JP5429946B2 - 生体状態分析装置及びコンピュータプログラム - Google Patents

生体状態分析装置及びコンピュータプログラム Download PDF

Info

Publication number
JP5429946B2
JP5429946B2 JP2011510390A JP2011510390A JP5429946B2 JP 5429946 B2 JP5429946 B2 JP 5429946B2 JP 2011510390 A JP2011510390 A JP 2011510390A JP 2011510390 A JP2011510390 A JP 2011510390A JP 5429946 B2 JP5429946 B2 JP 5429946B2
Authority
JP
Japan
Prior art keywords
frequency
waveform
time series
series waveform
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011510390A
Other languages
English (en)
Other versions
JPWO2010123125A1 (ja
Inventor
悦則 藤田
由美 小倉
慎一郎 前田
重行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Tooling Co Ltd
Original Assignee
Delta Tooling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co Ltd filed Critical Delta Tooling Co Ltd
Priority to JP2011510390A priority Critical patent/JP5429946B2/ja
Publication of JPWO2010123125A1 publication Critical patent/JPWO2010123125A1/ja
Application granted granted Critical
Publication of JP5429946B2 publication Critical patent/JP5429946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for
    • B60N2002/981Warning systems, e.g. the seat or seat parts vibrates to warn the passenger when facing a danger

Description

本発明は、人の上体から得られる生体信号の時系列波形を用いて生体の状態を分析する技術に関する。
運転中の運転者の生体状態を監視することは、近年、事故予防策等として注目されている。本出願人は、特許文献1〜3において、シートクッション部に圧力センサを配置し、臀部脈波を採取して分析し、入眠予兆現象を判定する手法を開示している。
具体的には、臀部脈波の時系列波形を、それぞれ、SavitzkyとGolayによる平滑化微分法により、極大値と極小値を求める。そして、5秒ごとに極大値と極小値を切り分け、それぞれの平均値を求める。求めた極大値と極小値のそれぞれの平均値の差の二乗をパワー値とし、このパワー値を5秒ごとにプロットし、パワー値の時系列波形を作る。この時系列波形からパワー値の大域的な変化を読み取るために、ある時間窓Tw(180秒)について最小二乗法でパワー値の傾きを求める。次に、オーバーラップ時間Tl(162秒)で次の時間窓Twを同様に計算して結果をプロットする。この計算(移動計算)を順次繰り返してパワー値の傾きの時系列波形を得る。一方、脈波の時系列波形をカオス解析して最大リアプノフ指数を求め、上記と同様に、平滑化微分によって極大値を求め、移動計算することにより最大リアプノフ指数の傾きの時系列波形を得る。
そして、パワー値の傾きの時系列波形と最大リアプノフ指数の傾きの時系列波形が逆位相となっており、さらには、パワー値の傾きの時系列波形で低周波、大振幅の波形が生じている波形を、入眠予兆を示す特徴的な信号と判定し、その後に振幅が小さくなったポイントを入眠点と判定している。
また、特許文献4として、内部に三次元立体編物を挿入した空気袋(エアパック)を備え、このエアパックを人の腰部に対応する部位に配置し、エアパックの空気圧変動を測定し、得られた空気圧変動の時系列データから人の生体信号を検出し、人の生体の状態を分析するシステムを開示している。また、非特許文献1及び2においても、腰腸肋筋に沿うようにエアパックセンサを配置して人の生体信号を検出する試みが報告されている。腰部付近の脈波は、心拍に伴う下行大動脈を流れる血流の循環変動、すなわち心房の動き及び大動脈の揺動を示すものである。なお、以下においては、このような背部(腰部)から採取される、心房の動き及び大動脈の揺動による生体信号を「心部揺動波」と称する。この心部揺動波を利用した場合、特許文献1及び2の臀部脈波を利用する場合よりも、心拍変動に即した人の状態変化をより正確に捉えることができる。
特開2004−344612号公報 特開2004−344613号公報 WO2005/092193A1公報 特開2007−90032号公報 WO2005/039415A1号公報
「非侵襲型センサによって測定された生体ゆらぎ信号の疲労と入眠予知への応用」、落合直輝(外6名)、第39回日本人間工学会 中国・四国支部大会 講演論文集、平成18年11月25日発行、発行所:日本人間工学会 中国・四国支部事務局 「非侵襲生体信号センシング機能を有する車両用シートの試作」、前田慎一郎(外4名)、第39回日本人間工学会 中国・四国支部大会 講演論文集、平成18年11月25日発行、発行所:日本人間工学会 中国・四国支部事務局
特許文献1〜4及び非特許文献1〜2の技術は、上記したように、パワー値の傾きの時系列波形と最大リアプノフ指数の傾きの時系列波形が逆位相となり、かつ、パワー値の傾きの時系列波形で低周波、大振幅の波形が生じた時点をもって入眠予兆現象と捉えている。この手法によれば、人がシートに着席すれば、入眠予兆現象を捉えることができる。しかし、この入眠予兆現象は、上記のような特徴的な信号を検出したからといって必ずしも眠気を伴うというものではない。もちろん、人によってあるいは体調によってはこの入眠予兆現象の出現時が眠気を自覚したタイミングと一致する場合もある。
例えば、上記した入眠予兆信号の検出は、この信号を捉えたならば音、シートバック部の傾動、振動などによって警告を発するシステムと組み合わせることで、運転者の居眠りを抑制する効果が期待される。実際、このような警告システムは、本出願人によって開発され、種々実験を行っており、その中で居眠りの抑制効果が確認されている。しかし、上記した入眠予兆信号を検出したタイミングで警告を発した場合、眠気を伴わない運転者にとっては警告のタイミングが早過ぎると感じてしまう場合があることがわかった。つまり、上記手法により検出される入眠予兆信号の発生時点は、そのタイミングで警告を発することで居眠り抑制効果に役立っているにも拘わらず、運転者自身が感じる眠気のタイミングと合わず、この警告を装置の誤作動と感じてしまう場合もあることがわかった。そこで、このような運転者からは、眠気を自覚するタイミングに合わせて警告が動作するようなシステムが要望されていた。
