JP2014170913A - 太陽電池裏面封止用二軸配向ポリエステルフィルム - Google Patents

太陽電池裏面封止用二軸配向ポリエステルフィルム Download PDF

Info

Publication number
JP2014170913A
JP2014170913A JP2013167216A JP2013167216A JP2014170913A JP 2014170913 A JP2014170913 A JP 2014170913A JP 2013167216 A JP2013167216 A JP 2013167216A JP 2013167216 A JP2013167216 A JP 2013167216A JP 2014170913 A JP2014170913 A JP 2014170913A
Authority
JP
Japan
Prior art keywords
polyester
film
raw material
polyester film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013167216A
Other languages
English (en)
Inventor
Yuna Miyawaki
有奈 宮脇
Kenji Sugie
健志 杉江
Kotaro Nozawa
晃太郎 能澤
Yasuhito To
泰人 棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2013167216A priority Critical patent/JP2014170913A/ja
Publication of JP2014170913A publication Critical patent/JP2014170913A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】 耐加水分解性と低収縮率を両立し、生産性良く、低コスト化された太陽電池裏面封止用二軸配向ポリエステルフィルムを提供する。
【解決手段】 極限粘度(IV)が0.62dl/g以上0.73dl/g以下であり、末端カルボキシル基量(AV)が35当量/t以下であり、リン元素含有量が170ppm未満であり、15重量%以上の回収ポリエステルを含有することを特徴とする太陽電池裏面封止用二軸配向ポリエステルフィルム。
【選択図】 なし

Description

本発明は、耐加水分解性と低収縮率を両立し、生産性良く、低コスト化された太陽電池用裏面封止用二軸配向ポリエステルフィルムに関するものである。
光電変換効果を利用して光エネルギを電気エネルギに変換する太陽光発電は、クリーンエネルギを得る手段として広く行われている。そして、太陽電池セルの光電変換効率の向上に伴って、多くの個人住宅にも太陽光発電システムが設けられるようになってきている。このような太陽光発電システムを実際のエネルギ源として用いるために、複数の太陽電池セルを電気的に直列に接続させた構成をなす太陽電池モジュールが使用されている。
太陽電池モジュールは高温高湿度環境で長期間使用されるので、太陽電池裏面封止用フィルムにも長期耐久性が求められる。例えば、特許文献1に、太陽電池裏面封止用フィルムとしてフッ素系フィルムを用いた技術が開示されている。この文献にはフッ素系フィルムに予め熱処理を施すことで、フッ素系フィルムの熱収縮率を予め低減させることが可能となり、封止材であるエチレンビニルアセテート(以下、EVAと略記することがある)との真空ラミネート加工時の、耐候性や耐水性を初めとする物性の低下防止や、歩留まりの向上にも効果のあると記載されている。しかし、フッ素系フィルムは高価であるので、太陽電池モジュールも高価なものになってしまうという問題がある。
太陽電池裏面封止用フィルムとして、ポリエステル系フィルムが用いられている技術が開示されている。ポリエステル系フィルムを、高温高湿度環境で使用すると、分子鎖中のエステル結合部位の加水分解が起こり、機械的特性が劣化することが知られている。よって、ポリエステル系フィルムを屋外で長期(20年)にわたって使用する場合、あるいは高湿度環境で使用する場合を想定して、加水分解を抑制すべく様々な検討が行われている。
ポリエステルの加水分解は、ポリエステル分子鎖の末端カルボキシル基量が高いほど分解が速いことが知られている。よって、特許文献2や特許文献3には、カルボン酸と反応する化合物を添加することで、分子鎖末端のカルボキシル基量を低減させることによる耐加水分解性を向上させる技術が開示されている。しかし、これらの化合物は、製膜プロセスでの溶融押出工程、または、マテリアルリサイクル工程において、ゲル化を誘発し、異物を発生させる可能性が高く、環境的にもコスト的にも好ましくない。また、フィルムの収縮率も高いため、太陽電池モジュール製造時のフィルムとして適していない。
特許文献4には、ポリエステルの触媒と重合方法を最適化することで、ポリエステル分子鎖の末端カルボキシル基を低くする以外に、フィルムの極限粘度を高くすることで、耐加水分解性を向上させる技術が開示されている。しかし、回収原料を含有させていないため、コスト的に好ましくない。
特開2002−83978公報 特開平9−227767号公報 特開平8−73719号公報 特開2012−017456公報
本発明は、上記実状に鑑みなされたものであって、耐加水分解性と低収縮率を両立し、生産性良く、低コスト化された太陽電池裏面封止用二軸配向ポリエステルフィルムを提供することにある。
本発明者らは、上記実状に鑑み鋭意検討した結果、特定の構成からなるポリエステルフィルムを用いることにより、上述の課題を解決できることを見いだし、本発明を完成させるに至った。
すなわち、本発明の要旨は、極限粘度(IV)が0.62dl/g以上0.73dl/g以下であり、末端カルボキシル基量(AV)が35当量/t以下であり、リン元素含有量が170ppm未満であり、15重量%以上の回収ポリエステルを含有することを特徴とする太陽電池裏面封止用二軸配向ポリエステルフィルムに存する。
本発明によれば、基材となるポリエステルフィルムが高温高湿度環境下でも優れた耐加水分解性を有し、太陽電池モジュール製造に適した低収縮率であり、コストも低く抑えられた、太陽電池裏面保護材用ポリエステルフィルムを提供することができ、本発明の工業的価値は高い。
本発明のフィルムの基材として使用するポリエステルは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られる芳香族ポリエステルを指す。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4―シクロヘキサンジメタノール等が挙げられる。これらのポリエステルの中でも、ポリエチレンテレフタレート(PET)は、コストと性能のバランスに優れており、本発明においては、ポリエステルフィルムとしてポリエチレンテレフタレートフィルムを好ましく用いることができる。
本発明の基材となるポリエステルフィルムのポリエステル原料は、通常ポリエステルの重合でよく用いられるアンチモン、チタン、ゲルマニウム、アルミニウムなどの金属化合物重合触媒を用いることができる。ただし、これらの触媒量が多いと、フィルム化のためのポリエステルを溶融させた際に、分解反応起きやすくなり、分子量の低下などにより末端カルボキシル基濃度が高くなり、耐加水分解性が劣るようになる。一方で重合触媒量が少な過ぎる場合には、重合反応速度が低下するので、重合時間が長くなって末端カルボキシル基濃度が高くなり、結果的に耐加水分解性を悪化させることになる。このため、本発明においては、アンチモンであれば通常50〜400ppm、好ましくは100〜350ppm、チタンであれば通常1〜20ppm、好ましくは2〜15ppm、ゲルマニウムであれば通常3〜50ppm、好ましくは5〜40ppm、アルミニウムであれば通常1〜20ppm、好ましくは2〜15ppmの範囲とするのがよい。またこれらの重合触媒は、2種類以上を組み合わせて使用することも可能である。尚、本発明のポリエステルフィルム中の化合物の量は、蛍光X線分析装置を用いた分析にて検出が可能である。
