JP5483221B2 - 燃料電池車両 - Google Patents

燃料電池車両 Download PDF

Info

Publication number
JP5483221B2
JP5483221B2 JP2012528986A JP2012528986A JP5483221B2 JP 5483221 B2 JP5483221 B2 JP 5483221B2 JP 2012528986 A JP2012528986 A JP 2012528986A JP 2012528986 A JP2012528986 A JP 2012528986A JP 5483221 B2 JP5483221 B2 JP 5483221B2
Authority
JP
Japan
Prior art keywords
pipe
fuel cell
vehicle
reactor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012528986A
Other languages
English (en)
Other versions
JPWO2013084278A1 (ja
Inventor
剛司 片野
広之 関根
育弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5483221B2 publication Critical patent/JP5483221B2/ja
Publication of JPWO2013084278A1 publication Critical patent/JPWO2013084278A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K2015/0638Arrangement of tanks the fuel tank is arranged in the rear of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は、燃料電池車両に関する。
近年、将来の石油枯渇や地球温暖化に対する対策として、燃料電池システムから供給される電力によって走行する燃料電池車両の開発が進められている。このような燃料電池車両は、燃料電池システムの構成装置である燃料電池スタック、昇圧コンバータ、冷却システムのような各種補機類等を搭載する必要がある。
下記特許文献1には、燃料電池スタックや昇圧コンバータ(DC−DCコンバータ)等を、車両のフロアパネルの下方に搭載した燃料電池車両が記載されている。しかし、フロアパネルの下方に燃料電池スタック等を搭載する場合、車高の制限や乗員の着座スペースを確保する必要性等により、フロアパネルの下方には広い空間を確保することができないという制約がある。このため、限られた空間内に燃料電池スタック等を配置するための工夫が必要となる。
そこで、下記特許文献2に記載された燃料電池車両は、運転席と助手席との間に形成されたセンタートンネル(センターコンソール)の内部に燃料電池スタックを搭載している。このように、センタートンネルの内部の空間を有効に利用することで、フロアパネル全体の高さの上昇を防止しながら、乗員の着座スペースを確保している。
特開2011−18553号公報 特開2007−15612号公報
センタートンネルの内部に燃料電池スタックを搭載する場合、燃料電池スタックに隣接して昇圧コンバータもセンタートンネル内部に搭載することができれば、フロアパネル下方の空間を更に有効利用できることに加え、配線引き回しの距離が短縮できる点からも望ましい。
この場合、センタートンネルの内部は車両の前後方向に伸びる細長い空間であるから、燃料電池スタック及び昇圧コンバータは、車両の前後方向に沿って配置されることとなる。また、燃料電池スタック及び昇圧コンバータはいずれも、車両の左右方向における寸法ができるだけ小さくなるように設計することが求められる。
しかし、昇圧コンバータは、内部にリアクトルやスイッチング素子といった大型の構成要素を有している。更に、リアクトルとスイッチング素子とを電気的に接続するためのバスバーや、スイッチング素子を冷却するために冷媒を循環させる冷却配管をも配置する必要があるため、車両の左右方向における昇圧コンバータの寸法を小さくすることは容易ではない。
上記特許文献2には、燃料電池スタックをセンタートンネルの内部に配置することは記載されているが、昇圧コンバータをもセンタートンネルの内部に配置することについては検討されておらず、昇圧コンバータを構成するバスバーの具体的な配置や冷却配管の配置等は記載されていない。
本発明はこのような課題に鑑みてなされたものであり、その目的は、センタートンネルの内部に燃料電池スタック及び昇圧コンバータを搭載することにより、フロアパネル全体の高さの上昇を防止し、乗員の着座スペースを確保することのできる燃料電池車両を提供することにある。
上記課題を解決するために本発明に係る燃料電池車両は、車両の前後方向に伸びるセンタートンネルが形成されたフロアパネルを有し、直流電源である燃料電池、及び前記燃料電池の出力電圧を昇圧して電力を出力する昇圧コンバータを、車両の前後方向に沿って前記センタートンネル内に搭載した燃料電池車両において、前記昇圧コンバータは、前記燃料電池が供給する電力を入力するための電力入力部と、前記電力入力部に一端が接続されたリアクトルと、前記リアクトルの他端に接続されたスイッチング回路部と、前記スイッチング回路部に接続され、電力を出力するための電力出力部と、を備え、前記電力入力部と前記リアクトルとの接続部、及び、前記リアクトルと前記スイッチング回路部との接続部は、全て、車両の前後方向に沿って並んだ状態で、前記昇圧コンバータのうち、車両の左側もしくは右側のいずれかにおける一側面側に配置されていることを特徴としている。
昇圧コンバータに搭載されるリアクトルは大型のコイルであるため、リアクトルと電力入力部との接続部、及びリアクトルとスイッチング回路部との接続部は、いずれも所定の寸法に形成されたバスバー同士の接続により構成される。このため、センタートンネルのような狭い空間内においては、これら接続部の配置についても問題となる。
例えば、昇圧コンバータのうち車両の前方側の側面には、車両の最前方に配置されたラジエータに向かって伸びる冷却配管が存在するため、上記接続部を配置するための空間を確保することが困難である。一方、車両の後方側の側面は、昇圧コンバータと燃料電池スタックとを接続するためのバスバー等が配置されるため、やはり上記接続部を配置するための空間を確保することが困難である。更に、車両衝突時を考慮し、昇圧コンバータはできるだけ車両後方側に配置したいという安全設計上の要請もあり、やはり車両の後方側の側面に上記接続部を配置することは好ましくない。
本発明によれば、電力入力部とリアクトルとの接続部、及び、リアクトルとスイッチング回路部との接続部は、全て、車両の前後方向に沿って並んだ状態で、昇圧コンバータのうち、車両の左側もしくは右側のいずれかにおける一側面側に配置する。
このような構成とすることにより、冷却配管が存在する車両前方側や、昇圧コンバータと燃料電池スタックとを接続するためのバスバー等が配置される車両後方側を避けて、電力入力部とリアクトルとの接続部、及び、リアクトルとスイッチング回路部との接続部を配置することができる。
また、これらの接続部は全て、車両の前後方向に沿って並んだ状態で配置されるため、リアクトルを複数設けた多相コンバータであっても、車両の左右方向における昇圧コンバータの幅は、リアクトルの数によっては増加しない。更に、これらの接続部は全て、昇圧コンバータのうち車両の左側もしくは右側のいずれかにおける一側面側に配置される。このため、両側面側に配置される場合と比べて、車両の左右方向における昇圧コンバータの幅が低減されるため、昇圧コンバータをセンタートンネル内に配置することが可能となる。
また本発明に係る燃料電池車両では、車両の上下方向において、前記リアクトルは前記スイッチング回路部よりも下方に設けられており、前記リアクトルは、前記電力入力部と電気的に接続するための第一リアクトルバスバーと、前記スイッチング回路部と電気的に接続するための第二リアクトルバスバーと、を有し、前記電力入力部から伸びる入力バスバーが、車両の上下方向において、前記スイッチング回路部と前記リアクトルとの間に配置されるものであって、前記入力バスバーと前記第一リアクトルバスバーとの接続部の位置は、前記スイッチング回路部と前記第二リアクトルバスバーとの接続部の位置よりも高い位置に設けられていることも好ましい。
