JP5494367B2 - 光学フィルムの製造方法 - Google Patents

光学フィルムの製造方法 Download PDF

Info

Publication number
JP5494367B2
JP5494367B2 JP2010198770A JP2010198770A JP5494367B2 JP 5494367 B2 JP5494367 B2 JP 5494367B2 JP 2010198770 A JP2010198770 A JP 2010198770A JP 2010198770 A JP2010198770 A JP 2010198770A JP 5494367 B2 JP5494367 B2 JP 5494367B2
Authority
JP
Japan
Prior art keywords
film
dope
acid
web
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010198770A
Other languages
English (en)
Other versions
JP2012056103A (ja
Inventor
裕子 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010198770A priority Critical patent/JP5494367B2/ja
Publication of JP2012056103A publication Critical patent/JP2012056103A/ja
Application granted granted Critical
Publication of JP5494367B2 publication Critical patent/JP5494367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、液晶表示装置(LCD)あるいは有機EL(エレクトロルミネッセンス)ディスプレー等の各種の表示装置に用いられる光学フィルムの製造方法に関するものである。
近年、液晶表示装置(LCD)は種々のところに使用されるに伴って、LCDに使用される液晶表示素子すなわち偏光板についても高生産性化(生産量増大)が求められている。そして、これらの表示装置に用いられる光学フィルムについても、近年、さらなる低コスト化および高精度化が要望されている。低コスト化の手段としては、延伸により生産速度を上げる方法がある。
従来の光学フィルムに関わる特許文献には、下記のようなものがある。特許文献1には、溶液注入成形によりセルローストリアセテートフィルムベースを製造する方法が開示されており、高濃度のドープ溶液を用いて、高生産能力でセルローストリアセテートフィルムを、そのフィルムの明澄性を損なうことなく製造する方法が記載されている。特許文献2には、セルロースエステルを溶剤に溶解した溶解液(ドープ)を流延してなるセルロースエステルフィルムの製造方法において、該セルロースエステルを主たる溶剤の1気圧における沸点以上の温度で溶剤に溶解せしめたドープ液を流延することが開示されており、セルロースエステルに起因する異物故障が改良されかつフィルム透明性及び引き裂き強度が向上したセルロースエステルフィルムの製造方法が記載されている。
特開平8−179463号公報 特開2001−198935号公報
しかしながら、上記特許文献1および2には、光学フィルムの低コスト化の手段としての延伸により生産速度を上げることについては、記載が無い。
そして、一般に、溶液流延製膜法によるフィルムの製造方法においては、フィルムを延伸すると、リタデーションの不均一を生じ、光学フィルムの品質として、その光学フィルムを使用して組み立てた偏光板は輝度のムラが発生し、コントラストが低下するという問題が生じた。
本発明の目的は、上記の従来技術の問題を解決し、樹脂フィルム原料を溶剤に溶解したドープ(樹脂溶液)中のいわゆる異物が除去されやすい濾過条件で、ゲル状異物を取り除いてリタデーション均一性を確保することで、コントラスト性能の良好な光学フィルムを、生産性よく製造することができる方法を提供することにある。
本発明者は、上記の点に鑑み鋭意研究を重ねた結果、溶液流延製膜法による光学フィルムの製造において生じるフィルムのリタデーションの不均一は、フィルム中に存在するゲル状異物が原因であることを突き止めた。すなわち、ゲル状異物は、溶剤の存在下で、いわゆるバルク成分と粘弾性が異なるため、残留溶媒量の存在下でドープを延伸した際のリタデーションの発現量が異なることを見出し、樹脂フィルム原料を溶剤に溶解したドープ中のいわゆる異物が除去されやすい濾過条件で、ゲル状異物を取り除くことで、リタデーションの均一性に優れた光学フィルムを生産性よく製造することができ、本発明を完成するに至ったものである。
上記の目的を達成するために、請求項1の発明は、 樹脂フィルム原料を溶剤に溶解したドープ(樹脂溶液)を調製し、流延ダイからドープを、回転駆動金属製エンドレスベルトまたは回転ドラム(支持体)上に流延し、支持体上に流延膜(以下、ウェブともいう)を形成し、支持体上からウェブを剥離し、剥離後のウェブを延伸後、乾燥させたのち、フィルムをロール状に巻き取る溶液流延製膜法による光学フィルムの製造方法において、
ドープを、これの主たる溶剤の1気圧における沸点+5℃以上の温度で濾過することにより、ドープ中のゲル状異物を取り除き、濾過の際のドープの流量が、10〜80kg/(hr・m)であり、ついで、濾過後のドープを支持体上に流延し、さらに、支持体上に形成されたウェブを剥離した後に、該ウェブを、幅手方向に1.1〜2.0倍延伸することを特徴としている。
請求項2の発明は、請求項1に記載の光学フィルムの製造方法であって、濾過の際のドープの流量が、20〜60kg/(hr・m)であることを特徴としている。
請求項3の発明は、請求項1または2に記載の光学フィルムの製造方法であって、樹脂フィルム原料が、セルロースエステル、またはアクリル樹脂であることを特徴としている。
請求項1の発明は、 溶液流延製膜法による光学フィルムの製造方法において、ドープを、これの主たる溶剤の1気圧における沸点+5℃以上の温度で濾過することにより、ドープ中のゲル状異物を取り除き、濾過の際のドープの流量が、10〜80kg/(hr・m)であり、ついで、濾過後のドープを支持体上に流延し、さらに、支持体上に形成されたウェブを剥離した後に、該ウェブを、幅手方向に1.1〜2.0倍延伸することを特徴とするもので、請求項1に記載の発明によれば、ドープ(樹脂溶液)中の異物が除去されやすい濾過条件でゲル状異物を取り除いてリタデーション均一性を確保することで、コントラスト性能の良好な光学フィルムを、生産性よく製造することができるという効果を奏する。
