JP5484096B2 - 太陽電池裏面封止用二軸配向ポリエステルフィルム - Google Patents

太陽電池裏面封止用二軸配向ポリエステルフィルム Download PDF

Info

Publication number
JP5484096B2
JP5484096B2 JP2010015227A JP2010015227A JP5484096B2 JP 5484096 B2 JP5484096 B2 JP 5484096B2 JP 2010015227 A JP2010015227 A JP 2010015227A JP 2010015227 A JP2010015227 A JP 2010015227A JP 5484096 B2 JP5484096 B2 JP 5484096B2
Authority
JP
Japan
Prior art keywords
polyester
film
less
ppm
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010015227A
Other languages
English (en)
Other versions
JP2011155110A (ja
Inventor
晃太郎 能澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2010015227A priority Critical patent/JP5484096B2/ja
Publication of JP2011155110A publication Critical patent/JP2011155110A/ja
Application granted granted Critical
Publication of JP5484096B2 publication Critical patent/JP5484096B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は耐加水分解性と耐UV性を有し、ヘーズが低く、加熱収縮率が低い太陽電池裏面封止用二軸配向ポリエステルフィルムに関するものである。
光電変換効果を利用して光エネルギを電気エネルギに変換する太陽光発電は、クリーンエネルギを得る手段として広く行われている。そして、太陽電池セルの光電変換効率の向上に伴って、多くの個人住宅にも太陽光発電システムが設けられるようになってきている。このような太陽光発電システムを実際のエネルギ源として用いるために、複数の太陽電池セルを電気的に直列に接続させた構成をなす太陽電池モジュールが使用されている。
太陽電池モジュールは高温高湿度環境で長期間使用されるので、太陽電池裏面封止用フィルムにも長期耐久性が求められる。例えば、特許文献1には、太陽電池裏面封止用フィルムとしてフッ素系フィルムを用いた技術が開示されている。この文献にはフッ素系フィルムにあらかじめ熱処理を施すことで、フッ素系フィルムの熱収縮率を低減させることが可能となり、封止材であるエチレンビニルアセテート(以下EVA)との真空ラミネート加工時の、耐候性や耐水性を初めとする物性の低下防止や、歩留まりの向上にも効果のあると記載されている。しかし、フッ素系フィルムは高価であるので、太陽電池モジュールも高価なものになってしまうという問題がある。
太陽電池裏面封止用フィルムとして、ポリエステル系フィルムが用いる検討が行われているが、ポリエステル系フィルムを高温高湿度環境で使用すると、分子鎖中のエステル結合部位の加水分解が起こり、機械的特性が劣化することが知られている。よって、ポリエステル系フィルムを屋外で長期(20年)にわたって使用する場合、あるいは高湿度環境で使用する場合を想定して、加水分解を抑制すべく様々な検討が行われている。
ポリエステルの加水分解は、ポリエステル分子鎖の末端カルボキシル基量が高いほど分解が速いことが知られている。よって、特許文献2や特許文献3には、カルボン酸と反応する化合物を添加することで、分子鎖末端のカルボキシル基量を低減させることによる耐加水分解性を向上させる技術が開示されている。しかし、これらの化合物は、製膜プロセスでの溶融押出工程、または、マテリアルリサイクル工程において、ゲル化を誘発し、異物を発生させる可能性が高く、環境的にもコスト的にも好ましくない。また、太陽電池は太陽に照射される用途のため、当用途のフィルムには、耐加水分解性のみならず、太陽光によるフィルムの黄変も防がなくてはならないが、これらの技術は、この要求について考慮されていない。
また、従来は屋根の上に設置するという思想で太陽電池が設置されていたが、窓ガラスをイメージした「シースルータイプ太陽電池」の需要も伸び始めている。これは、窓の内側から外の景色を見ることができるとももに、発電することもできるという太陽電池である。この太陽電池タイプの太陽電池裏面封止用フィルムには、耐加水分解性以外にも、ヘーズが低いことが求められる。
ポリエステルフィルムの原料である、ポリエステルの重縮合時の触媒としては、安価で優れた触媒活性をもつことで三酸化アンチモンが広く用いられているが、これが重縮合触媒の主成分、すなわち、実用的な重合触媒が発揮される程度の添加量にて使用すると、重縮合時に三酸化アンチモンが還元されて、金属アンチモン粒子が生成する。そしてフィルム製造時の溶融押し出し工程で金属アンチモン粒子が凝集し、20〜50μmの黒色異物としてフィルム中に存在するようになる。すなわちこれらの金属アンチモン粒子の凝集体は光線の透過を遮蔽し、ヘーズを増大させるという問題が残った。
これらの金属アンチモン粒子の凝集体を除去するために、溶融押出時にフィルターを使用しても、金属アンチモン粒子の凝集体が変形しながらフィルターを通り抜け、完全に除去することは困難であった。
また、基材ポリエステルフィルムの原料であるポリエステルの重縮合時の重合触媒として、ゲルマニウム化合物が知られているが、ゲルマニウム化合物は非常に高価であり汎用的に用いることは難しい。
上記問題を解決するために、チタン元素とリン元素の含有量を特定することでフィルムの内部異物を減少させる提案がなされているが(特許文献4)、ポリエステルを溶融重合する工程で発生するオリゴマーを考慮に入れた設計になっていない。すなわち、フィルム内部もしくは表面にオリゴマーが生成し、ヘーズの低いフィルムを得ることは困難であった。