一方、本出願人は、特許文献5において、パワー値の傾きの時系列波形を絶対値処理して積分値を算出し、この積分値により疲労度を求める技術も提案している。しかし、特許文献5は、仕事による蓄積疲労の有無を判定しているのみである。所定時間の仕事を行う場合、人は、疲労感を感じることなく行う場合、疲労が蓄積されてきているものの、交感神経の緊張などにより疲労が代償され、短時間検査では客観的に疲労を検出し得ない場合、疲労のためにエラーや反応時間の遅延が見られる場合、さらには、眠気が生じてくる場合等がある。同じ仕事時間であっても、これらの現れ方は人により様々であるため、各人が、仕事によりどのような状態になるかを簡易に判定できれば、仕事の効率向上等を図ることができる。例えば、運転手であれば、その情報を安全運転に役立たせることができる。
本発明は上記に鑑みなされたものであり、人の状態変化を、人の自覚により近いタイミングでより正確に捉えることができる技術を提供することを課題とする。また、人が眠気を意識したときの状態変化を捉えることにより、居眠り抑制効果を向上させることができる技術を提供することを課題とする。さらに、人の疲労状態を簡易かつ正確に判定できる技術を提供することを課題とする。
本発明者は上記課題を解決するため鋭意検討を重ねた結果、背部から検出される生体信号である心部揺動波の周波数変動の時系列波形と周波数の時系列波形から求めた周波数傾き時系列波形を利用することにより、人の状態変化を人の自覚により近いタイミングで捉えることができることを新たに見出し、本発明を完成するに至った。
上記課題を解決するため、本発明は、生体信号測定装置により人の上体から採取した生体信号の時系列波形を分析して人の状態を分析する状態分析部を備えた生体状態分析装置であって、前記状態分析部は、前記生体信号の時系列波形における周波数の時系列波形を求める周波数演算手段と、前記周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する周波数傾き時系列解析演算手段と、前記周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の平均値を求める移動計算を行い、時間窓毎に得られる前記周波数の平均値の時系列変化を周波数変動時系列波形として出力する周波数変動時系列解析演算手段と、前記周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形、前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形及び周波数変動時系列波形の基線の変化の状態を分析して判定する波形判定手段とを有することを特徴とする生体状態分析装置を提供する。
前記波形判定手段は、前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形において急勾配変化を示す変動波形急勾配部が出現し、その後における周波数変動時系列波形の基線位置が、変動波形急勾配部の出現前の周波数変動時系列波形の基線位置まで戻らず、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅が、いずれも変動波形急勾配部の出現前の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅よりも小さく、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の基線が右下がりの低下傾向にある場合に、前記変動波形急勾配部の終点を入眠点と判定する入眠点判定手段を有する構成とすることが好ましい。この場合、前記入眠点判定手段は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列波形及び周波数傾き時系列波形の教師データと比較し、前記変動波形急勾配部の出現を判定する構成とすることが好ましい。
前記波形判定手段は、さらに、前記周波数変動時系列解析演算手段の変動波形急勾配部の傾きラインが、該変動波形急勾配部の出現直前の前記周波数傾き時系列波形における傾き波形急勾配部の傾きラインと略平行である場合に、その時点の波形を眠気状態であると判定する眠気波形判定手段を有する構成とすることが好ましい。この場合、前記眠気波形判定手段は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列解析波形及び周波数傾き時系列解析波形の教師データと比較し、前記変動波形急勾配部及び傾き波形急勾配部の出現を判定する構成とすることが好ましい。
前記波形判定手段は、さらに、前記周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形及び前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形を比較し、両波形のずれ度合いから疲労状態を推定する疲労状態推定手段を備える構成とすることが好ましい。この場合、前記疲労状態推定手段は、前記周波数傾き時系列波形に対し、前記周波数変動時系列波形が所定の位相遅れを伴って、略同じ振幅及び略同じ周波数で推移している場合に疲労のない良好状態と判定し、この良好状態に対し、初期位相角、位相差、振幅、角振動数のいずれか少なくとも一つ以上の項目において所定以上の変化が生じるか否かにより、疲労状態を段階別に推定する手段を備える構成とすることが好ましい。また、前記疲労状態推定手段は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換し、両正弦波モデル間で前記疲労状態の推定を行う構成とすることもできる。さらに、前記疲労状態推定手段は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換した後合成して合成波を求め、求めた合成波を、疲労のない良好状態において求めた合成波と比較して、疲労状態の推定を行う構成とすることもできる。
前記周波数演算手段は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める手段と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める手段とのうち、いずれか少なくとも一方の手段を備える構成とすることが好ましい。
また、前記周波数演算手段は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める第1周波数演算手段と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める第2周波数演算手段とを備えてなり、前記周波数傾き時系列解析演算手段は、前記第1周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第1周波数傾き時系列解析演算手段と、前記第2周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第2周波数傾き時系列解析演算手段とを備えてなり、前記波形判定手段は、前記第1周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第1積分曲線を求める第1積分曲線演算手段と、前記第2周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第2積分曲線を求める第2積分曲線演算手段と、前記第1積分曲線演算手段及び第2積分曲線演算手段によりそれぞれ得られる各積分曲線を比較する積分曲線判定手段とを備えてなる構成とすることができる。前記積分曲線判定手段は、前記各積分曲線の形状パターンから人の状態を判定する構成とすることが好ましい。