請求項1に記載の光学フィルムの製造方法において、濾過の際のドープの流量が、20〜60kg/(hr・m)であることが好ましい。
また、本発明による光学フィルムの製造方法においては、樹脂フィルム原料が、セルロースエステル、またはアクリル樹脂であることが好ましい。
本発明の溶液流延製膜方法による光学フィルムの製造方法を実施する装置の例を示すフローシートである。
つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。
本発明の溶液流延製膜法による光学フィルムの製造方法は、ドープを、これの主たる溶剤の1気圧における沸点+5℃以上の温度で濾過することにより、ドープ中のゲル状異物を取り除き、濾過の際のドープの流量が、10〜80kg/(hr・m)であり、ついで、濾過後のドープを支持体上に流延し、さらに、支持体上に形成されたウェブを剥離した後に、該ウェブを、幅手方向に1.1〜2.0倍延伸することを特徴とするものである。
以下、本発明による光学フィルムの製造方法を、順に説明する。
本発明の光学フィルムの製造方法においては、フィルム材料として、種々の樹脂を用いることができるが、中でも、セルロースエステルまたはアクリル樹脂が好ましい。
セルロースエステルは、セルロース由来の水酸基がアシル基などで置換されたセルロースエステルである。例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートなどのセルロースアシレートや、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートなどが挙げられる。中でも、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートが好ましい。本発明の効果を阻害しない範囲であれば、その他の置換基が含まれていてもよい。
セルローストリアセテートの例としては、アセチル基の置換度が2.0以上3.0以下であることが好ましい。置換度をこの範囲にすることで、良好な成形性が得られ、かつ所望の面内リタデーション(Ro)、及び厚み方向リタデーション(Rt)を得ることができるのである。アセチル基の置換度が、この範囲より低いと、位相差フィルムとしての耐湿熱性、特に湿熱下での寸法安定性に劣る場合があり、置換度が大きすぎると、必要なリタデーション特性が発現しなくなる場合がある。
本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。
本発明において、セルロースエステルの数平均分子量は、60000〜300000の範囲が、得られるフィルムの機械的強度が強く好ましい。さらに70000〜200000が好ましい。
本発明に用いられるアクリル樹脂としては、メタクリル樹脂が挙げられる。アクリル樹脂としては、メチルメタクリレート単位50〜100質量%、およびこれと共重合可能な他の単量体単位0〜50質量%からなるものが好ましい。
共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上を併用して用いることができる。
これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。
本発明の光学フィルムに用いられるアクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000〜1000000であり、好ましくは、150000〜400000である。
本発明に用いられるアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。
溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工株式会社製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所株式会社製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=2,800,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
本発明に用いるアクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイできおよびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30〜100℃、塊状または溶液重合では80〜160℃で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。この分子量とすることで、耐熱性と脆性の両立を図ることができる。
本発明に用いられるアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ株式会社製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン株式会社製)、KT75(電気化学工業株式会社製)等が挙げられる。
本発明による光学フィルムの製造方法において、上記セルロースエステルに対して良好な溶解性を有する有機溶剤を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶剤を主(有機)溶剤または主たる(有機)溶剤という。
良溶媒の例としては、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類、テトラヒドロフラン(THF)、1,4−ジオキサン、1,3−ジオキソラン、1,2−ジメトキシエタンなどのエーテル類、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸アミル、γ−ブチロラクトン等のエステル類の他、メチルセロソルブ、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、ニトロエタン、塩化メチレン、アセト酢酸メチルなどが挙げられるが、1,3−ジオキソラン、THF、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンが好ましい。