この好ましい態様では、電力入力部から伸びる入力バスバーを、車両の上下方向において、スイッチング回路部とリアクトルとの間に配置した上で、入力バスバーと第一リアクトルバスバーとの接続部の位置を、スイッチング回路部と第二リアクトルバスバーとの接続部の位置よりも高い位置に設ける。
このような構成とすることによって、リアクトルよりも上部に配置されるスイッチング回路部を低い位置に配置することが可能となるため、昇圧コンバータの高さが低減され、昇圧コンバータをセンタートンネル内に配置することがより容易なものとなる。
また本発明に係る燃料電池車両では、前記リアクトルを流れる電流を計測するための電流計測手段が、前記リアクトルに接続された電流経路のうち、前記スイッチング回路部が接続された側の電流経路とは反対側における電流経路上に設けられていることも好ましい。
昇圧コンバータの内部においては、リアクトルを流れる電流が所定の大きさとなるように制御することを目的とし、かかる電流を計測するための電流計測手段が配置される。しかし、リアクトルに接続されたスイッチング回路の動作によって電気的なノイズが生じ、電流計測手段による電流の計測を正確に行うことができない場合がある。
この好ましい態様では、電流計測手段を、リアクトルに接続された電流経路のうち、前記スイッチング回路部が接続された側の電流経路とは反対側における電流経路上に設けている。すなわち、電流計測手段からスイッチング回路部に至る電流経路の途中に、リアクトルが配置された状態となっている。このため、スイッチング回路部の動作によって生じた電気的なノイズは、リアクトルを経由して電流計測手段に到達することとなる。リアクトルを経由することにより、電気的なノイズは低減されるため、電流計測手段による電流の計測をより正確に行うことが可能となる。
また本発明に係る燃料電池車両では、前記スイッチング回路部と前記電力出力部との間に配置され、前記昇圧コンバータの出力電圧を平準化するためのコンデンサと、前記スイッチング回路部に隣接して配置され、前記スイッチング回路部を冷却するための冷媒を流通させる冷媒流路と、前記冷媒流路に冷媒を供給するための配管であって、前記昇圧コンバータから車両の前方側に向かって伸びるように配置された第一配管と、前記冷媒流路から冷媒を排出するための配管であって、前記第一配管と離間し、前記昇圧コンバータから車両の前方側に向かって伸びるように配置された第二配管と、を備え、前記コンデンサは、前記スイッチング回路部の近傍で、且つ前記第一配管と前記第二配管との間に配置されることも好ましい。
昇圧コンバータの出力電圧を平準化するために配置されるコンデンサは、必要な容量が大きい為にその外形が大きなものとなり、その設置場所が問題となる。また、コンデンサは、昇圧コンバータの動作中において発熱してしまうが、センタートンネルのような狭い空間内に昇圧コンバータを配置した場合、内部で生じた熱を逃がす経路を十分に確保することが難しく、上記コンデンサの温度が上昇し過ぎてしまう。しかし、空間の制約によって、コンデンサを冷却するための冷却配管を別途設けることは難しい。
これらの問題を解決するために、本発明者らは、スイッチング回路部を冷却するための冷媒を流通させる二本の配管が、車両の左右方向において、スイッチング回路部の幅に応じて互いに離間して配置される点に着目した。更に、これら配管とラジエータとを接続する際、配管に加えられる力によってスイッチング回路部が損傷しないよう、これら配管には所定の長さが必要である点にも着目した。すなわち、第一配管と第二配管との間には所定の幅(車両の左右方向)及び長さ(車両の前後方向)をもって空間が形成されることとなる。
この好ましい態様では、昇圧コンバータから車両の前方側に向かって伸びるよう、互いに離間して配置された第一配管と第二配管との間にコンデンサを配置している。すなわち、上記空間内にコンデンサを配置しているため、センタートンネル内において昇圧コンバータが占める体積は、コンデンサを設置してもそれによっては増加しない。また、コンデンサは、内部を流通する冷媒によって温度が低下している第一配管、第二配管に挟まれた位置に設置されるため、コンデンサの周囲はこれら配管によって気温が下がることとなり、コンデンサの温度が上昇し過ぎてしまうことが防止される。更に、コンデンサはスイッチング回路部の近傍に設置されるため、コンデンサとスイッチング回路部との間の電流経路が短くなり、電力の損失が低減されると共に、インダクタンスが低減されることによってスイッチング回路部のサージ電圧も低減できる。
また本発明に係る燃料電池車両では、前記コンデンサは、前記コンデンサの外周の少なくとも一部を覆うように配置されたコンデンサカバーに対して固定されており、前記コンデンサカバーは、前記第一配管、及び前記第配管の少なくとも一方と接触していることも好ましい。
この好ましい態様では、コンデンサが、その外周の少なくとも一部を覆うように配置されたコンデンサカバーに対して固定されており、当該コンデンサカバーは、第一配管、及び第配管の少なくとも一方と接触している。このように構成することにより、内部を流通する冷媒によって温度が低下している第一配管、第二配管の少なくとも一方によって、これと接触しているコンデンサカバーが直接冷却される。その結果、コンデンサカバーに覆われているコンデンサを効率的に冷却することができる。
また本発明に係る燃料電池車両では、前記コンデンサカバーは、前記コンデンサの上面を覆う上壁部を有しており、前記上壁部には、前記上壁部を貫通する通気孔が形成されていることも好ましい。
この好ましい態様では、コンデンサカバーが、コンデンサの上面を覆う上壁部を有しているため、コンデンサの上部を保護した状態でコンデンサを固定することができる。また、コンデンサカバーの上壁部には、これを貫通する通気孔が形成されているため、コンデンサにおいて発生した熱がコンデンサカバーの外部に逃げるための経路が確保され、コンデンサをより効率的に冷却することができる。
また本発明に係る燃料電池車両では、前記コンデンサカバーは、前記上壁部において放熱フィンが形成されていることも好ましい。
この好ましい態様では、コンデンサカバーには放熱フィンが形成されているため、コンデンサカバーからその周囲の空気への放熱が促進され、コンデンサをより効率的に冷却することができる。
また本発明に係る燃料電池車両では、前記昇圧コンバータよりも車両の前方側には、前記冷媒を冷却するためのラジエータを備え、前記ラジエータから伸びて前記第一配管に接続される第一ラジエータ配管と、前記ラジエータから伸びて前記第二配管に接続される第二ラジエータ配管と、を備えており、前記第一配管と前記第一ラジエータ配管とを接続する第一接続部、及び、前記第二配管と前記第二ラジエータ配管とを接続する第二接続部の鉛直下方には、第一接続部及び第二接続部から前記冷媒が流出した場合において当該冷媒を受け入れるよう、液受けトレイが設けられていることも好ましい。
センタートンネル内に昇圧コンバータを搭載した燃料電池車両においては、車両の前方側に配置されたラジエータと昇圧コンバータとを繋ぐ冷却配管が、車両の前後方向に沿って水平に配置される。燃料電池車両の修理時やメンテナンス時には、昇圧コンバータから伸びる第一配管に接続された第一ラジエータ配管、及び、昇圧コンバータから伸びる第二配管に接続された第二ラジエータ配管をいずれも取り外す必要がある。しかし、上記のとおり第一配管及び第二配管は水平に配置されているため、第一ラジエータ配管、第二ラジエータ配管を取り外した際に、配管内に残留していた冷媒が第一接続部、第二接続部から流出し、落下してしまうことがある。
昇圧コンバータの車両前方側には、モーターへ電力を出力するための電流経路が配置されている。このため、第一接続部、第二接続部から冷媒が流出し落下してしまうと、かかる電流経路を構成するバスバー等が冷媒によって汚染されるという不具合が生じる。
この好ましい態様では、昇圧コンバータから伸びる第一配管とラジエータから伸びる第一ラジエータ配管とを接続する第一接続部、及び、昇圧コンバータから伸びる第二配管とラジエータから伸びる第二ラジエータ配管とを接続する第二接続部の鉛直下方に、液受けトレイが設けられている。このような構成とすることにより、第一接続部及び第二接続部から冷媒が流出しても、液受けトレイが当該冷媒を受け入れるため、その下方にある電流経路が汚染されるという不具合を確実に防止し、サービス時の手間を軽減することができる。