前記生体信号測定装置が人の背部に対応して配置され、背部を通じて採取される心房の動き及び大動脈の揺動による生体信号の時系列波形を検出するものであり、前記状態分析部は、この生体信号の時系列波形を用いて人の状態を分析するものである
ことが好ましい。
また、本発明は、生体信号測定装置により人の上体から採取した生体信号の時系列波形を分析して人の状態を分析する生体状態分析装置の記憶部に設定される状態分析部を構成するコンピュータプログラムであって、前記生体信号の時系列波形における周波数の時系列波形を求める周波数演算手順と、前記周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する周波数傾き時系列解析演算手順と、前記周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の平均値を求める移動計算を行い、時間窓毎に得られる前記周波数の平均値の時系列変化を周波数変動時系列波形として出力する周波数変動時系列解析演算手順と、前記周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形、前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形及び周波数変動時系列波形の基線の変化の状態を分析して判定する波形判定手順とを有することを特徴とするコンピュータプログラムを提供する。
前記波形判定手順は、前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形において急勾配変化を示す変動波形急勾配部が出現し、その後における周波数変動時系列波形の基線位置が、変動波形急勾配部の出現前の周波数変動時系列波形の基線位置まで戻らず、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅が、いずれも変動波形急勾配部の出現前の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅よりも小さく、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の基線が右下がりの低下傾向にある場合に、前記変動波形急勾配部の終点を入眠点と判定する入眠点判定手順を有する構成とすることが好ましい。この場合、前記入眠点判定手順は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列波形及び周波数傾き時系列波形の教師データと比較し、前記変動波形急勾配部の出現を判定する構成とすることが好ましい。
前記波形判定手順は、さらに、前記周波数変動時系列解析演算手順の変動波形急勾配部の傾きラインが、該変動波形急勾配部の出現直前の前記周波数傾き時系列波形における傾き波形急勾配部の傾きラインと略平行である場合に、その時点の波形を眠気状態であると判定する眠気波形判定手順を有する構成とすることが好ましい。この場合、前記眠気波形判定手順は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列解析波形及び周波数傾き時系列解析波形の教師データと比較し、前記変動波形急勾配部及び傾き波形急勾配部の出現を判定する構成とすることが好ましい。
前記波形判定手順は、さらに、前記周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形及び前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形を比較し、両波形のずれ度合いから疲労状態を推定する疲労状態推定手順を備える構成とすることが好ましい。前記疲労状態推定手順は、前記周波数傾き時系列波形に対し、前記周波数変動時系列波形が所定の位相遅れを伴って、略同じ振幅及び略同じ周波数で推移している場合に疲労のない良好状態と判定し、この良好状態に対し、初期位相角、位相差、振幅、角振動数のいずれか少なくとも一つ以上の項目において所定以上の変化が生じるか否かにより、疲労状態を段階別に推定する手順を備える構成とすることが好ましい。また、前記疲労状態推定手順は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換し、両正弦波モデル間で前記疲労状態の推定を行う構成とすることができる。さらに、前記疲労状態推定手順は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換した後合成して合成波を求め、求めた合成波を、疲労のない良好状態において求めた合成波と比較して、疲労状態の推定を行う構成とすることができる。
前記周波数演算手順は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める手順と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める手順とのうち、いずれか少なくとも一方の手順を備える構成とすることが好ましい。
また、前記周波数演算手順は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める第1周波数演算手順と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める第2周波数演算手順とを備えてなり、前記周波数傾き時系列解析演算手順は、前記第1周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第1周波数傾き時系列解析演算手順と、前記第2周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第2周波数傾き時系列解析演算手順とを備えてなり、前記波形判定手順は、前記第1周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第1積分曲線を求める第1積分曲線演算手順と、前記第2周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第2積分曲線を求める第2積分曲線演算手順と、前記第1積分曲線演算手順及び第2積分曲線演算手順によりそれぞれ得られる各積分曲線を比較する積分曲線判定手順とを備えてなる構成とすることができる。前記積分曲線判定手順は、前記各積分曲線の形状パターンから人の状態を判定する構成とすることが好ましい。
