JP5512498B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5512498B2
JP5512498B2 JP2010265311A JP2010265311A JP5512498B2 JP 5512498 B2 JP5512498 B2 JP 5512498B2 JP 2010265311 A JP2010265311 A JP 2010265311A JP 2010265311 A JP2010265311 A JP 2010265311A JP 5512498 B2 JP5512498 B2 JP 5512498B2
Authority
JP
Japan
Prior art keywords
mosfet
potential
power supply
semiconductor device
interface unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010265311A
Other languages
English (en)
Other versions
JP2012119763A (ja
Inventor
敏樹 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010265311A priority Critical patent/JP5512498B2/ja
Priority to US13/229,985 priority patent/US8487688B2/en
Publication of JP2012119763A publication Critical patent/JP2012119763A/ja
Priority to US13/920,499 priority patent/US8866530B2/en
Application granted granted Critical
Publication of JP5512498B2 publication Critical patent/JP5512498B2/ja
Priority to US14/801,095 priority patent/USRE46490E1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits

Description

本発明の実施形態は、半導体装置に関する。
回路の開閉を実行する半導体スイッチは、各種の電子機器に用いることができる。例えば、携帯電話機の高周波回路部においては、送信回路及び受信回路が高周波スイッチ回路を介して共通のアンテナに選択的に接続されるようになっている。このような高周波スイッチ回路のスイッチ素子には、SOI(Silicon On Insulator)基板上に形成されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられる。また、端子間の接続を切り替える端子切替信号はパラレル伝送される。
しかし、周波数バンドの増加に伴う高周波端子数の増加やシステム化に対応するため、端子切替信号を高速でシリアル伝送することが検討されているが、消費電力の増大も懸念される。
特開2000−294786号公報
本発明の実施形態は、低消費電力で高速シリアル伝送が可能な半導体装置を提供する。
実施形態によれば、インタフェース部と、駆動回路部と、スイッチ部と、電源回路部と、を備えた半導体装置が提供される。前記インタフェース部は、フローティング状態のバックゲートを有しSOI基板上に設けられた第1のMOSFETを含み、第1電源電位が供給され、入力されたシリアルデータの端子切替信号を前記第1電源電位をハイレベルとするパラレルデータに変換する。前記電源回路部は、ソースに接続されたバックゲートを有し前記SOI基板上に設けられた第2のMOSFETを含み、第2電源電位が供給され、前記第2電源電位から前記第1電源電位よりも高いオン電位を生成する。前記駆動回路部は、ソースに接続されたバックゲートを有し前記SOI基板上に設けられた第3のMOSFETを含み、前記パラレルデータの前記ハイレベルを前記オン電位にレベルシフトした制御信号を出力する。前記スイッチ部は、前記SOI基板上に設けられ、前記制御信号を入力して端子間の接続を切り替える。
第1の実施形態に係る半導体装置の構成を例示するブロック図。 図1に表した半導体装置のスイッチ部の構成を例示する回路図。 図1に表した半導体装置の駆動回路部のレベルシフタの構成を例示する回路図。 半導体装置のトランジスタの断面図。 半導体装置の第1のMOSFETのレイアウトを表す平面図。 半導体装置の第2のMOSFETのレイアウトを表す平面図。 半導体装置の第4のMOSFETのレイアウトを表す平面図。 第2の実施形態に係る半導体装置の構成を例示するブロック図。 第3の実施形態に係る半導体装置の構成を例示する平面図。
以下、実施形態について図面を参照して詳細に説明する。なお、図面は模式的または概念的なものであり、各部分の形状や縦横の寸法の関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る半導体装置の構成を例示するブロック図である。
図1に表したように、半導体装置1においては、SOI基板2上に、共通端子ANTと、各高周波端子RF1〜RFk(kは2以上の自然数)と、の端子間の接続を切り替えるスイッチ部3が設けられている。スイッチ部3は、駆動回路部5から出力される制御信号Con1a〜Conka、Con1b〜Conkbに応じて端子間の接続を切り替える。
インタフェース部4は、SOI基板2上に設けられ、切替信号端子SDATAに入力されたシリアルデータの端子切替信号を、各ビットが差動信号の2kビットのパラレルデータD1a〜Dka、D1b〜Dkbに変換する。ここで、kビットのパラレルデータD1b〜Dkbは、それぞれkビットのパラレルデータD1a〜Dkaを反転したデータである。
インタフェース部4には、例えば、シリアルデータをパラレルデータに変換するシリアル・パラレル変換回路が設けられる。変換された2kビットのパラレルデータD1a〜Dka、D1b〜Dkbは、ラッチ回路などの保持回路に保持され、駆動回路部5に出力される。
インタフェース部4は、図5において説明するように、高速動作可能な第1のMOSFET7で構成され、電源電位Vdd1が供給される。なお、図1においては、第1のMOSFET7として、Nチャンネル形MOSFET(以下、NMOS)を例示しているが、Pチャンネル形MOSFET(以下、PMOS)でもよい。