本発明のポリエステルフィルムで用いるポリエステル原料の触媒はチタンであることが、重合活性の観点から好ましい。また、チタン元素含有量は10ppm以下である必要があり、好ましくは9ppm以下、さらに好ましくは8ppm以下である。下限については特に設けないが、実際には2ppm程度が現在の技術では下限となる。チタン化合物の含有量が多すぎると、チタン原子の活性化が高いため、ポリエステルを溶融押出する工程でオリゴマーが副生成しやすく、その結果裏面保護材とした際の他部材との接着性に劣る。また、チタン元素を全く含まない場合、ポリエステル原料製造時の生産性が劣り、目的の重合度に達したポリエステル原料を得られない。
本発明の基材となるポリエステルフィルムは、フィルム全体を測定したときに、後述する蛍光X線分析装置を用いた分析にて検出されるリン元素量が170ppm未満であり、好ましくは0〜50ppmの範囲であり、0ppmであってもよい。当該リン元素は、通常はリン酸化合物に由来するものであって、ポリエステル製造時に触媒成分として添加される。本発明においては、リン元素量が上記範囲を満足することにより、耐加水分解性をフィルムに付与することができる。リン元素量が多すぎると、リン酸化合物が原因となる加水分解を促進することになるため好ましくない。ポリエステルフィルムの耐加水分解性は、フィルム全体に関連する特性であり、本願発明においては含有するリンの含有量は、当該フィルムを構成するポリエステル全体として含有量が前述の範囲であることが好ましい。
リン酸化合物の例としては、リン酸、亜リン酸あるいはそれらのエステル、ホスホン酸化合物、ホスフィン酸化合物、亜ホスホン酸化合物、亜ホスフィン酸化合物など公知のものが該当し、具体例としては、正リン酸、モノメチルフォスフェート、ジメチルフォスフェート、トリメチルフォスフェート、モノエチルフォスフェート、ジエチルフォスフェート、トリエチルフォスフェート、エチルアシッドホスフェート、モノプロピルフォスフェート、ジプロピルフォスフェート、トリプロピルフォスフェート、モノブチルフォスフェート、ジブチルフォスフェート、トリブチルフォスフェート、モノアミルフォスフェート、ジアミルフォスフェート、トリアミルフォスフェート、モノヘキシルフォスフェート、ジヘキシルフォスフェート、トリヘキシルフォスフェートなどが挙げられる。
本発明のポリエステルフィルム中には、易滑性付与を主たる目的として粒子を配合してもよい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸マグネシウム、炭酸バリウム、酸化珪素、カオリン、酸化アルミニウム、炭酸カルシウム、硫酸カルシウム等の粒子が挙げられる。また、特公昭59―5216号公報、特開昭59―217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
ポリエステルフィルム中に上記の易滑性付与粒子等を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、原料となるポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後に添加し、重縮合反応を進めてもよい。また、ベント付き二軸押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とを混錬する方法、または乾燥させた粒子とポリエステル原料とを混錬する方法などによって行われる。特に着色顔料や白色顔料の場合には、高濃度のマスターバッチとしてポリエステル原料に添加しておき、フィルムの製膜時にこれを希釈する形で使用することが、フィルムを構成するポリエステルの末端カルボキシル基量を低くする点で好ましい。
なお、本発明のポリエステルフィルム中には、上述の易滑性付与粒子等の他に、必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、蛍光増白剤、染料等を添加することができる。また、耐光性を向上する目的で、ポリエステルに対して0.01〜5重量部の範囲で紫外線吸収剤を含有させることができる。この紫外線吸収剤には、トリアジン系、ベンゾフェノン系、ベンゾオキサジノン系などを挙げることができるが、これらの中でも、特にトリアジン系紫外線吸収剤等が好ましく用いられる。また、これらの紫外線吸収剤は、後述するようにフィルム自体が3層以上の積層構造である場合には、その中間層に添加する方法も好ましく用いることができる。もちろん、これらの紫外線吸収剤や添加剤は、高濃度マスターバッチとして作成し、これを製膜時に希釈使用することができる。
本発明においては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとすることができる。層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/A構成、さらにC原料を用いてA/B/C構成またはそれ以上に層の数を増やした構成のフィルムとすることができる。
本発明のポリエステルフィルムは、後述する測定方法によってフィルム全体(塗布層があれば塗布層を除いた部分)の末端カルボキシル基量(AV)を測定したときに、35当量/トン以下であることが必要であり、好ましくは26当量/トン以下、さらに好ましくは23当量/トン以下である。末端カルボキシル基量が35当量/トンを超えると、ポリエステルフィルムの耐加水分解性が劣る傾向となる。ポリエステルフィルムの耐加水分解性は、フィルム全体に関連する特性であり、本願発明においては、当該フィルムを構成するポリエステル全体として末端カルボキシル基量が前述した範囲であることが必要である。一方、本願発明の耐加水分解性を鑑みると、ポリエステルの末端カルボキシル基量の下限はないが、重縮合反応の効率、溶融押出工程での加水分解や熱分解等の点から通常は5当量/トン程度である。
本発明のポリエステルフィルムは、後述する測定方法によってフィルム全体(塗布層を除いた部分)の極限粘度(IV)を測定したときは、0.62dl/g以上であることが必要で、好ましくは0.65dl/g以上で、さらに好ましくは0.67dl/gある。ポリエステルフィルムの極限粘度を0.62dl/g以上とすると、長期耐久性や耐加水分解性が良好なポリエステルフィルムが得られる。一方、ポリエステルフィルムの極限粘度の上限は0.73dl/g以下で、好ましくは0.71dl/g以下、さらに好ましくは0.68dl/g以下である。ポリエステルフィルムの極限粘度を0.73dl/g以下とすることで、ポリエステルフィルムの生産時において押出機の負荷を低減させることとなり、吐出量が向上し、また生産性の良好なポリエステルフィルムを提供することができる。
また、熱分解や加水分解を抑制するために触媒として働きうる金属化合物をできる限り含まないことが好ましいが、フィルムの生産性を向上すべく溶融時の体積固有抵抗値を低くするため、マグネシウム、カルシウム、リチウム、マンガン等の金属を、通常ポリエステル成分中に300ppm以下、好ましくは250ppm以下であれば含有させることができる。また、後述する粒子や各種添加剤を配合するために、マスターバッチ法を利用するなどの方法を用いる場合などでは、重合触媒の金属成分としてアンチモンを含有することもできる。なお、ここでいう金属化合物には、後述するポリエステル中に配合する粒子は含まない。
本発明のフィルム中には、必要に応じて、易滑性付与を主たる目的として易滑性付与可能な粒子を配合してもよい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、酸化珪素、カオリン、酸化アルミニウム等の粒子が挙げられる。また、特公昭59―5216号公報、特開昭59―217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