本発明によれば、人の上体の背部から検出した心部揺動波の周波数変動時系列波形、その時系列波形の傾き時系列波形(周波数傾き時系列波形)、及び周波数変動時系列波形の基線の変化を捉えるものとすることによって、これらの各時系列波形により、人の状態変化を人の自覚により近いタイミングで捉えることができた。特に、周波数変動時系列波形において急勾配変化を示す変動波形の急勾配部が出現し、その後の周波数変動時系列波形又はそれの周波数傾き時系列波形の振幅、並びに周波数変動時系列波形の基線の位置が所定の場合であることにより入眠点を明確に特定できた。また、この周波数変動時系列波形の基線の低下が生じると共に、急勾配部(変動波形急勾配部)の平均傾きラインが、該周波数変動時系列波形の急勾配部の出現直前の前記周波数傾き時系列波形における急勾配部(傾き波形急勾配部)の平均傾きラインと略平行である場合に眠気状態を示す波形(眠気波形)と判定する構成とすることにより、眠気を伴う入眠予兆現象を検出することができた。この眠気波形の発生時点は、人が眠気を自覚するタイミングにほぼ同期しているため、このタイミングで警告を発するようにすれば、人は居眠りを防止するための警告であることを明確に意識でき、この警告により活性度の上昇が生じ、居眠り防止効果の向上が期待できる。また、周波数変動時系列波形と周波数傾き時系列波形とを比較することで、疲労状態を推定することもできる。
また、生体信号(心部揺動波)の周波数の時系列波形を、平滑化微分して求めた極大値を用いた場合と、生体信号(心部揺動波)の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いた場合との2つのデータを求め、その2つのデータから周波数傾き波形を求めてその積分曲線を描く構成とすることにより、人の疲労度合い(疲労のない状態、交感神経活動で代償されている状態、疲労のためにエラーや反応時間の遅延が見られる状態等)を簡易に分析できる。
図1は、本発明の一の実施形態に係る生体信号測定装置をシートに組み込んだ状態を示した図である。 図2は、上記実施形態に係る生体信号測定装置をより詳細に示した図である。 図3は、エアパックユニットを示した図であり、(a)は正面方向から見た断面図、(b)は側面図、(c)は底面図、(d)は(a)のA−A線断面図である。 図4は、エアパックユニットの分解斜視図である。 図5(a),(b)は、試験例で用いたエアパックユニットのサイズを説明するための図である。 図6は、上記実施形態に係る生体状態分析装置の構成を示した図である。 図7は、生体信号測定装置により検出した脈波(心拍変動)のピーク値を用いて、周波数変動時系列波形、周波数変動時系列波形の基線、周波数変動の傾き時系列である周波数傾き時系列波形、及び積分曲線を求める方法を説明するための図である。 図8は、生体信号測定装置により検出した脈波(心拍変動)のゼロクロス地点を用いて、周波数変動時系列波形、周波数変動時系列波形の基線、周波数変動の傾き時系列である周波数傾き時系列波形、及び積分曲線を求める方法を説明するための図である。 図9は、被験者Aの試験結果を示した図であり、(a)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(b)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示し、(c)は、指尖容積脈波から求めたパワー値の傾き(指尖脈波パワー値傾き)と最大リアプノフ指数の傾き(指尖脈波リアプノフ傾き)の時系列波形を示し、(d)は、上記実施形態の生体信号測定装置から得られるエアパック脈波を用いて求めた周波数傾き時系列波形と周波数変動時系列波形を示した図である。 図10は、被験者Bの試験結果を示した図であり、(a)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(b)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示し、(c)は、指尖容積脈波から求めたパワー値の傾き(指尖脈波パワー値傾き)と最大リアプノフ指数の傾き(指尖脈波リアプノフ傾き)の時系列波形を示し、(d)は、上記実施形態の生体信号測定装置から得られるエアパック脈波を用いて求めた周波数傾き時系列波形と周波数変動時系列波形を示した図である。 図11は、被験者Cの試験結果を示した図であり、(a)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(b)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示し、(c)は、指尖容積脈波から求めたパワー値の傾き(指尖脈波パワー値傾き)と最大リアプノフ指数の傾き(指尖脈波リアプノフ傾き)の時系列波形を示し、(d)は、上記実施形態の生体信号測定装置から得られるエアパック脈波を用いて求めた周波数傾き時系列波形と周波数変動時系列波形を示した図である。 図12は、被験者Dの試験結果を示した図であり、(a)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(b)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示し、(c)は、指尖容積脈波から求めたパワー値の傾き(指尖脈波パワー値傾き)と最大リアプノフ指数の傾き(指尖脈波リアプノフ傾き)の時系列波形を示し、(d)は、上記実施形態の生体信号測定装置から得られるエアパック脈波を用いて求めた周波数傾き時系列波形と周波数変動時系列波形を示した図である。 図13は、良好状態(疲労のない状態)の疲労推定結果の一例を示した図であり、(a)は、エアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を示し、(b)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(c)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示した図である。 図14は、疲労感を知覚した後、交感神経の代償作用が生じた場合の疲労推定結果の一例を示した図であり、(a)は、エアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を示し、(b)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(c)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示した図である。 図15は、交感神経の代償作用が生じた場合の疲労推定結果の他の例を示した図であり、(a)は、エアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を示し、(b)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(c)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示した図である。 図16は、休息により疲労が回復していった状態の疲労推定結果の一例を示した図であり、(a)は、エアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を示し、(b)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(c)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示した図である。 図17は、休息により疲労が回復していった状態の疲労推定結果の他の例を示した図であり、(a)は、エアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を示し、(b)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(c)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示した図である。 