また、太陽電池裏面封止シートと封止材であるエチレンビニルアセテート(以下、EVAと略記することがある)との真空ラミネート加工時にシートに熱がかかるが、シートの加熱収縮率が高い場合、シート収縮による応力起因で太陽電池セルが破壊される恐れがある。そのため、シートに用いられる太陽電池裏面封止用ポリエステルフィルムに対しても低加熱収縮率が求められている。
特開2002−83978公報 特開平9−227767号公報 特開平8−73719号公報 特開平6−170911号公報
本発明は耐加水分解性と耐UV性を有し、ヘーズが低く、加熱収縮率が低い太陽電池裏面封止用二軸配向ポリエステルフィルムを提供することにある。
本発明者らは、上記実状に鑑み鋭意検討した結果、特定の構成からなるポリエステルフィルムを用いることにより、上述の課題を解決できることを見いだし、本発明を完成させるに至った。
すなわち、本発明の要旨は、紫外線吸収剤を含有する二軸配向エステルフィルムであり、光線波長400〜650nmにおける光線透過率の平均値(Tav)が75.0%以上であり、かつ光線波長380nmにおける光線透過率(Tuv)が60.0%以下であり、ポリエステルフィルム中のアンチモン元素の含有量が10ppm以下で、チタン元素含有量が10ppm以下で、リン元素含有量が170ppm以下で、末端カルボキシルキ量が26当量/t以下であり、極限粘度が0.65dl/g以上であり、フィルムのヘーズ:Hとフィルム中のシリカの重量分率φ(ppm)の関係が、H≦0.004φであり、150℃30分間処理後のフィルム長手方向の加熱収縮率が0.8%以下であることを特徴とする太陽電池裏面封止用二軸配向ポリエステルフィルムフィルムに存する。
本発明によれば、耐加水分解性と耐UV性を有し、ヘーズが低く、加熱収縮率の低い太陽電池裏面封止用二軸配向ポリエステルフィルムを提供できる。本発明の工業的価値は高い。
以下、本発明をさらに詳細に説明する。
本発明で言うポリエステルフィルムとは、押出口金から溶融押出される、いわゆる押出法による押し出した溶融ポリエステルシートを冷却した後、必要に応じ、延伸したフィルムである。
本発明において、ポリエステルフィルムに使用するポリエステルは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものを指す。芳香族ジカルボン酸としては、テレフタル酸、2,6―ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4―シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン―2,6―ナフタレンジカルボキシレート(PEN)等が例示される。その中でも、ポリエチレンテレフタレート(PET)が好ましい。
本発明のポリエステルフィルム中の化合物の量は、後述する蛍光X線分析装置を用いた分析にて検出される、アンチモン元素、チタン元素、及びリン元素量含有量が特定範囲にある必要がある。
本発明のフィルムのチタン元素含有量は20ppm以下である必要があり、好ましくは15ppm以下、さらに好ましくは9ppm以下である。下限については特に設けないが、実際には2ppm程度が現在の技術では下限となる。チタン化合物の含有量が多すぎるとポリエステルを溶融押出する工程でオリゴマーが副生成し、オリゴマーによるヘーズの増大したフィルムとなるため、シースルー太陽電池向け裏面封止用ポリエステルフィルムとして弊害が生じる。また、チタン元素を全く含まない場合、ポリエステル原料製造時の生産性が劣り、目的の重合度に達したポリエステル原料を得られない。
本発明のフィルムのリン元素は、通常はリン酸化合物に由来するものであり、ポリエステル製造時に添加される。本発明においては、ポリエステル成分中のリン元素量は170ppm以下の範囲である必要があり、好ましくは160ppm以下の範囲であり、さらに好ましくは150ppm以下の範囲である。下限については特に設けないが、実際には3ppm程度が現在の技術では下限となる。リン元素量が多すぎると、フィルム製膜時にゲル化が起こり異物となってフィルムの品質を低下させる原因となることがあり、また製膜後のフィルムの加水分解が促進することになるため好ましくない。また、上記したチタン化合物を特定量含有するとともに、リン化合物を含有させることにより、含有オリゴマーの低減に対して著しい効果を発揮できる。
リン酸化合物の例としては、リン酸、亜リン酸あるいはそのエステルホスホン酸化合物、ホスフィン酸化合物、亜ホスホン酸化合物、亜ホスフィン酸化合物など公知のものが該当し、具体例としては、正リン酸、ジメチルフォスフェート、トリメチルフォスフェート、ジエチルフォスフェート、トリエチルフォスフェート、ジプロピルフォスフェート、トリプロピルフォスフェート、ジブチルフォスフェート、トリブチルフォスフェート、ジアミルフォスフェート、トリアミルフォスフェート、ジヘキシルフォスフェート、トリヘキシルフォスフェート、ジフェニルフォスフェート、トリフェニルフォスフェート、エチルアシッドホスフェートなどが挙げられる。
本発明により得られるポリエステルフィルムは、フィルムを構成するポリエステル成分の末端カルボキシル基量が26当量/t以下、好ましくは24当量/t以下である。末端カルボキシル基量が26当量/tを超えると、ポリエステル成分の耐加水分解性が劣る。下限については特に設けないが、重縮合反応の効率、溶融押出工程での熱分解等の点から通常は5当量/t程度である。
本発明のポリエステルフィルムの極限粘度は、0.65dl/g以上、好ましくは0.68dl/g以上である。ポリエステルフィルムの極限粘度を0.65dl/g以上とすると、長期耐久性や耐加水分解性が良好なフィルムが得られる。一方、ポリエステルフィルムの極限粘度の上限はないが、重縮合反応の効率、溶融押出工程での圧力上昇防止の点から0.90dl/g程度である。
本発明のフィルムの光線波長400〜650nmにおける光線透過率の平均値(Tave)は75.0%以上、好ましくは78.0%以上、さらに好ましくは80.0%以上の範囲である。Taveが75.0%未満では、シースルー太陽電池向け裏面封止用バックシートのPETフィルムとしては好ましくない。Taveの上限については特に設けないが、通常は通常は90.0%程度である。