ドープには、上記有機溶剤の他に、1〜40重量%の炭素原子数1〜4のアルコールを含有させることが好ましい。これらは、ドープをエンドレスベルトに流延した後、溶剤が蒸発し始めてアルコールの比率が多くなることで、ウェブ(エンドレスベルト上にセルロースエステルのドープを流延した以降のドープ膜の呼び方をウェブとする)をゲル化させ、ウェブを丈夫にして、エンドレスベルトから剥離することを容易にするゲル化溶剤として用いられたり、これらの割合が少ない時は有機溶剤のセルロースエステルの溶解を促進したりする役割もある。
炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール、プロピレングリコールモノメチルエーテルを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性も良く、かつ毒性がないことなどからエタノールが好ましい。これらの有機溶剤は、単独ではセルロースエステルに対して溶解性を有しておらず、貧溶媒という。
このような条件を満たす好ましい高分子化合物であるセルロースエステルを高濃度に溶解する溶剤として最も好ましい溶剤は塩化メチレン:エチルアルコールの比が95:5〜80:20の混合溶剤である。あるいは、酢酸メチル:エチルアルコール60:40〜95:5の混合溶媒も好ましく用いられる。
本発明において、光学フィルムを製造するための樹脂溶液(ドープ)は、主材としてセルロースエステルまたはアクリル樹脂等の樹脂と溶剤を含み、これに、フィルムに加工性・柔軟性・防湿性を付与する可塑剤、フィルムに滑り性を付与する微粒子(マット剤)、紫外線吸収機能を付与する紫外線吸収剤、フィルムの劣化を防止する酸化防止剤等を含むものである。
本発明において使用する可塑剤としては、特に限定はないが、フィルムにヘイズを発生させたり、フィルムからブリードアウトあるいは揮発しないように、セルロースエステル等の樹脂と、水素結合などによって相互作用可能である官能基を有していることが好ましい。
このような官能基としては、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられるが、好ましくはカルボニル基、エステル基、ホスホニル基である。
このような可塑剤の例として、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコールエステル系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤などを好ましく用いることができるが、特に好ましくは多価アルコールエステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等の非リン酸エステル系可塑剤である。
多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。
ここで、好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
好ましい多価アルコールの例としては、アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
また、多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させると、セルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸の例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができるが、特に安息香酸が好ましい。
多価アルコールエステルの分子量は、特に制限はないが、300〜1500であることが好ましく、350〜750であることが、さらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では、小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
グリコレート系可塑剤は、特に限定されないが、分子内に芳香環またはシクロアルキル環を有するグリコレート系可塑剤を、好ましく用いることができる。好ましいグリコレート系可塑剤としては、例えばブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート等を用いることができる。
リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジシクロヘキシルフタレート等を用いることができる。
これらの可塑剤は、単独あるいは2種以上混合して用いることができる。可塑剤の使用量は、1〜20重量%が好ましい。6〜16重量%がさらに好ましく、特に好ましくは8〜13重量%である。可塑剤の使用量が、セルロースエステルに対して1重量%未満では、フィルムの透湿度を低減させる効果が少ないため、好ましくなく、20重量%を越えると、フィルムから可塑剤がブリードアウトし、フィルムの物性が劣化するため、好ましくない。
本発明の光学フィルムの製造方法においては、光学フィルムに滑り性を付与するために、マット剤等の微粒子を添加するのが好ましい。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。
ここで、本発明で用いられる微粒子としては、無機化合物または有機化合物が挙げられ、無機化合物の微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、カオリン、タルク、クレイ、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、及びリン酸カルシウム等の金属酸化物、水酸化物、ケイ酸塩、リン酸塩、炭酸酸塩、珪酸カルシウム、チタン酸カリウム、硼酸アルミニウム、塩基性硫酸マグネシウム、ガラスファイバーなどが挙げられる。また、有機化合物の微粒子としては、例えば、シリコーン樹脂、フッ素樹脂、アクリル樹脂等の微粒子を挙げることができる。
微粒子を樹脂中に分散させる方法としては、ボールミル、サンドミル、ダイノミル等の分散機によるものが挙げられ、メディアレス分散としては、超音波型、遠心型、高圧型等が挙げられるが、本発明では、高圧型分散装置での分散あるいは、混練機を使用した分散が好ましい。
無機化合物の微粒子の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、ケイ素原子を含有する化合物の微粒子であることが好ましく、特に二酸化ケイ素微粒子が好ましい。二酸化ケイ素微粒子としては、例えばアエロジル株式会社製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812,R805、OX50、TT600などが挙げられる。
有機化合物の微粒子の例としては、アクリル樹脂、シリコーン樹脂、フッ素化合物樹脂、ウレタン樹脂等の微粒子が挙げられる。