図18は、他の実施形態に係る生体状態分析装置の構成を示した図である。 図19は、交感神経優位の状態における積分曲線の判定方法を説明するための図である。 図20は、副交感神経優位の状態における積分曲線の判定方法を説明するための図である。 図21は、交感神経と副交感神経のバランスが良い状態における積分曲線の判定方法を説明するための図である。 図22は、試験例2における被験者A氏の判定結果を示した図である。 図23は、試験例2における被験者B氏の判定結果を示した図である。 図24は、試験例2における被験者C氏の判定結果を示した図である。 図25は、試験例2における被験者D氏の判定結果を示した図である。 図26は、各被験者の積分曲線を実験開始時刻の順番に従って描いたグラフであり、(a)は被験者A氏、(b)は被験者B氏、(c)は被験者C氏、(d)は被験者D氏のグラフである。 図27は、ピーク検出法による積分曲線、ゼロクロス法による積分曲線から恒常性維持機能に関する傾向を判断する際の判断方法を説明するための図である。 図28は、本発明で適用できる生体信号測定装置の他の態様を示した図である。 図29は、図28の生体信号測定装置をシートに組み込む過程を示した図である。
以下、図面に示した本発明の一の実施形態に基づき、本発明をさらに詳細に説明する。図1は、本実施形態に係る生体状態分析装置60の分析対象である心部揺動波(人の上体の背部から検出される心房の動き及び大動脈の揺動に伴う生体信号)を採取する生体信号測定装置1を組み込んだ自動車用のシート500の外観を示した図である。この図に示したように、生体信号測定装置1は、シートバック部510に組み込まれて用いられる。ここで、生体信号測定装置1によって採取される信号には、生体信号成分以外のノイズ信号がより少ないことが望ましい。そこで、本実施形態の生体信号測定装置1は、以下に説明するように、自動車の走行中等の振動環境下においても、センサの出力信号自体に含まれるノイズ信号を少なくできるような工夫がなされている。
生体信号測定装置1は、エアパックユニット100と、第1のビーズ発泡樹脂弾性部材20と、第2のビーズ発泡樹脂弾性部材30とを有して構成されている。エアパックユニット100は、収容体15と、該収容体15に収容した2つのエアパック10を備えて構成される。各エアパック10は、図3及び図4に示したように、表側エアパック11と裏側エアパック12とが積層されて構成され、収容体15の左右にそれぞれ配置される。表側エアパック11は、3つの小空気袋111が縦方向に連接されている一方、そのそれぞれは空気の流通がないように形成されている。各小空気袋111内には、復元力付与部材としての三次元立体編物112が配置されている。
裏側エアパック12は、3つの小空気袋111を連接してなる表側エアパック11の全長と同じ長さの大空気袋121とこの大空気袋121内に収容される復元力付与部材としての三次元立体編物122とを備えて構成される(図4参照)。表側エアパック11と裏側エアパック12とは、長手方向に沿った一方の側縁同士が接合され、接合された側縁を中心にして2つ折りにされて、相互に重ね合わせられて用いられる(図3(d)及び図4参照)。
本実施形態では、このように表側エアパック11と裏側エアパック12とが相互に重ね合わせられたエアパック10が左右に配置される。左右に配置することにより、着座者の背への当たりが左右均等になり、違和感を感じにくくなる。また、左右の表側エアパック11,11のいずれか一方を構成するいずれかの小空気袋111にセンサ取付チューブ111aが設けられ、その内側に空気圧変動を測定するセンサ111bが固定されている。なお、センサ取付チューブ111aは密閉されている。裏側エアパック12を構成する大空気袋121にセンサを配設することもできるが、容量の大きい空気袋に設けると、脈波による空気圧変動が吸収されてしまう場合があるため、小空気袋111に設けることが好ましい。但し、図4に示したように、予め、大空気袋121に取付チューブ121aを設けその部位にセンサを配設しておき、必要に応じて、大空気袋121の空気圧変動を測定することで、小空気袋111の測定結果の検証に利用できるようにしておいてもよい。小空気袋111は、このような生体信号による空気圧変動に敏感に反応させるために、大きさは、幅40〜100mm、長さ120〜200mmの範囲が好ましい。小空気袋111の素材は限定されるものではないが、例えば、ポリウレタンエラストマー(例えば、シーダム株式会社製、品番「DUS605−CDR」)からなるシートを用いて形成することができる。センサ111bとしては、小空気袋111内の空気圧を測定できるものであればよく、例えば、コンデンサ型マイクロフォンセンサを用いることができる。
大空気袋121の大きさ及び小空気袋111を3つ連接した場合の全体の大きさとしては、自動車のシート500のシートバック部510に用いる場合、幅40〜100mm、全長400〜600mmの範囲とすることが好ましい。長さが短い場合、シートバック部510において、着座者が、腰部付近の一部分のみに異物感を感じるため、400mm以上の長さとして、できるだけ、着座者の背全体に対応させることが好ましい。
空気圧変動を検出するセンサ111bは、本実施形態では、着座者の左側に配置されるエアパック10を構成する表側エアパック11の中央の小空気袋111に設けている。この小空気袋111の位置は、着座者の背部から採取される心房の動き及び大動脈(特に、「下行大動脈」)の揺動に伴う生体信号(心部揺動波)を検知可能な領域に相当する。この心部揺動波を検知可能な領域は、着座者の体格により一律ではないが、身長158cmの日本人女性から身長185cmの日本人男性までの様々な体格の被験者20名で測定したところ、該小空気袋111(幅60mm、長さ160mm)をシートバック部510の中心寄りの側縁と下縁の交差部P(図2及び図3参照)が、シートクッション部520の上面からシートバック部510の表面に沿った長さL:220mm、シートバック部510の中心からの距離M:80mmとなるように設定したところ、上記全ての被験者において心部揺動波を検知できた。小空気袋111の大きさが、幅40〜100mm、長さ120〜200mmの範囲の場合、交差部Pの位置を、シートクッション部520の上面からシートバック部510の表面に沿った長さで150〜280mm、シートバック部510の中心から60〜120mmの範囲に設定することが好ましい。
上記した2つのエアパック10をシートバック部510において容易に所定の位置に設定できるようにユニット化しておくことが好ましい。従って、図2〜図4に示したような収容体15にエアパック10を装填したエアパックユニット100として構成とすることが好ましい。収容体15は、両側にエアパック10を収容する袋状のエアパック収容部151を有し、2つのエアパック収容部151間に接続部152を有している。
