WO2023246216A1 - 布局紧凑的动力电池包及包括其的电动汽车 - Google Patents

布局紧凑的动力电池包及包括其的电动汽车 Download PDF

Info

Publication number
WO2023246216A1
WO2023246216A1 PCT/CN2023/084422 CN2023084422W WO2023246216A1 WO 2023246216 A1 WO2023246216 A1 WO 2023246216A1 CN 2023084422 W CN2023084422 W CN 2023084422W WO 2023246216 A1 WO2023246216 A1 WO 2023246216A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
power
control unit
management system
Prior art date
Application number
PCT/CN2023/084422
Other languages
English (en)
French (fr)
Inventor
张建平
张小春
褚佳玮
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2023246216A1 publication Critical patent/WO2023246216A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present application relates to the field of battery swapping for electric vehicles, and in particular to a power battery pack with a compact layout and an electric vehicle including the same.
  • Electric vehicles are becoming more and more popular among consumers. Electric vehicles need to be charged after using up the electric energy. Due to the limitations of current battery technology and charging technology, it takes a long time to fully charge an electric vehicle, which is not as simple and fast as refueling a car directly. Therefore, in order to reduce the user's waiting time, it is an effective means to replace the battery when the electric vehicle's power is almost exhausted.
  • large vehicles such as heavy trucks and light trucks have also begun to widely use battery quick-swap technology.
  • the power battery pack includes a battery module and a battery pack frame.
  • the battery module is fixed to the electric vehicle through the battery pack frame.
  • the power battery pack also includes a battery control unit that controls the temperature and/or power supply of the battery module, such as a cooling unit, a high-voltage distribution box, a battery management system, etc.
  • these battery control units are installed on the side of the battery pack frame, but this arrangement will occupy the space in the length direction or width direction of the power battery pack, resulting in a larger overall size of the power battery pack.
  • the technical problem to be solved by this application is to overcome the existing technology of arranging the battery control unit in the battery pack frame.
  • the side result is that the power battery pack is larger in size, can accommodate a smaller number of battery modules, and is suitable for fewer vehicle models.
  • a power battery pack with a compact layout and an electric vehicle including the same are provided.
  • the power battery pack includes:
  • a number of battery modules for powering the electric vehicle A number of battery modules for powering the electric vehicle
  • a battery pack frame, several of the battery modules are installed on the battery pack frame, and the battery pack frame is used to be installed on the body frame of the electric vehicle;
  • a battery control unit is installed on the horizontal plane of the battery pack frame.
  • the battery control unit is connected to the battery module and is used to control the temperature of the battery module and/or control the power supply of the battery module.
  • the battery control unit is installed on the horizontal plane of the battery pack frame, so that the battery control unit can make full use of the remaining space on the horizontal plane of the battery pack frame and the space in the height direction of the power battery pack, making the overall structural layout more compact.
  • the overall size of the power battery pack can be reduced, making the power battery pack suitable for more models. With the same size, it can accommodate more battery modules, increase the power of the power battery pack, and increase the driving range of electric vehicles.
  • the battery control unit is provided on the upper end surface of the battery pack frame.
  • the above settings facilitate the wiring of the battery control unit, as well as early assembly and later maintenance.
  • the battery pack frame includes a plurality of battery accommodation areas arranged along the width direction of the electric vehicle.
  • the plurality of battery accommodation areas include a central accommodation area and a side accommodation area.
  • the side accommodation areas and A locking piece is provided between the middle accommodation areas, and the locking piece is used to cooperate with a locking mechanism on the body frame to lock the power battery pack on the body frame.
  • the above arrangement makes full use of the space between the middle accommodation area and the side accommodation area, so that the battery module will not interfere with the locking part.
  • the power battery pack Fixed on electric cars.
  • the space between the two body beams is fully utilized to increase the number of battery modules and increase the power of the power battery pack.
  • the battery pack frame has a platform for placing the battery module, and the battery control unit is provided on the platform of the middle accommodation area and/or the side accommodation area.
  • the battery control unit and the battery module are placed on the same platform, which facilitates the processing of the battery pack frame. There is no need to set up a separate platform for placing the battery control unit. This simplifies the structure of the battery pack frame, reduces costs, and improves efficiency. And it can take into account the rationality of the arrangement of the battery control unit and battery modules as well as the cruising range of the electric vehicle.
  • the battery pack frame has multiple layers of platforms in the height direction, each layer of the platform is provided with a plurality of the battery modules, and the battery control unit is located on the highest platform. .
  • the above arrangement further utilizes the space in the height direction of the power battery pack.
  • the horizontal size of the power battery pack is the same, the number of battery modules is increased, and the power of the power battery pack is increased, so that it can be adapted to More models and increased driving range of electric vehicles.
  • the multi-layer platform includes a top platform located at the highest point and several bottom platforms located below the top platform. Several bottom platforms are connected to the top platform, and the battery module is connected through A wire is connected to the battery control unit, the connection wire being able to extend from the top platform to the bottom platform.
  • the above settings are to realize the connection between the connecting wire of the battery control unit and the battery module located on the lower platform.
  • the bottom platform of the same layer includes two sets of bottom platform units, and the two sets of bottom platform units are symmetrically distributed along the width direction of the electric vehicle.
  • two sets of bottom platform units are used to place battery modules, making full use of the space under the body frame to increase the number of battery modules, and the connection line of the battery control unit can be connected by the connection between the two bottom platform units.
  • the space enters the bottom platform unit from the side to realize the connection between the connecting cable of the battery control unit and the battery module located on the bottom platform.
  • the battery pack frame has weight-reducing holes and/or wire passing holes.
  • the weight-reducing hole can reduce the overall weight of the power battery pack and can also be used for the connection wires of the battery control unit to pass through.
  • the cable hole is used for the connection cable of the battery control unit to pass through.
  • the battery control unit includes a cooling unit used to control the temperature of the battery module.
  • the cooling unit is used to adjust the temperature of the battery module, cooling it when the temperature of the battery module is high, and heating it when the temperature of the battery module is low, thereby increasing the service life of the battery module and ensuring that the battery module Able to provide stable power supply.
  • the cooling unit is a liquid cooling unit.
  • the liquid cooling unit includes a heat exchange part and a liquid cooling tube.
  • the heat exchange part and the liquid cooling tube form a cooling circuit.
  • the liquid cooling tube is connected with the liquid cooling tube.
  • the battery module is connected, and the cooling circuit passes through the battery module;
  • the number of the cooling units is multiple, and each of the plurality of cooling units is connected to a plurality of the battery modules.
  • the liquid cooling temperature adjustment method has high temperature adjustment efficiency, good temperature adjustment effect, and produces less noise.
  • setting up multiple cooling units can effectively maintain the temperature of the battery modules and at the same time, the layout flexibility is higher. , to facilitate the overall layout.
  • the battery control unit includes a high-voltage distribution box, and the high-voltage distribution box is electrically connected to the battery module.
  • the high-voltage distribution box is used for power distribution to ensure the safety of electricity.
  • the battery control unit further includes a battery management system, and the battery management system is electrically connected to the battery module.
  • the battery management system is used to monitor the status of the battery module, such as the remaining power of the battery module, etc., to ensure that the value of the battery module is maintained within a reasonable range, to prevent the battery module from overcharging and discharging, and to improve the battery model.
  • the battery management system feeds back the monitoring results to the electric vehicle control system.
  • the electric vehicle control system issues relevant instructions to the battery management system based on the received feedback.
  • the battery management system further controls the battery module based on the received instructions.
  • the battery management system is electrically connected to the high-voltage distribution box, and the battery management system is connected to the battery module through the high-voltage distribution box. electrical connection;
  • the battery management system is provided inside the high-voltage distribution box.