また、用いる粒子の平均粒径は、通常0.01μm〜10μmが好ましい。平均粒径が0.01μm未満の場合には、フィルムに易滑性を与える効果が不足することがある。一方、10μmを超える場合には、フィルム生産時に破断が頻発して生産性が低下する場合がある。
なお、本発明のポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、染料を添加することができる。また、耐候性を向上する目的で、ポリエステル成分に対して0.01重量部〜5.0重量部の範囲で紫外線吸収剤、特にベンゾオキサジノン系紫外線吸収剤等を含有させることができる。
本発明のポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10μm〜500μm、好ましくは15μm〜400μm、さらに好ましくは20μm〜300μmの範囲である。
本発明においては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとすることができる。層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/A構成、さらにC原料を用いてA/B/C構成またはそれ以外の構成のフィルムとすることができる。
本発明において得られたポリエステルフィルムは、150℃×30分の長手方向の収縮率が0.8%以下であることが好ましく、より好ましくは0.6%以下、さらに好ましくは0.4%以下である。ポリエステルフィルムの収縮率が0.8%以下であると、太陽電池モジュール製造時における真空ラミネート工程において、ポリエステルフィルムの収縮によるカールの低減や、EVAに封止されている太陽電池セルの位置ずれの防止に寄与する。
ポリエステルフィルムは、口金から溶融押出しされ急冷固化された非晶質ポリエステルシートを延伸して得られる。そして、ポリエステルフィルムの製造時において、ポリエステルシートの端部は、押出しの際、ネックイン現象により厚くなり、クリップの噛み代として使用される。製品化するときに、ポリエステルフィルムの端部は、耳部フィルムとして切断分離される。また、耳部を取り除かれたマスターロールも、製品サイズにスリット時に、余剰のスリット耳が切断分離される。
本発明での回収ポリエステルとは、上述のような切断分離された耳部フィルムやスリット耳を粉砕機にて粉砕化したフレーク化物、フレーク化物を乾燥して単軸押出機で溶融押出されたペレット化物、未乾燥のフレーク化物をベント付ニ軸押出機で溶融押出されたペレット化物等のことを示す。
本発明のポリエステルフィルム中の回収ポリエステルの含有量は、生産性やコストの観点から、15重量%以上、より好ましくは20重量%以上、さらに好ましくは25重量%以上、最も好ましくは30重量%以上である。本発明のポリエステルフィルム中の回収ポリエステルの含有量の上限は特に設けないが、耐加水分解性の観点から80重量%以下、より好ましくは70重量%以下、さらに好ましくは60重量%以下、最も好ましくは50重量%以下である。
また、耐加水分解性を維持する観点から、溶融押出されたペレット化物より、切断分離された耳部フィルムやスリット耳を粉砕機にて粉砕化したフレーク化物を回収ポリエステルとして優先的に使用した方が好ましい。
本発明において、ポリエステルフィルムの末端カルボキシル基量と極限粘度を特定範囲とするため、フィルム製造での、ポリエステル原料を溶融押出する工程において、a)ポリエステルチップに含まれる水分によって加水分解を受けることを極力避けること、b)押出機およびメルトライン内でのポリエステルの滞留時間をできるだけ短くすること、などによって行われる。a)の具体的な例としては、一軸押出機を使用する場合は、原料をあらかじめ水分量が50ppm以下、好ましくは30ppm以下になるように十分乾燥すること、二軸押出機を使用する場合は、ベント口を設け、40ヘクトパスカル以下、好ましくは30ヘクトパスカル以下、さらに好ましくは20ヘクトパスカル以下の減圧を維持すること等の方法を採用することができる。b)の具体的な例としては、押出機への原料投入から溶融シートが口金から吐出し始めるまでの滞留時間として、20分以下、さらには15分以下とすることが好ましい。
上述のような切断分離された耳部フィルムやスリット耳を粉砕機にて粉砕化したフレーク化物、未乾燥の状態で押出機に直接供給できる点で、ベント付きニ軸押出機をポリエステルフィルム製膜時に使用するほうが好ましい。
以下、本発明のポリエステルフィルムの製造方法に関して具体的に説明するが、本発明の要旨を満足する限り、本発明は以下の例示に特に限定されるものではない。
すなわち、公知の手法により乾燥したまたは未乾燥のポリエステルチップ(ポリエステル成分)を混練押出機に供給し、ポリエステル成分の融点以上である温度に加熱し溶融する。次いで、溶融したポリエステルをダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。溶融押出工程においても、条件により末端カルボキシル基量が増加するので、本願発明においては、押出工程における押出機内でのポリエステルの滞留時間を短くすること、一軸押出機を使用する場合は原料をあらかじめ水分量が50ppm以下、好ましくは30ppm以下になるように十分乾燥すること、二軸押出機を使用する場合はベント口を設け、40ヘクトパスカル以下、好ましくは30ヘクトパスカル以下、さらに好ましくは20ヘクトパスカル以下の減圧を維持すること等の方法を採用する。
本発明においては、このようにして得られたシートを2軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを好ましくは縦方向に70℃〜145℃で2〜6倍に延伸し、縦1軸延伸フィルムとした後、横方向に90℃〜160℃で2〜6倍延伸を行い、熱固定工程に移る。
熱固定は160℃〜240℃で1秒〜600秒間の熱処理を行うことが好ましく、さらに好ましくは、170℃〜230℃である。熱固定温度が160℃未満であると、長手方向の収縮率が高すぎて、アニール処理条件が過酷となり、その結果得られたフィルムの歪みも大きくなり実用に供することができない。一方熱固定温度を240℃以上とすると、耐加水分解性の良好なポリエステルフィルムを得ることができない。
本発明での、アニール処理とは、上記熱固定された二軸延伸ポリエステルフィルムを、実質的に張力のかからない状態で熱処理を行うことを指す。
アニール処理時の熱処理温度は、ガラス転移温度〜二軸配向ポリエステルフィルムの融点から40℃以上低い温度範囲であることが好ましい。
アニール処理をする際に、二軸延伸ポリエステルフィルムに大きな張力がかかっていると延伸されるので、二軸延伸ポリエステルフィルムに実質的に張力がかからない状態でアニールするのが好ましい。実質的に張力がかからない状態とは、具体的にはアニール処理時のフィルム張力(kgf)が、100以下のことを指し、好ましくは50以下、より好ましくは30以下である。
アニール処理の形態としては、フィルムの製造過程にアニール処理をするインラインアニール処方でも、フィルムの製造後に処理をするオフラインアニール処方などが考えられるが、アニールする時間がフィルムの製造速度に制限されないオフラインアニール処方が好ましい。
アニールする時間は特に限定されず、二軸延伸ポリエステルフィルムの厚さやアニール温度により異なるが、一般に5秒〜10分が好ましく、より好ましくは10秒〜5分であり、さらに好ましくは15秒〜2分である。
アニール処理を施す赤外線加熱炉について特に限定はないが、例えば、炉内上部に走行フィルム幅より広い赤外線ヒーターを走行フィルムの全幅をカバーするように、多数、一定間隔で設置したものが好ましい。