2つのエアパック収容部151には、それぞれエアパック10が挿入される。また、エアパック収容部151には、エアパック10とほぼ同じ大きさの三次元立体編物40を、エアパック10の裏側エアパック12の背面側に重ねて挿入することが好ましい(図3(d)参照)。三次元立体編物40を配置することにより、エアパック10が該三次元立体編物40によっていわば浮くように支持されるため、シートバック部510からの外部振動が伝わりにくくなる。すなわち、三次元立体編物40を配置することにより、高周波小振幅の外部振動が入力された場合には、三次元立体編物40のパイルと空気圧の変動から、エアパック内にバネ定数の低い、バネ・マス・ダンパ系が作られる。そして、それが三次元立体編物40を内蔵したエアパック10において、低・高周波入力に対するフィルタ(ローパスフィルタ・ハイパスフィルタ)として作用し、該外部振動を減衰する。
接続部152は、2つのエアパック部151を所定間隔をおいて支持できるものであればよく、幅60〜120mm程度で形成される。接続部152も、袋状に形成し、その内部に三次元立体編物45を挿入することが好ましい(図3(d)及び図4参照)。これにより、該接続部152を通じて入力される振動も、該三次元立体編物45を挿入することにより効果的に除振でき、センサ111bを備えたエアパック10への外部振動の伝達を抑制できる。
なお、上記したように、小空気袋111は、例えば、ポリウレタンエラストマー(例えば、シーダム株式会社製、品番「DUS605−CDR」)からなるシートを用いて形成されるが、裏側エアパック12を形成する大空気袋121及び収容体15も、同じ素材を用いて形成することが好ましい。また、小空気袋111、大空気袋121、エアパック収容部151及び接続部152内に装填される各三次元立体編物は、例えば、特開2002−331603号公報に開示されているように、互いに離間して配置された一対のグランド編地と、該一対のグランド編地間を往復して両者を結合する多数の連結糸とを有する立体的な三次元構造となった編地である。
一方のグランド編地は、例えば、単繊維を撚った糸から、ウェール方向及びコース方向のいずれの方向にも連続したフラットな編地組織(細目)によって形成され、他方のグランド編地は、例えば、短繊維を撚った糸から、ハニカム状(六角形)のメッシュを有する編み目構造に形成されている。もちろん、この編地組織は任意であり、細目組織やハニカム状以外の編地組織を採用することもできるし、両者とも細目組織を採用するなど、その組み合わせも任意である。連結糸は、一方のグランド編地と他方のグランド編地とが所定の間隔を保持するように、2つのグランド編地間に編み込んだものである。このような三次元立体編物としては、例えば、以下のようなものを用いることができる。なお、各三次元立体編物は、必要に応じて複数枚積層して用いることもできる。
(1)製品番号:49076D(住江織物(株)製)
材質:
表側のグランド編地・・・300デシテックス/288fのポリエチレンテレフタレート繊維仮撚加工糸と700デシテックス/192fのポリエチレンテレフタレート繊維仮撚加工糸との撚り糸
裏側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸と350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメントとの組み合わせ
連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(2)製品番号:49011D(住江織物(株)製)
材質:
グランド編地(縦糸)・・・600デシテックス/192fのポリエチレンテレフタレート繊維仮撚加工糸
グランド編地(横糸)・・・300デシテックス/72fのポリエチレンテレフタレート繊維仮撚加工糸
連結糸・・・・・・・・・800デシテックス/1fのポリエチレンテレフタレートモノフィラメント
(3)製品番号:49013D(住江織物(株)製)
材質:
表側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
裏側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(4)製品番号:69030D(住江織物(株)製)
材質:
表側のグランド編地・・・450デシテックス/144fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
裏側のグランド編地・・・450デシテックス/144fのポリエチレンテレフタレート繊維仮撚加工糸と350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメントとの組み合わせ
連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(5)旭化成せんい(株)製の製品番号:T24053AY5−1S
第1のビーズ発泡樹脂弾性部材20と第2のビーズ発泡樹脂弾性部材30とは、シートバック部510の表皮部材とエアパック10を収容した収容体15(エアパックユニット100)との間に配設され、2つのエアパック10の全長に相当する長さを有し、2つのエアパック10の頂部間の長さに相当する幅を有している。従って、長さが400〜600mm、幅が250〜350mm程度の大きさのものを用いることが好ましい。これにより、2つのエアパック10が共に覆われるため、2つのエアパック10の凹凸を感じにくくなる。
第1のビーズ発泡樹脂弾性部材20は、平板状に形成されたビーズ発泡体と、その外面に貼着される被覆材とから構成されている。ビーズ発泡体としては、ポリスチレン、ポリプロピレン及びポリエチレンのいずれか少なくとも一つを含む樹脂のビーズ法による発泡成形体が用いられる。なお、発泡倍率は任意であり限定されるものではない。被覆材は、ビーズ発泡体の外面に接着により貼着され、高い伸度と回復率を有する素材であり、好ましくは、伸度200%以上、100%伸長時の回復率が80%以上である弾性繊維不織布が用いられる。例えば、特開2007−92217号公報に開示された熱可塑性エラストマー弾性繊維が相互に溶融接着された不織布を用いることができる。具体的には、KBセーレン(株)製、商品名「エスパンシオーネ」を用いることができる。
第2のビーズ発泡樹脂弾性部材30は、第1のビーズ発泡樹脂弾性部材20と同様にビーズ発泡体を備えて構成されるが、その外面を覆う被覆材としては、第1のビーズ発泡樹脂弾性部材20において用いた弾性繊維不織布よりも伸縮性の小さい素材、例えば、熱可塑性ポリエステルからなる不織布が用いられる。具体的には、帝人(株)製のポリエチレンナフタレート(PEN)繊維(1100dtex)から形成した2軸織物(縦:20本/inch、横:20本/inch)を用いることができる。
第1のビーズ発泡樹脂弾性部材20と第2のビーズ発泡樹脂弾性部材30とを積層する順序は限定されるものではないが、シートバック部510の表皮部材511に近い側に、弾性の高い第1のビーズ発泡樹脂弾性部材20を配設することが好ましい。また、第1及び第2のビーズ発泡樹脂弾性部材20,30を構成するビーズ発泡体は、厚さ約5〜6mm程度とし、その外面に、厚さ約1mm以下の上記した弾性繊維不織布や熱可塑性ポリエステルからなる不織布を貼着して形成される。なお、本実施形態では、第1のビーズ発泡樹脂弾性部材20の表皮部材511に対向する面、第2のビーズ発泡樹脂弾性部材30のエアパックユニット100に対向する面に、それぞれPENフィルムなどのポリエステルフィルムを貼着している。これにより、生体信号の伝達性が向上する。