  • the battery management system controls the components in the high-voltage distribution box based on the command lines received from the electric vehicle control system, and the high-voltage distribution box further controls the charging and discharging of the battery module based on relevant instructions.
  • the overall layout is made more compact, reducing the space occupied by the battery management system on the horizontal plane of the power battery pack, allowing more space to install battery modules.
  • An electric vehicle includes a body frame and a compact power battery pack as described above, and the power battery pack is installed on the body frame.
  • the power battery pack is installed on the body frame of the electric vehicle chassis to provide power for the electric vehicle.
  • this application installs the battery control unit on the horizontal plane of the battery pack frame, so that the battery control unit can make full use of the remaining space on the horizontal plane of the battery pack frame and the space in the height direction of the power battery pack, making the overall
  • the structural layout is more compact. Under the condition of the same power, the overall size of the power battery pack can be reduced, making the power battery pack suitable for more models. With the same dimensions, it can accommodate more Multiple battery modules can increase the power of the power battery pack and increase the driving range of electric vehicles.
  • Figure 1 is a schematic three-dimensional structural diagram of a power battery pack and an electric vehicle in a mated state according to Embodiment 1 of the present application.
  • Figure 2 is a schematic three-dimensional structural diagram of a power battery pack with a protective cover according to Embodiment 1 of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of the power battery pack with the protective cover hidden according to Embodiment 1 of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of the battery pack frame according to Embodiment 1 of the present application.
  • Figure 5 is a schematic three-dimensional structural diagram of the power battery pack according to Embodiment 2 of the present application.
  • Figure 6 is a schematic three-dimensional structural diagram of the power battery pack according to Embodiment 3 of the present application.
  • Figure 7 is a schematic three-dimensional structural diagram of the power battery pack according to Embodiment 4 of the present application.
  • Body frame 11 Power battery pack 12; battery module 2; battery pack frame 3; middle accommodation area 31; side accommodation area 32; connecting beam 33; top platform 34; through hole 341; bottom platform 35; bottom platform unit 351 ; Battery control unit 4; cooling unit 41; high-voltage distribution box 42; battery management system 43; locking member 5; protective cover 61; protective plate 62.
  • this embodiment provides an electric vehicle.
  • the electric vehicle is a commercial vehicle such as a heavy truck or a light truck, and includes a body frame 11 and a power battery pack 12.
  • the power battery pack 12 is installed on the chassis of the electric vehicle. Used to power electric vehicles.
  • the body frame 11 in this embodiment is a support beam located at the chassis of the electric vehicle, and the power battery pack 12 is installed on the body frame 11 .
  • the power battery pack 12 includes several battery modules 2 , a battery pack frame 3 and a battery control unit 4 .
  • the battery module 2 is used to power the electric vehicle.
  • the power battery pack 12 is fixed on the vehicle body frame 11 through the battery pack frame 3 .
  • the battery control unit 4 is used to control the temperature of the battery module 2 and/or control the power supply of the battery module 2 .
  • a power battery pack 12 may also include only one battery module or multiple battery modules of different specifications to meet the power requirements of the electric vehicle.
  • This application uses multiple Battery modules 2 of the same specifications jointly provide power for electric vehicles. Compared with using one large battery module or multiple battery modules of different specifications, it is convenient for the standardized production of battery modules 2.
  • Technicians can customize the battery modules according to different specifications. Different numbers of battery modules 2 are selected for each vehicle model to meet the power requirements of various vehicle models. When a certain battery module 2 fails, only the failed battery module 2 needs to be replaced, thereby saving maintenance costs.
  • the battery pack frame 3 is connected to the body frame 11, thereby fixing the entire power battery pack 12 on the body frame 11.
  • Multiple battery modules 2 are installed on the battery pack frame 3 and are arranged on the horizontal plane of the battery pack frame 3.
  • the battery pack frame 3 is used to support multiple battery modules 2 to ensure the stability of the placement of the battery modules 2. .
  • the battery pack frame 3 can install multiple battery modules 2 to the vehicle body frame 11 at the same time.
  • the vehicle body frame 11 does not need to connect each battery module 2 individually, thereby improving the installation efficiency and improving the feasibility of quick battery replacement.
  • the battery control unit 4 is installed on the horizontal plane of the battery pack frame 3 , and the battery control unit 4 is connected to the battery module 2 .
  • the number of battery control units 4 in this embodiment is three, which are the cooling unit 41, the high-voltage distribution box 42 and the battery management system 43.
  • the three battery control units 4 are all installed on the horizontal plane of the battery pack frame 3. and are connected to each battery module 2.
  • the cooling unit 41 is used to control the temperature of the battery module 2, and the high-voltage distribution box 42 and battery management system 43 are used to control the power supply of the battery module 2.
  • the number of battery control units 4 can be any number, and technicians can design according to actual needs, and select a method to control the temperature of the battery module 2 or control the power supply of the battery module 2 according to actual needs.
  • the battery control unit 4 is installed on the horizontal plane of the battery pack frame 3, so that the battery control unit 4 can make full use of the remaining space on the horizontal plane of the battery pack frame 3 and the space in the height direction of the power battery pack 12. Making the overall structural layout more compact.
  • the overall size of the power battery pack 12 can be reduced, so that the power battery pack 12 can be adapted to more models. With the same size, it can accommodate more battery modules 2, increase the power of the power battery pack 12, and increase the driving range of the electric vehicle.
  • the battery control unit 4 is disposed on the upper end surface of the battery pack frame 3.
  • the battery pack frame 3 can carry the battery control unit 4. There is no need to provide other structures to fix the battery control unit 4 on the battery pack frame 3. .
  • the battery control unit 4 is disposed on the upper end surface of the battery pack frame 3 to facilitate the wiring of the battery control unit 4 and provide technicians with a larger operating space, which facilitates early assembly and later maintenance.
  • the battery pack frame 3 includes multiple battery accommodation areas arranged along the width direction of the electric vehicle (the X direction in Figure 1).
  • the multiple battery accommodation areas include a central accommodation area 31 and a side accommodation area. District 32.
  • the battery pack frame 3 includes a total of three battery accommodation areas, namely a central accommodation area 31 and two battery accommodation areas located on both sides of the central accommodation area 31 .
  • a plurality of battery modules 2 are installed in the central accommodation area 31 and the two side accommodation areas 32 respectively.
  • the three battery control units 4 are all located in the central accommodation area 31 and along the length direction of the electric vehicle (Fig. 1 Y direction) are set in sequence.
  • the battery module 2 may also be fully or partially disposed in the middle accommodation area 31
  • the battery control unit 4 may also be fully or partially disposed in the side accommodation area 32 .
  • a locking piece 5 is provided between the side accommodation area 32 and the middle accommodation area 31.
  • the locking piece 5 is used to cooperate with the locking mechanism on the body frame 11 to secure the power battery pack 12 Locked on the body frame 11.
  • the battery pack frame 3 includes two connecting beams 33 for separating the middle accommodating area 31 and the side accommodating area 32, and the locking parts 5 are provided between the two side accommodating areas 32 and the middle accommodating area 31.
  • the locking parts 5 are provided on the opposite sides of the two connecting beams 33 , and the battery pack frame 3 is detachably mounted on the vehicle body frame 11 through the locking parts 5 . After the power battery pack 12 is matched with the vehicle body frame 11, the power battery pack 12 is locked on the body frame 11 through the locking member 5, so that the connection between the power battery pack 12 and the vehicle chassis is stronger.
  • the locking member 5 is disposed in the middle part of the battery pack frame 3, making full use of the space between the middle accommodating area 31 and the side accommodating area 32, so that the battery module 2 will not interfere with the locking member 5. , and can maintain a relatively balanced force and better bear the weight of the power battery pack 12 .
  • the locking piece 5 cooperates with the locking mechanism on the body frame 11 to lock the power battery pack 12 on the body frame 11, making full use of the space between the two body frames 11 and increasing the number of battery modules 2. Increase the power of the power battery pack 12.
  • the locking member 5 in this embodiment is specifically a lock shaft, and the locking mechanism on the vehicle body frame 11 is a lock base. Through the cooperation of the lock shaft and the lock base, the battery pack frame 3 is fixed on the body frame 11 .
  • the locking member 5 and the locking mechanism may also adopt other locking structures that can cooperate with each other.
  • the battery pack frame 3 has a platform for placing the battery module 2 .