本発明のフィルムは紫外線吸収剤を含有し、その含有量はポリエステルフィルム全層で、通常0.01〜10.0重量%、好ましくは0.1〜1.8重量%の範囲である。紫外線吸収剤の含有量が0.01重量%未満の場合には、ポリエステルフィルムを透過する紫外線によって、ポリエステル化合物が劣化することがある。一方、10.0重量%を超える量の紫外線吸収剤を含有させても、ポリエステルの劣化を防止する効果は飽和しており、逆に、表面に紫外線吸収剤がブリードアウトし、接着性低下等、表面特性の悪化を生ずるおそれがある。
また、本発明のフィルムの光線波長380nmの光線透過率(Tuv)は60.0%以下であり、より好ましくは50.0%以下、さらに好ましくは40.0%以下である。Tuvが60.0%より大きくなると、ポリエステルフィルムを透過する紫外線によって、ポリエステル化合物が劣化するのを防ぐのに十分とは言えない。
本発明で用いられる紫外線吸収剤としては、ポリエステルに含有させることができる紫外線吸収剤であればよく、例えば、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリシレート系化合物、シアノアクリレート系化合物、ベンゾオキサジン系化合物、環状イミノエステル系化合物等がある。これらの中でも、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾオキサジン系化合物がポリエステルとの相溶性が良く好ましい。
本発明におけるポリエステルフィルムには、微粒子を含有させることが、フィルムの巻上げ工程、塗工工程、蒸着工程等での作業性を向上させる上で望ましい。この微粒子としてはシリカ、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸マグネシウム、リン酸カルシウム、フッ化リチウム、酸化アルミニウム、カオリン等の無機粒子やアクリル樹脂、グアナミン樹脂等の有機粒子や触媒残差を粒子化させた析出粒子を挙げる事ができるが、これらに限定されるものではない。これら粒子の中では、一時粒子の凝集粒子である多孔質シリカ粒子が特に好ましい。多孔質シリカ粒子はフィルムの延伸時に粒子周辺にボイドが発生しにくいため、フィルムの透明性を向上させる特長を有する。
この多孔質シリカ粒子を構成する一次粒子の平均粒径は0.001〜0.1μmの範囲のあることが好ましい。一次粒子の平均粒径が0.001μm未満では、スラリー段階で解砕により極微細粒子が生成し、これが凝集体を形成して、ヘーズが高くなる原因となることがある。一方、一次粒子の平均粒径が0.1μmを超えると、粒子の多孔性が失われ、その結果、ボイド発生が少ない特長が失われるおそれがある。
さらに、凝集粒子の細孔容積は0.5〜2.0ml/g、さらには0.6〜1.8ml/gの範囲であることが好ましい。細孔容積が0.5ml/g未満では、粒子の多孔性が失われ、ボイドが発生しやすくなり、フィルムの透明性が低下する傾向がある。細孔容積が2.0ml/gより大きいと、解砕、凝集が起こりやすく、粒径の調整を行うことが困難となる場合がある。
本発明におけるポリエステルフィルムに粒子を添加する方法としては、特に限定されるものではなく、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。
また、熱分解や加水分解を抑制するために触媒として働きうる金属化合物をできる限り含まないことが好ましいが、フィルムの生産性を向上すべく溶融時の体積固有抵抗値を低くするため、マグネシウム、カルシウム、リチウム、マンガン等の金属を、通常ポリエステル成分中に300ppm以下、好ましくは250ppm以下であれば含有させることができる。
なお、本発明のポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、染料を添加することができる。
本発明のポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10〜500μm、好ましくは15〜400μm、さらに好ましくは20〜300μmの範囲である。
本発明においては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとすることができる。層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/A構成、さらにC原料を用いてA/B/C構成またはそれ以外の構成のフィルムとすることができる。
以下、本発明のポリエステルフィルムの製造方法に関して具体的に説明するが、本発明の要旨を満足する限り、本発明は以下の例示に特に限定されるものではない。
すなわち、公知の手法により乾燥したまたは未乾燥のポリエステルチップ(ポリエステル成分)を混練押出機に供給し、ポリエステル成分の融点以上である温度に加熱し溶融する。次いで、溶融したポリエステルをダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。溶融押出工程においても、条件により末端カルボキシル基量が増加するので、本願発明においては、押出工程における押出機内でのポリエステルの滞留時間を短くすること、一軸押出機を使用する場合は原料をあらかじめ水分量が50ppm以下、好ましくは30ppm以下になるように十分乾燥すること、二軸押出機を使用する場合はベント口を設け、40ヘクトパスカル以下、好ましくは30ヘクトパスカル以下、さらに好ましくは20ヘクトパスカル以下の減圧を維持すること等の方法を採用する。
本発明においては、このようにして得られたシートを2軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを好ましくは縦方向に70℃〜145℃で2〜6倍に延伸し、縦1軸延伸フィルムとした後、横方向に90℃〜160℃で2〜6倍延伸を行い、熱固定工程に移る。
熱固定は160℃〜240℃で1秒〜600秒間の熱処理を行うことが好ましく、さらに好ましくは、170℃〜230℃である。熱固定温度が160℃未満であると、長手方向の収縮率が高すぎて、アニール処理条件が過酷となり、その結果得られたフィルムの歪みも大きくなり実用に供することができない。一方熱固定温度を240℃以上とすると、耐加水分解性の良好なポリエステルフィルムを得ることができない。