赤外線ヒーターについては、近赤外線ヒーター、シーズヒーターを含む遠赤外線ヒーター双方が利用できるがフィルムに与える熱ダメージの点で近赤外線ヒーターが好ましい。
フィルムの熱処理は、炉内雰囲気を所定の温度にして行われるが、この温度については、例えば、次のような方法で調整できる。炉内の隣接するヒーター/ヒーター間、かつ走行フィルム上、5cm程度のフィルム近接位置に熱電対温度検出端を設置し、各位置の雰囲気温度を測定する。この雰囲気温度は、設置する個々のヒーターの出力、ヒーター本数、ヒーター設置間隔、走行フィルムとヒーターとの距離、炉内換気等によって変えることができるが、例えば可変出力の棒状近赤外線ヒーターの出力を0.5〜1.2kW/mの範囲で調整すると共に、適宜一定風量換気を行うことによりフィルム近接雰囲気温度を好ましい領域、すなわち150〜220℃の範囲とすることができる。
赤外線加熱炉では、走行フィルム近接位置での雰囲気温度が熱風式加熱炉の同位置での雰囲気温度より低温域であっても同等以上の加熱効果が得られるという特徴がある。このために熱風式加熱炉では、達成できなかった処理の短時間化、効率化が得られると共に、短時間処理であるためにフィルム歪みも小さくすることが可能となる。
ポリエステルフィルムへ上記のようなアニール処理を行うことにより、150℃×30分での長手方向の加熱収縮率を0.8%以下とすることが可能となる。
ポリエステルフィルムの耐加水分解性は、フィルム全体に関連する特性であり、本願発明においては、共押出による積層構造を有するフィルムの場合、当該フィルムを構成するポリエステル成分全体として、リンの含有量、末端カルボキシル基量、極限粘度が上記の範囲であることが必要である。
本発明において、ポリエステルフィルム中のポリエステル成分の末端カルボキシル基量を特定範囲とするため、例えば、ポリエステルチップの押出工程における押出機内でのポリエステル成分の滞留時間を短くすることなどによってポリエステルフィルムは得られる。また、低末端カルボキシル基量のポリエステルチップを製膜することで、末端カルボキシル基量が特定範囲のポリエステルフィルムを得てもよい。
本発明においては、前記延伸工程においてまたはその後に、フィルムに接着性、帯電防止性、滑り性、離型性等を付与するために、フィルムの片面または両面に塗布層を形成したり、コロナ処理等の放電処理を施したりすることなどもできる。
以下、実施例によって本発明をさらに具体的に説明するが、本発明はその趣旨を超えない限り、この実施例に限定されるものではない。なお、フィルムの諸物性の測定および評価方法を以下に示す。
(1)触媒由来元素の定量
蛍光X線分析装置(島津製作所社製型式「XRF−1500」)を用いて、下記表1に示す条件下で、単枚測定でフィルム中の元素量を求めた。積層フィルムの場合はフィルムを溶融してディスク状に成型して測定することにより、フィルム全体に対する含有量を測定した。
Figure 2014170913
(2)末端カルボキシル基量(eq/t)
いわゆる滴定法によって、末端カルボキシル基量の量を測定した。すなわちポリエステルフィルムをベンジルアルコールに溶解し、フェノールレッド指示薬を加え、水酸化ナトリウムの水/メタノール/ベンジルアルコール溶液で滴定することで、末端カルボキシル基量(eq/t)を求めた。
(3)極限粘度dl/g
ポリエステルフィルムをフェノール/テトラクロロエタン=50/50(重量比)の混合溶媒中に溶解し、毛細管粘度計を用いて、1.0(g/dl)の濃度の溶液の流下時間、および、溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用いて、極限粘度を算出した。その際、Huggins定数を0.33と仮定した。
(4)ガラス転移温度(Tg)
動的粘弾性装置(DVA−200 アイティー計測制御株式会社製)によって、二軸配向ポリエステルフィルムを、周波数10Hz、昇温速度10℃/minの条件下で測定した損失正接tanδのα分散によるピーク温度とする。
(5)融点(Tm)
パ−キンエルマ社製DSC7型で10℃/min.の昇温速度で得られた結晶融解による吸熱ピ−ク温度を融点とした。
(6)収縮率
無張力状態で150℃雰囲気中30分間、熱処理しその前後のサンプルの長さを測定することにより次式にて計算した。
加熱収縮率(%)=(L1−L0)/L0×100
(上記式中、L1は熱処理前のサンプル長(mm)、L0は熱処理後のサンプル長(mm)である)
◎:長手方向の収縮率が0.4%以下
○:長手方向の収縮率が0.4%より高く0.8%以下
△:長手方向の収縮率が0.8%より高く1.0%以下
×:長手方向の収縮率が1.0%より高い
(7)フィルム伸度耐加水分解性
平山製作所製 パーソナルプレッシャークッカーPC−242HS−Eを用いて、120℃―100%RHの雰囲気にてフィルムを60時間処理した。次いで、23℃×50%RHで24時間調温・調湿した後、フィルムの機械的特性として、製膜方向(MD)の破断伸度を測定した。測定には株式会社島津製作所製 万能試験機AUTOGRAPHを使用し、幅15mmのサンプルで、チャック間50mmとして、引張り速度200mm/分の条件で行った。処理前後での破断伸度の保持率(%)を下記の式(1)にて算出し、下記の基準で判断した。
破断伸度保持率=処理後の破断伸度÷処理前の破断伸度×100 …(1)
◎:保持率が80%以上
○:保持率が60〜80%未満
△:保持率が20〜60%未満
×:保持率が20%未満
(8)原料コスト
本発明のポリエステルフィルム中の回収ポリエステルの含有量が、
◎:回収ポリエステルの含有量が60重量%以上
○:回収ポリエステルの含有量が30〜60重量%未満
△:回収ポリエステルの含有量が15〜30重量%未満
×:回収ポリエステルの含有量が15重量%未満
(9)フィルムの生産性
本発明のポリエステルフィルムのマスターロール生産時のポリエステル原料の吐出量により、下記基準で判定した。
◎:600kg/hr以上
○:450〜600kg/hr未満
△:300〜450kg/hr未満
×:300kg/hr未満
(10)総合評価
本発明のポリエステルフィルムの(6)〜(9)の評価において、最も低いグレードだった評価指標を総合評価とする。
次に以下の例で使用したポリエステル原料について説明する。
<ポリエステル原料(1)の製造法>
スラリー調製槽、及びそれに直列に接続された2段のエステル化反応槽、及び2段目のエステル化反応槽に直列に接続された3段の溶融重縮合槽からなる連続重合装置を用い、スラリー調製槽に、テレフタル酸とエチレングリコールをそれぞれ毎時865重量部、485重量部で連続的に供給すると共に、エチルアシッドホスフェートの0.3重量%エチレングリコール溶液を、得られるポリエステル樹脂1t当たりの燐原子としての含有量が0.129モル/樹脂tとなる量で連続的に添加して、攪拌、混合することによりスラリーを調製した。このスラリーを、窒素雰囲気下で260℃、相対圧力50kPa(0.5kg/cm)、平均滞留時間4時間に設定された第1段目のエステル化反応槽、次いで、窒素雰囲気下で260℃、相対圧力5kPa(0.05kg/cm)、平均滞留時間1.5時間に設定された第2段目のエステル化反応槽に連続的に移送して、エステル化反応させた。又、その際、第2段目のエステル化反応槽に設けた上部配管を通じて、酢酸マグネシウム4水和物の0.6 重量% エチレングリコール溶液を、得られるポリエステル樹脂1t当たりのマグネシウム原子としての含有量が0.165モル/樹脂tとなる量で連続的に添加すると共に、第2段目のエステル化反応槽に設けた別の上部配管を通じてエチレングリコールを毎時60重量部連続的に追加添加した。