パラレルデータD1a〜Dka、D1b〜Dkbは、SOI基板2上に設けられた駆動回路部5でレベルシフトされ、2kビットの制御信号Con1a〜Conka、Con1b〜Conkbとして出力される。ここで、kビットの制御信号Con1b〜Conkbは、それぞれkビットの制御信号Con1a〜Conkaの反転信号である。
駆動回路部5には、オン電位Von及びオフ電位Voffが供給される。
ここで、オン電位Vonは、制御信号Con1a〜Conka、Con1b〜Conkbのハイレベルの電位である。オン電位Vonは、スイッチ部3の各FETのゲートに印加して各FETをオンさせ、かつ、そのオン抵抗が十分小さい値になる電位である。例えば、3.5Vである。
また、オフ電位Voffは、制御信号Con1a〜Conka、Con1b〜Conkbのローレベルの電位である。オフ電位は、スイッチ部3の各FETのゲートに印加して各FETをオフさせ、かつ、高周波信号が重畳してもオフの状態を十分維持できる電位である。例えば、−1.5Vである。
オン電位Von及びオフ電位Voffは、SOI基板2上に設けられた電源回路部6から供給される。電源回路部6は、正の電源電位Vdd2が外部から供給され、電源電位Vdd2よりも高いオン電位Vonと負のオフ電位Voffとを生成する。また、オン電位Vonは、インタフェース部4の電源電位Vdd1よりも高い。電源回路部6は、例えば発振回路とチャージポンプなどによりSOI基板2上に形成される。
図6において説明するように、駆動回路部5は、オン電位Vonをハイレベルとして出力するため、高耐圧の第2のMOSFET8を含んでいる。また、電源回路部6はオン電位Vonとオフ電位Voffとを生成するため、高耐圧の第3のMOSFET9を含んでいる。なお、図1においては、第2及び第3のMOSFET8、9として、それぞれNMOS、PMOSを例示している。しかし、第2及び第3のMOSFET8、9は、それぞれPMOS、NMOSのいずれでもよい。
半導体装置1は、切替信号端子SDATAに入力されたシリアルデータの端子切替信号に応じて、共通端子ANTと高周波端子RF1〜RFkとの間の接続を切り替えるSPkT(Single-Pole k-Throw)のスイッチである。
次に各部について説明する。
図2は、図1に表した半導体装置のスイッチ部の構成を例示する回路図である。
図2に表したように、スイッチ部3aにおいては、SP6Tスイッチの構成を例示している。共通端子ANTと各高周波端子RF1、RF2、RF3、RF4、RF5、RF6との間には、それぞれ第1のスイッチ素子13a、13b、13c、13d、13e、13fが接続されている。第1のスイッチ素子13a、13b、13c、13d、13e、13fをそれぞれオンさせることにより、共通端子ANTと各高周波端子RF1、RF2、RF3、RF4、RF5、RF6との間に伝送路が形成される。
第1のスイッチ素子13aにおいては、n段(nは自然数)のスルーFET T11、T12、…、T1nが直列に接続されている。スルーFET T11、T12、…、T1nの各ゲートには、高周波漏洩防止用の抵抗を介して、制御信号Con1aが入力される。第1のスイッチ素子13b、13c、13d、13e、13fは、それぞれ第1のスイッチ素子13aと同一構成である。第1のスイッチ素子13b、13c、13d、13e、13fには、それぞれ制御信号Con2a、Con3a、Con4a、Con5a、Con6aが入力される。
各高周波端子RF1、RF2、RF3、RF4、RF5、RF6と接地GNDとの間には、それぞれ第2のスイッチ素子14a、14b、14c、14d、14e、14fが接続されている。第2のスイッチ素子14a、14b、14c、14d、14e、14fは、第1のスイッチ素子13a、13b、13c、13d、13e、13fがそれぞれオフのときに各高周波端子RF1、RF2、RF3、RF4、RF5、RF6に流れる漏洩電流を接地に逃がして、各高周波端子RF1、RF2、RF3、RF4、RF5、RF6間のアイソレーションを改善する。
第2のスイッチ素子14aにおいては、m段(mは自然数)のシャントFET S11、S12、…、S1mが直列に接続されている。シャントFET S11、S12、…、S1mの各ゲートには、高周波漏洩防止用の抵抗を介して、制御信号Con1bが入力される。第2のスイッチ素子14b、14c、14d、14e、14fは、それぞれ第2のスイッチ素子14aと同一構成である。第2のスイッチ素子14b、14c、14d、14e、14fには、それぞれ制御信号Con2b、Con3b、Con4b、Con5b、Con6bが入力される。
例えば、高周波端子RF1と共通端子ANTとの間を導通するためには、高周波端子RF1と共通端子ANTとの間の第1のスイッチ素子13aをオンとし、高周波端子RF1と接地との間の第2のスイッチ素子14aをオフとする。すなわち、第1のスイッチ素子13aの各スルーFET T11、T12、…、T1nをすべてオンとし、第2のスイッチ素子14aの各シャントFET S11、S12、…、S1mをすべてオフとする。
同時に、他の各高周波端子RF2、RF3、RF4、RF5、RF6と共通端子ANTとの間の第1のスイッチ素子13b、13c、13d、13e、13fをすべてオフとし、他の各高周波端子RF2、RF3、RF4、RF5、RF6と接地GNDとの間の第2のスイッチ素子14b、14c、14d、14e、14fをすべてオンとする。すなわち、第1のスイッチ素子13b、13c、13d、13e、13fの各スルーFETをすべてオフとし、第2のスイッチ素子14b、14c、14d、14e、14fの各シャントFETをすべてオンとすればよい。
上記の場合、制御信号Con1aはオン電位Von、制御信号Con2b、Con3b、Con4b、Con5b、Con6bはオン電位Von、制御信号Con1bはオフ電位Voff、制御信号Con2a、Con3a、Con4a、Con5a、Con6aはオフ電位Voffに設定される。
なお、図2においては、スイッチ部3aの構成として、SP6Tスイッチを例示したが、他の構成のスイッチに対しても同様に適用でき、lPkT(lは自然数、kは2以上の自然数)スイッチを構成することもできる。
再度図1に戻ると、駆動回路部5は、高周波端子RF1〜RFk(kは2以上の自然数)の数と等しいk個のレベルシフタ12a〜12kを有する。各レベルシフタ12a〜12kは同一構成のため、レベルシフタ12aの構成について説明する。
図3は、図1に表した半導体装置の駆動回路部のレベルシフタの構成を例示する回路図である。