本発明においては、アニール処理を施すことが好ましい。本発明で言うアニール処理とは、上記熱固定された二軸延伸ポリエステルフィルムを、実質的に張力のかからない状態で熱処理を行うことを指す。
アニール処理時の熱処理温度は、ガラス転移温度(Tg)〜二軸配向ポリエステルフィルムの融点(Tm)から40℃以上低い温度の範囲であることが好ましい。
アニール処理をする際に、二軸延伸ポリエステルフィルムに大きな張力がかかっていると延伸されるので、二軸延伸ポリエステルフィルムに実質的に張力がかからない状態でアニールするのが好ましい。実質的に張力がかからない状態とは、具体的にはアニール処理時のフィルム張力(g/mm)が100以下のことを指し、好ましくは80以下、より好ましくは60以下である。
アニール処理の形態としては、フィルムの製造過程にアニール処理をするインラインアニール処方でも、フィルムの製造後に処理をするオフラインアニール処方などが考えられるが、アニールする時間がフィルムの製造速度に制限されないオフラインアニール処方が好ましい。
アニールする時間は特に限定されず、二軸延伸ポリエステルフィルムの厚さやアニール温度により異なるが、一般に5秒以上が好ましく、より好ましくは10秒〜60分であり、さらに好ましくは30秒〜20分である。
アニール処理を施す赤外線加熱炉について特に限定はないが、例えば、炉内上部に走行フィルム幅より広い赤外線ヒーターを走行フィルムの全幅をカバーするように、多数、一定間隔で設置したものが好ましい。
赤外線ヒーターについては、近赤外線ヒーター、シーズヒーターを含む遠赤外線ヒーター双方が利用できるがフィルムに与える熱ダメージの点で近赤外線ヒーターが好ましい。
フィルムの熱処理は、炉内雰囲気を所定の温度にして行われるが、この温度については、例えば、次のような方法で調整できる。炉内の隣接するヒーター/ヒーター間、かつ走行フィルム上、5cm程度のフィルム近接位置に熱電対温度検出端を設置し、各位置の雰囲気温度を測定する。この雰囲気温度は、設置する個々のヒーターの出力、ヒーター本数、ヒーター設置間隔、走行フィルムとヒーターとの距離、炉内換気等によって変えることができるが、例えば可変出力の棒状近赤外線ヒーターの出力を0.5〜1.2kW/mの範囲で調整すると共に、適宜一定風量換気を行うことによりフィルム近接雰囲気温度を好ましい領域、すなわち150〜220℃の範囲とすることができる。
赤外線加熱炉では、走行フィルム近接位置での雰囲気温度が熱風式加熱炉の同位置での雰囲気温度より低温域であっても同等以上の加熱効果が得られるという特徴がある。このために熱風式加熱炉では、達成できなかった処理の短時間化、効率化が得られると共に、短時間処理であるためにフィルム歪みも小さくすることが可能となる。
例えば、ポリエステルフィルムへ上記のようなアニール処理を行うことにより、150℃で30分処理後のフィルム長手方向の加熱収縮率を0.8%以下とすることが可能となる。
ポリエステルフィルムの耐加水分解性は、フィルム全体に関連する特性であり、本願発明においては、共押出による積層構造を有するフィルムの場合、当該フィルムを構成するポリエステル成分全体として、アンチモン元素、チタン元素、リン元素の含有量、末端カルボキシル基量、極限粘度が上記の範囲であることが必要である。
本発明において、ポリエステルフィルム中のポリエステル成分の末端カルボキシル基量を特定範囲とするため、例えば、ポリエステルチップの押出工程における押出機内でのポリエステル成分の滞留時間を短くすることなどによってポリエステルフィルムは得られる。また、低末端カルボキシル基量のポリエステルチップを製膜することで、末端カルボキシル基量が特定範囲のポリエステルフィルムを得てもよい。また、フィルム製造において、溶融工程を経た再生原料を配合するとポリエステル成分の末端カルボキシル基量が特定範囲から外れて増大する傾向があるので、本願発明においてはかかる再生原料を配合しないことが好ましく、配合するとしても40重量%以下、より好ましくは20重量%以下である。
本発明においては、前記延伸工程においてまたはその後に、フィルムに接着性、帯電防止性、滑り性、離型性等を付与するために、フィルムの片面または両面に塗布層を形成したり、コロナ処理等の放電処理を施したりすることなどもできる。
以下、実施例によって本発明をさらに具体的に説明するが、本発明はその趣旨を超えない限り、この実施例に限定されるものではない。なお、フィルムの諸物性の測定および評価方法を以下に示す。
(1)触媒由来元素の定量
蛍光X線分析装置(島津製作所社製型式「XRF−1800」)を用いて、下記表1に示す条件下で、単枚測定でフィルム中の元素量を求めた。積層フィルムの場合はフィルムを溶融してディスク状に成型して測定することにより、アンチモン元素(Sb)、チタン元素(Ti)、リン元素(P)のフィルム全体に対する含有量を測定した。
Figure 0005484096
(2)末端カルボキシル基量(当量/t)
ポリエステルチップを粉砕した後、熱風乾燥機にて140℃で15分間乾燥させ、デシケーター内で室温まで冷却した試料から、0.1gを精秤して試験管に採取し、ベンジルアルコール3mlを加えて、乾燥窒素ガスを吹き込みながら195℃、3分間で溶解させ、次いで、クロロホルム5mlを徐々に加えて室温まで冷却した。この溶液にフェノールレッド指示薬を1〜2滴加え、乾燥窒素ガスを吹き込みながら攪拌下に、0.1Nの苛性ソーダのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。又、ブランクとして、ポリエステル樹脂試料抜きで同様の操作を実施し、以下の式によって酸価を算出した。
酸価当量/t=(A−B)×0.1×f/W
〔ここで、Aは、滴定に要した0.1Nの苛性ソーダのベンジルアルコール溶液の量(μl) 、Bは、ブランクでの滴定に要した0.1Nの苛性ソーダのベンジルアルコール溶液の量(μl)、Wは、ポリエステル樹脂試料の量(g)、fは、0.1Nの苛性ソーダのベンジルアルコール溶液の力価である〕
なお、0.1Nの苛性ソーダのベンジルアルコール溶液の力価(f)は、試験管にメタノール5mlを採取し、フェノールレッドのエタノール溶液を指示薬として1〜2滴加え、0.1Nの苛性ソーダのベンジルアルコール溶液0.4mlで変色点まで滴定し、次いで、力価既知の0.1Nの塩酸水溶液を標準液として0.2ml採取して加え、再度、0.1Nの苛性ソーダのベンジルアルコール溶液で変色点まで滴定した。(以上の操作は、乾燥窒素ガス吹き込み下で行った。) 以下の式によって力価(f)を算出した。