また本発明に係る燃料電池車両では、前記電力出力部には、前記負荷への電力供給及び遮断を切り換えるためのリレーが接続されており、前記液受けトレイは、前記リレーの上部に形成されていることも好ましい。
この好ましい態様では、昇圧コンバータの車両前方側に形成された電流経路のうち、電力出力部に接続されたリレーの上部に、上記液受けトレイを形成している。既存部品であるリレーの上部に液受けトレイが形成されるため、液受けトレイを追加することによる昇圧コンバータの体積増加を抑制しながら、冷媒が流出した場合の不具合を防止することができる。
また本発明に係る燃料電池車両では、前記昇圧コンバータは、収納ケース内に収められた状態で前記センタートンネル内に搭載されており、前記収納ケースには、前記第一配管又は前記第一ラジエータ配管が貫通するための孔である第一貫通孔と、前記第二配管又は前記第二ラジエータ配管が貫通するための孔である第二貫通孔と、が形成されており、更に、前記昇圧コンバータに接続される電気配線を外部に引き出すための第三貫通孔が、車両の左右方向において、前記第一貫通孔と前記第二貫通孔との間となる位置に形成されていることも好ましい。
この好ましい態様では、昇圧コンバータを収めるための収納ケースに、冷媒を流通させる配管が貫通する二つの孔、すなわち第一貫通孔と第二貫通孔とが形成されている。更に、昇圧コンバータに接続される電気配線を外部に引き出すための第三貫通孔が、車両の左右方向において、第一貫通孔と第二貫通孔との間となる位置に形成されている。
このような構成とすることにより、スイッチング回路部の幅に応じて互いに離間して配置される第一貫通孔と第二貫通孔との間の部分を有効に利用し、車両の左右方向における収納ケースの幅を拡大することなく、電気配線を外部に引き出すための第三貫通孔を形成することができる。その結果、昇圧コンバータの体積増加が抑制され、昇圧コンバータをセンタートンネル内に配置することがより容易なものとなる。
本発明によれば、センタートンネルの内部に燃料電池スタック及び昇圧コンバータを搭載することにより、フロアパネル全体の高さの上昇を防止し、乗員の着座スペースを確保することのできる燃料電池車両が提供される。
本発明の一実施形態である燃料電池車両の構成を、上面視において模式的に示した図である。 図1に示した燃料電池車両の電気的な構成を示した図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した斜視図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した上面図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した断面図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した側面図である。 図1に示した燃料電池車両に搭載される昇圧コンバータのうち、リアクトルバスバーの接続部分における構成を示した斜視図である。 図1に示した燃料電池車両に搭載される昇圧コンバータのうち、スイッチング回路部を冷却するための冷媒流路の構成を模式的に示した図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した断面図である。 図1に示した燃料電池車両に搭載される昇圧コンバータの構成を示した断面図である。
以下、添付図面を参照しながら本発明の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
まず、図1を参照しながら、本発明の一実施形態である燃料電池車両の構成を説明する。図1は、本発明の一実施形態である燃料電池車両の構成を、上面視において模式的に示した図である。図1に示されるように、燃料電池車両1は、燃料電池装置2と、燃料タンク3と、DC−DCコンバータ4と、インバータ5と、モーター6と、ラジエータ7によって構成されている。
燃料電池装置2は、燃料電池車両1を走行させるための電力を発生させる装置であって、燃料電池車両1のフロアパネルの下方で、且つ運転席8と助手席9との間に形成されたセンタートンネルの内部に配置されている。
燃料電池装置2は、例えば、高分子電解質型燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質膜の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの水素ガス通路に水素ガスが供給され、他方のセパレータの酸化ガス通路に酸化ガスが供給され、これらの反応ガスが化学反応することで電力が発生する。
燃料タンク3は、燃料電池装置2に供給する水素ガスを貯えておくためのタンクであって、燃料電池車両1の後方部に配置されている。燃料タンク3から燃料電池装置2に供給される水素ガスの流量は、アクセル開度等によって定まる要求電力に応じて、図示しない制御装置及び流量調整弁等により制御されている。
DC−DCコンバータ4は、直流の電圧変換器であり、燃料電池装置2から入力された電力を、その直流電圧を昇圧してからインバータ5に出力(供給)する機能を有する。本実施形態においては、DC−DCコンバータ4は燃料電池装置2と同様に、燃料電池車両1のフロアパネルの下方で、且つ運転席8と助手席9との間に形成されたセンタートンネルの内部に配置されている。DC−DCコンバータ4は、アルミダイキャストにより形成された収納ケース11(図1においては図示しない)の内部に収納された状態で、燃料電池装置2よりも車両前方側に配置されている。DC−DCコンバータ4の詳細な構造については、後に詳しく説明する。
インバータ5は、DC−DCコンバータ4から出力された直流電力を三相交流電力に変換し、モーター6に供給する機能を有する。インバータ5は、燃料電池装置2の出力電圧よりも大きい650Vの入力電圧を受けて動作する仕様となっている。DC−DCコンバータ4は、燃料電池装置2とインバータ5との間に配置されることで、燃料電池装置2の出力電圧と、インバータ5が動作可能な入力電圧との差を埋める役割を果たしている。
モーター6は、インバータ5から出力される三相交流電力の供給を受け、燃料電池車両1を走行させるための駆動力を発生させる電磁モーターである。モーター6が発生させる駆動力は、図示しない制御装置がアクセル開度等に基づいて要求電力を算出し、かかる要求電力基づいて、燃料電池装置2の出力電力及びインバータ5の出力電力を制御することにより調整される。
ラジエータ7は、燃料電池車両1を構成する燃料電池装置2、DC−DCコンバータ4、モーター6等の冷却を行うための装置である。ラジエータ7は、冷却対象であるそれぞれの装置との間で、図1には図示しない配管を通じて冷媒を循環させるものである。燃料電池車両1のバンパフェイス部分に設けられた通風口10から導入した外気が、ラジエータ7を通過する冷媒から熱を奪うことにより、各装置の冷却が行われる。このため、ラジエータ7は車両の最前方に配置されている。
続いて、DC−DCコンバータ4の電気的な構成について、図2を参照しながら説明する。図2は、燃料電池車両1の電気的な構成を示した図であって、特にDC−DCコンバータ4の内部における構成を詳細に示している。図2に示したように、DC−DCコンバータ4は、U相コンバータDC1、V相コンバータDC2、W相コンバータDC3、X相コンバータDC4が並列に接続された、4相からなる多相コンバータである。
U相コンバータDC1の構成について説明する。U相コンバータDC1は、リアクトルL1と、スイッチング回路部IPM1とを備えている。スイッチング回路部IPM1は、内部にスイッチSW1、ダイオードD1を有しており、パワーカードと呼ばれるモジュールにより構成されている。
スイッチSW1のスイッチング動作(ON/OFFの切り替え)が周期的に行われると、リアクトルL1における電気エネルギーの蓄積、及び蓄積エネルギーの解放が周期的に繰り返される。解放された電気エネルギーは、ダイオードD1を経由して出力される。電気エネルギーをリアクトルL1に一度蓄積してから解放するため、U相コンバータDC1の出力電圧であるP9、P10間の電圧は、入力電圧である燃料電池装置2の出力電圧よりも高い電圧となる。
V相コンバータDC2、W相コンバータDC3、及びX相コンバータDC4は、上記のU相コンバータDC1と同じ構成となっており、同様に動作する。すなわち、スイッチ(SW2、SW3、SW4)のスイッチング動作を行うことにより、リアクトル(L2、L3、L4)における電気エネルギーの蓄積、及び蓄積エネルギーの解放を周期的に繰り返すことで、入力電圧よりも高い電圧を出力する。