本実施形態において人体支持手段を構成するシート500のシートバック部510は、表皮部材511と該表皮部材511の背面側に配設されるクッション支持部材512とを備えてなり、該表皮部材511とクッション支持部材512との間にエアパック10を保持した収容体15(エアパックユニット100)と第1及び第2のビーズ発泡樹脂弾性部材20,30が組み込まれる。この際、クッション支持部材512側にまずエアパック10を保持した収容体15(エアパックユニット100)が配置され、その表面側に第2のビーズ発泡樹脂弾性部材30が、さらにその表面側に第1のビーズ発泡樹脂弾性部材20が配置された上で、表皮部材511により被覆される。なお、クッション支持部材512は、例えば、三次元立体編物をシートバック部510の左右一対のサイドフレームの後端縁間に張って形成することもできるし、合成樹脂板から形成することもできる。表皮部材511は、例えば、三次元立体編物、合成皮革、皮革、あるいはこれらの積層体などを左右一対のサイドフレームの前縁間に張って設けることができる。
このように、本実施形態においては、表皮部材511の裏面側に所定の大きさの第1のビーズ発泡樹脂弾性部材20及び第2のビーズ発泡樹脂弾性部材30が積層して配置され、さらにその後方に左右一対のエアパック10を保持した収容体15(エアパックユニット100)が配置される構成であるため、着座者が背にエアパック10の凹凸を感じることなくなり、生体信号を測定するためのエアパック10を有する構成でありながら、座り心地が向上する。
次に、生体状態分析装置60の構成について図6に基づいて説明する。生体状態分析装置60には、生体信号測定装置1により検出された生体信号である心部揺動波(以下、場合により「エアパック脈波」という)の時系列波形から人の状態を分析する状態分析部610が組み込まれている。なお、本実施形態で用いた生体信号測定装置1は、上記のようにノイズ対策を施しているため、検出信号へのノイズの混入は少ないが、特に、自動車運転中のような動的環境下では検出信号に脈波以外のノイズが含まれることが多くなる。従って、その場合には、状態分析部610で処理する前の前処理として、検出信号を心部揺動波が含まれている所定周波数でフィルタリングするなどして処理し、この前処理した検出信号を心部揺動波(エアパック脈波)の時系列波形として用いることが好ましい。
本実施形態では、状態分析部610を、生体状態分析装置60の記憶部に設定したコンピュータプログラムから構成している。すなわち、状態分析部610は、周波数演算手段(周波数演算手順)611と、周波数傾き時系列解析演算手段(周波数傾き時系列解析演算手順)612と、周波数変動時系列解析演算手段(周波数変動時系列解析演算手順)613と、波形判定手段(波形判定手順)614とを備えて構成される。なお、コンピュータプログラムは、フレキシブルディスク、ハードディスク、CD−ROM、MO(光磁気ディスク)、DVD−ROMなどの記録媒体へ記憶させて提供することもできるし、通信回線を通じて伝送することも可能である。
周波数演算手段(周波数演算手順)611は、生体信号測定装置1から得られる心部揺動波(エアパック脈波)の時系列波形における周波数の時系列波形を求める。具体的には、まず、エアパック脈波の時系列波形を平滑化微分して極大値(ピーク)を求める。例えば、SavitzkyとGolayによる平滑化微分法により極大値を求める。次に、5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値(波形の山側頂部)間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する(図7の[1]のステップ)。そして、この5秒毎に得られる周波数Fをプロットすることにより、周波数の時系列波形を求める(図7の[2]のステップ)。
周波数時系列解析傾き演算手段(周波数傾き時系列解析演算手順)612は、周波数演算手段611により得られたエアパック脈波の周波数の時系列波形から、所定の時間幅の時間窓を設定し、時間窓毎に最小二乗法により該エアパック脈波の周波数の傾きを求め、その時系列波形を出力する。具体的には、まず、ある時間窓Tw1における周波数の傾きを最小二乗法により求めてプロットする(図7の[3],[5]のステップ)。次に、オーバーラップ時間Tl(図7の[6]のステップ)で次の時間窓Tw2を設定し、この時間窓Tw2における周波数の傾きを同様に最小二乗法により求めてプロットする。この計算(移動計算)を順次繰り返し、エアパック脈波の周波数の傾きの時系列変化を周波数傾き時系列波形として出力する(図7の[8]のステップ)。なお、時間窓Twの時間幅は180秒に設定することが好ましく、オーバーラップ時間Tlは162秒に設定することが好ましい。これは、本出願人による上記特許文献3(WO2005/092193A1公報)において示したように、時間窓Twの時間幅及びオーバーラップ時間Tlを種々変更して行った睡眠実験から、特徴的な信号波形が最も感度よく出現する値として選択されたものである。
周波数変動時系列解析演算手段(周波数変動時系列解析演算手順)613は、周波数演算手段611により得られたエアパック脈波の周波数の時系列波形(図7の[2]のステップ)に、所定の時間幅の時間窓(好ましくは180秒)を設定し、周波数の平均値を求める(図7の[3],[4]のステップ)。次に、所定のオーバーラップ時間(好ましくは162秒)で設定した所定の時間窓(好ましくは180秒)毎にエアパック脈波の周波数の平均値を求める移動計算を行い、プロットする。そして、時間窓毎にプロットされた周波数の平均値の時系列変化を周波数変動時系列波形として出力する(図7の[7]のステップ)。また、周波数変動時系列解析演算手段613には、基線演算手段(基線演算手順)613aが設定されている。該基線演算手段613aは、周波数変動時系列波形の基線を求めて出力する。
脈波周波数演算手段(脈波周波数演算手順)611、周波数傾き時系列解析演算手段(周波数傾き時系列解析演算手順)612、及び周波数変動時系列解析演算手段(周波数変動時系列解析演算手順)613は、図7のステップに従った処理(以下、「ピーク検出法」という)ではなく、図8のステップに従った処理(以下、「ゼロクロス法」という)で実行することができる。図7のピーク検出法は、周波数演算手段611が、生体信号測定装置1から得られるエアパック脈波の時系列波形を平滑化微分して極大値(ピーク値)を求めているが、図8のゼロクロス法では、エアパック脈波の時系列波形において、正から負に切り替わる地点(以下、「ゼロクロス地点」という)を求める。そして、5秒毎にゼロクロス地点を切り分け、その5秒間に含まれる時系列波形のゼロクロス地点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する(図8の[1]のステップ)。そして、この5秒毎に得られる周波数Fをプロットすることにより、周波数の時系列波形を求める(図8の[2]のステップ)。
その後は、図7の場合と同様に、周波数傾き時系列解析演算手段612によって移動計算を行い、周波数傾き時系列波形を求め(図8の[3],[5],[6],[8]のステップ)、周波数変動時系列解析演算手段613によって移動計算を行い、周波数変動時系列波形を求める(図8の[3],[4],[6],[7]のステップ)。