レベルシフタ12aは、初段レベルシフタ15aと後段レベルシフタ16aとを有する。初段レベルシフタ15aは、一対のNMOS N11、N12と、一対のPMOS P11、P12とを有する。後段レベルシフタ16aは、一対のPMOS P21、P22と、一対のNMOS N23、N24とを有する。
NMOS N11、N12のソースは、それぞれ接地に接続されている。NMOS N11、N12の各ゲートには、前段のインタフェース部4から出力されるデータD1a、D1bがそれぞれ入力される。データD1a、D1bは、インタフェース部4から出力される2kビットの差動パラレルデータD1a〜Dka、D1b〜Dkbの2ビットの差動データである。データD1bは、データD1aを反転したデータである。
NMOS N11、N12の各ドレインは、それぞれPMOS P11、P12のドレインと接続されている。PMOS P11、P12のそれぞれのソースには、高電位電源線10を介して、電源回路部6からオン電位Vonが供給される。PMOS P11のゲートは、PMOS P12のドレインと接続され、これらは初段レベルシフタ15aの差動出力の一方の出力線OUT1Bに接続されている。PMOS P12のゲートは、PMOS P11のドレインと接続され、これらは初段レベルシフタ15aの差動出力の他方の出力線OUT1Aに接続されている。
上記出力線OUT1A、OUT1Bはそれぞれ後段レベルシフタ16aのPMOS P21、P22のゲートに接続される。出力線OUT1A、OUT1Bを介して初段レベルシフタ15aの出力信号は、後段レベルシフタ16aへ入力される。PMOS P21、P22のそれぞれのソースには、高電位電源線10を介して、電源回路部6からオン電位Vonが供給される。
PMOS P21のドレインは、NMOS N23のドレインと接続され、さらに各ドレインは、出力線OUTAに接続されている。PMOS P22のドレインはNMOS N24のドレインと接続され、さらに各ドレインは、出力線OUTBに接続されている。出力線OUTA、OUTBにそれぞれ出力される制御信号Con1a、Con1bのオン電位Von、オフ電位Voffが、図2に表したスイッチ部3aのスルーFET、シャントFETの各ゲートに供給される。
初段レベルシフタ15aに入力される差動データD1a、D1bの入力レベルは、ハイレベルがVdd1(例えば、1.8V)、ローレベルが0Vであり、図1に表したインタフェース部4から供給される。高電位電源線10には、オン電位Vonとして、例えば3.5Vが供給される。
例えば、差動データD1aにハイレベル(1.8V)、差動データD1bにローレベル(0V)が入力されると、出力線OUT1Aの電位はローレベル(0V)になり、出力線OUT1Bの電位は、オン電位Vonと等しい3.5Vになる。すなわち、初段レベルシフタ15aにおける出力振幅は0〜Vonの3.5V程度となる。
後段レベルシフタ16aには、初段レベルシフタ15aの出力信号が入力される。高電位電源線10を介して、初段レベルシフタ15aと同様にオン電位Vonが供給される。また、低電位電源線11を介して、オフ電位Voffが供給される。
オン電位Vonは、例えば3.5Vである。オフ電位Voffは、例えば−1.5Vである。
例えば、出力線OUT1Aがローレベル(0V)、出力線OUT1Bがハイレベル(3.5V)とすると、出力線OUTAの電位、すなわち制御信号Con1aの電位は、オン電位Vonと等しい3.5Vになる。また、出力端子OUTBの電位、すなわち制御信号Con1bの電位は、オフ電位Voffと等しい−1.5Vになる。したがって、オン電位Vonとして3.5Vを、オフ電位Voffとして−1.5Vを、図2に示すスイッチ部3のスルーFET、シャントFETのゲートに供給することができ、スイッチ部3が駆動される。
初段レベルシフタ15aは、ハイレベルの電位をオン電位Vonに変換する。また後段レベルシフタ16aは、ローレベルの電位をオフ電位Voffに変換する。従って、レベルシフタ12aは、ハイレベルが電源電位Vdd1、ローレベルが0Vである入力信号を、ハイレベルがオン電位Von、ローレベルがオフ電位Voffの制御信号Con1a、Con1bに変換する。
レベルシフタ15aにおいては、初段レベルシフタ15aの各FETのゲート・ソース電圧及びドレイン・ソース電圧は、オン電位Vonと等しい3.5Vになる場合がある。また、後段レベルシフタ16aの各FETのゲート・ソース電圧、ドレイン・ソース電圧は、オン電位Von−オフ電位Voffと等しい5.0Vとなる場合がある。従って、レベルシフタ15aは、高耐圧のFETで構成される。
図6において説明するように、レベルシフタ15aの各FETは、第2のMOSFET8で構成される。
なお、レベルシフタ15aの回路構成としては、図5に例示したもの以外に様々な種類が存在する。半導体装置1におけるレベルシフタは、ハイレベルを外部から供給される正の電源電位Vdd2よりも高いオン電位Von、ローレベルを負のオフ電位Voffにレベルシフトする機能を有するものであれば、どのような回路構成でも良い。
再度図1に戻ると、インタフェース部4は、切替信号端子SDATAに入力されたシリアルデータの端子切替信号を各ビットが差動信号の2kビットのパラレルデータD1a〜Dka、D1b〜Dkbに変換する。
シリアルデータは、クロック端子SCLKに入力されるクロック信号と同期して切替信号端子SDATAに入力される。
シリアルデータ及びクロック信号は、例えばマイクロプロセッサなどから出力される。マイクロプロセッサの高速化に伴い、クロック信号も高速化している。一方、低消費電力化に伴いインタフェース部4に許容される消費電流には、制限がある。そのため、インタフェース部4には、スイッチ部3や駆動回路部5と比較して低電位の電源電位Vdd1が供給される。
図4は、半導体装置のトランジスタの断面図である。
図4においては、SOI基板2上に設けられたNMOSの断面図を模式的に表している。
シリコン(Si)基板60内に埋め込み酸化膜層62が設けられている。埋め込み酸化膜層62上に、SOI層64を挟んでソース領域68とドレイン領域72とが設けられている。さらに、埋め込み酸化膜層62上に、ソース領域68、SOI層64及びドレイン領域72を囲んで、素子分離層74が設けられている。また、ソース領域68、SOI層64、及びドレイン領域72の上にゲート酸化膜66を介してゲート電極70が設けられている。
第1のMOSFET7のチャネルの下側は埋め込み酸化膜層62であり、支持基板であるシリコン基板60から絶縁されている。また、チャネルの横側は素子分離層74によって他の素子と絶縁分離されている。さらに、バックゲート80は、電気的にフローティング状態になっている。