スイッチSW1、スイッチSW2、スイッチSW3、及びスイッチSW4は、基本的には、互いの位相差が90度(π/2)ごとになるように調整されたタイミングでスイッチング動作を行うように制御される。
U相コンバータDC1、V相コンバータDC2、W相コンバータDC3、及びX相コンバータDC4は、それぞれのリアクトルL1、L2、L3、L4を流れる電流を計測するための電流計I1、I2、I3、I4を備えている。スイッチSW1、SW2、SW3、SW4は、これら電流計I1、I2、I3、I4が測定するそれぞれの電流値が互いに等しくなるように、当該電流値をフィードバックしながら、それぞれのスイッチング動作を調整するよう制御される。
電流計I1、I2、I3、I4は、いずれも、リアクトルL1、L2、L3、L4に接続された電流経路のうち、スイッチング回路部IPM1、IPM2、IPM3、IPM4が接続された側の電流経路とは反対側(すなわち、燃料電池装置2側)における電流経路上に設けられている。このため、スイッチング回路部IPM1、IPM2、IPM3、IPM4のスイッチング動作によって電気的なノイズが生じた場合でも、当該ノイズはリアクトルL1、L2、L3、L4を経由して電流計I1、I2、I3、I4に到達することとなる。リアクトルL1、L2、L3、L4を経由することにより電気的なノイズは低減されるため、電流計I1、I2、I3、I4による電流の計測をより正確に行うことが可能となっている。
U相コンバータDC1、V相コンバータDC2、W相コンバータDC3、及びX相コンバータDC4の各出力部は、一つのコンデンサC1に対して並列に接続されている。コンデンサC1は、U相コンバータDC1、V相コンバータDC2、W相コンバータDC3、及びX相コンバータDC4から出力される電圧を平準化して出力するためのものである。コンデンサC1によって電圧が平準化された後、電力出力部PO1、PO2から電力がインバータ5に向けて出力される。
電力出力部PO1、PO2とインバータ5との間には、リレーR1、R2が配置されている。リレーR1、R2は、電力出力部PO1、PO2からインバータ5に電力を出力する経路の接続及び遮断を切り換えるものである。
続いて、DC−DCコンバータ4の具体的な構成について、図3乃至5を参照しながら説明する。図3は、DC−DCコンバータ4の構成を示した斜視図であって、DC−DCコンバータ4が収められる収納ケース11の上蓋11aを取り外した状態を示している。図4は、DC−DCコンバータ4の構成を示した上面図である。図5は、DC−DCコンバータ4の構成を示した断面図であって、車両の前後方向に対し垂直な面においてDC−DCコンバータ4を切断した場合の断面を示している。
収納ケース11は、アルミダイキャストにより形成されたケースであって、上蓋11a、下部容器11bにより構成されている。収納ケース11は、上蓋11aと下部容器11bとの間の空間内にDC−DCコンバータ4を収納した状態で、燃料電池車両1のセンタートンネル内部に搭載される。収納ケース11には、DC−DCコンバータ4を構成するリアクトルL1、L2、L3、L4、スイッチング回路部IPM1、IPM2、IPM3、IPM4、及びコンデンサC1に加え、リレーR1、R2も収納されている。
収納ケース11はセンタートンネル内に搭載されるため、細長い形状となっている。図4に示したように、その長手方向の一端側側面には、燃料電池装置2が供給する電力を入力するための電力入力部PI1、PI2を備えている。既に説明したように、DC−DCコンバータ4は燃料電池装置2よりも車両の前方側に配置されるため、DC−DCコンバータ4は、電力入力部PI1、PI2を車両の後方側に向けた状態で、収納ケース11に収納されている。
電力出力部PO1、PO2、及びリレーR1、R2は、車両の前方側に配置されたインバータ5と電気的に接続する必要性から、収納ケース11の他端側(車両の前方側)近くに配置されている。リレーR1、R2からインバータ5に向けて電力を出力するための出力端子PO3、PO4は、収納ケース11の内部にあり、収納ケース11の側面(車両の右方向)にある開口部から接続できるように、車両の右方向に向いて設置している。
DC−DCコンバータ4を構成する、リアクトルL1、L2、L3、L4、及びスイッチング回路部IPM1、IPM2、IPM3、IPM4の配置について説明する。図5に示したように、リアクトルL1、L2、L3、L4は全て、収納ケース11内部の下方側において、上下二つの階層に分けて配置されている。各階層には、それぞれ二つのリアクトルが、図5において紙面奥行き方向に並んで配置されている。リアクトルL1、L2、L3、L4は、図示しないリアクトル収納ケースに収められた状態で配置されている。リアクトル収納ケースの外部には、リアクトルを冷却するための冷媒流路が備えられている。
スイッチング回路部IPM1、IPM2、IPM3、IPM4は、それぞれが複数のパワーカードPWCのセットとして構成されている。各パワーカードPWCは、車両の上下方向において、リアクトルL1、L2、L3、L4よりも上部となる位置に配置されている。
スイッチング回路部IPM1、IPM2、IPM3、IPM4を構成する各パワーカードPWCの上部には、各パワーカードPWCの動作を制御する制御基板B1が配置されている。各パワーカードPWCの上部には、それぞれが上方に向かって伸びる複数のピン20を備えており、ピン20によって、制御基板B1と各パワーカードPWCとが接続されている。制御基板B1は、ピン20を通じて各パワーカードPWCに対する制御信号を送り、スイッチング回路部IPM1、IPM2、IPM3、IPM4のスイッチング動作を制御する。
各パワーカードPWCの下部には、それぞれが下方に向かって伸びる複数のIPMバスバーIBを備えている。IPMバスバーIBは、スイッチング回路部IPM1、IPM2、IPM3、IPM4に対して、リアクトルL1、L2、L3、L4や燃料電池装置2、及びコンデンサC1を電気的に接続するためのバスバーである。
続いて、リアクトルL1、L2、L3、L4と電力入力部PI1との電気的接続、及び、リアクトル(L1、L2、L3、L4)とスイッチング回路部IPM1、IPM2、IPM3、IPM4との電気的接続について、図6及び図7を参照しながら説明する。図6は、DC−DCコンバータ4の構成を示した側面図であって、DC−DCコンバータ4を車両の右側から見た場合の側面を示している。
リアクトルL1、L2、L3、L4と電力入力部PI1との電気的接続は、電力入力部PI1に接続された分配バスバーDBに対して、リアクトルL1、L2、L3、L4の一端から伸びる第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4を接続することによって行われる。
分配バスバーDBは、一端が電力入力部PI1に接続され、水平に配置された金属板である。図6、図7に示したように、分配バスバーDBは、DC−DCコンバータ4のうち車両右側の側面近傍を、車両の前後方向に沿って配置されている。また、分配バスバーDBは、車両の上下方向において、スイッチング回路部IPM1、IPM2、IPM3、IPM4とリアクトルL1、L2、L3、L4との間となる高さに配置されている。尚、分配バスバーDBは、図2に示した回路において、電力入力部PI1とP1、P2、P3、P4を結ぶ範囲に相当している。
リアクトルL1、L2、L3、L4の一端には第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4がそれぞれ接続され、他端には第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4がそれぞれ接続されている。すなわち、4つのリアクトルに対して各2本ずつ、計8本のリアクトルバスバーが接続されている。
図6に示したように、これら8本リアクトルバスバーの端部が、分配バスバーDBよりも高い位置において、下方から上方に向かって突出するように配置される。8本リアクトルバスバーは、分配バスバーDBと収納ケース11の内壁との間において、車両の前後方向に沿って一列に並んだ状態で配置されている。更に、車両の前方側から後方側に向かって、第二リアクトルバスバーと第一リアクトルバスバーとが交互に並ぶように配置されている。