力価(f)=0.1Nの塩酸水溶液の力価×0.1Nの塩酸水溶液の採取量(μl)/0.1Nの苛性ソーダのベンジルアルコール溶液の滴定量(μl)
(3)極限粘度dl/g
ポリエステルフィルムをフェノール/テトラクロロエタン=50/50(重量比)の混合溶媒中に溶解し、毛細管粘度計を用いて、1.0g/dlの濃度の溶液の流下時間、および、溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用いて、極限粘度を算出した。その際、Huggins定数を0.33と仮定した。
(4)耐加水分解性試験
パーソナルプレッシャークッカー装置(平山製作所社製)を用いて、ポリエステルフィルムを120℃−100%RHの雰囲気にてフィルムを72時間処理する。オートグラフAG−I(島津製作所社製)にて、得られたフィルムの製膜方向とは垂直方向(TD方向)に対し、200mm/分の速度で、フィルムの機械的特性として破断伸度を測定した。処理前後での破断伸度の維持率(%)を下記の式にて算出し、下記の基準で評価した。
破断伸度維持率[%]=処理後の破断伸度÷処理前の破断伸度×100
○:維持率が50%以上
△:維持率が5〜50%
×:維持率が5%未満
(5)光線透過率
分光光度計((島津製作所製UV3100PC)により、50μm厚みのフィルムに対し、ハロゲンランプ光源を用いてスキャン速度を低速、サンプリングピッチを1nm、光線波長300〜800nm領域で連続的に光線透過率を測定した。その測定結果より、光線波長380nmにおける光線透過率(Tuv)を読み取った。また、光線波長400〜650nmの光線透過率の平均値(Tave)については算術平均にて上述の測定結果より算出した。下記のように評価した。
◆光線透過率(A)
◎:Tuv≦40%
○:40%<Tuv≦50%
△:50%<Tuv≦60%
×:Tuv>60%
◆光線透過率(B)
○:Tave≧80%
△:75%≦Tave<80%
×:Tave<75%
(6)フィルムヘーズ
ヘーズメータ(日本電色製 NDH−300A)により、50μm厚みのフィルムのヘーズ:Hを測定した。下記の基準で評価した。
○:H≦0.004φ
×:H>0.004φ
(φは含有シリカの重量分率ppmとする)
(7)ガラス転移温度(Tg)
動的粘弾性装置(DVA−200 アイティー計測制御株式会社製)によって、二軸配向ポリエステルフィルムを、周波数10Hz、昇温速度10℃/minの条件下で測定した損失正接tanδのα分散によるピーク温度とする。
(8)融点(Tm)
パ−キンエルマ社製DSC7型で10℃/min.の昇温速度で得られた結晶融解による吸熱ピ−ク温度を融点とした。
(9)加熱収縮率
無張力状態で150℃雰囲気中30分間、熱処理しその前後のサンプルの長さを測定することにより次式にて計算した。
加熱収縮率(%)=(L1−L0)/L0×100
(上記式中、L1(mm)は熱処理前のサンプル長、L0(mm)は熱処理後のサンプル長をそれぞれ意味する)
得られた結果から下記の基準で評価した。
○:長手方向(MD)の収縮率が0.3%未満
△:長手方向(MD)の収縮率が0.3%以上0.8%未満
×:長手方向(MD)の収縮率が0.8%以上
(10)総合評価
耐加水分解性、光線透過率A、光線透過率B、ヘーズ、加熱収縮率の評価を比較して、低い評価で判定する。(例えば、耐加水分解性で○、光線透過率A○、光線透過率B○、ヘーズ×、加熱収縮率で○であったら、総合評価を×とする。)
<ポリエステル(1)の製造法>
スラリー調製槽、及びそれに直列に接続された2段のエステル化反応槽、及び2段目のエステル化反応槽に直列に接続された3段の溶融重縮合槽からなる連続重合装置を用い、スラリー調製槽に、テレフタル酸とエチレングリコールをそれぞれ毎時865重量部、485重量部で連続的に供給すると共に、エチルアシッドホスフェートの0.3重量%エチレングリコール溶液を、得られるポリエステル樹脂1t当たりの燐原子としての含有量が0.129モル/樹脂tとなる量で連続的に添加して、攪拌、混合することによりスラリーを調製した。このスラリーを、窒素雰囲気下で260℃、相対圧力50kPa(0.5kg/cm)、平均滞留時間4時間に設定された第1段目のエステル化反応槽、次いで、窒素雰囲気下で260℃、相対圧力5kPa(0.05kg/cm)、平均滞留時間1.5時間に設定された第2段目のエステル化反応槽に連続的に移送して、エステル化反応させた。又、その際、第2段目のエステル化反応槽に設けた上部配管を通じて、酢酸マグネシウム4水和物の0.6 重量% エチレングリコール溶液を、得られるポリエステル樹脂1t当たりのマグネシウム原子としての含有量が0.165モル/樹脂tとなる量で連続的に添加すると共に、第2段目のエステル化反応槽に設けた別の上部配管を通じてエチレングリコールを毎時60重量部連続的に追加添加した。
引き続いて、前記で得られたエステル化反応生成物を連続的に溶融重縮合槽に移送する際、その移送配管中のエステル化反応生成物に、テトラ−n−ブチルチタネートを、チタン原子の濃度0.15重量%、水分濃度を0.5重量%としたエチレングリコール溶液として、得られるポリエステル樹脂1t当たりのチタン原子としての含有量が0.084モル/樹脂tとなる量で連続的に添加しつつ、270℃、絶対圧力2.6kPaに設定された第1段目の溶融重縮合槽、次いで、278℃、絶対圧力0.5kPaに設定された第2段目の溶融重縮合槽、次いで、280℃、絶対圧力0.3kPaに設定された第3段目の溶融重縮合槽に連続的に移送して、得られるポリエステル樹脂の極限粘度が0.65dl/gとなるように各重縮合槽における滞留時間を調整して溶融重縮合させ、重縮合槽の底部に設けられた抜き出し口から連続的にストランド状に抜き出して、水冷後、カッターで切断してチップ状粒状体としたポリエステル(1)を製造した。末端カルボキシル基量は12当量/tであった。
<ポリエステル(2)の製造法>