微粒子の1次粒径は、特に限定されないが、最終的にフィルム中での平均粒径は、0.05〜5.0μm程度が好ましい。さらに好ましくは、0.1〜1.0μmである。
微粒子の平均粒径は、セルロースエステルフィルムを電子顕微鏡や光学顕微鏡で観察した際に、フィルムの観察場所における、微粒子の長軸方向の長さの平均値を指す。フィルム中で観察される微粒子であれば、1次微粒子であっても、1次微粒子が凝集した2次微粒子であってもよいが、通常観察される多くは2次微粒子である。
ここで、微粒子の平均粒径が、5μmを超えた場合は、ヘイズの劣化等が見られたり、異物として巻状態での故障を発生する原因にもなる。また、微粒子の平均粒径が、0.05μm未満の場合は、フィルムに滑り性を付与するのが難しくなる。
上記の微粒子は、セルロースエステルに対して、0.04〜0.5重量%添加して使用される。好ましくは、0.05〜0.3重量%、さらに好ましくは0.05〜0.25重量%添加して使用される。微粒子の添加量が0.04重量%以下では、フィルム表面粗さが平滑になりすぎて、摩擦係数の上昇によりブロッキングを発生する。微粒子の添加量が0.5重量%を超えると、フィルム表面の摩擦係数が下がりすぎて、巻き取り時に巻きズレが発生したり、フィルムの透明度が低く、ヘイズが高くなるため、液晶表示装置用フィルムとしての価値を持たなくなるので、上記の範囲が必須である。
微粒子の分散は、微粒子と溶剤を混合した組成物を高圧分散装置で処理することが好ましい。本発明で用いる高圧分散装置は、微粒子と溶剤を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。
高圧分散装置で処理することにより、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が980N/cm以上であることが好ましい。さらに好ましくは、装置内部の最大圧力条件が1960N/cm以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが、好ましい。
上記のような高圧分散装置としては、例えばMicrofluidics Corporation社製の超高圧ホモジナイザー(商品名マイクロフルイダイザー)あるいはナノマイザー社製ナノマイザーが挙げられ、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザーなどが挙げられる。
本発明において、微粒子は、低級アルコール類を25〜100重量%含有する溶剤中で分散した後、セルロースエステルを溶剤に溶解したドープと混合し、該混合液をエンドレスベルト上に流延するのが好ましい。
ここで、低級アルコールの含有比率としては、好ましくは50〜100重量%、さらに好ましくは75〜100重量%である。
また、低級アルコール類の例としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。
低級アルコール以外の溶剤としては、特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。
微粒子は、溶媒中で1〜30重量%の濃度で分散される。これ以上の濃度で分散すると、粘度が急激に上昇し、好ましくない。分散液中の微粒子の濃度としては、好ましく、5〜25重量%、さらに好ましくは、10〜20重量%である。
フィルムの紫外線吸収機能は、液晶の劣化防止の観点から、偏光板保護フィルム、位相差フィルム、光学補償フィルムなどの各種光学フィルムに付与されていることが好ましい。このような紫外線吸収機能は、紫外線を吸収する材料をセルロースエステル中に含ませても良く、セルロースエステルからなるフィルム上に紫外線吸収機能のある層を設けてもよい。
本発明において、使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号公報、特開平8−337574号公報に記載の紫外線吸収剤、特開平6−148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。
紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
本発明において、有用な紫外線吸収剤の具体例としては、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。
また、紫外線吸収剤の市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもチバ・スペシャリティ・ケミカルズ社製)を、好ましく使用できる。
また、本発明において使用し得る紫外線吸収剤であるベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。
本発明において、これらの紫外線吸収剤の配合量は、セルロースエステル(セルロースエステル)に対して、0.01〜10重量%の範囲が好ましく、さらに0.1〜5重量%が好ましい。紫外線吸収剤の使用量が少なすぎると、紫外線吸収効果が不充分の場合があり、紫外線吸収剤の多すぎると、フィルムの透明性が劣化する場合があるので、好ましくない。紫外線吸収剤は熱安定性の高いものが好ましい。
また、本発明の光学フィルムの製造方法に用いることのできる紫外線吸収剤は、特開平6−148430号公報及び特開2002−47357号公報に記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)を好ましく用いることができる。とりわけ特開平6−148430号公報に記載の一般式(1)、あるいは一般式(2)、あるいは特開2002−47357号公報に記載の一般式(3)、(7)で表わされる高分子紫外線吸収剤が、好ましく用いられる。
酸化防止剤は、一般に、劣化防止剤ともいわれるが、光学フィルムとしてのセルロースエステルフィルム中に含有させるのが好ましい。すなわち、液晶画像表示装置などが高湿高温の状態に置かれた場合には、光学フィルムとしてのセルロースエステルフィルムの劣化が起こる場合がある。酸化防止剤は、例えばフィルム中の残留溶媒中のハロゲンやリン酸系可塑剤のリン酸などによりフィルムが分解するのを遅らせたり、防いだりする役割を有するので、フィルム中に含有させるのが好ましい。
このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト等を挙げることができる。特に、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。