図7に示したように、分配バスバーDBは、第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4と対向する位置において、それぞれ上方に向かって屈曲した屈曲部30が形成されている。かかる屈曲部30と第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4とを、互いに重ねた状態でボルトにて締結することにより、分配バスバーDBに対して第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4が接続されている。また、分配バスバーDBの屈曲部30と第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4との締結位置は、全て同じ高さとなっている。
リアクトルL1、L2、L3、L4とスイッチング回路部IPM1、IPM2、IPM3、IPM4との電気的接続は、各パワーカードPWCの下部に供えられたIPMバスバーIBに対して、リアクトルL1、L2、L3、L4の一端から伸びる第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4を接続することによって行われる。これらの接続箇所は、図2におけるP5、P6、P7、P8に該当する。尚、IPMバスバーIBと第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4との接続は、これらを直接接続する場合のほか、両者間に別の中継バスバーを介することによって接続してもよい。
各IPMバスバーIBは、第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4と対向する位置において、DC−DCコンバータ4から車両右側に向かって突出形成されている。図7に示したように、各IPMバスバーIBは、スイッチング回路部IPM1、IPM2、IPM3、IPM4から水平且つ車両右側に向かって突出する水平部31と、水平部31の先端から下方に向かって屈曲した屈曲部32とを有するように形成されている。
これら屈曲部32と第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4とを、互いに重ねた状態でボルトにて締結することにより、各IPMバスバーIBに対して第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4が接続されている。また、IPMバスバーIBの屈曲部32と第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4との締結位置は、全て同じ高さとなっている。
以上説明したように、本実施形態に係る燃料電池車両1においては、電力入力部PI1(分配バスバーDB)とリアクトルL1、L2、L3、L4との接続部、及び、リアクトルL1、L2、L3、L4とスイッチング回路部IPM1、IPM2、IPM3、IPM4との接続部は、全て、車両の前後方向に沿って並んだ状態で、DC−DCコンバータ4のうち、車両の右側の一側面側に配置されている。
このような構成とすることにより、後に説明する第一配管50、第二配管51が存在する車両前方側や、DC−DCコンバータ4と燃料電池装置2とを接続するためのバスバー等が配置される車両後方側を避けて、電力入力部PI1(分配バスバーDB)とリアクトルL1、L2、L3、L4との接続部、及び、リアクトルL1、L2、L3、L4とスイッチング回路部IPM1、IPM2、IPM3、IPM4との接続部を配置することができる。
また、これらの接続部は全て、車両の前後方向に沿って並んだ状態で配置されるため、本実施形態のように4つのリアクトルを設けた4相コンバータであっても、車両の左右方向におけるDC−DCコンバータ4の幅は増加しない。更に、これらの接続部は全て、DC−DCコンバータ4のうち車両の右側における一側面側に配置されている。このため、両側面側に配置される場合と比べて、車両の左右方向におけるDC−DCコンバータ4の幅が低減されるため、DC−DCコンバータ4をセンタートンネル内に配置することが可能となっている。
また、図6、図7に示したように、分配バスバーDBの屈曲部30と第一リアクトルバスバーLIB1、LIB2、LIB3、LIB4との締結位置は、IPMバスバーIBの屈曲部32と第二リアクトルバスバーLOB1、LOB2、LOB3、LOB4との締結位置よりも高い位置となっている。
このような構成とすることによって、IPMバスバーIBの各水平部31は、分配バスバーDBに対して近づけた状態で配置されている。その結果、リアクトルL1、L2、L3、L4よりも上部に配置されたスイッチング回路部IPM1、IPM2、IPM3、IPM4が低い位置に配置されることにより、DC−DCコンバータ4の高さが低減され、DC−DCコンバータ4をセンタートンネル内に配置することがより容易なものとなっている。
次に、スイッチング回路部IPM1、IPM2、IPM3、IPM4の冷却機構について、図8及び図9を参照しながら説明する。図8は、スイッチング回路部IPM1、IPM2、IPM3、IPM4を構成するパワーカードPWCを冷却するための、冷媒流路の構成を模式的に示した図である。図9は、DC−DCコンバータ4のうちスイッチング回路部IPM1、IPM2、IPM3、IPM4の近傍における構成を示した断面図であって、車両の左右方向に対し垂直な面において切断した場合の断面を示している。
図8に示したように、本実施形態に係るスイッチング回路部の冷却機構は、13個のタンクTAと、第一配管50と、第二配管51とを備える。13個のタンクTAは、表裏二つの扁平面Sを有する中空のタンクであって、それぞれの扁平面Sが互いに平行となるよう対向して配置されている。各タンクTAは、隣接するタンクとの間(扁平面Sと扁平面Sとの間)に、それぞれ2枚のパワーカードPWCを挟んだ状態で配置されている。
第一配管50、及び第二配管51は、断面が円形に形成された中空の配管であって、タンクTAの扁平面Sを垂直に貫くように、車両の前後方向に沿って水平に配置されている。第一配管50と第二配管51とは、いずれも同じ高さであり、互いに平行となるように配置されている。
第一配管50は、各タンクTAにおいて車両の右方向側端部を貫き、第二配管51は、各タンクTAにおいて車両の左方向側端部を貫いている。その結果、各タンクTA間に挟まれた全てのパワーカードPWCは、第一配管50と第二配管51との間に配置されている。第一配管50、第二配管51の内部空間は、各タンクTAの内部空間といずれも連通している。
第一配管50のうち車両前方側の端部50aは、ラジエータ7から伸びる第一ラジエータ配管(図示せず)と接続され、ラジエータ7から流入する冷媒を受け入れる部分である。また、第二配管51のうち車両前方側の端部51aは、ラジエータ7から伸びる第二ラジエータ配管(図示せず)と接続され、ラジエータ7に向けて冷媒が流出する部分である。
第一配管50に対し、ラジエータ7からの供給される冷媒が端部50aから流入すると、かかる冷媒は第一配管50の内部を車両後方側に向かって流れる。その後、第一配管50に連通する各タンクTAの内部空間を通過し、第二配管51の内部に流入する。第二配管51の内部に流入した冷媒は、端部51aに向かって流れ、ラジエータ7に向けて流出する。
冷媒は、各タンクTAの内部空間を通過する際に、各タンクTAに挟まれている各パワーカードPWCから熱を奪って冷却する。各パワーカードPWCから奪われた熱は、冷媒によってラジエータ7に運ばれ、ラジエータ7において外気に放出される。
上記のように、第一配管50の端部50aには第一ラジエータ配管が接続され、第二配管51の端部51aには第二ラジエータ配管が接続される。しかし、燃料電池車両1の修理時やメンテナンス時には、これらの第一ラジエータ配管及び第二ラジエータ配管を取り外す必要がある。しかし、上記のとおり第一配管50及び第二配管51は水平に配置されているため、第一ラジエータ配管、第二ラジエータ配管を取り外した際に、第一配管50、第二配管51内に残留していた冷媒が端部50a、51aから流出し、落下してしまうことがある。この対策として、本実施形態では、端部50a、51aから冷媒が流出、落下した場合に備え、当該冷媒を受け入れる液受けトレイ61、62を備えている。