なお、ソース電極及びドレイン電極については、図示していない。また、第1のMOSFET7がNチャネル形の場合は、バックゲート80はP形であり、ソース領域68及びドレイン領域72はN形であり、第1のMOSFET7がPチャネル形の場合は、バックゲート80はN形であり、ソース領域68及びドレイン領域72はP形である。
MOSFETは、種々のレイアウト形状が可能であり、レイアウト形状に応じて異なる特性を有する。
図5は、半導体装置の第1のMOSFETのレイアウトを表す平面図である。
図5に表したように、第1のMOSFET7においては、ソース領域68及びドレイン領域72にそれぞれコンタクト82、84が設けられ、ソース電極及びドレイン電極(図示せず)にそれぞれ電気的に接続される。バックゲート80(図示せず)は、フローティング状態である。第1のMOSFET7のゲート長をLg1、ゲート幅をWg1とする。
図6は、半導体装置の第2のMOSFETのレイアウトを表す平面図である。
図6に表したように、第2のMOSFET8においては、ソース領域68及びドレイン領域72にそれぞれコンタクト82、84が設けられ、それぞれソース電極及びドレイン電極(図示せず)に電気的に接続される。
また、バックゲート80は、ソース領域68の上下に引き出されており、図示しないバックゲート電極と電気的に接続される。第2のMOSFET8のゲート長をLg2、ゲート幅をWg2とする。
なお、図1に表した第3のMOSFET9は、第2のMOSFET8と同じレイアウト形状である。
図7は、半導体装置の第4のMOSFETのレイアウトを表す平面図である。
図7に表したように、第4のMOSFET17においては、ソース領域68及びドレイン領域72にそれぞれコンタクト82、84が設けられ、ソース電極及びドレイン電極(図示せず)にそれぞれ電気的に接続される。ゲート電極70はH形に形成されている。
バックゲート80は、ゲート電極70の上下に引き出されており、バックゲートコンタクト86が設けられている。バックゲート80は、バックゲート電極(図示せず)に電気的に接続されている。
第1のMOSFET7は、バルクCMOSで一般に用いられるものであり、第2、第3及び第4のMOSFET8、9、17に比べ、レイアウト効率に優れ、かつ、ゲート寄生容量が小さいため遅延時間・消費電力積が小さい。しかし、バックゲート80がフローティング状態であるため、ドレイン耐圧が低い。
第2、第3及び第4のMOSFET8、9、17においては、バックゲート電極が存在し、バックゲート80をソース領域68に接続することで、ドレイン耐圧を高くすることができる。ただし、そのためには、バックゲート80の寄生抵抗を小さくする必要がある。そのため、ゲート幅とゲート長の比Wg2/Lg2を小さくせざるを得ない。例えば、Wg2=1μm、Lg2=1μm程度となる。
そのため、回路設計において所望のゲート幅とゲート長の比Wg2/Lg2を実現するには、Wg2=1μm、Lg2=1μmの単位FETを多数並列にレイアウトする必要があり、レイアウト効率は悪くなる。また、単位ゲート幅当りの寄生容量も第1のMOSFET7に比べ、数倍大きくなる。
上記のとおり、半導体装置1においては、駆動回路部5及び電源回路部6は、主にソース領域68に接続されたバックゲート80を有する第2のMOSFET8、第3のMOSFET9または第4のMOSFET17で構成される。一方、インタフェース部4は、主に第1のMOSFET7で構成される。
なお、オン電位Vonは電源回路部6で生成され、電源電位Vdd1<オン電位Vonの関係が成り立っている。
電源回路部6に供給される電源電位Vdd2に対しては、最大定格は、例えば4Vとなる。そこで、電源回路部6の少なくとも高耐圧が必要な部分は、ソース領域68に接続されたバックゲート80を有する第3のMOSFET9または第4のMOSFET17により構成され、その高いドレイン耐圧ゆえに、高い最大定格を実現することができる。なお、電源回路部6をすべて第3のMOSFET9または第4のMOSFET17で構成してもよい。
上記のとおり、駆動回路部5には高電位電源としてオン電位Vonが、低電位電源としてオフ電位Voffが供給され、出力振幅はVon−Voffとなる。例えば、オン電位Von=3.5V、オフ電位Voff=−1.5Vとすると、論理振幅が5Vの制御信号Con1a〜Conka、Con1b〜Conkbを出力する必要がある。
そこで、駆動回路部5の少なくとも高耐圧が必要な部分は、ソース領域68に接続されたバックゲート80を有する第2または第4のMOSFET8、17と同一構造の第3のMOSFET9により構成される。その高いドレイン耐圧ゆえに、5Vの論理振幅を実現することができる。なお、駆動回路部5をすべて第3のMOSFET9または第4のMOSFET17で構成してもよい。
駆動回路部5及び電源回路部6においては、高速動作は要求されないため、寄生容量の大きい第3のMOSFET9を用いても問題はない。
インタフェース部4は、例えば26MHzのクロック周波数で動作し、かつ、0.5mAの低消費電流である必要がある。インタフェース部4の少なくとも高速動作が要求される部分は、第1のMOSFET7で構成されているので、高速性と低消費電流を実現することができる。
なお、インタフェース部4に供給される電源電位Vdd1は、例えば1.8Vとオン電位Vonよりも低いため、ドレイン耐圧が比較的低い第1のMOSFET7であっても問題ない。
また、インタフェース部4をすべて第1のMOSFET7で構成してもよい。
このように、半導体装置1においては、スイッチ部3の接続状態を制御する端子切替信号がシリアルデータとして入力される場合でも、低消費電流で高速動作が可能である。
また、駆動回路部5に含まれる第2のMOSFET8のゲート長Lg2は、インタフェース部4に含まれる第1のMOSFET7のゲート長Lg1よりも長くし、かつ電源回路部6に含まれる第3のMOSFET9のゲート長Lg3は、第1のMOSFET7のゲート長Lg1よりも長くする。
インタフェース部4に含まれる第1のMOSFET7において、PMOSのゲート長をLg1p、NMOSのゲート長をLg1nとする。駆動回路部5に含まれる第2のMOSFET8において、PMOSのゲート長をLg2p、NMOSのゲート長をLg2nとする。電源回路部6に含まれる第3のMOSFET9において、PMOSのゲート長をLg3p、NMOSのゲート長をLg3nとする。
各FETのゲート長が(1)式〜(4)式を満たすように設定する。

