回路40を設けて、低元側冷媒を自然循環させることで、温度上昇に伴う圧力上昇を効果的に抑制する。これにより、現地配管、ユニットクーラー、ショーケース等のシステムの設計圧力を高く設定する必要がなくなるため、機器のコストを削減することができる。
実施の形態2.
 図4は、本発明の実施の形態2における自然循環回路の機器配置図である。図4は、本実施の形態2に係る二元冷凍装置100aの自然循環回路40aの機器配置を示している。図4に基づいて、自然循環回路40aの構成及び動作について説明する。尚、図4において、実施の形態1と同様の構成要素には同一の符号を付している。本実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、冷媒回路構成など実施の形態1と同様の機能や構成については説明を省略する。
 二元冷凍装置100aの自然循環回路40aは、過冷却冷媒配管31と蒸気冷媒配管32aとを備えている。過冷却冷媒配管31は、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側第2膨張弁23と低元側受液器24との間を接続している。蒸気冷媒配管32aは、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側受液器24とを接続している。すなわち、蒸気冷媒配管32aは低元側受液器24に直接接続されている。
 本実施の形態2では、このように構成された自然循環回路40aにおいて、蒸気冷媒配管32aの接続位置を低元側受液器24に設けている。これにより、カスケードコンデンサ30の熱交換によって滴下される過冷却冷媒と、低元側受液器24から吸い上げられる蒸気冷媒とが低元側第2膨張弁23と、低元側受液器24とを接続する配管で交錯することがなくなる。その結果、圧力損失を低減させることができ、自然循環回路40aを流れる冷媒を、より効率的に自然循環させることができる。
 1 室外ユニット、2 冷却ユニット、3 液配管、4 ガス配管、10 高元側圧縮機、11 高元側凝縮器、12 高元側膨張弁、13 高元側蒸発器、20 低元側圧縮機、21 低元側第1凝縮器、22 低元側第2凝縮器、23 低元側第2膨張弁、24 低元側受液器、25 低元側第1膨張弁、26 低元側蒸発器、30 カスケードコンデンサ、31 過冷却冷媒配管、32 蒸気冷媒配管、32a 蒸気冷媒配管、33 毛細管、34 逆止弁、35 電磁弁、40 自然循環回路、40a 自然循環回路、100 二元冷凍装置、100a 二元冷凍装置、101 高元冷凍サイクル、102 低元冷凍サイクル。

Claims (8)

  1.  高元側圧縮機、高元側凝縮器、高元側膨張弁及び高元側蒸発器が順次、配管接続され、高元側冷媒が循環する高元冷凍サイクルと、
     低元側圧縮機、低元側第1凝縮器、低元側第2凝縮器、低元側受液器、低元側第1膨張弁、及び低元側蒸発器が順次、配管接続され、低元側冷媒が循環する低元冷凍サイクルと、
     前記高元側蒸発器と前記低元側第2凝縮器とを有し、前記高元側蒸発器を流れる前記高元側冷媒と、前記低元側第2凝縮器を流れる前記低元側冷媒との間で熱交換を行わせるカスケードコンデンサとを備える二元冷凍装置であって、
     前記低元冷凍サイクルには、前記低元側第1凝縮器と前記低元側第2凝縮器との間と、前記低元側受液器とを接続し、途中に逆止弁が設けられている蒸気冷媒配管を有している自然循環回路が設けられている二元冷凍装置。
  2.  前記低元冷凍サイクルは、前記低元側第2凝縮器と前記低元側受液器との間に設けられた低元側第2膨張弁を有し、
     前記自然循環回路は、前記低元側第2凝縮器と前記低元側第2膨張弁との間と、前記低元側第2膨張弁と前記低元側受液器との間を接続し、途中に圧力調整手段が設けられた過冷却冷媒配管を有する請求項1に記載の二元冷凍装置。
  3.  前記蒸気冷媒配管は、前記低元側第2膨張弁と前記低元側受液器との間に接続されている請求項2に記載の二元冷凍装置。
  4.  前記蒸気冷媒配管は、前記低元側受液器に直接接続されている請求項1又は2に記載の二元冷凍装置。
  5.  前記圧力調整手段は毛細管である請求項2~4のいずれか一項に記載の二元冷凍装置。
  6.  前記圧力調整手段は電磁弁である請求項2~4のいずれか一項に記載の二元冷凍装置。
  7.  前記自然循環回路において、前記低元側第2凝縮器は前記低元側受液器よりも上側に配置されている請求項1~6のいずれか一項に記載の二元冷凍装置。
  8.  前記自然循環回路において、前記蒸気冷媒配管は前記過冷却冷媒配管よりも上側に配置されている請求項2~7のいずれか一項に記載の二元冷凍装置。
PCT/JP2017/016407 2017-04-25 2017-04-25 二元冷凍装置 WO2018198203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/016407 WO2018198203A1 (ja) 2017-04-25 2017-04-25 二元冷凍装置
EP17907290.5A EP3617612B1 (en) 2017-04-25 2017-04-25 Binary refrigeration device
JP2019514925A JP6727422B2 (ja) 2017-04-25 2017-04-25 二元冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016407 WO2018198203A1 (ja) 2017-04-25 2017-04-25 二元冷凍装置

Publications (1)

Publication Number Publication Date
WO2018198203A1 true WO2018198203A1 (ja) 2018-11-01

Family

ID=63919544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016407 WO2018198203A1 (ja) 2017-04-25 2017-04-25 二元冷凍装置

Country Status (3)

Country Link
EP (1) EP3617612B1 (ja)
JP (1) JP6727422B2 (ja)
WO (1) WO2018198203A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631375A (zh) * 2018-12-12 2019-04-16 厦门铸力节能科技有限公司 一种复合型制冷机组可回收蒸汽的热回收系统
CN111735224A (zh) * 2020-01-21 2020-10-02 天津冷源工程设计院 一种适用于多种负荷工况的制冷系统
WO2023012960A1 (ja) * 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023012961A1 (ja) * 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023067807A1 (ja) * 2021-10-22 2023-04-27 三菱電機株式会社 二元冷凍装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328522A4 (en) * 2021-04-21 2024-05-29 Mitsubishi Electric Corp BINARY TYPE REFRIGERATING CYCLE DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
WO2011077720A1 (ja) * 2009-12-22 2011-06-30 ダイキン工業株式会社 冷凍装置
WO2014045400A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置及びその制御方法
WO2014064744A1 (ja) 2012-10-22 2014-05-01 三菱電機株式会社 冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
WO2011077720A1 (ja) * 2009-12-22 2011-06-30 ダイキン工業株式会社 冷凍装置
WO2014045400A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置及びその制御方法
WO2014064744A1 (ja) 2012-10-22 2014-05-01 三菱電機株式会社 冷凍装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631375A (zh) * 2018-12-12 2019-04-16 厦门铸力节能科技有限公司 一种复合型制冷机组可回收蒸汽的热回收系统
CN111735224A (zh) * 2020-01-21 2020-10-02 天津冷源工程设计院 一种适用于多种负荷工况的制冷系统
WO2023012960A1 (ja) * 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023012961A1 (ja) * 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023067807A1 (ja) * 2021-10-22 2023-04-27 三菱電機株式会社 二元冷凍装置

Also Published As

Publication number Publication date
JPWO2018198203A1 (ja) 2019-12-12
EP3617612A1 (en) 2020-03-04
JP6727422B2 (ja) 2020-07-22
EP3617612A4 (en) 2020-03-04
EP3617612B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2018198203A1 (ja) 二元冷凍装置
WO2015093233A1 (ja) 冷凍装置のデフロストシステム及び冷却ユニット
EP2642220A1 (en) Freezer
JP6456633B2 (ja) ターボ冷凍機
JP5323023B2 (ja) 冷凍装置
EP2910872B1 (en) Freezing device
JP5759076B2 (ja) 冷凍装置
US20190137147A1 (en) Refrigeration systems and methods
JP2018021730A (ja) 冷凍サイクル装置
JP2007218466A (ja) 二次冷媒式冷凍装置
JP5506638B2 (ja) 冷凍装置
JP5195302B2 (ja) 冷凍空調装置
EP3502587A1 (en) Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
JPWO2020188756A1 (ja) ルームエアコン
JP2006170536A (ja) 蒸気圧縮式ヒートポンプ
JP2013002737A (ja) 冷凍サイクル装置
JPWO2014030238A1 (ja) 冷凍装置
JP2017161164A (ja) 空調給湯システム
JP2010112698A (ja) 冷凍装置
KR102618118B1 (ko) 냉동시스템의 냉매를 증압 순환시키는 냉매액 펌프의 흡입측에 낮은 온도의 냉매를 공급 순환시키기 위한 액상냉매 순환방법
JP2005207660A (ja) 超低温冷凍装置
CN111033149A (zh) 制冷系统和方法
WO2023067807A1 (ja) 二元冷凍装置
JP2008057974A (ja) 冷却装置
KR20090010398U (ko) 병렬 다중 압축기용 냉.난방 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017907290

Country of ref document: EP

Effective date: 20191125