図4を再び参照すると、第一配管50の端部50aの鉛直下方、及び、第二配管51の端部51aの鉛直下方には、それぞれリレーR1、及びリレーR2を配置している。リレーR1の上面、及びリレーR2の上面には、その外周部分において側壁63、64を備えている。従って、リレーR1、リレーR2の上面に冷媒が落下しても、冷媒はこれら側壁63、64を超えて外部に流出することがない。すなわち、リレーR1の上面と側壁63が液受けトレイ61を構成し、リレーR2の上面と側壁64が液受けトレイ62を構成している。
本実施形態に係る燃料電池車両1は、上記のように液受けトレイ61、62を備える。これにより、第一配管50、第二配管51内に残留していた冷媒が端部50a、51aから流出し、落下した場合であっても、その下方にある電流経路が汚染されるという不具合を確実に防止し、サービス時の手間を軽減することができる。また、既存部品であるリレーR1、R2の上部に液受けトレイ61、62が形成されるため、液受けトレイを追加することによるDC−DCコンバータ4の体積増加を抑制しながら、冷媒が流出した場合の不具合を防止することができる。
次に、コンデンサC1の配置について、図9及び図10を参照しながら説明する。既に説明したように、コンデンサC1は、U相コンバータDC1、V相コンバータDC2、W相コンバータDC3、及びX相コンバータDC4から出力される電圧を平準化して出力するためのものである。このため、電力の損失を低減するために、コンデンサC1とスイッチング回路部IPM1、IPM2、IPM3、IPM4との距離はできるだけ短い方がのぞましい。本実施形態においては、図9に示したように、コンデンサC1はスイッチング回路部IPM1、IPM2、IPM3、IPM4と隣接する位置に配置している。コンデンサC1をこのような位置に配置することにより、電力の損失が低減されると共に、インダクタンスが低減されることによってスイッチング回路部IPM1、IPM2、IPM3、IPM4のサージ電圧も低減できる。
図10は、DC−DCコンバータ4の構成を示した断面図であって、車両の前後方向に対し垂直な面においてコンデンサC1を切断した場合の断面を示している。図10に示したように、コンデンサC1は、これを保護するためのコンデンサカバー70に収納された状態で、第一配管50と第二配管51との間に配置されている。
コンデンサカバー70は、コンデンサC1の側面を覆う側壁部71と、コンデンサC1の上面を覆う上壁部72とを備えており、コンデンサC1の底面に対応する部分が開口している。このため、コンデンサC1は、コンデンサカバー70に対して下方から挿入された後、コンデンサカバー70に固定されている。
コンデンサC1は、DC−DCコンバータ4の動作中において発熱するが、センタートンネルのような狭い空間内にDC−DCコンバータ4を配置した場合、内部で生じた熱を逃がす経路を十分に確保することが難しく、コンデンサC1の温度が上昇し過ぎてしまうことがある。
本実施形態では、上記のように、コンデンサC1を冷却するための冷却配管を別途設けることなく、コンデンサC1を第一配管50と第二配管51との間に配置している。第一配管50と第二配管51は、内部を流通する冷媒によってその温度が低下しているため、コンデンサC1の周囲はこれら配管によって気温が下がることとなり、コンデンサC1の温度が上昇し過ぎてしまうことが防止されている。
尚、図8を参照しながら既に説明したように、第一配管50と第二配管51とは、パワーカードPWCを間に挟むように互いに離間させる必要があるものである。更に、第一配管50、第二配管51に対して、それぞれ第一ラジエータ配管、第二ラジエータ配管を接続する際、配管に加えられる力によってスイッチング回路部が損傷しないよう、第一配管50、第二配管51は所定の長さを必要とするものである。
すなわち、第一配管50と第二配管51とは、当初より互いに離間させる必要があり、且つ所定の長さが必要であったため、第一配管50と第二配管51との間には必然的に空間が形成されていたということができる。本実施形態に係るコンデンサC1の配置は、かかる既存の空間を有効に利用するものであるから、コンデンサC1を配置することによっては、DC−DCコンバータ4が占める体積は増加しない。
コンデンサカバー70の具体的な構成について説明する。図10に示したように、コンデンサカバー70の側壁部71のうち、車両右側の側壁部71aは、第一配管50と近接した状態となっている。更に、コンデンサカバー70の側壁部71のうち、車両左側の側壁部71bは、第二配管51と近接した状態となっている。
このように構成することにより、内部を流通する冷媒によって温度が低下している第一配管50及び第二配管51によって、これらと近接しているコンデンサカバー70が冷却される。その結果、コンデンサカバー70に覆われているコンデンサC1を効率的に冷却することが可能となっている。尚、側壁部71aの一部を第一配管50に向かって突出させて、コンデンサカバー70と第一配管50とを接触させてもよい。このような構成とすれば、コンデンサカバー70を第一配管50により直接冷却することができる。
コンデンサカバー70の上壁部72には、複数の貫通孔90が形成されている。この貫通孔90は、コンデンサC1の周囲に存在する空気が、上壁部72の上方の空間に抜けるための通気孔として機能するものである。このため、コンデンサC1において発生した熱がコンデンサカバー70の外部に逃げるための経路が確保され、コンデンサC1をより効率的に冷却することが可能となっている。
コンデンサカバー70の上壁部72、及び、車両前方側の側壁部71cには、それぞれ放熱フィン80、81が形成されている。放熱フィン80、81を形成することによって、コンデンサカバー70からその周囲の空気への放熱が促進され、コンデンサC1をより効率的に冷却することが可能となっている。
続いて、図3を再び参照しながら、収納ケース11に形成された貫通孔の配置について説明する。収納ケース11の上蓋11aには、車両前方側の側面で且つ第一配管50に対応する位置において、第一貫通孔95が形成されている。第一貫通孔95は、第一配管50に接続される第一ラジエータ配管が貫通するために形成された孔である。
また、収納ケース11の上蓋11aには、車両前方側の側面で且つ第二配管51に対応する位置において、第二貫通孔96が形成されている。第二貫通孔96は、第二配管51に接続される第二ラジエータ配管が貫通するために形成された孔である。
更に、収納ケース11の上蓋11aには、DC−DCコンバータ4から電気配線を外部に引き出すための第三貫通孔97が形成されている。第三貫通孔97は、車両の左右方向において、第一貫通孔95と第二貫通孔96との間となる位置で、且つ、第一貫通孔95及び第二貫通孔96よりも高い位置において形成されている。第三貫通孔97は、電気配線を保護するために、図示しないグロメットキャップが装着されている。
このような構成とすることにより、パワーカードPWCの幅に応じて互いに離間して配置される第一貫通孔95と第二貫通孔96との間の部分を有効に利用し、車両の左右方向における収納ケースの幅を拡大することなく、電気配線を外部に引き出すための第三貫通孔97を形成することができる。その結果、DC−DCコンバータ4の体積増加が抑制され、DC−DCコンバータ4をセンタートンネル内に配置することがより容易なものとなっている。
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
1:燃料電池車両
2:燃料電池装置
3:燃料タンク
4:コンバータ
5:インバータ
6:モーター
7:ラジエータ
8:運転席
9:助手席
10:通風口
11:収納ケース
11a 上蓋
11b 下部容器
20:ピン
30:屈曲部
31:水平部
32:屈曲部
50:第一配管
50a:端部
51:第二配管
51a:端部
61,62:トレイ
63,64:側壁
70:コンデンサカバー
71,71a,71b,71c:側壁部
72:上壁部
80:放熱フィン
90:貫通孔
95:第一貫通孔
96:第二貫通孔
97:第三貫通孔
B1:制御基板
C1:コンデンサ
D1,D2,D3,D4:ダイオード
DB:分配バスバー
DC1:U相コンバータ
DC2:V相コンバータ
DC3:W相コンバータ
DC4:X相コンバータ
IB:IPMバスバー
IPM1,IPM2,IPM3,IPM4:スイッチング回路部
L1,L2,L3,L4:リアクトル
PI1,PI2:電力入力部
PO1,PO2,PO3,PO4:電力出力部
PWC:パワーカード
TA:タンク
R1,R2:リレー
S:扁平面
SW1,SW2,SW3,SW4:スイッチ