  • multiple battery control units 4 are located on the platform of the middle accommodation area 31 .
  • the battery control unit 4 and the battery module 2 are placed on the same platform, which facilitates the processing of the battery pack frame 3.
  • the battery control unit 4 may also be located entirely or partially on the platform of the side accommodation area 32 .
  • the battery pack frame 3 has a multi-layered platform in the height direction.
  • Each platform is provided with several battery modules 2, and the battery control unit 4 is located on the highest platform.
  • the battery module 2 is installed on the platform of the side accommodation area 32, and the battery control unit 4 is installed on the highest platform of the middle accommodation area 31, so as to In one step, the space in the height direction of the power battery pack 12 is utilized.
  • the number of battery modules 2 is increased to increase the power of the power battery pack 12 so that it can be adapted to more models. , and increase the driving range of electric vehicles.
  • this embodiment includes a total of two platforms, namely the top platform 34 located at the highest point and the bottom platform 35 located below the top platform 34.
  • the bottom platform 35 is connected to the top platform 34, and the battery module 2 is connected through
  • the connection wires are connected to the battery control unit 4 , and the connection wires can extend from the top platform 34 to the bottom platform 35 , thereby realizing the connection between the connection wires of the battery control unit 4 and the battery module 2 located on the bottom platform 35 .
  • the top platform 34 is provided with a through hole 341 connected to the bottom platform 35 .
  • the through hole 341 can be used as a hole for the connecting wire of the battery control unit 4 , and the connecting wire of the battery control unit 4 can extend from the through hole 341 to the bottom platform 35 and connected to the battery module 2 located on the bottom platform 35 .
  • the through hole 341 can also be used as a weight reduction hole, which can reduce the overall weight of the power battery pack 12 .
  • the number of bottom platforms 35 is one. In other alternative embodiments, multiple bottom platforms 35 may also be included below the top platform 34. Any bottom platform 35 is connected to the top platform 34 to facilitate positioning on the top.
  • the connection lines of the battery control unit 4 on the platform 34 can be connected to the battery module 2 located on the bottom platform 35 . In this state, except for the bottom platform 35 located at the lowest level, the bottom platforms 35 of each layer can be provided with through holes 341 such as those provided on the top platform 34 to facilitate the connection lines of the battery control unit 4 to be further installed on the lower layer. platform.
  • the bottom platform 35 of the same layer includes two groups of bottom platform units 351 .
  • the two groups of bottom platform units 351 are symmetrically distributed along the width direction of the electric vehicle and are respectively located in the two side accommodation areas 32 .
  • the platform unit 351 is partially located within the central accommodation area 31 .
  • the opposite sides of the two sets of bottom platform units 351 are connected to the middle accommodation area 31.
  • the connection line of the battery control unit 4 can enter the bottom platform unit 351 from the side through the middle accommodation area 31 between the two bottom platform units 351.
  • the two sets of bottom platform units 351 are used to place the battery modules 2, making full use of the space under the vehicle body frame 11, increasing the number of battery modules 2, and increasing the power of the power battery pack 12.
  • the battery pack frame 3 also has weight-reducing holes and/or other wire holes.
  • the weight-reducing holes can reduce the overall weight of the power battery pack 12 and can also be used for the connection wires of the battery control unit 4 to pass through.
  • the wire holes are used for the connection wires of the battery control unit 4 to pass through, thereby improving the flexibility of wiring.
  • the cooling unit 41 is used to control the temperature of the battery module 2 so that the temperature of the battery module 2 is always maintained within a reasonable range, so that power can be supplied to the electric vehicle normally. Specifically, the cooling unit 41 is used in the battery mold When the temperature of the group 2 is high, the battery module 2 is cooled down, and when the temperature of the battery module 2 is low, the battery module 2 is heated.
  • a temperature monitoring unit such as a temperature sensor, for monitoring the temperature of the battery module 2 may be further provided on the power battery pack 12 .
  • the temperature monitoring unit feeds back the monitored temperature to the control system of the electric vehicle, and the control system sends relevant instructions to the cooling unit 41 based on the received temperature data.
  • the cooling unit 41 in this embodiment is a liquid cooling unit, which regulates the temperature of the battery module 2 through liquid cooling.
  • the liquid cooling temperature adjustment method has high temperature adjustment efficiency, good temperature adjustment effect, and produces less noise.
  • the liquid cooling unit includes a heat exchange part and a liquid cooling tube. The heat exchange part and the liquid cooling tube form a cooling circuit.
  • the liquid cooling tube is connected to the battery module 2 and the cooling circuit passes through the battery module 2 . When the cooling liquid in the liquid cooling pipe flows through the battery module 2, it can release heat to the battery module 2 or absorb heat, thereby adjusting the temperature of the battery module 2.
  • the heat exchange part can adjust the temperature of the coolant, increase the temperature of the coolant when the coolant releases heat to the battery module 2, and lower the temperature of the coolant when the coolant absorbs heat to the battery module 2, thereby facilitating the cooling of the coolant again.
  • it can also release heat or absorb heat to the battery module 2.
  • the number of cooling units 41 is one. In other alternative embodiments, the number of cooling units 41 may be multiple, especially when the number of battery modules 2 is large or the power demand is large.
  • One end of the high-voltage distribution box 42 is electrically connected to the control system of the electric vehicle, and the other end is electrically connected to the battery module 2.
  • the high-voltage distribution box 42 can distribute power according to instructions issued by the control system to ensure the safety of electricity use.
  • the battery management system 43 is electrically connected to the control system of the electric vehicle, and the other end is electrically connected to the battery module 2.
  • the battery management system 43 is used to monitor the status of the battery module 2, such as the remaining power of the battery module 2, etc., to ensure The value of the battery module 2 is maintained within a reasonable range to prevent overcharging and discharging of the battery module 2 and improve the service life of the battery module 2.
  • the battery management system 43 feeds back the monitoring results to the control system.
  • the control system issues relevant instructions to the battery management system 43 based on the received feedback.
  • the battery management system 43 further controls the battery module 2 based on the received instructions.
  • the battery management system 43 is located closer to the high-voltage distribution box 42 .
  • the battery management system 43 is electrically connected to the high-voltage distribution box 42
  • the battery management system 43 is electrically connected to the battery module 2 through the high-voltage distribution box 42 .
  • the battery management system 43 controls the components in the high-voltage distribution box 42 according to the command lines received from the electric vehicle control system, and the high-voltage distribution box 42 further controls the charging and discharging of the battery module 2 according to relevant instructions.
  • the battery management system 43 and the high-voltage distribution box 42 are set independently of each other. Since the battery management system The size of 43 is generally small, so in other alternative embodiments, the battery management system 43 may be located inside the high voltage distribution box 42 . There is enough space inside the high-voltage distribution box 42 to protect the battery management system 43. The box of the high-voltage distribution box 42 can also protect the battery management system 43, and at the same time facilitate the battery management system 43 and the high-voltage distribution box 42.
  • the integration makes the overall layout more compact and reduces the space occupied by the battery management system 43 on the horizontal plane of the power battery pack 12, thereby allowing more space to install the battery module 2.
  • the power battery pack 12 also includes a protective cover 61 .
  • the protective cover 61 is provided on the upper end surface of the battery pack frame 3 and is used to cover the battery module 2 and the battery control unit 4 .
  • the number of protective covers 61 in this embodiment is three, which are respectively located in the middle accommodation area 31 and the side accommodation areas 32 on both sides.
  • the protective cover 61 is used to close the upper opening of the battery pack frame 3.
  • the battery module 2 and the battery control unit 4 are accommodated in the protective cover 61.
  • the protective cover 61 can prevent dust, rainwater and other impurities from entering from the upper opening of the battery pack frame 3.
  • the interior of the power battery pack 12 can also prevent the battery module 2 and the battery control unit 4 from collision and wear caused by accidental impact by flying stones and other materials, thereby extending the service life of the power battery pack 12 .
  • the protective cover 61 can also prevent the explosion from spreading and improve the safety of the power battery pack 12 .
  • the power battery pack 12 also includes a protective plate 62.
  • the protective plate 62 covers the side and bottom surfaces of the battery pack frame 3 and is used to close the openings on the side and bottom surfaces of the battery pack frame 3 to prevent dust, rain and other impurities from entering.