これらの化合物の添加量は、セルロースエステルに対して重量割合で1ppm〜1.0重量%が好ましく、10〜1000ppmがさらに好ましい。
ところで、セルロースエステルの溶解は、図示しない溶解釜中での撹拌溶解方法、加熱溶解方法、超音波溶解方法等の手段が、通常用いられ、加圧下で、溶剤の常圧での沸点以上でかつ溶剤が沸騰しない範囲の温度で加熱し、攪拌しながら溶解する方法が、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため、より好ましい。また、特開平9−95538号公報記載の冷却溶解方法、あるいはまた特開平11−21379号公報記載の高圧下で溶解する方法なども用いてもよい。
セルロースエステルを貧溶剤と混合して湿潤、あるいは膨潤させた後、さらに良溶剤と混合して溶解する方法も好ましく用いられる。このとき、セルロースエステルを貧溶媒と混合して湿潤あるいは膨潤させる装置と、良溶剤と混合して溶解する装置を別々に分けても良い。
セルロースエステルの溶解に用いる加圧容器の種類は、特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、攪拌ができればよい。加圧容器には、その他、圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行なってもよい。加熱は外部から行なうことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
溶剤を添加しての加熱温度は、使用する溶剤の沸点以上で、2種類以上の混合溶剤の場合は、沸点が低い方の溶剤の沸点以上の温度に加温しかつ該溶剤が沸騰しない範囲の温度が好ましい。加熱温度が高すぎると、必要とされる圧力が大きくなり、生産性が悪くなる。好ましい加熱温度の範囲は20〜120℃であり、30〜100℃が、より好ましく、40〜80℃の範囲がさらに好ましい。また圧力は、設定温度で、溶剤が沸騰しないように調整される。
セルロースエステルの溶解後は、冷却しながら容器から取り出すか、または容器からポンプ等で抜き出して、熱交換器などで冷却し、得られたポリマーのドープを製膜に供するが、このときの冷却温度は、常温まで冷却してもよい。
図1は、本発明の溶液流延製膜方法による光学フィルムの製造方法を実施する装置を例示するフローシートである。
同図を参照すると、まずドープ溶解釜1において例えばセルロースエステル樹脂溶液(ドープ)を調製する。セルロースエステル樹脂溶液(ドープ)には、上記の可塑剤、微粒子、紫外線吸収剤、酸化防止剤等が含まれている。
原料セルロースエステルと溶剤の混合物は、撹拌機を有するドープ溶解釜1で溶解し、このとき、撹拌翼の周速は少なくとも0.5m/秒以上で、かつ30分以上撹拌して溶解することが好ましい。
その後、ドープを送液ポンプ2の作動により濾過器3に導いて濾過する。
本発明において、セルロースエステル等の樹脂溶液(ドープ)の濾過は、ドープを、これの主たる溶剤の1気圧における沸点+5℃以上の温度で濾過することにより、ドープ中のゲル状異物を取り除く。
好ましい温度範囲は45〜120℃であり、45〜70℃が、より好ましく、45〜55℃の範囲であることがさらに好ましい。
濾過器3では、ドープを、例えば90%捕集粒子径が微粒子の平均粒子径の10倍〜100倍の濾材で、濾過する。
本発明において、濾過の際のドープの流量が、10〜80kg/(hr・m)、好ましくは20〜60kg/(hr・m)であることが好ましい。ここで、濾過の際のドープの流量が、10kg/(hr・m)未満であれば、流量が少ないことにより生産性に乏しいため、好ましくない。また、濾過の際のドープの流量が、80kg/(hr・m)を超えると、濾材にかかる圧力が大きくなりすぎて濾材を破損させるので、好ましくない。
本発明において、濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾過材の目詰まりが発生しやすく、濾材の交換を頻繁に行なわなければならず、生産性を低下させるという問題点ある。
このため、本発明において、セルロースエステルドープに使用する濾材は、絶対濾過精度0.008mm以下のものが好ましく、0.001〜0.008mmの範囲が、より好ましく、0.003〜0.006mmの範囲の濾材がさらに好ましい。
濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。
濾圧は、3500kPa以下であることが好ましく、3000kPa以下が、より好ましく、2500kPa以下であることがさらに好ましい。なお、濾圧は、濾過流量と濾過面積を適宜選択することで、コントロールできる。
濾過後のドープは、流延ダイ4に導入し、溶液流延製膜法により光学フィルムを作製する。
本発明においては、上記のようにして作製した流延用ドープを、流延ダイ4によって例えばステンレス鋼製エンドレスベルトよりなる支持体5上に流延する。
流延ダイ4としては、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。
また、支持体5には、ステンレス鋼製の回転駆動エンドレスベルトもしくはステンレス鋼製の回転駆動ドラムを鏡面仕上げした支持体が使用される。支持体5の温度は、一般的な温度範囲0℃〜溶剤の沸点未満の温度で、流延することができるが、5〜30℃の支持体5上に流延する方が、ドープをゲル化させ、剥離限界時間をあげられるため、好ましく、5〜15℃の支持体5上に流延することが、さらに好ましい。ここで、剥離限界時間とは、透明で平面性の良好なフィルムを連続的に得られる流延速度の限界において、流延されたドープが支持体5上にある時間をいう。剥離限界時間は、短い方が生産性に優れていて、好ましい。
支持体5上の乾燥工程では、流延したドープを一旦ゲル化させた後、流延から剥離ロール6によって剥離するまでの時間を100%としたとき、流延から30%以内にドープ温度を40〜70℃にすることで、溶剤の蒸発を促進し、それだけ早く支持体5上から剥離することができ、さらに剥離強度が増すため好ましく、30%以内にドープ温度を55〜70℃にすることがより好ましい。その後、この温度を20%以上維持することが好ましく、さらにこの温度を40%以上維持することが好ましい。
支持体5上での乾燥は、ウェブ10を、残留溶媒量60〜150%で支持体5から剥離ロール6によって剥離することが、支持体5からの剥離強度が小さくなるため好ましく、残留溶媒量80〜120%がより好ましい。剥離するときのドープの温度は0〜30℃にすることが剥離時のベース強度をあげることができ、剥離時のベース破断を防止できるため好ましく、5℃〜20℃がより好ましい。