Claims (11)

  1. 車両の前後方向に伸びるセンタートンネルが形成されたフロアパネルを有し、直流電源である燃料電池、及び前記燃料電池の出力電圧を昇圧して電力を出力する昇圧コンバータを、車両の前後方向に沿って前記センタートンネル内に搭載した燃料電池車両において、
    前記昇圧コンバータは、
    前記燃料電池が供給する電力を入力するための電力入力部と、
    前記電力入力部に一端が接続されたリアクトルと、
    前記リアクトルの他端に接続されたスイッチング回路部と、
    前記スイッチング回路部に接続され、電力を出力するための電力出力部と、
    を備え、
    前記電力入力部から伸びる分配バスバーと前記リアクトルから伸びる第一リアクトルバスバーとの接続部、及び、前記リアクトルから伸びる第二リアクトルバスバーと前記スイッチング回路部から伸びるIPMバスバーとの接続部は、全て、車両の前後方向に沿って並んだ状態で、前記昇圧コンバータのうち、車両の左側もしくは右側のいずれかにおける一側面側に配置されていることを特徴とする燃料電池車両。
  2. 車両の上下方向において、前記リアクトルは前記スイッチング回路部よりも下方に設けられており
    前記分配バスバーが、車両の上下方向において、前記スイッチング回路部と前記リアクトルとの間に配置されるものであって、
    前記分配バスバーと前記第一リアクトルバスバーとの接続部の位置は、
    前記IPMバスバーと前記第二リアクトルバスバーとの接続部の位置よりも高い位置に設けられていることを特徴とする、請求項1に記載の燃料電池車両。
  3. 前記リアクトルを流れる電流を計測するための電流計測手段が、前記リアクトルに接続された電流経路のうち、前記スイッチング回路部が接続された側の電流経路とは反対側における電流経路上に設けられていることを特徴とする、請求項1又は請求項2に記載の燃料電池車両。
  4. 前記スイッチング回路部と前記電力出力部との間に配置され、前記昇圧コンバータの出力電圧を平準化するためのコンデンサと、
    前記スイッチング回路部に隣接して配置され、前記スイッチング回路部を冷却するための冷媒を流通させる冷媒流路と、
    前記冷媒流路に冷媒を供給するための配管であって、前記昇圧コンバータから車両の前方側に向かって伸びるように配置された第一配管と、
    前記冷媒流路から冷媒を排出するための配管であって、前記第一配管と離間し、前記昇圧コンバータから車両の前方側に向かって伸びるように配置された第二配管と、を備え、
    前記コンデンサは、前記スイッチング回路部の近傍で、且つ前記第一配管と前記第二配管との間に配置されることを特徴とする、請求項1乃至3のいずれか一に記載の燃料電池車両。
  5. 前記コンデンサは、前記コンデンサの外周の少なくとも一部を覆うように配置されたコンデンサカバーに対して固定されており、
    前記コンデンサカバーは、前記第一配管、及び前記第配管の少なくとも一方と接触していることを特徴とする、請求項4に記載の燃料電池車両。
  6. 前記コンデンサカバーは、前記コンデンサの上面を覆う上壁部を有しており、前記上壁部には、前記上壁部を貫通する通気孔が形成されていることを特徴とする、請求項5に記載の燃料電池車両。
  7. 前記コンデンサカバーには放熱フィンが形成されていることを特徴とする、請求項5又は請求項6に記載の燃料電池車両。
  8. 前記昇圧コンバータよりも車両の前方側には、前記冷媒を冷却するためのラジエータを備え、
    前記ラジエータから伸びて前記第一配管に接続される第一ラジエータ配管と、
    前記ラジエータから伸びて前記第二配管に接続される第二ラジエータ配管と、を備えており、
    前記第一配管と前記第一ラジエータ配管とを接続する第一接続部、及び、前記第二配管と前記第二ラジエータ配管とを接続する第二接続部の鉛直下方には、第一接続部及び第二接続部から前記冷媒が流出した場合において当該冷媒を受け入れるよう、液受けトレイが設けられていることを特徴とする、請求項4乃至7のいずれか一に記載の燃料電池車両。
  9. 前記電力出力部には、前記負荷への電力供給及び遮断を切り換えるためのリレーが接続されており、前記液受けトレイは、前記リレーの上部に形成されていることを特徴とする、請求項8に記載の燃料電池車両。
  10. 前記昇圧コンバータは、収納ケース内に収められた状態で前記センタートンネル内に搭載されており、
    前記収納ケースには、
    前記第一配管又は前記第一ラジエータ配管が貫通するための孔である第一貫通孔と、
    前記第二配管又は前記第二ラジエータ配管が貫通するための孔である第二貫通孔と、
    が形成されており、
    更に、前記昇圧コンバータに接続される電気配線を外部に引き出すための第三貫通孔が、車両の左右方向において、前記第一貫通孔と前記第二貫通孔との間となる位置に形成されていることを特徴とする、請求項に記載の燃料電池車両。
  11. 前記昇圧コンバータは、収納ケース内に収められた状態で前記センタートンネル内に搭載されており、
    前記収納ケースには、
    前記第一配管が貫通するための孔である第一貫通孔と、
    前記第二配管が貫通するための孔である第二貫通孔と、
    が形成されており、
    更に、前記昇圧コンバータに接続される電気配線を外部に引き出すための第三貫通孔が、車両の左右方向において、前記第一貫通孔と前記第二貫通孔との間となる位置に形成されていることを特徴とする、請求項4乃至7のいずれか一項に記載の燃料電池車両。
JP2012528986A 2011-12-05 2011-12-05 燃料電池車両 Expired - Fee Related JP5483221B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078077 WO2013084278A1 (ja) 2011-12-05 2011-12-05 燃料電池車両