引き続いて、前記で得られたエステル化反応生成物を連続的に溶融重縮合槽に移送する際、その移送配管中のエステル化反応生成物に、テトラ−n−ブチルチタネートを、チタン原子の濃度0.15重量%、水分濃度を0.5重量%としたエチレングリコール溶液として、得られるポリエステル樹脂1t当たりのチタン原子としての含有量が0.084モル/樹脂tとなる量で連続的に添加しつつ、270℃、絶対圧力2.6kPaに設定された第1段目の溶融重縮合槽、次いで、278℃、絶対圧力0.5kPaに設定された第2段目の溶融重縮合槽、次いで、280℃、絶対圧力0.3kPaに設定された第3段目の溶融重縮合槽に連続的に移送して、得られるポリエステル樹脂の極限粘度が0.65dl/gとなるように各重縮合槽における滞留時間を調整して溶融重縮合させ、重縮合槽の底部に設けられた抜き出し口から連続的にストランド状に抜き出して、水冷後、カッターで切断してチップ状粒状体としたポリエステル原料(1)を製造した。末端カルボキシル基量は14当量/tであった。
<ポリエステル原料(2)の製造法>
ポリエステル原料(1)を出発原料とし、窒素雰囲気下で約160℃に保持された攪拌結晶化機内に滞留時間が約60分となるように連続的に供給して結晶化させた後、塔型の固相重縮合装置に連続的に供給し、窒素雰囲気下215℃で、得られるポリエステル樹脂の極限粘度が0.82dl/gとなるように滞留時間を調整して固相重縮合させ、ポリエステル原料(2)を得た。末端カルボキシル基量は7当量/tであった。
<ポリエステル原料(3)の製造法>
攪拌機付き2リッターステンレス製オートクレーブに高純度テレフタル酸とエチレングリコールを仕込み、常法に従ってエステル化反応を行い、オリゴマー混合物を得た。このオリゴマー混合物に重縮合触媒として、(1)塩基性酢酸アルミニウムを20g/lのアルミニウム化合物含有量となるように調整したエチレングリコール溶液と、(2)4Lのエチレングリコールに3、5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルを200g加えて185℃にて60分間還流下で攪拌後に冷却して得られたリン化合物のエチレングリコール溶液の混合物とを、アルミニウム元素の残存量が20ppm、リン元素の残存量が80ppmとなるように添加した。次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Pa下でポリエステルの極限粘度が0.55dl/gになるまで重縮合反応を行った。反応槽から取り出した溶融重縮合反応生成物は、ダイからストランド状に押出して冷却固化し、カッターで切断して1個の重さが平均粒重24mgのポリエステル樹脂チップ:ポリエステルチップ化した。ポリエステルチップの極限粘度は0.56dl/g、末端カルボキシル基量は13当量/tであった。上記の溶融重合によって得たポリエステルチップを0.5mmHgの減圧下、220℃で固相重合を行い、極限粘度が0.78dl/g、末端カルボキシル基量が7当量/tのポリエステル(3)を得た。
<ポリエステル原料(4)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてテトラ−n−ブチルチタネートを得られるポリエステル樹脂1t当たりのチタン原子としての含有量が5g/樹脂tとなる量で加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物を重縮合槽に移し、平均粒子径2 .5μmのシリカ粒子のエチレングリコールスラリーを、粒子のポリエステルに対する含有量が3.0重量%となるように添加し、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.60に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル原料(4)を得た。極限粘度は0.64dl/g、末端カルボキシル基量は21当量/tであった。
<ポリエステル原料(5)の製造法>
ポリエステル原料(4)製造方法において、の平均粒子径2 .5μmのシリカ粒子のエチレングリコールスラリーの代わりに、平均粒子径0.8μmの合成炭酸カルシウム粒子のエチレングリコールスラリーを粒子のポリエステルに対する含有量が1重量%となるように添加した以外は、ポリエステル原料(4)の製造方法と同様の方法を用いてポリエステル原料(5)を得た。極限粘度は0.62dl/g、末端カルボキシル基量は23当量/tであった。
<ポリエステル原料(6)の製造法>
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム四水塩を0.02部加えて反応器にとり、反応開始温度を150℃ とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドホスフェート0.03部を添加した後、重縮合槽に移し、三酸化アンチモンを0.04部加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステルのチップを得た。この、ポリエステルの極限粘度は0.63dl/g、ポリマーの末端カルボキシル基量は45当量/tであった。上記ポリエステルチップを出発原料とし、真空下220℃にて固相重合を行って、ポリエステル原料(6)を得た。ポリエステル原料(6)の極限粘度は0.85dl/g、ポリマーの末端カルボキシル基量は32当量/tであった。
<ポリエステル原料(7)の製造法>
ポリエステル(1)の製造において、エステル交換反応後に正リン酸0.12部を添加した後、三酸化アンチモン0.04部、エチレングリコールに分散させた平均粒子径2.6μmのシリカ粒子0.08重量部を加えた以外は同様の方法で、ポリエステル原料(7)を得た。得られたポリエステル原料(7)の極限粘度は0.63、ポリマーの末端カルボキシル基量は14当量/トンであった。
<ポリエステル原料(8)の製造法>
ポリエステル原料(2)の製造において、出発原料をポリエステル原料(7)とすること以外は、同様の方法で、ポリエステル原料(8)を得た。得られたポリエステル原料(8)の極限粘度は0.80、ポリマーの末端カルボキシル基量は9当量/トンであった。
<回収ポリエステル(1)の製造法>
表層の原料としてポリエステル原料(1)70重量%と、ポリエステル原料(5)30重量%を混合し、中間層の原料として、ポリエステル原料(1)84重量%とポリエステル原料(5)16重量%を混合し、2台のベント付きニ軸押出機に各々供給し、290℃で溶融押出した後、静電印加密着法を用いて表面温度を40℃に設定した冷却ロール上で冷却固化して未延伸シートを得た。次いで、100℃にて縦方向に2.8倍延伸した後、テンター内で予熱工程を経て120℃で5.1倍の横延伸を施した後、220℃で10秒間の熱処理を行い、その後180℃で幅方向に4%の弛緩を加え、全厚みが38μm(層構成:表層4μm/中間層30μm/表層4μm)の幅2000mmのポリエステルフィルムのマスターロールを得た。本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルムを得た。本スリット時に、生成された余剰のスリット耳として切断分離を行った。切断分離された耳部フィルム及びスリット耳を粉砕機にて粉砕化した。得られた粉砕化物を乾燥後単軸押出機に供給し、290℃環境下で溶融押出後、ペレット化したポリエステルを、回収ポリエステル(1)とする。回収ポリエステル(1)の極限粘度は0.55dl/g、末端カルボキシル基量は43当量/tであった。
実施例1:
上記ポリエステル原料(2)およびポリエステル原料(4)を96.0:4.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;450kg/hr、シリンダー温度;290℃で溶融押出し、口金から流出した非晶質のポリエステルシートを、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、クリップで掴まれた縦延伸シートを横方向に120℃で3.8倍延伸し、200℃で熱処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルムのマスターロールを得た。本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルムを得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。切断分離された耳部フィルム及びスリット耳を粉砕機にて粉砕化した。得られた粉砕化物を、回収ポリエステル(2)とする。回収ポリエステル(2)のIVは0.73dl/g、AVは13当量/tであった。