溶液流延製膜法による光学フィルムの製造において、残留溶媒量は、次式で表わされる。
残留溶媒量(重量%)={(M−N)/N}×100
ここで、Mはウェブ(フィルム)の任意時点での重量、Nは重量Mのものを115℃で1時間加熱処理したときのフィルム重量である。
フィルム乾燥工程においては、支持体5より剥離ロール6によって剥離したフィルムをさらに乾燥し、残留溶媒量を3重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下であることが、寸法安定性が良好なフィルムを得る上で好ましい。
本発明においては、剥離後のウェブ10を、クリップ若しくはピンでウェブ10の両端を把持して搬送するテンター装置7を用いて、幅手方向に1.1〜2.0倍、好ましくは1.5〜2.0倍延伸する。
ここで、ウェブ10の幅手方向の延伸が、1.1倍未満であれば、生産性に乏しく、好ましくない。またウェブ10の幅手方向の延伸が、2.0倍を超えると、フィルムのコントラストが著しく劣化するので、好ましくない。
テンター装置7による延伸工程の後には、乾燥装置8を設けることが好ましい。乾燥装置8内では、側面から見て千鳥配置せられた複数の搬送ロールによってウェブ10が蛇行せられ、その間にウェブ(またはフィルム)10が乾燥せられるものである。また、乾燥装置8でのフィルム搬送張力は、ドープの物性、剥離時及びフィルム搬送工程での残留溶媒量、乾燥装置8での温度等に影響を受けるが、30〜250N/mが好ましく、60〜150N/mがさらに好ましい。80〜120N/mが最も好ましい。
なお、ウェブ(またはフィルム)10を乾燥させる手段は、特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行なう。簡便さの点から熱風で乾燥するのが好ましく、例えば乾燥装置の底の前寄り部分から吹込まれ、乾燥装置の天井の後寄り部分から排出せられる温風によって乾燥される。乾燥温度は40〜160℃が好ましく、50〜160℃が平面性、寸法安定性を良くするためさらに好ましい。
これら流延から乾燥までの工程は、空気雰囲気下でもよいし、窒素ガスなどの不活性ガス雰囲気下でもよい。この場合、乾燥雰囲気を溶媒の爆発限界濃度を考慮して実施することは勿論のことである。
乾燥時のウェブ搬送張力は、30〜300N/幅mであり、40〜270N/幅mが、より好ましい。
乾燥工程では、ウェブ(またはフィルム)10に含有される可塑剤が蒸発し、ロールや壁面においてコンデンスする現象を抑制する対策として、単位時間当たり供給風量に対して特定量以上の新鮮なガスを流入させることが好ましい。そして、供給する新鮮ガスの量は、全供給風量の5〜50%に設定することが好ましい。
乾燥終了後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。
上記の搬送乾燥工程を終えたフィルムに対し、巻取工程に導入する前段において、エンボス加工装置によりフィルムにエンボスを形成する加工が行なわれる。エンボス加工装置としては、特開昭63−74850号公報に記載されている装置が利用できる。
乾燥が終了したウェブ10を、フィルムとして巻取り装置9によって巻き取り、光学フィルムの元巻を得る工程である。乾燥終了後のフィルムの残留溶媒量は、0.5重量%以下、好ましくは0.1重量%以下とすることにより寸法安定性の良好なフィルムを得ることができる。
フィルムの巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。
本発明において、光学フィルムは、含水率としては0.1〜5%が好ましく、0.3〜4%がより好ましく、0.5〜2%であることがさらに好ましい。
本発明において、光学フィルムは、透過率が90%以上であることが望ましく、さらに好ましくは92%以上であり、さらに好ましくは93%以上である。
また、本発明の方法により製造された光学フィルムは、3枚重ねた場合のヘイズが、0.3〜2.0であるもので、本発明の光学フィルムによれば、フィルムのヘイズが非常に低いものであり、透明性、平面性に優れた光学特性を有するものである。
ここで、光学フィルムのヘイズの測定は、例えば、JIS K6714に規定される方法に従って、ヘイズ・メーター(1001DP型、日本電色工業株式会社製)を用いて測定すれば、良い。
本発明の光学フィルムでは、下記式で定義される面内リタデーション(Ro)が、温度23℃、湿度55%RHの条件下で30〜300nm、厚み方向リタデーション(Rt)が、温度23℃、湿度55%RHの条件下で70〜400nmであることが好ましい。
Ro=(nx−ny)×d
Rt={(nx+ny)/2−nz}×d
式中、Roはフィルム面内リタデーション値、Rtはフィルム厚み方向リタデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率(屈折率は波長590nmで測定)、dはフィルムの厚さ(nm)を表す。
なお、リタデーション値Ro、Rtは、自動複屈折率計を用いて測定することができる。例えば、KOBRA−21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長が590nmで求めることができる。
以上のようにして得られた幅手方向に延伸された熱可塑性樹脂フィルムは、延伸により分子が配向されて、一定の大きさのリタデーションを持つ。リタデーションのバラツキは小さいほど好ましく、通常15nm以内、好ましくは10nm以下、より好ましくは4nm以下である。
本発明の方法により製造された光学フィルムの膜厚は、使用目的によって異なるが、液晶表示装置の薄型化とフィルム強度の観点から、仕上がりフィルムとして10〜150μmの範囲に調整するのが好ましく、さらに20〜100μmの範囲の範囲に調整するのがより好ましく、特に25〜80μmの範囲の範囲に調整するのが好ましい。
ここで、偏光板は、上記の本発明により製造された光学フィルムよりなる偏光板用保護フィルムを、少なくとも一方の面に有するものである。
また、液晶表示装置は、上記の偏光板を、液晶セルの少なくとも一方の面に有するものである。
本発明により作製された光学フィルムを用いた偏光板を、液晶セルの少なくとも一方の面に有する液晶表示装置は、表示品質が非常に優れているものである。
以下、本発明の実施例を具体的に説明するが、本発明はこれにより限定されるものではない。
実施例1
本発明の溶液流延製膜法による光学フィルムの製造方法により、図1に示す溶液流延製膜装置を用いて、セルローストリアセテートフィルムをつぎのようにして製造した。
(ドープの調製)