  • the side and bottom openings of the battery pack frame 3 enter the interior of the power battery pack 12, further preventing the battery module 2 and the battery control unit 4 from being accidentally hit by flying stones and other materials from collision wear, and extending the service life of the power battery pack 12.
  • the protective plate 62 can also prevent the explosion from spreading and improve the safety of the power battery pack 12 .
  • the protective cover 61 and the protective plate 62 are both made of skin or steel plates. In other alternative embodiments, the protective cover 61 and the protective plate 62 can also be made of other materials with higher strength.
  • the structures of the electric vehicle and power battery pack 12 in this embodiment are basically the same as those in Embodiment 1, except for the installation position of the battery control unit 4 .
  • the battery pack frame 3 includes a plurality of battery accommodation areas arranged along the width direction of the electric vehicle, namely a middle accommodation area 31 and two side accommodation areas 32 located on both sides of the middle accommodation area 31.
  • the topmost The battery module 2 and the battery control unit 4 are located in the side accommodation area 32 .
  • the number of battery modules 2 and the arrangement of the battery modules 2 and the battery control unit 4 can be adjusted according to actual needs to take into account the rationality of the arrangement and the cruising range of the electric vehicle.
  • this embodiment also includes three battery control units 4, which are a cooling unit 41, a high-voltage distribution box 42 and a battery management system 43. Based on the direction shown in Figure 5, the cooling unit 41 is located on the left side. In the side accommodation area 32 , the high-voltage distribution box 42 and the battery management system 43 are located in the side accommodation area 32 on the right side. In this embodiment, three battery control units 4 are separately arranged in two side accommodating areas 32 according to the sizes of different battery control units 4, ensuring that the number of battery modules 2 in the two side accommodating areas 32 is the same, so that the overall The layout is more reasonable and compact.
  • the cooling unit 41 , the high-voltage distribution box 42 and the battery management system 43 can also be located in the side accommodation area 32 on the same side; or the cooling unit 41 and the high-voltage The distribution box 42 is located in one side accommodation area 32, and the battery management system 43 is located in the other side accommodation area 32; or the cooling unit 41 and the battery management system 43 are located in one side accommodation area 32, and the high-voltage distribution box 42 is located in the other side accommodation area 32. Side receiving areas 32.
  • the high-voltage distribution box 42 and the battery management system 43 are placed in a side accommodation area 32, which can shorten the distance between the high-voltage distribution box 42 and the battery management system 43 and shorten the length of the connection line between them. cut costs.
  • the structures of the electric vehicle and power battery pack 12 in this embodiment are basically the same as those in Embodiment 1, except for the installation position of the battery module 2 and the number and installation position of the battery control units 4 .
  • the battery pack frame 3 includes a plurality of battery accommodation areas arranged along the width direction of the electric vehicle, namely a central accommodation area 31 and two side accommodation areas 32 located on both sides of the central accommodation area 31.
  • Part of the battery module 2 and the battery control unit 4 are disposed in both the area 31 and the side accommodation area 32 .
  • the number of battery modules 2 and the arrangement of the battery modules 2 and the battery control unit 4 can be adjusted according to actual needs to take into account the rationality of the arrangement and the cruising range of the electric vehicle.
  • this embodiment includes four battery control units 4, which are respectively two cooling units 41, a high-voltage distribution box 42 and a battery management system 43.
  • the two cooling units 41 are respectively located in the side accommodation areas 32 on both sides, and the high-voltage distribution box 42 and battery management system 43 are located in the middle accommodation area 31 .
  • the high-voltage distribution box 42 and the battery management system 43 are stacked one above the other, and the battery management system 43 is located above the high-voltage distribution box 42 .
  • the battery management system 43 is installed on the upper end surface of the high-voltage distribution box 42 .
  • the power battery pack 12 can be further utilized.
  • the space in the height direction makes the overall layout more compact, reducing the occupancy rate of the power battery pack 12 on the horizontal plane, thereby allowing more space to install the battery module 2.
  • the size of the battery management system 43 is usually small. Even if it is stacked up and down with the high-voltage distribution box 42, it will not occupy too much space in the height direction of the power battery pack 12 and prevent interference with other components of the electric vehicle.
  • the size of the battery management system 43 is usually smaller than the cooling unit 41 and the high-voltage distribution box 42, locating the battery management system 43 above the high-voltage distribution box 42 can improve the stability of the high-voltage distribution box 42 after installation and improve the layout. reliability.
  • two cooling units 41 may also be arranged in the middle accommodation area 31 , or one cooling unit 41 may be arranged in the middle accommodation area 31 and the other cooling unit 41 may be arranged in the middle accommodation area 31 .
  • Side receiving areas 32 may also be arranged in the middle accommodation area 31 , or one cooling unit 41 may be arranged in the middle accommodation area 31 and the other cooling unit 41 may be arranged in the middle accommodation area 31 .
  • the high-voltage distribution box 42 and the battery management system 43 can also be disposed in the side accommodation area 32 , or the high-voltage distribution box 42 can also be placed on the battery management system 43 .
  • the battery management system 43 can also be stacked up and down with the cooling unit 41 . Further preferably, the battery management system 43 is located above the cooling unit 41 , and the battery management system 43 is installed on the upper end surface of the cooling unit 41 superior. In this implementation, the high-voltage distribution box 42 and the battery management system 43 are stacked one above the other, which can shorten the distance between the high-voltage distribution box 42 and the battery management system 43, shorten the length of the connection line between them, and reduce costs.
  • the structures of the electric vehicle and power battery pack 12 in this embodiment are basically the same as those in Embodiment 3, except for the installation position of the battery control unit 4 .
  • the battery pack frame 3 includes a plurality of battery accommodation areas arranged along the width direction of the electric vehicle, namely a central accommodation area 31 and two side accommodation areas 32 located on both sides of the central accommodation area 31.
  • the battery control All the units 4 are arranged in the side accommodation areas 32 , and part of the battery modules 2 are arranged in both the middle accommodation area 31 and the side accommodation areas 32 .
  • the number of battery modules 2 and the arrangement of the battery modules 2 and the battery control unit 4 can be adjusted according to actual needs to take into account the rationality of the arrangement and the cruising range of the electric vehicle.
  • this embodiment includes four battery control units 4, which are respectively two cooling units 41, a high-voltage distribution box 42 and a battery management system 43.
  • the two cooling units 41 are respectively located in the side accommodation areas 32 on both sides, and the high-voltage distribution box 42 and battery management system 43 are located in the side accommodation area 32 on the right side.
  • the high-voltage distribution box 42 and the battery management system 43 are stacked one above the other, and the battery management system 43 is located above the high-voltage distribution box 42 .
  • the battery management system 43 is installed on the upper end surface of the high-voltage distribution box 42 .
  • Stacking the high-voltage distribution box 42 and the battery management system 43 one above the other can further utilize the space in the height direction of the power battery pack 12, making the overall layout more compact and reducing the occupancy rate of the power battery pack 12 on the horizontal plane, thereby enabling more space to install the battery module 2.
  • the size of the battery management system 43 is usually small. Even if it is stacked up and down with the high-voltage distribution box 42, it will not occupy too much space in the height direction of the power battery pack 12 and prevent interference with other components of the electric vehicle.
  • the size of the battery management system 43 is usually smaller than the cooling unit 41 and the high-voltage distribution box 42, locating the battery management system 43 above the high-voltage distribution box 42 can improve the stability of the high-voltage distribution box 42 after installation and improve the layout. reliability.
  • the high voltage distribution box 42 may also be placed on the battery management system 43 .
  • the battery management system 43 can also be stacked up and down with the cooling unit 41 . Further preferably, the battery management system 43 is located above the cooling unit 41 , and the battery management system 43 is installed on the upper end surface of the cooling unit 41 superior. In this implementation, the high-voltage distribution box 42 and the battery management system 43 are stacked one above the other, which can shorten the distance between the high-voltage distribution box 42 and the battery management system 43, shorten the length of the connection line between them, and reduce costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

本申请提供一种布局紧凑的动力电池包及包括其的电动汽车,动力电池包包括若干电池模组、电池包框架和电池控制单元,若干个电池模组均安装在电池包框架上,电池控制单元安装在电池包框架的水平面上,电池控制单元与电池模组连接,用于控制电池模组温度和/或控制电池模组的供电。将电池控制单元安装在电池包框架的水平面上,使得电池控制单元能够充分利用电池包框架水平面上的剩余空间以及动力电池包高度方向上的空间,使得整体结构布局更加紧凑。在电量相同的情况下,能够缩小动力电池包的整体尺寸,使得动力电池包能够适配于更多车型。在尺寸相同的情况下,能够容纳更多的电池模组,提高动力电池包的电量,增加电动汽车的行驶里程。

Description

布局紧凑的动力电池包及包括其的电动汽车
本申请要求申请日为2022年6月22日的中国专利申请CN202221587285X的优先权。本申请引用上述中国专利申请的全文。
技术领域
本申请涉及电动汽车换电领域,特别涉及一种布局紧凑的动力电池包及包括其的电动汽车。
背景技术
现在电动汽车越来越受到消费者的欢迎,电动汽车在电能使用完后需要充电,由于现在电池技术和充电技术的限制,电动汽车充满电需要花费较长的时间,不如汽车直接加油简单快速。因此,为了减少用户的等待时间,在电动汽车的电能快耗尽时更换电池是一种有效的手段。目前,随着电动汽车的市场占有率和使用频率也越来越高,除了小型车辆采用蓄电池作为驱动能源外,大型车辆(例如重型卡车、轻型卡车)也开始逐渐广泛应用电池快换技术。
现有技术中一种动力电池包的安装方式是将其安装在电动汽车的底盘位置,并固定在电动汽车的车身大梁上。动力电池包包括电池模组和电池包框架,电池模组通过电池包框架固定到电动汽车上。此外,动力电池包还包括控制电池模组温度和/或供电的电池控制单元,例如冷却机组、高压配电箱、电池管理系统等。现有技术中,这些电池控制单元都是安装在电池包框架的侧面,但该设置方式会占用动力电池包在长度方向或宽度方向上的空间,导致动力电池包的整体尺寸较大。但是,由于电动汽车的前轮和后轮之间的距离一定且电动汽车的宽度一定,因此尺寸较大的动力电池包适用的车型较少。此外,由于大型车辆车体以及载货重量很大,导致大型车辆对电池包的容量需求较高,但上述设置在动力电池包尺寸相同的情况下,能够容纳的电池模组的数量较少,导致电动汽车的电量较低。
发明内容
本申请要解决的技术问题是为了克服现有技术中将电池控制单元设置在电池包框架 的侧面导致动力电池包尺寸较大,能够容纳的电池模组的数量较少,适配的车型较少的缺陷,提供一种布局紧凑的动力电池包及包括其的电动汽车。
本申请是通过下述技术方案来解决上述技术问题:
一种布局紧凑的动力电池包,用于安装在电动汽车的底盘,所述动力电池包包括:
若干电池模组,用于为所述电动汽车供电;
电池包框架,若干个所述电池模组均安装在所述电池包框架上,所述电池包框架用于安装在所述电动汽车的车身大梁上;
电池控制单元,安装在所述电池包框架的水平面上,所述电池控制单元与所述电池模组连接,用于控制所述电池模组温度和/或控制所述电池模组的供电。
在本方案中,将电池控制单元安装在电池包框架的水平面上,使得电池控制单元能够充分利用电池包框架水平面上的剩余空间以及动力电池包高度方向上的空间,使得整体结构布局更加紧凑。在电量相同的情况下,能够缩小动力电池包的整体尺寸,使得动力电池包能够适配于更多车型。在尺寸相同的情况下,能够容纳更多的电池模组,提高动力电池包的电量,增加电动汽车的行驶里程。
较佳地,所述电池控制单元设于所述电池包框架的上端面上。
在本方案中,上述设置方便电池控制单元的接线,方便前期的组装和后期的维护。
较佳地,所述电池包框架包括沿所述电动汽车的宽度方向排列的多个电池容纳区,多个所述电池容纳区包括中部容纳区和侧部容纳区,所述侧部容纳区和所述中部容纳区之间设有锁止件,所述锁止件用于与所述车身大梁上的锁止机构配合以将所述动力电池包锁止于所述车身大梁上。
在本方案中,上述设置充分利用中部容纳区和侧部容纳区之间的空间,使得电池模组不会与锁止件产生干涉,通过锁止件与锁止机构的配合,将动力电池包固定在电动汽车上。充分利用了两个车身大梁之间的空间,增加电池模组的数量,提高动力电池包的电量。
较佳地,所述电池包框架具有用于放置所述电池模组的平台,所述电池控制单元设于所述中部容纳区和/或所述侧部容纳区的所述平台上。
在本方案中,电池控制单元和电池模组放置在同一平台上,方便电池包框架的加工,不用单独设置用于放置电池控制单元的平台,简化电池包框架的结构,降低成本,提高效率,并且可以兼顾电池控制单元和电池模组排布的合理性以及电动汽车的续航里程。
较佳地,所述电池包框架在高度方向上具有多层所述平台,每层所述平台均设置有若干个所述电池模组,所述电池控制单元设于最高处的所述平台上。
在本方案中,上述设置进一步利用了动力电池包高度方向上的空间,在动力电池包水平尺寸相同的情况下,增加电池模组的数量,提高动力电池包的电量,使之能够适配于更多车型,且增加电动汽车的行驶里程。
较佳地,多层所述平台包括位于最高处的顶部平台和若干个位于所述顶部平台下方的底部平台,若干个所述底部平台均与所述顶部平台连通,所述电池模组通过连接线连接至所述电池控制单元,所述连接线能够从所述顶部平台延伸至所述底部平台。
在本方案中,上述设置是为了实现电池控制单元的连接线与位于下层平台上的电池模组之间的连接。
较佳地,同层所述底部平台包括两组底部平台单元,两组所述底部平台单元沿所述电动汽车的宽度方向对称分布。
在本方案中,两组底部平台单元用于放置电池模组,充分利用了车身大梁下方的空间,增加电池模组的数量,且电池控制单元的连接线可以由两个底部平台单元之间的空间,从侧面进入底部平台单元,以实现电池控制单元的连接线与位于底部平台上的电池模组之间的连接。
较佳地,所述电池包框架上具有减重孔和/或过线孔。
在本方案中,减重孔能够减轻动力电池包整体的重量,也可用于供电池控制单元的连接线穿过。过线孔用于供电池控制单元的连接线穿过。
较佳地,所述电池控制单元包括冷却机组,所述冷却机组用于控制所述电池模组的温度。
在本方案中,冷却机组用于调节电池模组的温度,在电池模组温度较高时实现降温,在电池模组温度较低时实现升温,提高电池模组的使用寿命,保证电池模组能够稳定供电。
较佳地,所述冷却机组为液冷机组,所述液冷机组包括换热部和液冷管,所述换热部和所述液冷管形成冷却回路,所述液冷管与所述电池模组连接,所述冷却回路经过所述电池模组;
和/或,所述冷却机组的数量为多个,多个所述冷却机组均连接有若干个所述电池模组。
在本方案中,液冷调温的方式调温效率高、调温效果好,而且产生的噪音较小。电池模组的数量越多,冷却机组的规模需要越大,相较于直接设置一个较大的冷却机组,设置多个冷却机组在能够有效维持电池模组温度的同时,布局的灵活性更高,方便整体布局。
较佳地,所述电池控制单元包括高压配电箱,所述高压配电箱与所述电池模组电连接。
在本方案中,高压配电箱用于进行电源分配,保证用电安全。
较佳地,所述电池控制单元还包括电池管理系统,所述电池管理系统与所述电池模组电连接。
在本方案中,电池管理系统用于监控电池模组的状态,例如电池模组的剩余电量等,保证电池模组的数值维持在合理范围内,防止电池模组过度充电、放电,提高电池模组的使用寿命。电池管理系统将监控结果反馈给电动汽车控制系统,电动汽车控制系统根据收到的反馈向电池管理系统下发相关指令,电池管理系统根据收到的指令进一步控制电池模组。
较佳地,当所述电池控制单元包括高压配电箱时,所述电池管理系统与所述高压配电箱电连接,所述电池管理系统通过所述高压配电箱与所述电池模组电连接;
和/或,所述电池管理系统设于所述高压配电箱的内部。
在本方案中,电池管理系统根据收到电动汽车控制系统的指令线控制高压配电箱中的元器件,高压配电箱再根据相关指令进一步控制电池模组充电、放电。通过电池管理系统和高压配电箱的集成,使得整体布局更加紧凑,减少电池管理系统在动力电池包水平面上占用的空间,从而能够有更多的空间安装电池模组。
一种电动汽车,所述电动汽车包括车身大梁和如上所述的布局紧凑的动力电池包,所述动力电池包安装在所述车身大梁上。
在本方案中,动力电池包安装在电动汽车底盘的车身大梁上,用于为电动汽车提供电力。
本申请的积极进步效果在于:本申请将电池控制单元安装在电池包框架的水平面上,使得电池控制单元能够充分利用电池包框架水平面上的剩余空间以及动力电池包高度方向上的空间,使得整体结构布局更加紧凑。在电量相同的情况下,能够缩小动力电池包的整体尺寸,使得动力电池包能够适配于更多车型。在尺寸相同的情况下,能够容纳更 多的电池模组,提高动力电池包的电量,增加电动汽车的行驶里程。
附图说明
图1为本申请实施例1的动力电池包和电动汽车配合状态下的立体结构示意图。
图2为本申请实施例1的具有保护罩的动力电池包的立体结构示意图。
图3为本申请实施例1的隐去保护罩的动力电池包的立体结构示意图。
图4为本申请实施例1的电池包框架的立体结构示意图。
图5为本申请实施例2的动力电池包的立体结构示意图。
图6为本申请实施例3的动力电池包的立体结构示意图。
图7为本申请实施例4的动力电池包的立体结构示意图。
附图标记说明:
车身大梁11;动力电池包12;电池模组2;电池包框架3;中部容纳区31;侧部容
纳区32;连接梁33;顶部平台34;贯穿孔341;底部平台35;底部平台单元351;电池控制单元4;冷却机组41;高压配电箱42;电池管理系统43;锁止件5;保护罩61;保护板62。
具体实施方式
下面举个较佳实施例,并结合附图来更清楚完整地说明本申请。
实施例1
如图1-图4所示,本实施例提供了一种电动汽车,电动汽车为重卡或轻卡等商用车,包括车身大梁11和动力电池包12,动力电池包12安装在电动汽车的底盘,用于为电动汽车提供电力。具体地,本实施例中的车身大梁11为位于电动汽车的底盘位置的支撑梁,动力电池包12安装在车身大梁11上。
如图2-图4所示,动力电池包12包括若干电池模组2、电池包框架3和电池控制单元4。电池模组2用于为电动汽车供电,动力电池包12通过电池包框架3固定在车身大梁11上,电池控制单元4用于控制电池模组2温度和/或控制电池模组2的供电。
具体地,如图3所示,在本实施例中,电池模组2的数量为多个,且每个电池模组2的规格相同。在其他可替代的实施方式中,一个动力电池包12也可以只包括一个电池模组或包括多个不同规格的电池模组,满足电动汽车的电量需求即可。本申请采用多个 相同规格的电池模组2共同为电动汽车供电,相较于采用一个大型的电池模组或者多个不同规格的电池模组而言,方便电池模组2的标准化生产,技术人员可以根据不同的车型选择不同数量的电池模组2,以满足各种车型的电量需求,而且当某个电池模组2出现故障时,也只需更换出现故障的电池模组2,节约维护成本。
如图2和图3所示,电池包框架3与车身大梁11连接,进而将整个动力电池包12固定在车身大梁11上。多个电池模组2均安装在电池包框架3上,且均设置在电池包框架3的水平面上,电池包框架3用于支撑多个电池模组2,保证电池模组2放置的稳定性。电池包框架3可以同时将多个电池模组2安装到车身大梁11上,车身大梁11不用单独连接每个电池模组2,提高安装效率,提高电池快换的可行性。
如图3所示,电池控制单元4安装在电池包框架3的水平面上,电池控制单元4与电池模组2连接。具体地,本实施例中的电池控制单元4的数量为三个,分别为冷却机组41、高压配电箱42和电池管理系统43,三个电池控制单元4均安装在电池包框架3的水平面上,且均与各个电池模组2连接,冷却机组41用于控制电池模组2的温度,高压配电箱42和电池管理系统43用于控制电池模组2的供电情况。
在其他可替代的实施方式中,电池控制单元4的数量可以为任意个,技术人员可以根据实际需求进行设计,并根据实际需求选用控制电池模组2的温度或者控制电池模组2的供电的电池控制单元4。
在本实施例中,将电池控制单元4都安装在电池包框架3的水平面上,使得电池控制单元4能够充分利用电池包框架3水平面上的剩余空间以及动力电池包12高度方向上的空间,使得整体结构布局更加紧凑。在电量相同的情况下,能够缩小动力电池包12的整体尺寸,使得动力电池包12能够适配于更多车型。在尺寸相同的情况下,能够容纳更多的电池模组2,提高动力电池包12的电量,增加电动汽车的行驶里程。
如图3所示,电池控制单元4设置在电池包框架3的上端面上,电池包框架3能够承载电池控制单元4,不用再另外设置其他结构将电池控制单元4固定再电池包框架3上。此外,将电池控制单元4设于电池包框架3的上端面上,方便电池控制单元4的接线,技术人员的可操作空间更大,方便前期的组装和后期的维护。
如图3和图4所示,电池包框架3包括沿电动汽车的宽度方向(图1中的X方向)排列的多个电池容纳区,多个电池容纳区包括中部容纳区31和侧部容纳区32。具体地,电池包框架3共包括三个电池容纳区,分别是中部容纳区31和位于中部容纳区31两侧 的两个侧部容纳区32。多个电池模组2分别安装在中部容纳区31与两个侧部容纳区32内,三个电池控制单元4均设于在中部容纳区31内,且沿电动汽车的长度方向(图1中的Y方向)依次设置。
在其他可替代的实施方式中,电池模组2也可以全部或部分设置在中部容纳区31内,电池控制单元4也可以全部或部分设置在侧部容纳区32内。
如图3和图4所示,侧部容纳区32和中部容纳区31之间设有锁止件5,锁止件5用于与车身大梁11上的锁止机构配合以将动力电池包12锁止于车身大梁11上。具体地,电池包框架3包括用于分隔中部容纳区31和侧部容纳区32的两个连接梁33,两个侧部容纳区32和中部容纳区31之间均设置有锁止件5,锁止件5设置在两个连接梁33相对的一侧面上,电池包框架3通过锁止件5可拆卸地安装在车身大梁11上。在动力电池包12和车身大梁11配合后,通过锁止件5将动力电池包12锁定在车身大梁11上,使动力电池包12与车辆底盘之间的连接更牢固。
本实施例中将锁止件5设置于电池包框架3的中间部分,充分利用中部容纳区31和侧部容纳区32之间的空间,使得电池模组2不会与锁止件5产生干涉,而且能够保持较为平衡的受力,更好地承载动力电池包12的重量。锁止件5与车身大梁11上的锁止机构配合以将动力电池包12锁止于车身大梁11上,充分利用了两个车身大梁11之间的空间,可以增加电池模组2的数量,提高动力电池包12的电量。
本实施例中的锁止件5具体为锁轴,车身大梁11上的锁止机构为锁基座,通过锁轴与锁基座的配合,实现将电池包框架3固定在车身大梁11上。在其他可替代的实施方式中,锁止件5和锁止机构也可以采用其他能够相互配合的锁止结构。
如图3和图4所示,电池包框架3具有用于放置电池模组2的平台,本实施例中的多个电池控制单元4均设于中部容纳区31的平台上。电池控制单元4和电池模组2放置在同一平台上,方便电池包框架3的加工,不用单独设置用于放置电池控制单元4的平台,简化电池包框架3的结构,降低成本,提高效率,并且可以兼顾电池控制单元4和电池模组2排布的合理性以及电动汽车的续航里程。在其他可替代的实施方式中,电池控制单元4也可以全部或部分位于侧部容纳区32的平台上。
如图3和图4所示,电池包框架3在高度方向上具有多层平台,每层平台均设置有若干个电池模组2,电池控制单元4设于最高处的平台上。具体地,电池模组2安装在侧部容纳区32的平台上,电池控制单元4安装在中部容纳区31的最高层平台上,从而进 一步利用了动力电池包12高度方向上的空间,在动力电池包12水平尺寸相同的情况下,增加电池模组2的数量,提高动力电池包12的电量,使之能够适配于更多车型,且增加电动汽车的行驶里程。
如图4所示,本实施例中共包括两层平台,分别为位于最高处的顶部平台34和位于顶部平台34下方的底部平台35,底部平台35与顶部平台34连通,电池模组2通过连接线连接至电池控制单元4,连接线能够从顶部平台34延伸至底部平台35,从而实现电池控制单元4的连接线与位于底部平台35上的电池模组2之间的连接。具体地,顶部平台34上设有连通至底部平台35的贯穿孔341,贯穿孔341可以当作电池控制单元4的连接线的过线孔,电池控制单元4的连接线能够从贯穿孔341延伸至底部平台35,并和位于底部平台35上的电池模组2连接。贯穿孔341也可以当做减重孔,能够减轻动力电池包12整体的重量。
本实施例中底部平台35的数量为一个,在其他可替代的实施方式中,顶部平台34下方也可以包括多层底部平台35,任意一个底部平台35均与顶部平台34连通,以方便位于顶部平台34上的电池控制单元4的连接线能够与位于底部平台35上的电池模组2连接。此状态下,除了位于最下层的底部平台35之外,其余每层的底部平台35均可以开设如顶部平台34上设置的贯穿孔341,以方便电池控制单元4的连接线能够进一步言设置下层平台。
如图4所示,同层底部平台35包括两组底部平台单元351,两组底部平台单元351沿电动汽车的宽度方向对称分布,且分别位于两个侧部容纳区32内,且两组底部平台单元351部分位于中部容纳区31内。两组底部平台单元351相对的一侧与中部容纳区31连通,电池控制单元4的连接线可以由两个底部平台单元351之间的中部容纳区31,从侧面进入底部平台单元351,以实现电池控制单元4的连接线与位于底部平台35上的电池模组2之间的连接。两组底部平台单元351用于放置电池模组2,充分利用了车身大梁11下方的空间,增加电池模组2的数量,提高动力电池包12的电量。
如图4所示,电池包框架3上还具有减重孔和/或其他过线孔,减重孔能够减轻动力电池包12整体的重量,也可用于供电池控制单元4的连接线穿过。过线孔用于供电池控制单元4的连接线穿过,提高布线的灵活性。
如图3所示,冷却机组41用于控制电池模组2的温度,使得电池模组2的温度始终保持在合理范围内,从而能够正常向电动汽车供电。具体地,冷却机组41用于在电池模 组2温度较高时对电池模组2进行降温,在电池模组2温度较低时对电池模组2进行升温。
优选地,为了方便冷却机组41能够及时调整电池模组2的温度,可以在动力电池包12上进一步设置用于监测电池模组2温度的温度监测单元,例如温度传感器等。温度监测单元将监测到的温度反馈给电动汽车的控制系统,控制系统再根据接收到的温度数据向冷却机组41发送相关指令。
本实施例中的冷却机组41为液冷机组,通过液冷的方式调节电池模组2的温度。液冷调温的方式调温效率高、调温效果好,而且产生的噪音较小。具体地,液冷机组包括换热部和液冷管,换热部和液冷管形成冷却回路,液冷管与电池模组2连接,冷却回路经过电池模组2。液冷管中的冷却液在流经电池模组2时,能够向电池模组2释放热量或吸收热量,从而调整电池模组2的温度。换热部能够调整冷却液的温度,在冷却液向电池模组2释放热量时增加冷却液的温度,在冷却液向电池模组2吸收热量时降低冷却液的温度,从而方便冷却液在再次流经电池模组2时还能够对电池模组2释放热量或吸收热量。
本实施例中的冷却机组41的数量为一个,在其他可替代的实施方式中,冷却机组41的数量可以为多个,特别是对电池模组2数量较多或者电量需求较大的情况。
高压配电箱42的一端与电动汽车的控制系统电连接,另一端与电池模组2电连接,高压配电箱42能够根据控制系统发出的指令对电源进行分配,保证用电安全。
电池管理系统43的一端与电动汽车的控制系统电连接,另一端与电池模组2电连接,电池管理系统43用于监控电池模组2的状态,例如电池模组2的剩余电量等,保证电池模组2的数值维持在合理范围内,防止电池模组2过度充电、放电,提高电池模组2的使用寿命。电池管理系统43将监控结果反馈给控制系统,控制系统根据收到的反馈向电池管理系统43下发相关指令,电池管理系统43根据收到的指令进一步控制电池模组2。
进一步地,相较于冷却机组41,电池管理系统43更加靠近高压配电箱42设置。电池管理系统43与高压配电箱42电连接,电池管理系统43通过高压配电箱42与电池模组2电连接。电池管理系统43根据收到电动汽车控制系统的指令线控制高压配电箱42中的元器件,高压配电箱42再根据相关指令进一步控制电池模组2充电、放电。
本实施例中的电池管理系统43和高压配电箱42相互独立设置,由于电池管理系统 43的尺寸通常较小,因此在其他可替代的实施方式中,电池管理系统43可以设于高压配电箱42的内部。高压配电箱42的内部有足够的空间能够防止电池管理系统43,高压配电箱42的箱体也能够对电池管理系统43起到保护作用,同时方便电池管理系统43和高压配电箱42的集成,使得整体布局更加紧凑,减少电池管理系统43在动力电池包12水平面上占用的空间,从而能够有更多的空间安装电池模组2。
如图2所示,动力电池包12还包括保护罩61,保护罩61设于电池包框架3的上端面上,并用于覆盖电池模组2和电池控制单元4。具体地,本实施例中的保护罩61的数量为三个,分别位于中部容纳区31和两侧的侧部容纳区32。保护罩61用于封闭电池包框架3的上端开口,电池模组2和电池控制单元4容纳于保护罩61内,保护罩61能够防止灰尘、雨水等杂质从电池包框架3的上端开口处进入动力电池包12的内部,还能够防止电池模组2和电池控制单元4被飞石等物质意外撞击导致的碰撞磨损,从而提高动力电池包12的使用寿命。对于存在爆炸风险的电池模组2,保护罩61也能够起到防止爆炸外散的作用,提高动力电池包12的安全性。
如图2所示,动力电池包12还包括保护板62,保护板62覆盖在电池包框架3的侧面和底面,用于封闭电池包框架3侧面和底面的开口,防止灰尘、雨水等杂质从电池包框架3的侧面和底部开口处进入动力电池包12的内部,进一步防止电池模组2和电池控制单元4被飞石等物质意外撞击导致的碰撞磨损,提高动力电池包12的使用寿命。对于存在爆炸风险的电池模组2,保护板62也能够起到防止爆炸外散的作用,提高动力电池包12的安全性。
本实施例中的保护罩61和保护板62均由蒙皮或钢板制成,在其他可替代的实施方式中,保护罩61和保护板62也可以由其他强度较高的材料制成。
实施例2
本实施例中的电动汽车和动力电池包12的结构与实施例1基本相同,不同之处在于电池控制单元4的安装位置。
如图5所示,电池包框架3包括沿电动汽车的宽度方向排列的多个电池容纳区,分别是中部容纳区31和位于中部容纳区31两侧的两个侧部容纳区32,最顶层的电池模组2和电池控制单元4均位于侧部容纳区32内。其中,电池模组2的数量、以及电池模组2与电池控制单元4的排布方式可以根据实际需求调整,以兼顾排布的合理性以及电动汽车的续航里程。
具体地,本实施例中也包括三个电池控制单元4,分别为冷却机组41、高压配电箱42和电池管理系统43,其中,基于图5所示的方向,冷却机组41设于左侧的侧部容纳区32内,高压配电箱42和电池管理系统43设于右侧的侧部容纳区32内。本实施例根据不同电池控制单元4的尺寸,将三个电池控制单元4分开设置在两个侧部容纳区32内,保证两个侧部容纳区32内的电池模组2数量相同,使整体布局更加合理紧凑。
在其他可替代的实施方式中,在空间充足的情况下,也可以冷却机组41、高压配电箱42和电池管理系统43均位于同一侧的侧部容纳区32内;或者冷却机组41和高压配电箱42位于一个侧部容纳区32,电池管理系统43位于另一个侧部容纳区32;或者冷却机组41和电池管理系统43位于一个侧部容纳区32,高压配电箱42位于另一个侧部容纳区32。本实施将高压配电箱42和电池管理系统43放置在一个侧部容纳区32内,能够缩短高压配电箱42和电池管理系统43之间的距离,缩短两者之间的连接线长度,降低成本。
实施例3
本实施例中的电动汽车和动力电池包12的结构与实施例1基本相同,不同之处在于电池模组2的安装位置、电池控制单元4的数量和安装位置。
如图6所示,电池包框架3包括沿电动汽车的宽度方向排列的多个电池容纳区,分别是中部容纳区31和位于中部容纳区31两侧的两个侧部容纳区32,中部容纳区31和侧部容纳区32中均设置有部分电池模组2和电池控制单元4。其中,电池模组2的数量、以及电池模组2与电池控制单元4的排布方式可以根据实际需求调整,以兼顾排布的合理性以及电动汽车的续航里程。
具体地,本实施例中包括四个电池控制单元4,分别为两个冷却机组41、一个高压配电箱42和一个电池管理系统43,其中,基于图6所示的方向,两个冷却机组41分别设于两侧的侧部容纳区32内,高压配电箱42和电池管理系统43设于中部容纳区31内。高压配电箱42和电池管理系统43上下堆叠设置,并且电池管理系统43位于高压配电箱42的上方,电池管理系统43安装在高压配电箱42的上端面上。
电池模组2的数量越多,冷却机组41的规模需要越大,相较于直接设置一个较大的冷却机组41,设置多个冷却机组41在能够有效维持电池模组2温度的同时,布局的灵活性更高,方便整体布局。
将高压配电箱42和电池管理系统43上下堆叠设置,能够进一步利用动力电池包12 高度方向上的空间,使得整体布局更加紧凑,减少动力电池包12水平面上的占用率,从而能够有更多的空间安装电池模组2。而且电池管理系统43的尺寸通常较小,即使与高压配电箱42上下堆叠设置也不会占用动力电池包12高度方向上过多的空间,防止与电动汽车的其他部件产生干涉。而且由于电池管理系统43的尺寸通常小于冷却机组41和高压配电箱42,将电池管理系统43设置在高压配电箱42的上方,能够提高高压配电箱42安装后的稳定性,提高布局的可靠性。
在其他可替代的实施方式中,在空间充足的情况下,也可以两个冷却机组41设置在中部容纳区31,或者其中一个冷却机组41设置在中部容纳区31,另一个冷却机组41设置在侧部容纳区32。
在其他可替代的实施方式中,高压配电箱42和电池管理系统43也可以设置在侧部容纳区32内,或者高压配电箱42也可以放置在电池管理系统43上。
在其他可替代的实施方式中,电池管理系统43也可以与冷却机组41上下堆叠设置,进一步优选地,电池管理系统43位于冷却机组41的上方,电池管理系统43安装在冷却机组41的上端面上。本实施将高压配电箱42和电池管理系统43上下堆叠设置,能够缩短高压配电箱42和电池管理系统43之间的距离,缩短两者之间的连接线长度,降低成本。
实施例4
本实施例中的电动汽车和动力电池包12的结构与实施例3基本相同,不同之处在于电池控制单元4的安装位置。
如图7所示,电池包框架3包括沿电动汽车的宽度方向排列的多个电池容纳区,分别是中部容纳区31和位于中部容纳区31两侧的两个侧部容纳区32,电池控制单元4全部设置在侧部容纳区32内,中部容纳区31和侧部容纳区32中均设置有部分电池模组2。其中,电池模组2的数量、以及电池模组2与电池控制单元4的排布方式可以根据实际需求调整,以兼顾排布的合理性以及电动汽车的续航里程。
具体地,本实施例中包括四个电池控制单元4,分别为两个冷却机组41、一个高压配电箱42和一个电池管理系统43,其中,基于图7所示的方向,两个冷却机组41分别设于两侧的侧部容纳区32内,高压配电箱42和电池管理系统43设于右侧的侧部容纳区32内。高压配电箱42和电池管理系统43上下堆叠设置,并且电池管理系统43位于高压配电箱42的上方,电池管理系统43安装在高压配电箱42的上端面上。
电池模组2的数量越多,冷却机组41的规模需要越大,相较于直接设置一个较大的冷却机组41,设置多个冷却机组41在能够有效维持电池模组2温度的同时,布局的灵活性更高,方便整体布局。
将高压配电箱42和电池管理系统43上下堆叠设置,能够进一步利用动力电池包12高度方向上的空间,使得整体布局更加紧凑,减少动力电池包12水平面上的占用率,从而能够有更多的空间安装电池模组2。而且电池管理系统43的尺寸通常较小,即使与高压配电箱42上下堆叠设置也不会占用动力电池包12高度方向上过多的空间,防止与电动汽车的其他部件产生干涉。而且由于电池管理系统43的尺寸通常小于冷却机组41和高压配电箱42,将电池管理系统43设置在高压配电箱42的上方,能够提高高压配电箱42安装后的稳定性,提高布局的可靠性。
在其他可替代的实施方式中,高压配电箱42也可以放置在电池管理系统43上。
在其他可替代的实施方式中,电池管理系统43也可以与冷却机组41上下堆叠设置,进一步优选地,电池管理系统43位于冷却机组41的上方,电池管理系统43安装在冷却机组41的上端面上。本实施将高压配电箱42和电池管理系统43上下堆叠设置,能够缩短高压配电箱42和电池管理系统43之间的距离,缩短两者之间的连接线长度,降低成本。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为装置或元件正常使用时的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,除非文中另有说明。
虽然以上描述了本申请的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本申请的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本申请的保护范围由所附权利要求书限定。

Claims (15)

  1. 一种布局紧凑的动力电池包,用于安装在电动汽车的底盘,其特征在于,所述动力电池包包括:
    若干电池模组,用于为所述电动汽车供电;
    电池包框架,若干个所述电池模组均安装在所述电池包框架上,所述电池包框架用于安装在所述电动汽车的车身大梁上;
    电池控制单元,安装在所述电池包框架的水平面上,所述电池控制单元与所述电池模组连接,用于控制所述电池模组温度和/或控制所述电池模组的供电。
  2. 如权利要求1所述的布局紧凑的动力电池包,其特征在于,所述电池控制单元设于所述电池包框架的上端面上。
  3. 如权利要求2所述的布局紧凑的动力电池包,其特征在于,所述电池包框架包括沿所述电动汽车的宽度方向排列的多个电池容纳区,多个所述电池容纳区包括中部容纳区和侧部容纳区,所述侧部容纳区和所述中部容纳区之间设有锁止件,所述锁止件用于与所述车身大梁上的锁止机构配合以将所述动力电池包锁止于所述车身大梁上。
  4. 如权利要求3所述的布局紧凑的动力电池包,其特征在于,所述电池包框架具有用于放置所述电池模组的平台,所述电池控制单元设于所述中部容纳区和/或所述侧部容纳区的所述平台上。
  5. 如权利要求4所述的布局紧凑的动力电池包,其特征在于,所述电池包框架在高度方向上具有多层所述平台,每层所述平台均设置有若干个所述电池模组,所述电池控制单元设于最高处的所述平台上。
  6. 如权利要求5所述的布局紧凑的动力电池包,其特征在于,多层所述平台包括位于最高处的顶部平台和若干个位于所述顶部平台下方的底部平台,若干个所述底部平台均与所述顶部平台连通,所述电池模组通过连接线连接至所述电池控制单元,所述连接线能够从所述顶部平台延伸至所述底部平台。
  7. 如权利要求6所述的布局紧凑的动力电池包,其特征在于,同层所述底部平台包括两组底部平台单元,两组所述底部平台单元沿所述电动汽车的宽度方向对称分布。
  8. 如权利要求6或7所述的布局紧凑的动力电池包,其特征在于,所述电池包框架上具有减重孔和/或过线孔。
  9. 如权利要求1-8中任意一项所述的布局紧凑的动力电池包,其特征在于,所述电池控制单元包括冷却机组,所述冷却机组用于控制所述电池模组的温度。
  10. 如权利要求9所述的布局紧凑的动力电池包,其特征在于,所述冷却机组为液冷机组,所述液冷机组包括换热部和液冷管,所述换热部和所述液冷管形成冷却回路,所述液冷管与所述电池模组连接,所述冷却回路经过所述电池模组;
    和/或,所述冷却机组的数量为多个,多个所述冷却机组均连接有若干个所述电池模组。
  11. 如权利要求1-10中任意一项所述的布局紧凑的动力电池包,其特征在于,所述电池控制单元包括高压配电箱,所述高压配电箱与所述电池模组电连接。
  12. 如权利要求9-11中任意一项所述的布局紧凑的动力电池包,其特征在于,所述电池控制单元还包括电池管理系统,所述电池管理系统与所述电池模组电连接。
  13. 如权利要求12所述的布局紧凑的动力电池包,其特征在于,当所述电池控制单元包括高压配电箱时,所述电池管理系统与所述高压配电箱电连接,所述电池管理系统通过所述高压配电箱与所述电池模组电连接;
    和/或,所述电池管理系统设于所述高压配电箱的内部。
  14. 如权利要求12或13所述的布局紧凑的动力电池包,其特征在于,所述电池管理系统与冷却机组上下堆叠设置,或,所述电池管理系统与高压配电箱上下堆叠设置。
  15. 一种电动汽车,其特征在于,所述电动汽车包括车身大梁和如权利要求1-14中任意一项所述的布局紧凑的动力电池包,所述动力电池包安装在所述车身大梁上。
PCT/CN2023/084422 2022-06-22 2023-03-28 布局紧凑的动力电池包及包括其的电动汽车 WO2023246216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221587285.XU CN217956019U (zh) 2022-06-22 2022-06-22 布局紧凑的动力电池包及包括其的电动汽车
CN202221587285.X 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246216A1 true WO2023246216A1 (zh) 2023-12-28

Family

ID=84217859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084422 WO2023246216A1 (zh) 2022-06-22 2023-03-28 布局紧凑的动力电池包及包括其的电动汽车

Country Status (2)

Country Link
CN (1) CN217956019U (zh)
WO (1) WO2023246216A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218750261U (zh) * 2021-12-26 2023-03-28 奥动新能源汽车科技有限公司 电动车辆
CN217956019U (zh) * 2022-06-22 2022-12-02 奥动新能源汽车科技有限公司 布局紧凑的动力电池包及包括其的电动汽车
CN117141218B (zh) * 2023-10-31 2024-02-23 江苏速豹动力科技有限公司 一种动力电池系统及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110793A (zh) * 2009-12-28 2011-06-29 株式会社日立制作所 蓄电装置
CN210403829U (zh) * 2019-08-23 2020-04-24 比亚迪股份有限公司 电池组件和具有其的电动汽车
US20220009360A1 (en) * 2020-07-07 2022-01-13 Volvo Truck Corporation Battery-powered vehicle
CN215527855U (zh) * 2021-07-09 2022-01-14 湖北亿纬动力有限公司 动力电池系统及电动车
CN114435104A (zh) * 2022-03-10 2022-05-06 威睿电动汽车技术(宁波)有限公司 车辆底盘组件及汽车
CN217956019U (zh) * 2022-06-22 2022-12-02 奥动新能源汽车科技有限公司 布局紧凑的动力电池包及包括其的电动汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110793A (zh) * 2009-12-28 2011-06-29 株式会社日立制作所 蓄电装置
CN210403829U (zh) * 2019-08-23 2020-04-24 比亚迪股份有限公司 电池组件和具有其的电动汽车
US20220009360A1 (en) * 2020-07-07 2022-01-13 Volvo Truck Corporation Battery-powered vehicle
CN215527855U (zh) * 2021-07-09 2022-01-14 湖北亿纬动力有限公司 动力电池系统及电动车
CN114435104A (zh) * 2022-03-10 2022-05-06 威睿电动汽车技术(宁波)有限公司 车辆底盘组件及汽车
CN217956019U (zh) * 2022-06-22 2022-12-02 奥动新能源汽车科技有限公司 布局紧凑的动力电池包及包括其的电动汽车

Also Published As

Publication number Publication date
CN217956019U (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2023246216A1 (zh) 布局紧凑的动力电池包及包括其的电动汽车
US9937801B2 (en) Electric motor vehicle and battery pack
CN103347724B (zh) 燃料电池车辆
US20190296294A1 (en) Removable battery component carrier, battery system including removable battery component carriers and vehicle including the battery system
CN102239060A (zh) 电源装置的搭载构造
KR20190026681A (ko) 전지 모듈 캐리어, 전지 모듈, 및 전지 시스템을 포함하는 자동차
KR20080107458A (ko) 전원 팩 탑재 구조
JP2006012471A (ja) 電源装置
CN110228368A (zh) 集成电源箱
CN114435104A (zh) 车辆底盘组件及汽车
US20220149458A1 (en) Power consumption device, method for manufacturing power consumption device and apparatus for manufacturing power consumption device
CN110416452A (zh) 电池容纳装置和电动车
US11870232B2 (en) Battery electric vehicle supermodule
CN218525664U (zh) 一种具有两层模组单元的电池包及包括其的电动装置
CN215705799U (zh) 一种电池箱可换的车载能源系统
CN209904573U (zh) 用于车辆的电池结构和具有其的车辆
CN110416451A (zh) 电池容纳装置和电动车
CN215904349U (zh) 一种基于分布式汽车电池的增程系统
CN218005095U (zh) 电池包
CN110277521A (zh) 电动车
CN220374630U (zh) 一种集成储能系统的车身结构
CN219226445U (zh) 一种多层模组支架及电池包
US20220223965A1 (en) Battery pack and manufacturing method thereof
CN220809556U (zh) 配电车体架构及车辆
CN218039552U (zh) 电池总成和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825872

Country of ref document: EP

Kind code of ref document: A1