上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(2)を未乾燥の状態にて、76.8:3.2:20.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;450kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、200℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A1)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。粉砕機にて粉砕化して、回収ポリエステル用に貯めた。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A1)を得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。粉砕機にて粉砕化して、回収ポリエステル用に貯めた。
製品幅1200mm幅のポリエステルフィルム(A1)の余剰分をスリットしたポリエステルフィルムを赤外線ヒーター直接加熱炉に通し、最高雰囲気温度190℃ゾーンで処理時間16秒、処理時フィルム張力を13kgfで処理し、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例2:
上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(1)を68.0:4.0:28.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;500kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、210℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A2)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A2)を得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A2)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
切断分離された耳部フィルム及びスリット耳を粉砕機にて粉砕化した。得られた粉砕化物を、回収ポリエステル(3)とする。回収ポリエステル(3)のIVは0.67dl/g、AVは22当量/tであった。
実施例3:
上記ポリエステル原料(2)、ポリエステル原料(4)、回収ポリエステル(1)、回収ポリエステル(3)を48.0:4.0:28.0:20.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;500kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、205℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A3)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行い、粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A3)を得た。本スリット時に、生成された余剰のスリット耳もまた粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A3)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例4:
上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(1)を46.0:4.0:50.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;600kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、195℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A4)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行い、粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A4)を得た。本スリット時に、生成された余剰のスリット耳もまた粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A4)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例5:
実施例2において、ポリエステル原料(2)ではなく、ポリエステル原料(3)にすることを除き、実施例2と同様な方法でポリエステルフィルム(A5)を得、実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A5)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例6:
粉砕化物である回収ポリエステル(2)を乾燥後単軸押出機に供給し、290℃環境下で溶融押出後、ペレット化したポリエステルを、回収ポリエステル(4)とする。回収ポリエステル(4)の極限粘度は0.67dl/g、末端カルボキシル基量は20当量/tであった。上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(4)を26.2:3.8:70.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;500kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、200℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A6)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A6)を得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A6)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例7:
実施例4において、アニール処理時のフィルム張力(kgf)を20kgfとすることを除いて、実施例4と同様の方法で、フィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す
実施例8:
実施例4において、アニール処理時の最高雰囲気温度を170℃とすることを除いて、実施例4と同様の方法で、フィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す
実施例9:
実施例2において、アニール処理時間を32秒とすることを除いて、実施例2と同様の方法で、フィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す
実施例10:
上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(1)を46.0:4.0:50.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;600kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、165℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(A7)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行い、粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(A7)を得た。本スリット時に、生成された余剰のスリット耳もまた粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(A7)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表2に示す。
実施例11:
実施例4において、アニール処理を行わなかった以外は、実施例2と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表2に示す。
比較例1:
上記ポリエステル原料(2)およびポリエステル原料(4)を96.0:4.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;300kg/hr、シリンダー温度;290℃で溶融押出し、口金から流出した非晶質のポリエステルシートを、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、クリップで掴まれた縦延伸シートを横方向に120℃で3.8倍延伸し、200℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルム(B1)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行い廃棄した。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(B1)を得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行い廃棄した。得られたポリエステルフィルムの評価結果は表4に示す。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(B1)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表3に示す。
比較例2:
上記ポリエステル原料(2)およびポリエステル原料(4)を96.0:4.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;200kg/hr、シリンダー温度;280℃で溶融押出し、口金から流出した非晶質のポリエステルシートを、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、クリップで掴まれた縦延伸シートを横方向に120℃で3.8倍延伸し、200℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルムのマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルムを得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。
切断分離された耳部フィルム及びスリット耳を粉砕機にて粉砕化した。得られた粉砕化物を回収ポリエステル(5)とする。回収ポリエステル(5)のIVは0.75dl/g、AVは11当量/tであった。
上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(5)を未乾燥の状態にて、76.8:3.2:20.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;200kg/hr、シリンダー温度;280℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、205℃で熱固定処理を行った後、弛緩し、厚さ250μmのポリエステルフィルム(B2)のマスターロールを得た。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(B2)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表3に示す。
比較例3:
実施例2において、ポリエステル原料(2)ではなく、ポリエステル原料(6)にすることを除き、実施例2と同様な方法でポリエステルフィルム(B3)を得、実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(B3)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表3に示す。
比較例4:
上記ポリエステル原料(1)およびポリエステル原料(4)を96:4の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;500kg/hr、シリンダー温度;290℃で溶融押出し、口金から流出した非晶質のポリエステルシートを、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、クリップで掴まれた縦延伸シートを横方向に120℃で3.8倍延伸し、221℃で熱固定処理を行った後、弛緩し、厚さ250μm、幅2000mmのポリエステルフィルムのマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行った。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルムを得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行った。
切断分離された耳部フィルム及びスリット耳を粉砕機にて粉砕化した。得られた粉砕化物を、回収ポリエステル(6)とする。回収ポリエステル(6)のIVは0.62dl/g、AVは20当量/tであった。
上記ポリエステル原料(1)、ポリエステル原料(4)、及び回収ポリエステル(6)を未乾燥の状態にて、67.2:2.8:30.0の比率で混合したポリエステルを原料とし、口径90mmのベント付き二軸押出機により、吐出量;500kg/hr、シリンダー温度;290℃で溶融押出し、静電印加密着法を用いて表面温度を40℃に設定したキャスティングドラム上で急冷固化させて未延伸の単層シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、テンターに導き、横方向に120℃で3.8倍延伸し、205℃で熱固定処理を行った後、弛緩し、厚さ250μmのポリエステルフィルム(B4)のマスターロールを得た。
本マスターロールを得る際、口金からのネックイン現象により分厚くなり、クリップの噛み代として使用された、ポリエステルフィルムの端部は、耳部フィルムとして切断分離を行い、粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
このマスターロールの両端から400mmの位置よりスリットを行い、製品幅1200mm幅のポリエステルフィルム(B4)を得た。本スリット時に、生成された余剰分についてはスリット耳として切断分離を行い、粉砕機にて粉砕化し、回収ポリエステルとして貯めた。
実施例1において、ポリエステルフィルム(A1)ではなく、ポリエステルフィルム(B4)にすることを除き、実施例1と同様の方法で、アニール処理を行った。得られたフィルムの特性および評価結果を下記表3に示す。
比較例5:
実施例4において、混合物中のポリエステル原料に関して、上記ポリエステル原料(2)、ポリエステル原料(4)、及び回収ポリエステル(1)を26.0:4.0:70.0の比率で混合したポリエステルに変更した以外は、実施例4と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例6:
実施例2において、混合物中のポリエステル原料に関して、上記ポリエステル原料(8)、回収ポリエステル(1)を70.0:30.0の比率で混合したポリエステルに変更した以外は、実施例2と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
比較例7:
実施例2において、熱固定温度を238℃に変更した以外は、実施例2と同様の方法でフィルムを得た。得られたフィルムの特性および評価結果を下記表3に示す。
Figure 2014170913
Figure 2014170913
本発明の二軸配向ポリエステルフィルムは、太陽電池裏面封止用として、好適に利用することができる。

Claims (2)

  1. 極限粘度(IV)が0.62dl/g以上0.73dl/g以下であり、末端カルボキシル基量(AV)が35当量/t以下であり、リン元素含有量が170ppm未満であり、15重量%以上の回収ポリエステルを含有することを特徴とする太陽電池裏面封止用二軸配向ポリエステルフィルム。
  2. 150℃×30分のフィルム長手方向の収縮率が0.8%以下である請求項1に記載の太陽電池裏面封止用二軸配向ポリエステルフィルム。
JP2013167216A 2013-02-09 2013-08-12 太陽電池裏面封止用二軸配向ポリエステルフィルム Pending JP2014170913A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167216A JP2014170913A (ja) 2013-02-09 2013-08-12 太陽電池裏面封止用二軸配向ポリエステルフィルム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013023907 2013-02-09
JP2013023907 2013-02-09
JP2013167216A JP2014170913A (ja) 2013-02-09 2013-08-12 太陽電池裏面封止用二軸配向ポリエステルフィルム

Publications (1)

Publication Number Publication Date
JP2014170913A true JP2014170913A (ja) 2014-09-18

Family

ID=51693068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167216A Pending JP2014170913A (ja) 2013-02-09 2013-08-12 太陽電池裏面封止用二軸配向ポリエステルフィルム

Country Status (1)

Country Link
JP (1) JP2014170913A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265459A (ja) * 2009-05-15 2010-11-25 Mitsubishi Polyester Film Gmbh 脱カルボキシル化触媒を含有する二軸延伸ポリエステルフィルム、その製造方法およびその使用
JP2011080057A (ja) * 2009-09-14 2011-04-21 Mitsubishi Plastics Inc 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2012166354A (ja) * 2011-02-09 2012-09-06 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265459A (ja) * 2009-05-15 2010-11-25 Mitsubishi Polyester Film Gmbh 脱カルボキシル化触媒を含有する二軸延伸ポリエステルフィルム、その製造方法およびその使用
JP2011080057A (ja) * 2009-09-14 2011-04-21 Mitsubishi Plastics Inc 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2012166354A (ja) * 2011-02-09 2012-09-06 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Similar Documents

Publication Publication Date Title
JP5663247B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5553619B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2009256621A (ja) 二軸配向ポリエステルフィルム
JP2015028962A (ja) 太陽電池裏面封止用黒色ポリエステルフィルム
JP5254280B2 (ja) 二軸延伸白色ポリエチレンテレフタレートフィルム、及び太陽電池モジュール用裏面保護フィルム
JP2011119651A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2012227359A (ja) 太陽電池裏面保護材用ポリエステルフィルム
JP2014239126A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP2012248771A (ja) 太陽電池裏面保護用二軸配向ポリエステルフィルム
JP5590866B2 (ja) 二軸配向ポリエステルフィルム
JP2014170913A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2014239125A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP5484096B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5484116B2 (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP6206224B2 (ja) 二軸配向ポリエステルフィルム
JP2014239128A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP2011116938A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2010189558A (ja) 太陽電池裏面封止用ポリエステルフィルム
JP2015006776A (ja) 白色積層ポリエステルフィルム
JP2011155109A (ja) 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2012248709A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP2012245747A (ja) 太陽電池フロントシート用積層ポリエステルフィルム
JP2012256765A (ja) 太陽電池裏面封止用白色積層ポリエステルフィルム
JP2012256766A (ja) 太陽電池フロントシート用ポリエステルフィルム
JP2012244019A (ja) 太陽電池裏面保護用ポリエステルフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905