セルローストリアセテートのドープを、以下のように調製した。
セルローストリアセテート 100重量部
(アセチル置換度2.88、数平均分子量15万)
トリフェニルホスフェート 10重量部
エチルフタリルエチルグリコレート 2重量部
チヌビン326(チバ・スペシャルティ・ケミカルズ社製) 1重量部
AEROSIL 200V(日本アエロジル社製) 0.1重量部
針状TiO(石原産業社製、商品名FTL−100) 5重量部
メチレンクロライド(沸点:40.2℃) 660重量部
エタノール 40重量部
上記の材料を、順次、ドープ溶解釜1に導入し、釜内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行なって、セルローストリアセテートを完全に溶解した。その後、攪拌を停止し、液温を55℃まで下げた後、直ちに連結した配管を経て送液ポンプ2を介して濾過器3に送液し、ドープを、これの主たる溶剤であるメチレンクロライドの1気圧における沸点(40.2℃)+5℃以上の温度(55℃)で、濾過を施した。
このとき、セルロースフィルターを用い、濾過の際のドープの流量を、60kg/(hr・m)として、濾過を行なった。
上記のように濾過したドープを、温水を循環して30℃に保温した流延ダイ4を通して、ステンレス鋼製エンドレスベルトよりなる支持体5上に流延した。流延時のドープ粘度は50ポイズであった。
そして、ウェブ10中の残留溶媒量が100重量%になるまで支持体5上で乾燥させた後、剥離ロール6によりウェブ10を支持体5から剥離した。
ついで、ウェブ10を、テンター7に導入して、ウェブ10両端をクリップではさみ、幅手方向に1.1倍延伸した。その後、ウェブ10を千鳥状に配置した搬送ロールを具備する乾燥装置8で100℃の乾燥風にて乾燥させ、巻取り機9によりセルローストリアセテートフィルムを巻き取り、最終的に厚さ80μmのセルローストリアセテートフィルムを作製した。
なお、上記の全工程を通じて、ウェブ10およびフィルムの搬送張力は180N/幅mとなるように、エンドレスベルトよりなる支持体5の搬送速度、及び巻取り機9の巻取り速度を適宜調整した。
実施例2〜3
実施例1の場合と同様に実施するが、テンター7におけるウェブ10の延伸倍率を1.5倍、および2.0倍に変更した以外は、実施例1の場合と同様にして製膜を行ない、セルローストリアセテートフィルムを作製した。
比較例1〜3
比較のために、実施例1の場合と同様に実施するが、比較例1と3では、テンター7におけるウェブ10の延伸倍率を、本発明の範囲外である1.0倍および2.2倍にそれぞれ変更し、また比較例2では、ドープを、これの主たる溶剤であるメチレンクロライドの1気圧における沸点(40.2℃)+5℃より下の温度(40.5℃)で濾過を施した以外は、実施例1の場合と同様にして製膜を行ない、セルローストリアセテートフィルムを作製した。
<生産性の評価>
上記実施例1〜3および比較例1〜3で作製したセルローストリアセテートフィルムについて、フィルムの生産性を、フィルムの生産速度で評価し、フィルムの生産性を下記の基準でランク分けした。得られた結果を下記の表1に示した。
◎:150000m/日 以上
○:100000m/日 以上、150000m/日 未満
△:50000m/日 以上、100000m/日 未満
×:50000m/日 未満
<コントラストの評価>
さらに、上記実施例1〜3および比較例1〜3で作製したセルローストリアセテートフィルムについて、フィルムのコントラストを自動偏光フィルム測定装置(V−7100 日本分光社製)で評価し、フィルムのコントラストを下記の基準でランク分けした。得られた結果を下記の表1に示した。
◎:光学フィルムとして使用するのに非常に優良である
○:光学フィルムとして使用するのに優良である
△:光学フィルムとして使用するのに問題は無い
×:光学フィルムとして使用するのに問題がある
Figure 0005494367
上記表1の結果から明らかなように、本発明の実施例1〜3で作製したセルローストリアセテートフィルムによれば、フィルムの生産性およびコントラストがいずれも優れたものであった。
これに対し、比較例1と2で作製したセルローストリアセテートフィルムでは、フィルムの生産性が劣るものであり、また比較例3で作製したセルローストリアセテートフィルムでは、フィルムのコントラストが劣るものであった。
実施例4〜6
上記実施例2の場合と同様に実施するが、濾過の際のドープの流量を変更して、それぞれ10kg/(hr・m)、20kg/(hr・m)、80kg/(hr・m)として、濾過を行なった以外は、実施例2の場合と同様にして製膜を行ない、セルローストリアセテートフィルムを作製した。
比較例4と5
比較のために、実施例2の場合と同様に実施するが、濾過の際のドープの流量を変更して、それぞれ5kg/(hr・m)、90kg/(hr・m)として、濾過を行なった以外は、実施例2の場合と同様にして製膜を行ない、セルローストリアセテートフィルムを作製した。
<生産性の評価>
上記実施例4〜6および比較例4と5で作製したセルローストリアセテートフィルムについて、フィルムの生産性を、上記と同じ方法で評価し、得られた結果を下記の表2に示した。
<濾材破損の評価>
つぎに、上記実施例4〜6および比較例4と5で作製したセルローストリアセテートフィルムについて、濾過の際の濾材破損をフィルム中の異物の急激な増加の有無で評価し、濾材破損の評価を下記の基準でランク分けした。得られた結果を下記の表2に示した。
◎:濾材破損による異物急増は全くない
○:濾材破損による異物急増はほとんどない
×:濾材破損による異物急増が発生した
<コントラストの評価>
さらに、上記実施例4〜6および比較例4と5で作製したセルローストリアセテートフィルムについて、フィルムのコントラストを、上記と同じ方法で評価し、得られた結果を下記の表2に示した。
Figure 0005494367
上記表2の結果から明らかなように、本発明の実施例4〜6で作製したセルローストリアセテートフィルムによれば、フィルムの生産性およびコントラストがいずれも良好で、光学フィルムとして使用するのに問題が無いものであり、かつ濾過の際、濾材破損が見られなかった。
これに対し、比較例4で作製したセルローストリアセテートフィルムでは、フィルムの生産性が劣るものであり、また比較例5で作製したセルローストリアセテートフィルムでは、濾過の際、濾材破損が見られ、またフィルムのコントラストが劣るものであった。
1:流延ダイ
2:送液ポンプ
3:濾過器
4:流延ダイ
5: エンドレスベルト支持体
6:剥離ロール
7:テンター装置
8:乾燥装置
9:巻取り機
10:ウェブ