Publications (2)

Publication Number Publication Date
JP5483221B2 true JP5483221B2 (ja) 2014-05-07
JPWO2013084278A1 JPWO2013084278A1 (ja) 2015-04-27

Family

ID=48573686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528986A Expired - Fee Related JP5483221B2 (ja) 2011-12-05 2011-12-05 燃料電池車両

Country Status (6)

Country Link
US (1) US9199550B2 (ja)
JP (1) JP5483221B2 (ja)
KR (1) KR101477718B1 (ja)
CN (1) CN103347724B (ja)
DE (1) DE112011105920B8 (ja)
WO (1) WO2013084278A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056291A1 (en) * 2010-05-13 2013-03-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system for vehicle and fuel cell vehicle
WO2011145421A1 (ja) * 2010-05-21 2011-11-24 日産自動車株式会社 電子部品筐体
WO2016194684A1 (ja) * 2015-06-04 2016-12-08 本田技研工業株式会社 車両用バッテリユニット
US10511042B2 (en) 2016-01-25 2019-12-17 Toyota Jidosha Kabushiki Kaisha Fuel cell unit and vehicle having fuel cell unit
JP6489072B2 (ja) * 2016-01-25 2019-03-27 トヨタ自動車株式会社 燃料電池ユニット、および燃料電池ユニットを備えた車両
JP6451683B2 (ja) * 2016-04-15 2019-01-16 トヨタ自動車株式会社 燃料電池車両の配線構造
JP6354801B2 (ja) 2016-07-21 2018-07-11 トヨタ自動車株式会社 昇圧コンバータ
JP6597653B2 (ja) * 2017-01-19 2019-10-30 トヨタ自動車株式会社 燃料電池車両
US10479218B2 (en) 2017-02-14 2019-11-19 Toyota Motor Engineering & Manufacturing North America, Inc. Electric vehicle power system with shared converter
JP6589909B2 (ja) * 2017-03-01 2019-10-16 トヨタ自動車株式会社 車両
CN107069062B (zh) * 2017-05-26 2020-05-26 温州益蓉机械有限公司 便于燃料电池散热的一种结构
JP7066529B2 (ja) * 2018-05-31 2022-05-13 矢崎総業株式会社 Dc/dc変換ユニット
JP7095580B2 (ja) * 2018-12-07 2022-07-05 トヨタ自動車株式会社 車両
KR20230041548A (ko) * 2021-09-17 2023-03-24 엘지이노텍 주식회사 컨버터

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252462A (ja) * 2009-04-14 2010-11-04 Denso Corp 昇降圧コンバータ
WO2010137147A1 (ja) * 2009-05-28 2010-12-02 トヨタ自動車株式会社 燃料電池システムおよび車両

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211377A1 (en) * 2002-05-07 2003-11-13 Holmes Charles M. Fuel-cell based power source having internal series redundancy
WO2003104010A1 (ja) * 2002-06-10 2003-12-18 トヨタ自動車株式会社 燃料電池搭載車両
US7503585B2 (en) * 2004-09-08 2009-03-17 Nissan Motor Co., Ltd. Rear vehicle structure
KR100927453B1 (ko) * 2005-03-31 2009-11-19 도요타 지도샤(주) 전압변환장치 및 차량
US7896115B2 (en) * 2005-07-08 2011-03-01 Honda Motor Co., Ltd. Fuel cell vehicle
JP4637666B2 (ja) * 2005-07-08 2011-02-23 本田技研工業株式会社 燃料電池自動車
US8003270B2 (en) * 2005-08-17 2011-08-23 Idatech, Llc Fuel cell stacks and systems with fluid-responsive temperature regulation
JP4967595B2 (ja) * 2006-10-20 2012-07-04 トヨタ自動車株式会社 コンバータ制御装置
JP5157163B2 (ja) * 2006-12-27 2013-03-06 トヨタ自動車株式会社 燃料電池システム及び燃料電池システム搭載移動体
US20080277175A1 (en) * 2007-05-07 2008-11-13 Ise Corporation Fuel Cell Hybrid-Electric Heavy-Duty Vehicle Drive System and Method
JP4591896B2 (ja) 2007-11-27 2010-12-01 本田技研工業株式会社 燃料電池電源システムが搭載された車両
EP2075900A1 (en) * 2007-12-28 2009-07-01 Honda Motor Co., Ltd. DC/DC converter, DC/DC converter apparatus, vehicle, fuel cell system, and method of driving DC/DC converter
JP4819071B2 (ja) * 2008-02-06 2011-11-16 本田技研工業株式会社 電気車両及び車両用dc/dcコンバータの冷却方法
JP4536128B2 (ja) * 2008-05-19 2010-09-01 本田技研工業株式会社 Dc/dcコンバータ装置及びこのdc/dcコンバータ装置が搭載された燃料電池車両、並びにdc/dcコンバータの制御方法
JP4386138B1 (ja) * 2008-06-27 2009-12-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
JP5024454B2 (ja) * 2008-10-31 2012-09-12 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP4985873B2 (ja) * 2009-04-23 2012-07-25 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
CN101554863A (zh) * 2009-05-19 2009-10-14 鞠文涛 电动汽车控制系统
WO2010137150A1 (ja) * 2009-05-28 2010-12-02 トヨタ自動車株式会社 燃料電池システムおよび車両
US8932769B2 (en) * 2009-05-28 2015-01-13 Toyota Jidosha Kabushiki Kaisha Fuel cell assembly and vehicle
US20120013185A1 (en) * 2009-06-03 2012-01-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2010143262A1 (ja) * 2009-06-09 2010-12-16 トヨタ自動車株式会社 燃料電池車両
JP5243353B2 (ja) 2009-06-18 2013-07-24 本田技研工業株式会社 電力変換装置
JP2011018553A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 燃料電池車両
US8030884B2 (en) * 2009-08-31 2011-10-04 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
JP4927142B2 (ja) * 2009-09-18 2012-05-09 トヨタ自動車株式会社 電力変換器
US8704401B2 (en) * 2010-03-03 2014-04-22 Honda Motor Co., Ltd. Vehicle electric power supply system
US20130056291A1 (en) * 2010-05-13 2013-03-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system for vehicle and fuel cell vehicle
CN103492214B (zh) * 2011-04-21 2015-09-30 丰田自动车株式会社 电动车辆的电源装置及其控制方法
JP5120576B2 (ja) * 2011-05-02 2013-01-16 トヨタ自動車株式会社 燃料電池車両
CN103650311B (zh) * 2011-07-19 2016-05-25 丰田自动车株式会社 电源系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252462A (ja) * 2009-04-14 2010-11-04 Denso Corp 昇降圧コンバータ
WO2010137147A1 (ja) * 2009-05-28 2010-12-02 トヨタ自動車株式会社 燃料電池システムおよび車両

Also Published As

Publication number Publication date
DE112011105920B8 (de) 2023-04-06
KR20130096747A (ko) 2013-08-30
CN103347724A (zh) 2013-10-09
CN103347724B (zh) 2016-09-28
DE112011105920B4 (de) 2023-02-02
JPWO2013084278A1 (ja) 2015-04-27
US9199550B2 (en) 2015-12-01
US20130306387A1 (en) 2013-11-21
KR101477718B1 (ko) 2014-12-30
WO2013084278A1 (ja) 2013-06-13
DE112011105920T5 (de) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5483221B2 (ja) 燃料電池車両
JP5212482B2 (ja) 電源装置の搭載構造
US10618560B2 (en) Fuel cell vehicle
KR102276262B1 (ko) 전지 모듈 캐리어, 전지 모듈, 및 전지 시스템을 포함하는 자동차
US9849768B2 (en) Vehicle body structure
EP2402193B1 (en) Battery mounting structure
US20140017530A1 (en) Energy storage system for hybrid electric vehicle
US20220314772A1 (en) Underbody for vehicle
US10384544B2 (en) High-voltage unit casing for on-vehicle use, high-voltage unit, and vehicle
US10029580B2 (en) Fuel cell vehicle
JP2010153150A (ja) 蓄電装置の温度調節構造
JP6442451B2 (ja) 電力機器ユニットのケース構造
JP7266749B2 (ja) 冷却流路構造の効率化及び安定性を向上させたバッテリーパック及びそれを含む自動車
WO2023246216A1 (zh) 布局紧凑的动力电池包及包括其的电动汽车
JP7397112B2 (ja) 自動車用バッテリデバイス、自動車、及びバッテリデバイスの動作方法
JP5660469B2 (ja) 燃料電池システム
CN108725236B (zh) 高电压单元
JP2024035421A (ja) 蓄電装置
JP6754221B2 (ja) 燃料電池システム
JP2004311142A (ja) バッテリパック搭載構造

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R151 Written notification of patent or utility model registration

Ref document number: 5483221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees