JP6727422B2 - 二元冷凍装置 - Google Patents

二元冷凍装置 Download PDF

Info

Publication number
JP6727422B2
JP6727422B2 JP2019514925A JP2019514925A JP6727422B2 JP 6727422 B2 JP6727422 B2 JP 6727422B2 JP 2019514925 A JP2019514925 A JP 2019514925A JP 2019514925 A JP2019514925 A JP 2019514925A JP 6727422 B2 JP6727422 B2 JP 6727422B2
Authority
JP
Japan
Prior art keywords
low
source
source side
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514925A
Other languages
English (en)
Other versions
JPWO2018198203A1 (ja
Inventor
靖弘 鬼頭
靖弘 鬼頭
健一 秦
健一 秦
悠介 有井
悠介 有井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018198203A1 publication Critical patent/JPWO2018198203A1/ja
Application granted granted Critical
Publication of JP6727422B2 publication Critical patent/JP6727422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷凍若しくは冷蔵の用途に利用する二元冷凍装置に関するものである。
従来、低温の冷凍倉庫や冷蔵倉庫の冷凍装置には、高温側冷媒を循環するための冷凍サイクル装置である高元冷凍サイクルと、低温側冷媒を循環するための冷凍サイクル装置である低元冷凍サイクルとを備える二元冷凍装置が使用されている。例えば、二元冷凍装置では、低元冷凍サイクルにおける低元側凝縮器と、高元冷凍サイクルにおける高元側蒸発器とを熱交換できるように構成したカスケードコンデンサによって低元冷凍サイクルと、高元冷凍サイクルとを連結し、多段構成としている。
このような二元冷凍装置において、除霜運転中、2次側冷凍サイクルの圧縮機、すなわち低元冷凍サイクルの低元側圧縮機が停止しているとき、1次側冷凍サイクル、すなわち高元冷凍サイクルを運転しているものがある(例えば、特許文献1参照)。特許文献1に記載のこの二元冷凍装置では、高元冷凍サイクルの蒸発器によるカスケード熱交換器の冷却により低元冷凍サイクルの低元側凝縮器を冷却して、低元冷凍サイクル内の圧力上昇を抑制している。
また、低元側圧縮機が停止中に、低元冷凍サイクル内の圧力上昇を抑制するために、低元冷凍サイクル内に膨張タンクを備えた冷凍装置がある(例えば、特許文献2参照)。
特開2004−190917号公報 国際公開第2014/064744号
特許文献1に記載の二元冷凍装置では、カスケード熱交換器のカスケード凝縮器、すなわち、低元側冷媒回路の凝縮器で、低元冷凍サイクル内の冷媒を冷却するようにしている。このため、低元側圧縮機が停止しているときには、低元冷凍サイクル内の冷媒は低元側凝縮器内部で流動しない。従って、例えば、ある程度冷媒が凝縮し、カスケード熱交換器において低元冷凍サイクルの低元側凝縮器内部が液冷媒で満たされてしまうと、十分に冷却できず、低元冷凍サイクル内の温度上昇に伴う圧力上昇の抑制が不十分となる。その結果、現地配管、ユニットクーラー、ショーケース等のシステムの設計圧力が高くなり、コストが増加するという課題がある。また、低元冷凍サイクル内の冷媒の圧力が、設計圧力以上に上昇した場合には、安全弁から冷媒が放出される場合がある。この場合、低元冷凍サイクル内に冷媒を補充する必要が生じる。
また、特許文献2の冷凍装置では、膨張タンクを備えるための設置スペースを確保する必要があり、冷凍装置の設置に制約を受ける可能性がある。
本発明は、上記のような課題を解決するためになされたものであり、簡易な構成で低元冷凍サイクル内の温度上昇に伴う圧力上昇が抑制される二元冷凍装置を提供することを目的とする。
本発明に係る二元冷凍装置は、高元側圧縮機、高元側凝縮器、高元側膨張弁及び高元側蒸発器が順次、配管接続され、高元側冷媒が循環する高元冷凍サイクルと、低元側圧縮機、低元側第1凝縮器、低元側第2凝縮器、低元側受液器、低元側第1膨張弁、及び低元側蒸発器が順次、配管接続され、低元側冷媒が循環する低元冷凍サイクルと、前記高元側蒸発器と前記低元側第2凝縮器とを有し、前記高元側蒸発器を流れる前記高元側冷媒と、前記低元側第2凝縮器を流れる前記低元側冷媒との間で熱交換を行わせるカスケードコンデンサとを備える二元冷凍装置であって、前記低元冷凍サイクルには、前記低元側第1凝縮器と前記低元側第2凝縮器との間と、前記低元側受液器とを接続し、途中に逆止弁が設けられている蒸気冷媒配管を有している自然循環回路が設けられ、前記低元冷凍サイクルは、前記低元側第2凝縮器と前記低元側受液器との間に設けられた低元側第2膨張弁を有し、前記自然循環回路は、前記低元側第2凝縮器と前記低元側第2膨張弁との間と、前記低元側第2膨張弁と前記低元側受液器との間を接続し、途中に圧力調整手段が設けられた過冷却冷媒配管を有し、前記蒸気冷媒配管は、前記低元側第2膨張弁と前記低元側受液器との間に接続されているものである。
本発明に係る二元冷凍装置によると、蒸気冷媒配管を有する自然循環回路が設けられている。低元側圧縮機が停止した場合において、高元冷凍サイクルを運転することに加え、自然循環回路で低元側冷媒が循環する。従って、低元冷凍サイクル内における冷媒の圧力上昇を抑えることができ、機器の設計圧力を高く設定する必要がない。その結果、現地配管、ユニットクーラー、ショーケース等のシステムのコストを削減することができる。また、膨張タンクを必要としないため、冷凍装置の設置に制約を受けることがない。
本発明の実施の形態1における二元冷凍装置の冷媒回路図である。 本発明の実施の形態1における自然循環回路の機器配置図である。 本発明の実施の形態1における自然循環回路の機器配置図である。 本発明の実施の形態2における自然循環回路の機器配置図である。
以下に、本発明における二元冷凍装置の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。
実施の形態1.
図1は、本発明の実施の形態1における二元冷凍装置の冷媒回路図である。二元冷凍装置100は、高元冷凍サイクル101と低元冷凍サイクル102とを備えている。高元冷凍サイクル101と低元冷凍サイクル102は、カスケードコンデンサ30により熱的に接続されている。高元冷凍サイクル101及び低元冷凍サイクル102を構成する各要素は、後述する室外ユニット1若しくは冷却ユニット2に収納されている。
低元冷凍サイクル102に封入される冷媒には、冷媒漏れを考慮し、地球温暖化に対する影響が小さい二酸化炭素、すなわちCOを用いる。高元冷凍サイクル101に封入される冷媒として、例えばR410A、R32、R404A、HFO−1234yf、プロパン、イソブタン、二酸化炭素、アンモニア等を用いる。本明細書では、低元冷凍サイクル102に封入される冷媒を低元側冷媒といい、高元冷凍サイクル101に封入される冷媒を高元側冷媒という。
高元冷凍サイクル101は、高元側冷媒が循環する冷凍サイクルである。高元冷凍サイクル101において、高元側圧縮機10と、高元側凝縮器11と、高元側膨張弁12と、高元側蒸発器13とが順次、冷媒配管で接続され、冷媒回路が構成されている。本明細書では、高元冷凍サイクル101の冷媒回路を高元側冷媒回路という。
低元冷凍サイクル102は、低元側冷媒が循環する冷凍サイクルである。低元冷凍サイクル102において、低元側圧縮機20と、低元側第1凝縮器21と、低元側第2凝縮器22と、低元側受液器24と、低元側第1膨張弁25と、低元側蒸発器26とが順次、冷媒配管で接続され、冷媒回路が構成されている。また、低元冷凍サイクル102は、低元側第2凝縮器22と低元側受液器24との間に設けられた低元側第2膨張弁23を有している。本明細書では、低元冷凍サイクル102の冷媒回路を低元側冷媒回路という。
二元冷凍装置100は、上述のカスケードコンデンサ30を備えている。カスケードコンデンサ30において、高元側蒸発器13を通過する冷媒と低元側第2凝縮器22を通過する冷媒との間で熱交換が可能なように、高元側蒸発器13と低元側第2凝縮器22とが結合されて構成されている。すなわち、カスケードコンデンサ30は、冷媒間熱交換器である。カスケードコンデンサ30を設けることにより、低元側冷媒回路と高元側冷媒回路とは多段構成となっている。
高元側圧縮機10は、高元側冷媒回路を流れる冷媒を吸入し、吸入した冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施の形態1において、高元側圧縮機10は、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。
高元側凝縮器11は、例えば、空気、ブライン等と高元側冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施の形態1において、高元側凝縮器11は外気と冷媒との熱交換を行うものである。二元冷凍装置100は、図示省略の高元側凝縮器ファンを有している。高元側凝縮器ファンにより、高元側凝縮器11に外気が送風され、高元側凝縮器11における熱交換が促される。高元側凝縮器ファンは風量を調整できるタイプのファンで構成されている。
高元側膨張弁12は、高元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、高元側膨張弁12は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
高元側蒸発器13は、熱交換により、高元側冷媒回路を流れる冷媒を蒸発させガス化するものである。本実施の形態1では、高元側蒸発器13は、例えばカスケードコンデンサ30において高元側冷媒回路を流れる冷媒が通過する伝熱管等により構成される。そして、カスケードコンデンサ30において、高元側蒸発器13を流れる冷媒と低元側冷媒回路を流れる冷媒との間で熱交換が行われる。
低元側圧縮機20は、低元側冷媒回路を流れる冷媒を吸入し、吸入した冷媒を圧縮して高温高圧のガス冷媒にして吐出する。本実施の形態1において、低元側圧縮機20は、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。
低元側第1凝縮器21は、例えば、空気、ブライン等と高元側冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施の形態1において、低元側第1凝縮器21は外気と冷媒との熱交換を行うものである。二元冷凍装置100は、図示省略の低元側凝縮器ファンを有している。低元側凝縮器ファンにより、低元側第1凝縮器21に外気が送風され、低元側第1凝縮器21における熱交換が促される。低元側凝縮器ファンは風量を調整できるタイプのファンで構成されている。
低元側第2凝縮器22は、低元側第1凝縮器21で凝縮され液化された冷媒をさらに凝縮させ、過冷却冷媒にするものである。本実施の形態1では、低元側第2凝縮器22は、例えばカスケードコンデンサ30において低元側冷媒回路を流れる冷媒が通過する伝熱管等により構成される。そして、カスケードコンデンサ30において、低元側第2凝縮器22を流れる冷媒と高元側冷媒回路を流れる冷媒との間で熱交換が行われる。
低元側第2膨張弁23は、低元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、低元側第2膨張弁23は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
低元側受液器24は、低元側第2凝縮器22及び低元側第2膨張弁23の下流側に設けられている。低元側受液器24は、冷媒を一時的に貯留するものである。
低元側第1膨張弁25は、低元側冷媒回路を流れる冷媒を減圧して膨張させるものであり、例えば、電子式膨張弁等の冷媒流量制御手段若しくは冷媒流量調節手段で構成される。すなわち、低元側第1膨張弁25は、絞り量が制御可能な減圧装置若しくは絞り装置で構成される。
低元側蒸発器26は、熱交換により、高元側冷媒回路を流れる冷媒を蒸発させガス化するものである。低元側蒸発器26における冷媒との熱交換により、冷却対象は直接又は間接に冷却されることになる。
本実施の形態1において、低元冷凍サイクル102は自然循環回路40を備えている。自然循環回路40は、過冷却冷媒配管31と蒸気冷媒配管32とを有している。過冷却冷媒配管31は、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側第2膨張弁23と低元側受液器24との間を接続している。蒸気冷媒配管32は、低元側第2膨張弁23と低元側受液器24との間と、低元側第1凝縮器21と低元側第2凝縮器22との間を接続している。過冷却冷媒配管31の途中には毛細管33が設けられている。毛細管33は、本発明の圧力調整手段である。蒸気冷媒配管32の途中には逆止弁34が設けられている。
上述した二元冷凍装置100の各構成要素は、室外ユニット1又は冷却ユニット2に収納されている。冷却ユニット2は、例えば、冷蔵冷凍ショーケース若しくはユニットクーラーとして使用される。本実施の形態1において、高元側圧縮機10、高元側凝縮器11、高元側膨張弁12、高元側蒸発器13、低元側圧縮機20、低元側第1凝縮器21、低元側第2凝縮器22、低元側第2膨張弁23、低元側受液器24、過冷却冷媒配管31、蒸気冷媒配管32、毛細管33、及び逆止弁34は、室外ユニット1に収納されている。また、低元側第1膨張弁25及び低元側蒸発器26は、冷却ユニット2に収納されている。そして、室外ユニット1と冷却ユニット2は、2つの配管、すなわち液配管3及びガス配管4で接続されている。
図2は、本発明の実施の形態1における自然循環回路の機器配置図である。本実施の形態1において、自然循環回路40において、室外ユニット1の上部にカスケードコンデンサ30の低元側第2凝縮器22が配置され、下部に低元側受液器24が配置され、中間部に低元側第2膨張弁23が配設され、上述のように順次、配管で接続されている。すなわち、室外ユニット1の上下方向において、低元側第2凝縮器22は低元側受液器24よりも上側に位置づけられている。また、過冷却冷媒配管31と蒸気冷媒配管32は上述のように接続されており、回路に高低差を設けている。図2に示されるように、室外ユニット1の上下方向において、蒸気冷媒配管32は過冷却冷媒配管31より上側に配置されている。
蒸気冷媒配管32の逆止弁34は、図1に示す低元側圧縮機20から吐出され、低元側第1凝縮器21から流出した冷媒が、蒸気冷媒配管32に流入するのを防止するものである。
(通常の冷却運転動作の概要)
以上のような構成の二元冷凍装置100において、冷却対象である空気を冷却する通常の冷却運転における各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。
(高元冷凍サイクルの動作)
まず、図1を参照しながら、高元冷凍サイクル101の動作について説明する。高元側圧縮機10は、高元側冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された高元側冷媒は高元側凝縮器11へ流入する。高元側凝縮器11は、図示省略の高元側凝縮器ファンから供給される外気とガス冷媒である高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮し液化する。凝縮液化された高元側冷媒は高元側膨張弁12を通過する。高元側膨張弁12は凝縮液化した高元側冷媒を減圧する。減圧された高元側冷媒はカスケードコンデンサ30の高元側蒸発器13に流入する。高元側蒸発器13は、低元側第2凝縮器22を通過する低元側冷媒との熱交換により高元側冷媒を蒸発ガス化する。蒸発ガス化された高元側冷媒は高元側圧縮機10に吸入される。
(低元冷凍サイクルの動作)
次に、図1を参照しながら、低元冷凍サイクル102の動作について説明する。低元側圧縮機20は、低元側冷媒を吸入し、圧縮して高温高圧のガス冷媒の状態にして吐出する。吐出された低元側冷媒は低元側第1凝縮器21へ流入する。低元側第1凝縮器21は、図示省略の低元側凝縮器ファンから供給される外気と低元側冷媒との間で熱交換を行い、低元側冷媒を凝縮し、カスケードコンデンサ30の低元側第2凝縮器22に流入する。低元側第2凝縮器22は、高元側蒸発器13を通過する高元側冷媒との熱交換により、さらに低元側冷媒を凝縮し、過冷却液化する。過冷却液化された低元側冷媒は低元側第2膨張弁23を通過する。低元側第2膨張弁23は過冷却液化された低元側冷媒を減圧し、中間圧の冷媒にする。中間圧まで減圧された低元側冷媒はさらに、低元側受液器24を通り、低元側第1膨張弁25を通過し、減圧されて低圧の冷媒となる。低圧まで減圧された低元側冷媒は低元側蒸発器26に流入する。低元側蒸発器26は冷凍倉庫の庫内空気と低元側冷媒とを熱交換させ、低元側冷媒を蒸発ガス化する。蒸発ガス化した低元側冷媒は低元側圧縮機20に吸入される。
(低元冷凍サイクル停止時における高元冷凍サイクル及び自然循環回路の動作)
ここで、低元冷凍サイクル102停止時における、低元側冷媒回路の圧力上昇の抑制方法について述べる。ここで述べる低元冷凍サイクル102の停止とは、主に低元側圧縮機20が停止中の状態のことをいうものとする。
本実施の形態1に係る二元冷凍装置100は、停電時などにより低元冷凍サイクル102が停止中であっても、別電源にて高元冷凍サイクル101の高元側冷媒回路を運転させる。これにより、カスケードコンデンサ30の高元側蒸発器13によって低元側冷媒を冷却し、低元側冷媒の温度上昇に伴う圧力上昇を抑制する。しかし、高元冷凍サイクル101の運転のみでは低元側冷媒の循環がないため、低元側冷媒の冷却が十分にできず、低元側冷媒回路の圧力上昇の抑制が不十分である。このため、本実施の形態1では、低元冷凍サイクル102内に上述の自然循環回路40を設けて、低元側冷媒を循環させる。
自然循環回路40では、カスケードコンデンサ30によって熱交換された過冷却冷媒は、低元側第2膨張弁23、及び低元側第2膨張弁23を接続する配管、若しくは過冷却冷媒配管31を通り、低元側受液器24に滴下される。このとき、図2に示すように、過冷却冷媒配管31と蒸気冷媒配管32とは上下方向において高低差があり、過冷却冷媒は自重で低元側受液器24に落ちる。そのため、低元側第2凝縮器22が上側に接続されている蒸気冷媒配管32に過冷却冷媒が流通することはない。
過冷却冷媒が下側である低元側受液器24に滴下されるにつれて、低元側第2凝縮器22より上側の過冷却冷媒の容積が減少するため、低元側第2凝縮器22より上側が負圧、低元側受液器24側が正圧となる。これにより、低元側受液器24内に貯蔵されている蒸気冷媒が、低元側第2膨張弁23と低元側受液器24とを接続する配管、及びこの配管から分岐している蒸気冷媒配管32を通り、低元側第2凝縮器22が位置している上側に吸上げられる。上側に吸上げられた蒸気冷媒は低元側第2凝縮器22に流入し、低元側第2凝縮器22において再び熱交換されて過冷却冷媒となり、低元側受液器24に滴下される。自然循環回路40を流通する冷媒は、このような自然循環を繰り返して、低元側冷媒回路の圧力上昇を効果的に抑制する。
過冷却冷媒配管31は、停電時や故障時に、例えば電子式膨張弁である低元側第2膨張弁23が閉塞となった場合においても、過冷却冷媒を流通させるために設けられている。また、過冷却冷媒配管31の途中に設ける毛細管33は、通常の冷却運転時にカスケードコンデンサ30の低元側第2凝縮器22から流出する過冷却冷媒が、過冷却冷媒配管31にバイパスした場合においても、低元側第2膨張弁23と同様に低元側冷媒を減圧させるために設けている。
図3は、本発明の実施の形態1における自然循環回路の機器配置図である。過冷却冷媒配管31の途中に設ける毛細管33は、図3に示すように電磁弁35に置き換えることができる。電磁弁35は、本発明の圧力調整手段である。電磁弁35に置き換えた場合、通常の冷却運転時に電磁弁35を閉、停電時に電磁弁35を開とする。これにより、通常の冷却運転時は、カスケードコンデンサ30の低元側第2凝縮器22から流出する過冷却冷媒が過冷却冷媒配管31を通り、低元側受液器24に流入することが防止される。また停電時や故障時において、低元側第2膨張弁23が閉塞となった場合は、低元側冷媒が過冷却冷媒配管31にバイパスし、低元側受液器24に流入する。
上述の毛細管33または電磁弁35は、低元側第2膨張弁23、及び低元側第2膨張弁23を接続する配管の配管圧損によっては設けなくてもよい。
本実施の形態1に係る二元冷凍装置100は、低元冷凍サイクル102が停止中であっても、別電源にて高元冷凍サイクル101を運転させ、カスケードコンデンサ30の低元側第2凝縮器22によって低元側冷媒回路の低元側冷媒を冷却する。さらに、低元冷凍サイクル102内に自然循環回路40を設けて、低元側冷媒を自然循環させることで、温度上昇に伴う圧力上昇を効果的に抑制する。これにより、現地配管、ユニットクーラー、ショーケース等のシステムの設計圧力を高く設定する必要がなくなるため、機器のコストを削減することができる。
実施の形態2.
図4は、本発明の実施の形態2における自然循環回路の機器配置図である。図4は、本実施の形態2に係る二元冷凍装置100aの自然循環回路40aの機器配置を示している。図4に基づいて、自然循環回路40aの構成及び動作について説明する。尚、図4において、実施の形態1と同様の構成要素には同一の符号を付している。本実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、冷媒回路構成など実施の形態1と同様の機能や構成については説明を省略する。
二元冷凍装置100aの自然循環回路40aは、過冷却冷媒配管31と蒸気冷媒配管32aとを備えている。過冷却冷媒配管31は、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側第2膨張弁23と低元側受液器24との間を接続している。蒸気冷媒配管32aは、低元側第2凝縮器22と低元側第2膨張弁23との間と、低元側受液器24とを接続している。すなわち、蒸気冷媒配管32aは低元側受液器24に直接接続されている。
本実施の形態2では、このように構成された自然循環回路40aにおいて、蒸気冷媒配管32aの接続位置を低元側受液器24に設けている。これにより、カスケードコンデンサ30の熱交換によって滴下される過冷却冷媒と、低元側受液器24から吸い上げられる蒸気冷媒とが低元側第2膨張弁23と、低元側受液器24とを接続する配管で交錯することがなくなる。その結果、圧力損失を低減させることができ、自然循環回路40aを流れる冷媒を、より効率的に自然循環させることができる。
1 室外ユニット、2 冷却ユニット、3 液配管、4 ガス配管、10 高元側圧縮機、11 高元側凝縮器、12 高元側膨張弁、13 高元側蒸発器、20 低元側圧縮機、21 低元側第1凝縮器、22 低元側第2凝縮器、23 低元側第2膨張弁、24 低元側受液器、25 低元側第1膨張弁、26 低元側蒸発器、30 カスケードコンデンサ、31 過冷却冷媒配管、32 蒸気冷媒配管、32a 蒸気冷媒配管、33 毛細管、34 逆止弁、35 電磁弁、40 自然循環回路、40a 自然循環回路、100 二元冷凍装置、100a 二元冷凍装置、101 高元冷凍サイクル、102 低元冷凍サイクル。

Claims (5)

  1. 高元側圧縮機、高元側凝縮器、高元側膨張弁及び高元側蒸発器が順次、配管接続され、高元側冷媒が循環する高元冷凍サイクルと、
    低元側圧縮機、低元側第1凝縮器、低元側第2凝縮器、低元側受液器、低元側第1膨張弁、及び低元側蒸発器が順次、配管接続され、低元側冷媒が循環する低元冷凍サイクルと、
    前記高元側蒸発器と前記低元側第2凝縮器とを有し、前記高元側蒸発器を流れる前記高元側冷媒と、前記低元側第2凝縮器を流れる前記低元側冷媒との間で熱交換を行わせるカスケードコンデンサとを備える二元冷凍装置であって、
    前記低元冷凍サイクルには、前記低元側第1凝縮器と前記低元側第2凝縮器との間と、前記低元側受液器とを接続し、途中に逆止弁が設けられている蒸気冷媒配管を有している自然循環回路が設けられ
    前記低元冷凍サイクルは、前記低元側第2凝縮器と前記低元側受液器との間に設けられた低元側第2膨張弁を有し、
    前記自然循環回路は、前記低元側第2凝縮器と前記低元側第2膨張弁との間と、前記低元側第2膨張弁と前記低元側受液器との間を接続し、途中に圧力調整手段が設けられた過冷却冷媒配管を有し、
    前記蒸気冷媒配管は、前記低元側第2膨張弁と前記低元側受液器との間に接続されている二元冷凍装置。
  2. 前記圧力調整手段は毛細管である請求項に記載の二元冷凍装置。
  3. 前記圧力調整手段は電磁弁である請求項に記載の二元冷凍装置。
  4. 前記自然循環回路において、前記低元側第2凝縮器は前記低元側受液器よりも上側に配置されている請求項1〜のいずれか一項に記載の二元冷凍装置。
  5. 前記自然循環回路において、前記蒸気冷媒配管は前記過冷却冷媒配管よりも上側に配置されている請求項のいずれか一項に記載の二元冷凍装置。
JP2019514925A 2017-04-25 2017-04-25 二元冷凍装置 Active JP6727422B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016407 WO2018198203A1 (ja) 2017-04-25 2017-04-25 二元冷凍装置

Publications (2)

Publication Number Publication Date
JPWO2018198203A1 JPWO2018198203A1 (ja) 2019-12-12
JP6727422B2 true JP6727422B2 (ja) 2020-07-22

Family

ID=63919544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514925A Active JP6727422B2 (ja) 2017-04-25 2017-04-25 二元冷凍装置

Country Status (3)

Country Link
EP (1) EP3617612B1 (ja)
JP (1) JP6727422B2 (ja)
WO (1) WO2018198203A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240124945A (ko) 2021-12-13 2024-08-19 신와 콘트롤즈 가부시키가이샤 냉동 장치 및 온조 시스템

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631375A (zh) * 2018-12-12 2019-04-16 厦门铸力节能科技有限公司 一种复合型制冷机组可回收蒸汽的热回收系统
CN111735224A (zh) * 2020-01-21 2020-10-02 天津冷源工程设计院 一种适用于多种负荷工况的制冷系统
WO2022224382A1 (ja) * 2021-04-21 2022-10-27 三菱電機株式会社 二元冷凍サイクル装置
JPWO2023012960A1 (ja) * 2021-08-05 2023-02-09
EP4382828A4 (en) * 2021-08-05 2024-09-25 Mitsubishi Electric Corp REFRIGERATION CIRCUIT DEVICE AND CONTROL METHOD FOR REFRIGERATION CIRCUIT DEVICE
EP4421410A1 (en) * 2021-10-22 2024-08-28 Mitsubishi Electric Corporation Binary refrigeration device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
JP5516602B2 (ja) * 2009-12-22 2014-06-11 ダイキン工業株式会社 冷凍装置
EP2910870B1 (en) * 2012-09-21 2020-01-01 Mitsubishi Electric Corporation Refrigeration device and method for controlling same
JP5819006B2 (ja) 2012-10-22 2015-11-18 三菱電機株式会社 冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240124945A (ko) 2021-12-13 2024-08-19 신와 콘트롤즈 가부시키가이샤 냉동 장치 및 온조 시스템

Also Published As

Publication number Publication date
EP3617612A1 (en) 2020-03-04
EP3617612B1 (en) 2021-09-01
JPWO2018198203A1 (ja) 2019-12-12
EP3617612A4 (en) 2020-03-04
WO2018198203A1 (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6727422B2 (ja) 二元冷凍装置
JP5992089B2 (ja) 空気調和装置
JP5595245B2 (ja) 冷凍装置
US9599395B2 (en) Refrigerating apparatus
JP6033297B2 (ja) 空気調和装置
JP6463470B2 (ja) 冷凍装置
JPWO2015071967A1 (ja) 冷凍装置
WO2014129472A1 (ja) 空気調和装置
JPWO2017221382A1 (ja) 二元冷凍装置
EP2910872B1 (en) Freezing device
JP2019066086A (ja) 冷凍装置
JP5195302B2 (ja) 冷凍空調装置
JP4608303B2 (ja) 蒸気圧縮式ヒートポンプ
JPWO2020188756A1 (ja) ルームエアコン
EP3502587A1 (en) Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
JP2010014343A (ja) 冷凍装置
JP2007225271A (ja) 冷凍装置
JP2006003023A (ja) 冷凍装置
JP2013002737A (ja) 冷凍サイクル装置
JP2010112698A (ja) 冷凍装置
WO2023067807A1 (ja) 二元冷凍装置
JP7305050B2 (ja) 冷凍サイクル装置
JP2008057974A (ja) 冷却装置
WO2019106764A1 (ja) 冷凍装置および室外機
JP2014163533A (ja) 冷凍装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250