Claims (3)

  1. 樹脂フィルム原料を溶剤に溶解したドープ(樹脂溶液)を調製し、流延ダイからドープを、回転駆動金属製エンドレスベルトまたは回転ドラム(支持体)上に流延し、支持体上に流延膜(以下、ウェブともいう)を形成し、支持体上からウェブを剥離し、剥離後のウェブを延伸後、乾燥させたのち、フィルムをロール状に巻き取る溶液流延製膜法による光学フィルムの製造方法において、
    ドープを、これの主たる溶剤の1気圧における沸点+5℃以上の温度で濾過することにより、ドープ中のゲル状異物を取り除き、濾過の際のドープの流量が、10〜80kg/(hr・m)であり、ついで、濾過後のドープを支持体上に流延し、さらに、支持体上に形成されたウェブを剥離した後に、該ウェブを、幅手方向に1.1〜2.0倍延伸することを特徴とする、光学フィルムの製造方法。
  2. 濾過の際のドープの流量が、20〜60kg/(hr・m)であることを特徴とする、請求項1に記載の光学フィルムの製造方法。
  3. 樹脂フィルム原料が、セルロースエステル、またはアクリル樹脂であることを特徴とする、請求項1または2に記載の光学フィルムの製造方法。
JP2010198770A 2010-09-06 2010-09-06 光学フィルムの製造方法 Active JP5494367B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198770A JP5494367B2 (ja) 2010-09-06 2010-09-06 光学フィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198770A JP5494367B2 (ja) 2010-09-06 2010-09-06 光学フィルムの製造方法

Publications (2)

Publication Number Publication Date
JP2012056103A JP2012056103A (ja) 2012-03-22
JP5494367B2 true JP5494367B2 (ja) 2014-05-14

Family

ID=46053803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198770A Active JP5494367B2 (ja) 2010-09-06 2010-09-06 光学フィルムの製造方法

Country Status (1)

Country Link
JP (1) JP5494367B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210561A (ja) * 2012-03-30 2013-10-10 Fujifilm Corp セルロースアシレートフィルム及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315408A (ja) * 2006-06-16 2006-11-24 Konica Minolta Holdings Inc セルロースエステルフィルムの製造方法及びセルロースエステルフィルム
JP2009233937A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp セルロースアシレートフィルムの製造方法

Also Published As

Publication number Publication date
JP2012056103A (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5510459B2 (ja) 光学フィルムの製造方法
JP4883083B2 (ja) 光学フィルムの製造方法
JP4622698B2 (ja) 位相差板、偏光板及び液晶表示装置
WO2010100986A1 (ja) 偏光板の製造方法、その製造方法で製造した偏光板およびその偏光板を使用した液晶表示装置
JP2010274615A (ja) 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置
JP5251857B2 (ja) 光学フィルム
US20070075449A1 (en) Manufacturing method for optical film and manufacturing apparatus of optical film
JP5458527B2 (ja) 光学フィルムの製造方法
JP5494367B2 (ja) 光学フィルムの製造方法
JP2010069646A (ja) 光学フィルム、その製造方法、光学フィルムを用いた偏光板、及び液晶表示装置
JP5740980B2 (ja) セルロースエステルフィルムの製造方法、偏光板及び液晶表示装置
JP2005181683A (ja) 光学フィルムの製造方法、光学フィルム及びそれを用いた偏光フィルム
JP2007062200A (ja) セルロースエステルフィルム、及びその製造方法、並びにセルロースエステルフィルムを用いた液晶表示装置
JP2007204754A (ja) セルロースエステルフィルム及びその製造方法並びに偏光板及び表示装置
JP2012096465A (ja) セルロースエステル光学フィルムの製造方法
JP5821855B2 (ja) セルロースエステル光学フィルムの製造方法
JP5760922B2 (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
JP2009083343A (ja) 光学フィルム及びその製造方法、偏光板用保護フィルム及びそれを用いた偏光板、並びに液晶表示装置
JP5609714B2 (ja) 光学フィルムの製造方法及び製造装置、光学フィルム、偏光板並びに液晶表示装置
JP2009073106A (ja) 光学フィルム、その製造方法、光学フィルムを用いた偏光板、及び表示装置
JP2009162801A (ja) 垂直配向型液晶表示装置用位相差フィルム、その製造方法、及びそれを用いた偏光板、垂直配向型液晶表示装置
WO2010119732A1 (ja) 偏光子保護フィルム、それを用いた偏光板及びその製造方法
JP2013067074A (ja) 光学フィルムの製造方法
JP5682522B2 (ja) 液晶表示装置用光学フィルムの製造方法
JP2012111602A (ja) 光学フィルムの製造装置及び製造方法、光学フィルム、偏光板、並びに、液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150