ポリエステル(1)を出発原料とし、窒素雰囲気下で約160℃に保持された攪拌結晶化機内に滞留時間が約60分となるように連続的に供給して結晶化させた後、塔型の固相重縮合装置に連続的に供給し、窒素雰囲気下215℃で、得られるポリエステル樹脂の極限粘度が0.75dl/gとなるように滞留時間を調整して固相重縮合させ、ポリエステル(2)を得た。末端カルボキシル基量は8当量/tであった。
<ポリエステル(3)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸カルシウム0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。
4時間後、実質的にエステル交換反応を終了させた。この反応混合物に三酸化アンチモン0.04部、エチレングリコールに分散させた平均粒子径2.5μmのシリカ粒子のポリエステルに対する含有量が0.06重量%となるように添加し、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には40パスカルとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.60dl/gに相当する時点で反応を停止し、窒素加圧下ポリエステルを吐出させた。引き続き、得られたポリエスエルを、真空下220℃にて固相重合を行ってポリエステル(3)を得た。ポリエステル(3)の極限粘度は0.75dl/g、末端カルボキシル基量は9当量/tであった。
<ポリエステル(4)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてテトラ−n−ブチルチタネートを得られるポリエステル樹脂1t当たりのチタン原子としての含有量が5g/樹脂tとなる量で加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物を重縮合槽に移し、平均粒子径2 .5μmのシリカ粒子のエチレングリコールスラリーを、粒子のポリエステルに対する含有量が1.5重量%となるように添加し、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.60に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル(4)を得た。極限粘度は0.60dl/g、末端カルボキシル基量は21量/tであった。
<ポリエステル(5)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩を加えて反応器にとり、反応開始温度を150℃ とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物を重縮合槽に移し、正リン酸をリン量が1000ppmとなるように添加した後、二酸化ゲルマニウム加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル(5)を得た。ポリエステル(5)の極限粘度は0.63dl/g、末端カルボキシル基量は51(当量/t)であった。であった。
<ポリエステル(6)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてテトラ−n−ブチルチタネートを得られるポリエステル樹脂1t当たりのチタン原子としての含有量が5g/樹脂tとなる量で加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物を重縮合槽に移し、平均粒子径2 .5μmのシリカ粒子のエチレングリコールスラリーを、粒子のポリエステルに対する含有量が0.06 重量%となるように添加し、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.55dl/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステルのチップを得た。引き続き、得られたポリエステルチップを真空下220℃で固相重合し、ポリエステル(6)を得た。極限粘度は0.75dl/g、末端カルボキシル基量は25当量/tであった。
<ポリエステル(7)の製造法>
ポリエステル(6)の製造法において、テトラ−n−ブチルチタネートを得られるポリエステル樹脂1t当たりのチタン原子としての含有量が15g/樹脂tとなる量を加えることを除いて、同様の方法でポリエステル(7)を製造した。極限粘度は0.73dl/g、末端カルボキシル基量は25(当量/t)であった。
<ポリエステル(8)の製造法>
ポリエステル(6)の製造法において、テトラ−n−ブチルチタネートを得られるポリエステル樹脂1t当たりのチタン原子としての含有量が40g/樹脂tとなる量を加えることを除いて、同様の方法でポリエステル(8)を製造した。極限粘度は0.71dl/g、末端カルボキシル基量は27当量/tであった。
<ポリエステル(9)の製造法>
ポリエステル(6)の製造法において、シリカ粒子を加えないことを除いて、同様の方法でポリエステル(9)を製造した。極限粘度は0.77dl/g、末端カルボキシル基量は23当量/tであった。
<ポリエステル(10)の製造方法>
ポリエステル(1)をベント付き二軸押出機に供して、紫外線吸収剤として2,2−(1,4−フェニレン)ビス[4H−3,1−ベンゾオキサジン−4−オン]を10重量%濃度となるように供給して溶融混練りしてチップ化を行い、紫外線吸収剤マスターバッチポリエステル(10)を作成した。得られたポリエステル(10)の極限粘度は、0.59dl/g、末端カルボキシル基量は25当量/tであった。
<ポリエステル(11)の製造方法>
ポリエステル(1)をベント付き二軸押出機に供して、カーボンブラック(オイルファーネスブラック 平均一次粒径70nm)を20重量%となるように供給して溶融混練りしてチップ化を行い、カーボンブラックマスターバッチポリエステル(11)を作成した。得られたポリエステル(11)の極限粘度は、0.56dl/g、末端カルボキシル基量は30当量/tであった。
実施例1:
上記ポリエステル(2)、ポリエステル(4)、およびポリエステル(10)を94.0:4.0:2.0の比率で混合したポリエステルを原料とし、1つのベント付き二軸押出機により、290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。得られたシートを縦方向に83℃で3.3倍延伸した後、テンターに導き、110℃で横方向に3.7倍延伸し、さらに220℃で熱固定を行った。得られたフィルムの平均厚さは50μmであった。得られたフィルムを赤外線ヒーター直接加熱炉に通し、雰囲気温度150〜210℃ゾーンで処理時間10秒、処理時フィルム張力を40g/mmで処理し、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例2:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(4)、ポリエステル(5)、およびポリエステル(10)を78.0:4.0:15.0:4.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
実施例3:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(4)、ポリエステル(9)、およびポリエステル(10)を29.5:4.0:65.0:1.5の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
実施例4:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)およびポリエステル(7)、およびポリエステル(10)を41.0:50.0:9.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
実施例5:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(3)、ポリエステル(4)、およびポリエステル(10)を93.0:1.0:4.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
実施例6:
実施例1において、アニール処理時の処理時間を5秒としたことを除いては、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
比較例1:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(1)およびポリエステル(4)、およびポリエステル(10)を94.0:4.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例2:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(6)、およびポリエステル(10)を98.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例3:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(3)、ポリエステル(5)、およびポリエステル(10)を94.0:4.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例4:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(4)、ポリエステル(5)、およびポリエステル(10)を74.0:4.0:20.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例5:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(8)、およびポリエステル(10)を48.0:50.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例6:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリエステル(3)、ポリエステル(4)、およびポリエステル(10)を84.0:10.0:4.0:2.0の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例7:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリポリエステル(4)、およびポリエステル(10)を95.5:4.0:0.5の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例8:
実施例1において、混合物中のポリエステル原料に関して、上記ポリエステル(2)、ポリポリエステル(4)、ポリエステル(10)、およびポリエステル(11)を95.3:4.0:0.6:0.1の比率で混合したポリエステルに変更した以外は、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例9:
実施例1において、アニール処理時の処理時間を3秒としたことを除いては、実施例1と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
Figure 0005484096
Figure 0005484096
本発明の二軸配向ポリエステルフィルムは、例えば、太陽電池裏面封止用二軸配向ポリエステルフィルムとして好適に利用することができる。

Claims (2)

  1. 紫外線吸収剤を含有する二軸配向エステルフィルムであり、光線波長400〜650nmにおける光線透過率の平均値(Tav)が75.0%以上であり、かつ光線波長380nmにおける光線透過率(Tuv)が60.0%以下であり、ポリエステルフィルム中のアンチモン元素の含有量が10ppm以下で、チタン元素含有量が10ppm以下で、リン元素含有量が170ppm以下で、末端カルボキシルキ量が26当量/t以下であり、極限粘度が0.65dl/g以上であり、フィルムのヘーズ:Hとフィルム中のシリカの重量分率φ(ppm)の関係が、H≦0.004φであり、150℃30分間処理後のフィルム長手方向の加熱収縮率が0.8%以下であることを特徴とする太陽電池裏面封止用二軸配向ポリエステルフィルムフィルム。
  2. チタン元素含有量が5ppm以下である請求項1に記載の太陽電池裏面封止用二軸配向ポリエステルフィルムフィルム。