Lg1p<Lg2p …(1)
Lg1n<Lg2n …(2)
Lg1p<Lg3p …(3)
Lg1n<Lg3n …(4)
なお、第3のMOSFET9のゲート長Lg3は、第2のMOSFET8のゲート長Lg2と等しくてもよい。すなわち、Lg3p=Lg2p、かつLg3n=Lg2nでもよい。
各FETのゲート長は、例えば(5)式のように設定することができる。

Lg1=Lg1p=Lg1n=0.25μm
Lg2=Lg2p=Lg2n=1μm
Lg3=Lg3p=Lg3n=1μm …(5)
第2及び第3のMOSFET8、9のゲート長Lg2、Lg3を1μmとすることで、駆動回路部5及び電源回路部6に含まれる各FETの信頼性耐圧を向上させることができる。一方、インタフェース部4に含まれる第1のMOSFET7のゲート長Lg1を0.25μmと小さい値にすることで、高速性を向上させることができ、インタフェース部4においてクロック端子SCLKに入力されるクロックに対するシリアルデータの位相余裕を大きくすることができる。
このように、第1、第2及び第3のMOSFET7、8、9のゲート長を設定することにより、インタフェース部4をさらに高速化し、駆動回路部5及び電源回路部6の信頼性を向上させることができる。
また、第2のMOSFET8のしきい値電圧Vth2は、第1のMOSFET7のしきい値電圧Vth1よりも絶対値を高く、かつ、第3のMOSFET9のしきい値電圧Vth3は前記第1のMOSFET7のしきい値電圧Vth1よりも絶対値を高く設定する。
インタフェース部4に含まれる第1のMOSFET7において、PMOSのしきい値電圧をVth1p、NMOSのしきい値電圧をVth1nとする。駆動回路部5に含まれる第2のMOSFET8において、PMOSのしきい値電圧をVth2p、NMOSのしきい値電圧をVth2nとする。電源回路部6に含まれる第3のMOSFET9において、PMOSのしきい値電圧をVth3p、NMOSのしきい値電圧をVth3nとする。
各FETのしきい値電圧が、(6)式〜(9)式を満たすように設定する。

|Vth1p|<|Vth2p| …(6)
Vth1n < Vth2n …(7)
|Vth1p|<|Vth3p| …(8)
Vth1n < Vth3n …(9)
なお、第3のMOSFET9のしきい値電圧Vth3は、第2のMOSFET8のしきい値電圧Vth2と等しくてもよい。すなわち、Vth3p=Vth2p、かつVth3n=Vth2nでもよい。
各FETのしきい値電圧は、例えば(10)式のように設定することができる。

Vth1p=−0.3V
Vth1n=0.3V
Vth2p=Vth3p=−0.6V
Vth2n=Vth3n=0.6V …(10)
インタフェース部4に含まれる第1のMOSFET7のしきい値電圧Vth1の絶対値を小さくすることで、その高速性を向上させることができる。また、インタフェース部4においてクロック端子SCLKに入力されるクロックに対するシリアルデータの位相余裕を大きくすることができる。
また、駆動回路部5及び電源回路部6にそれぞれ含まれる第2及び第3のMOSFET8、9のしきい値電圧Vth2、Vth3の絶対値を大きくすることで、ノイズマージンを大きくすることができる。そのため、スイッチ部3から漏洩してくる高周波信号に対するノイズ耐性が向上する。
なお、インタフェース部4においては、高周波信号が入力している期間は、その出力部に設けられている、例えばラッチ回路などの保持回路が保持しているデータを出力しているだけなので、回路を構成するCMOS論理回路のノイズマージンが小さくても、高周波ノイズによる誤動作の懸念はない。
このように、第1、第2及び第3のMOSFET7、8、9のしきい値電圧を設定することにより、高速化を図りつつ、さらに高周波信号による誤動作の危険性を小さくすることができる。
(第2の実施形態)
図8は、第2の実施形態に係る半導体装置の構成を例示するブロック図である。なお、図1に表した半導体装置1と共通する要素には、同一の符号を付している。
図8に表したように、半導体装置1aは、SOI基板2上に設けられた、スイッチ部3、インタフェース部4a、駆動回路部5、電源回路部6、及びデコーダ18を備える。
半導体装置1aにおいては、図1に表した半導体装置1のインタフェース部4はインタフェース部4aに置き換えられ、さらにデコーダ18が追加されている。デコーダ18は、入力したiビットのパラレルデータVc1〜Vciを、差動信号の2kビットのパラレルデータD1a〜Dka、D1b〜Dkbにデコードする。ここで、iは、i≧logkを満たす1以上の最小の整数である。
従って、切替信号端子SDATAには、上記のiビットにエンコードしたシリアルデータを端子切替信号として入力することができる。インタフェース部4aは、エンコードされたiビットのシリアルデータをiビットのパラレルデータVc1〜Vciに変換する。
デコーダ18には、電源電位Vdd1を用いることができる。また、内部電源回路を設けて、電源電位Vdd2からデコーダ18に供給する電源電位を生成してもよい。
また、デコーダ18を構成するMOSFET19としては、第1のMOSFET7、第2のMOSFET8、第4のMOSFET17のレイアウトのいずれでもよい。デコーダ18には、比較的低い電源電位が供給され、また、高速動作が要求されないからである。
駆動回路部5及び電源回路部6は、半導体装置1と同様に、ソース領域68に接続されたバックゲート80を有する第2のMOSFET8及び第3のMOSFET9を含んでいる。
また、インタフェース部4は、フローティング状態のバックゲート80を有する第1のMOSFET7を含んでおり、かつ、電源電位Vdd1<オン電位Vonの関係が成り立っている。
半導体装置1aにおいては、高速で動作するインタフェース部4aの、例えばシフトレジスタやラッチ回路などの保持回路の段数がiビットに減少するため、さらに低消費電力化される。
例えば、k=8ビットの場合を想定すると、i=3ビットになる。
図1に表した半導体装置1においては、インタフェース部4は、8×2=16ビットの差動データD1a〜D8a、D1b〜D8kbを出力することになる。これらの信号は、例えば8つのシフトレジスタ及びラッチ回路で生成、保持される。
これに対して、半導体装置1aにおいては、デコーダ18がインタフェース部4aの後段に設けられているため、エンコードされたデータVc1〜Vciを生成すればよい。例えば、k=8ビットに対してはi=3ビットのデータVc1、Vc2、Vc3でよい。そのため、インタフェース部4aのシフトレジスタ、ラッチ回路は3つでよい。
このように半導体装置1aにおいては、インタフェース部4aに含まれる第1のMOSFET7の数が少なくなるので、さらに低消費電力化される。
従って、半導体装置1aによれば、スイッチ部3の接続状態を制御する信号がシリアル伝送される半導体装置を容易に実現することができ、かつ、シリアル伝送時の消費電力を小さくできる。
(第3の実施形態)
図9は、第3の実施形態に係る半導体装置の構成を例示する平面図である。
図9においては、図1に表した半導体装置1bのレイアウトを模式的に表している。なお、図1に表した半導体装置1と共通する要素には、同一の符号を付している。
半導体装置1bにおいては、SOI基板2上に、インタフェース部4、駆動回路部5、電源回路部6、及びパッド20a、20bが設けられている。インタフェース部4、駆動回路部5、及び電源回路部6の回路構成については、図1の半導体装置1と同様である。
半導体装置1bにおいては、インタフェース部4は、パッド20aとパッド20bとの間の領域に設けられている。ここで、パッド20a、20bは、接地GND用パッド、電源電位Vdd1用パッドである。なお、パッド20a、20bのいずれか一方は接地GNDに接続される接地パッドであり、他方は電源電位Vdd1が供給される電源パッドである。
インタフェース部4はレイアウト効率の良い第1のMOSFET7を含んでいるので、パッド間の狭い領域にレイアウトすることが十分可能である。そのため、端子切替信号のシリアルインタフェース化によるチップ面積の増大はない。また、電源パッドと接地パッドが直近に存在するため安定して高速動作が可能である。
従って、半導体装置1bによれば、スイッチ部3の接続状態を制御する信号がシリアル伝送される半導体装置を容易に実現することができ、かつ、そのチップ面積をパラレル伝送されるものと同程度にできる。
なお、半導体装置1、1aにおいては、切替信号端子SDATAにシリアルデータの端子切替信号が入力される場合について説明した。しかし、シリアルデータとしては、高周波端子RF1〜RFkのkビットまたはエンコードしたiビットのデータ以外に他のデータを付加してもよい。
例えばマイクロプロセッサなどは、複数の要素にデータを出力することが多い。そのため、切替信号端子SDATAには複数の要素が接続されてもよく、各要素を識別するアドレスが追加されたシリアルデータが入力されてもよい。この場合、インタフェース部4、4aは、アドレスを識別して、入力されたシリアルデータをパラレルデータに変換して出力する。
さらに、切替信号端子SDATAは、入力及び出力の可能な双方向バスに接続されてもよい。この場合、インタフェース部は4、4aは、パラレルデータをシリアルデータに変換して、切替信号端子SDATAに出力してもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1、1a、1b…半導体装置、 2…SOI基板、 3、3a…スイッチ部、 4、4a…インタフェース部、 5…駆動回路部、 6…電源回路部、 7…第1のMOSFET、 8…第2のMOSFET、 9…第3のMOSFET、 10…高電位電源線、 11…低電位電源線、 12a〜12k…レベルシフタ、 13a〜13f…第1のスイッチ素子、 14a〜14f…第2のスイッチ素子、 17…第4のMOSFET、 18…デコーダ回路、 20a、20b…パッド、 60…シリコン基板、 62…SOI層、 68…ソース領域、 70…ゲート電極、 72…ドレイン領域、 80…バックゲート、 ANT…アンテナ端子、 RF1〜RF6、RFk…高周波端子、 S11〜S1m…シャントFET、 T11〜T1n…スルーFET

Claims (5)

  1. フローティング状態のバックゲートを有しSOI基板上に設けられた第1のMOSFETを含み、第1電源電位が供給され、入力されたシリアルデータの端子切替信号を前記第1電源電位をハイレベルとするパラレルデータに変換するインタフェース部と、
    ソースに接続されたバックゲートを有し前記SOI基板上に設けられた第2のMOSFETを含み、第2電源電位が供給され、前記第2電源電位から前記第1電源電位よりも高いオン電位を生成する電源回路部と、
    ソースに接続されたバックゲートを有し前記SOI基板上に設けられた第3のMOSFETを含み、前記パラレルデータの前記ハイレベルを前記オン電位にレベルシフトした制御信号を出力する駆動回路部と、
    前記SOI基板上に設けられ、前記制御信号を入力して端子間の接続を切り替えるスイッチ部と、
    を備えたことを特徴とする半導体装置。
  2. 前記第2のMOSFETのゲート長は、前記第1のMOSFETのゲート長よりも長く、
    前記第3のMOSFETのゲート長は、前記第1のMOSFETのゲート長よりも長いことを特徴とする請求項1記載の半導体装置。
  3. 前記第2のMOSFETのしきい値電圧の絶対値は、前記第1のMOSFETのしきい値電圧の絶対値よりも高く、
    前記第3のMOSFETのしきい値電圧の絶対値は、前記第1のMOSFETのしきい値電圧の絶対値よりも高いことを特徴とする請求項1記載の半導体装置。
  4. 前記パラレルデータをデコードするデコーダ回路をさらに備えたことを特徴とする請求項1〜3のいずれか1つに記載の半導体装置。
  5. 前記SOI基板上の前記インタフェース部の両側に設けられた、前記インタフェース部に電源を供給する電源パッドと、接地パッドと、をさらに備えたことを特徴とする請求項1〜4のいずれか1つに記載の半導体装置。
JP2010265311A 2010-11-29 2010-11-29 半導体装置 Active JP5512498B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010265311A JP5512498B2 (ja) 2010-11-29 2010-11-29 半導体装置
US13/229,985 US8487688B2 (en) 2010-11-29 2011-09-12 Semiconductor device
US13/920,499 US8866530B2 (en) 2010-11-29 2013-06-18 Semiconductor device
US14/801,095 USRE46490E1 (en) 2010-11-29 2015-07-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265311A JP5512498B2 (ja) 2010-11-29 2010-11-29 半導体装置

Publications (2)

Publication Number Publication Date
JP2012119763A JP2012119763A (ja) 2012-06-21
JP5512498B2 true JP5512498B2 (ja) 2014-06-04

Family

ID=46126038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265311A Active JP5512498B2 (ja) 2010-11-29 2010-11-29 半導体装置

Country Status (2)

Country Link
US (3) US8487688B2 (ja)
JP (1) JP5512498B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768268B2 (en) 2015-01-14 2017-09-19 Kabushiki Kaisha Toshiba Semiconductor device
US10347655B2 (en) 2016-01-22 2019-07-09 Kabushiki Kaisha Toshiba Semiconductor switch

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512498B2 (ja) * 2010-11-29 2014-06-04 株式会社東芝 半導体装置
CN103489779B (zh) * 2012-06-12 2016-05-11 中国科学院微电子研究所 半导体结构及其制造方法
JP2015109496A (ja) * 2013-12-03 2015-06-11 株式会社東芝 半導体装置
JP6397811B2 (ja) * 2015-12-18 2018-09-26 株式会社東芝 半導体集積回路及び高周波アンテナスイッチ
JP2018042077A (ja) * 2016-09-07 2018-03-15 ルネサスエレクトロニクス株式会社 レベルシフト回路および半導体装置
CN109687071B (zh) * 2018-12-31 2020-11-20 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN111030716B (zh) * 2019-12-30 2021-09-10 深圳市大富科技股份有限公司 一种5g移动通信系统及其射频耦合电路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592415A (en) * 1992-07-06 1997-01-07 Hitachi, Ltd. Non-volatile semiconductor memory
JP3250711B2 (ja) * 1994-06-28 2002-01-28 日本電信電話株式会社 低電圧soi型論理回路
JP2000294786A (ja) 1999-04-05 2000-10-20 Nippon Telegr & Teleph Corp <Ntt> 高周波スイッチ
WO2001089088A1 (en) * 2000-05-11 2001-11-22 Multigig Limited Electronic pulse generator and oscillator
JP4463946B2 (ja) * 2000-07-03 2010-05-19 Necエレクトロニクス株式会社 低消費電力回路
JP3886716B2 (ja) * 2000-10-02 2007-02-28 セイコーエプソン株式会社 半導体集積回路、これを備えた時計および電子機器
TW521492B (en) * 2001-07-13 2003-02-21 Faraday Tech Corp Oversampling circuit and its method
JP3730963B2 (ja) 2003-01-21 2006-01-05 沖電気工業株式会社 半導体集積回路
JP4201128B2 (ja) * 2003-07-15 2008-12-24 株式会社ルネサステクノロジ 半導体集積回路装置
JP4911988B2 (ja) * 2006-02-24 2012-04-04 ルネサスエレクトロニクス株式会社 半導体装置
JP2010103971A (ja) * 2008-09-25 2010-05-06 Toshiba Corp 高周波半導体スイッチ装置
JP5190335B2 (ja) * 2008-11-28 2013-04-24 パナソニック株式会社 トレラントバッファ回路及びインターフェース
JP5271210B2 (ja) * 2009-03-19 2013-08-21 株式会社東芝 スイッチ回路
JP4903845B2 (ja) 2009-08-31 2012-03-28 株式会社東芝 半導体スイッチ
JP2011100906A (ja) * 2009-11-09 2011-05-19 Toshiba Corp 半導体装置テスト接続体
JP5512498B2 (ja) * 2010-11-29 2014-06-04 株式会社東芝 半導体装置
JP2012186618A (ja) * 2011-03-04 2012-09-27 Toshiba Corp 半導体スイッチ及び無線機器
JP2013016975A (ja) * 2011-07-01 2013-01-24 Toshiba Corp 半導体スイッチ及び無線機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768268B2 (en) 2015-01-14 2017-09-19 Kabushiki Kaisha Toshiba Semiconductor device
US10347655B2 (en) 2016-01-22 2019-07-09 Kabushiki Kaisha Toshiba Semiconductor switch

Also Published As

Publication number Publication date
JP2012119763A (ja) 2012-06-21
US20130293279A1 (en) 2013-11-07
USRE46490E1 (en) 2017-07-25
US20120132977A1 (en) 2012-05-31
US8487688B2 (en) 2013-07-16
US8866530B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5512498B2 (ja) 半導体装置
US8232827B2 (en) Semiconductor switch
US7683668B1 (en) Level shifter
JP4903845B2 (ja) 半導体スイッチ
JP2008017416A (ja) 高周波スイッチ装置
JP2009194891A (ja) 高周波スイッチ回路
US7400171B1 (en) Electronic switch having extended voltage range
US20160056819A1 (en) High freuency semiconductor switch and wireless device
JP2012070181A (ja) 半導体スイッチ
EP1717955B1 (en) Buffer circuit
JP2010028304A (ja) 高周波信号用スイッチ回路
US7282953B2 (en) Pre-buffer level shifter and input/output buffer apparatus
US8476956B2 (en) Semiconductor switch
JP2012065185A (ja) レベルシフト回路
US8937503B2 (en) Switch control circuit, semiconductor device, and radio communication device
US10644691B2 (en) Semiconductor integrated circuit
US7133487B2 (en) Level shifter
US8686882B2 (en) High-frequency semiconductor switch and terminal device
US20120025894A1 (en) Multi-Mode Output Transmitter
JP5538610B2 (ja) 半導体スイッチ
JP2008109591A (ja) 半導体スイッチ集積回路
JP2016171438A (ja) 半導体スイッチ及びスイッチシステム
EP4092909A1 (en) High voltage digital power amplifier
US20230268925A1 (en) Level shifter
KR100479765B1 (ko) 플라즈마 디스플레이 패널 구동용 고전압 구동회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R151 Written notification of patent or utility model registration

Ref document number: 5512498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151