JP2010015227A 2010-01-27 2010-01-27 太陽電池裏面封止用二軸配向ポリエステルフィルム Active JP5484096B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015227A JP5484096B2 (ja) 2010-01-27 2010-01-27 太陽電池裏面封止用二軸配向ポリエステルフィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015227A JP5484096B2 (ja) 2010-01-27 2010-01-27 太陽電池裏面封止用二軸配向ポリエステルフィルム

Publications (2)

Publication Number Publication Date
JP2011155110A JP2011155110A (ja) 2011-08-11
JP5484096B2 true JP5484096B2 (ja) 2014-05-07

Family

ID=44540874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015227A Active JP5484096B2 (ja) 2010-01-27 2010-01-27 太陽電池裏面封止用二軸配向ポリエステルフィルム

Country Status (1)

Country Link
JP (1) JP5484096B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335683B2 (ja) * 1992-12-11 2002-10-21 帝人株式会社 ポリエステルフイルムおよびその製造方法
JP2002249609A (ja) * 2001-02-23 2002-09-06 Toyobo Co Ltd 光学用被覆フィルム
US20090139564A1 (en) * 2005-09-30 2009-06-04 Toray Industries , Inc., A Corporation Sealing Film for Photovoltaic Cell Module and Photovoltaic Module
JP4996858B2 (ja) * 2006-01-31 2012-08-08 三菱樹脂株式会社 太陽電池裏面封止用ポリエステルフィルム
JP5369387B2 (ja) * 2006-05-29 2013-12-18 東レ株式会社 ポリメチレンテレフタレート組成物の製造方法およびフィルム
JP2008004839A (ja) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd 太陽電池裏面保護シート用フィルム、およびこれを用いた太陽電池モジュール用裏面保護シート

Also Published As

Publication number Publication date
JP2011155110A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5663247B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5553619B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5676533B2 (ja) 二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール
JP5254280B2 (ja) 二軸延伸白色ポリエチレンテレフタレートフィルム、及び太陽電池モジュール用裏面保護フィルム
JP2015028962A (ja) 太陽電池裏面封止用黒色ポリエステルフィルム
JP2011119651A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5566184B2 (ja) 太陽電池裏面封止用二軸配向ポリエスエルフィルム
JP2012248771A (ja) 太陽電池裏面保護用二軸配向ポリエステルフィルム
JP5484096B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5484116B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2011155109A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5590866B2 (ja) 二軸配向ポリエステルフィルム
JP2014239126A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP2015042698A (ja) 二軸配向ポリエステルフィルム
JP2012248709A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP2012256766A (ja) 太陽電池フロントシート用ポリエステルフィルム
JP2012256765A (ja) 太陽電池裏面封止用白色積層ポリエステルフィルム
JP2012244019A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP5770693B2 (ja) ポリエステルフィルムの製造方法、ポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュール
JP2015006776A (ja) 白色積層ポリエステルフィルム
JP2014239125A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP2012245747A (ja) 太陽電池フロントシート用積層ポリエステルフィルム
JP2014170913A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2011116938A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2014209645A (ja) 太陽電池裏面保護用ポリエステルフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350