後述の波形判定手段614において、周波数傾き時系列波形、周波数変動時系列波形及びその基線を用いて人の状態を判定する場合、ピーク検出法、ゼロクロス法のいずれを用いてもよい。いずれがより人の状態を明確に示すかは個人差があるため、人により、適する方法を予め設定できるようにすることが好ましい。一方、後述する他の実施形態で説明する積分曲線を用いて人の状態を推定する際には、診察台等の静的環境下で安定状態を測定する場合はピーク検出法、ゼロクロス法のいずれかでを用いてもよいが、自動車走行中のような動的環境下において外部刺激に対応している状態で測定する場合はゼロクロス法を基準として活性度合いを求め、ピーク検出法を基準として交感神経の代償作用を同定するようにすることが好ましい。なお、この点の詳細は後述する。
なお、周波数傾き時系列解析演算手段612及び周波数変動時系列解析演算手段613は、それぞれにより得られたエアパック脈波の周波数傾き時系列波形と周波数変動時系列波形とを同じ時間軸上に測定開始から時間を追って順次出力していく(図10〜図12の各(d)図を参照)。
波形判定手段(波形判定手順)614は、同じ時間軸上に出力されていく周波数傾き時系列波形、周波数変動時系列波形及び周波数変動波形の基線を比較し、両者の波形変化から人の状態を分析する。
波形判定手段614は、本実施形態では、図6に示したように、入眠点判定手段(入眠点判定手順)614aを備えている。入眠点判定手段614aは、後述の試験例として示した図9(d)を参照すると、周波数変動時系列解析演算手段613により得られた周波数変動時系列波形において急勾配変化を示す変動波形急勾配部(傾きラインYに沿った急勾配部分)が出現し、その後における周波数変動時系列波形の基線位置(基線Eの位置)が、変動波形急勾配部の出現前の周波数変動時系列波形の基線位置(基線Dの位置)まで戻らないと共に、基線Eが右下がりで現れ、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の振幅Pと周波数傾き時系列波形の振幅Qが、いずれも変動波形急勾配部の出現前の周波数変動時系列波形の振幅Rと周波数傾き時系列波形の振幅Sよりも小さい場合に、前記変動波形急勾配部(傾きラインY(波形に含まれるノイズ成分を除いた傾き)に沿った急勾配部分)の終点、すなわち、基線Eの延長線と傾きラインYとの延長線との交点付近を入眠点Cと判定する。
傾きラインYに沿った変動波形急勾配部が生じた後、入眠に突入すると、上記のように基線Eが基線Dの位置まで戻らずに、振幅P,Qが小さくなることから、本実施形態の周波数変動時系列波形を利用した判定は、入眠点Cを明確に特定できる。
このような入眠点Cの特定を行う場合、周波数変動時系列波形に変動波形急勾配部(傾きラインYに沿った急勾配部分)が出現することを特定する必要がある。この特定にあたっては、予め、被験者毎に、入眠に至った場合の眠気状態、並びに、その後入眠に突入した際の周波数変動時系列波形及び周波数傾き時系列波形を測定し、コンピュータの記憶部に教師データとして記憶させておく。教師データには、入眠点に至る直前において、すなわち、入眠に至った場合の眠気を自覚した際に生じた変動波形急勾配部がデータとして含まれている。従って、この教師データ中の変動波形急勾配部を、周波数変動時系列解析演算手段613により出力される周波数変動時系列波形と比較する。その結果、現在測定している周波数変動時系列波形の中で急勾配波形が生じた際には、その傾きラインが、教師データ中の入眠点直前に生じた変動波形急勾配部の傾きラインに近似するか否かを判定し、さらに、その後に現れる波形の基線位置や振幅が、上記した条件に合致するか否かにより、入眠点を判定する。なお、傾きラインが近似するか否かは、人により異なる場合があるので、予め、例えば、30度以内、好ましくは20度以内の違いといった設定をしておく。また、傾きラインが近似していても、急勾配波形が僅かな時間しか生じない場合には、入眠点前に現れる変動波形急勾配部とは言えない。入眠点前に現れる変動波形急勾配部は、図9(d)に示したように、所定の時間継続する。図9(d)の場合には、約200秒間に亘って急勾配波形が生じている。従って、この変動波形急勾配部に近似するか否かは、上記した傾きラインの角度と共に急勾配波形が生じている時間、例えば、30秒以上といった時間を予め設定しておくことが好ましい。
波形判定手段614は、本実施形態では、さらに、図6に示したように、眠気波形判定手段(眠気波形判定手順)614bを備えている。周波数変動時系列波形の中には、入眠点の直前に、上記した変動波形急勾配部(図9(d)の傾きラインY)が生じる。その一方、図9(d)から明らかなように、周波数傾き時系列波形は、周波数変動時系列波形の前兆を示しているものと考えられる。つまり、周波数傾き時系列波形のA点,B点は、周波数変動時系列波形においてa点,b点から周波数が減少していく前兆を示すポイントとしての意味がある。従って、周波数変動時系列波形のa点又はb点から急激に下降する変動波形急勾配部を検出した際に、この変動波形急勾配部の出現に先立って周波数傾き時系列波形中に、変動波形急勾配部と略平行な傾き波形急勾配部が存在するか否かを判定する。すると、図9(d)の場合、周期の山側頂点であるA点又はB点の出現後、急激に下降する傾き波形急勾配部が存在する。そこで、眠気波形判定手段614aは、周波数変動時系列解析演算手段613の変動波形急勾配部の傾きラインYが、該変動波形急勾配部の出現直前の周波数傾き時系列波形における傾き波形急勾配部の傾きラインXと略平行である場合に、その時点の波形を入眠に至る眠気状態である眠気波形と判定するように設定されている。その後、周波数変動は時系列波形の基線Eが右下がりになって現れると上記のように入眠点が特定されるため、この基線Eが右下がりになるかどうかの判定も重要である。
眠気波形判定手段614bによって判定される、周波数変動時系列波形の変動波形急勾配部と傾き波形急勾配部とがどの程度の時間、略平行な波形変化を示すかも個人差があることから、任意に設定できるようにするとがよいが、後述の試験例からは、20〜60秒間の範囲で設定することが好ましい。また、略平行か否かについては、比較対象となった2つの波形の山側頂点から谷川頂点までのノイズを除いた傾き角度(傾きラインX、Yの傾斜角度)の差が30度以内、好ましくは15度以内の場合に略平行と判定するように設定することがよい。これは、後述の試験例において、大振幅波形が生じたにも拘わらず睡眠を自覚しなかったケースで、両者の傾斜角度の差(図12(d)の傾きラインX、Yの傾斜角度の差)が約30度であったことに基づいたものである。但し、この設定についても個人差があるため、何度以内に設定するかは予め調整できるようにすることが好ましい。
本実施形態によれば、人がシート500に着座すると、生体信号測定装置1により、生体信号として背部から心部揺動波が検出される。生体状態分析装置60は、検出された生体信号を状態分析部610により分析する。まず、周波数演算手段611により生体信号(心部揺動波)の時系列波形における周波数の時系列波形を求める。次に、この生体信号の周波数の時系列波形を用いて、周波数傾き時系列解析演算手段612が周波数傾き時系列波形を求め、周波数変動時系列解析演算手段613が周波数変動時系列波形を求める。そして、波形判定手段614の入眠点判定手段614aにより、周波数変動時系列波形における変動波形急勾配部の出現、変動波形急勾配部出現後における周波数変動時系列波形の右下がりの基線の出現が判定され、さらに上記のように入眠点が特定される。
一方、波形判定手段614における眠気波形の検出は、上記のように、眠気波形判定手段614bが、周波数変動時系列解析演算手段613における変動波形急勾配部を検出したならば、それに先行する変化を示す周波数傾き時系列波形を比較する。周波数傾き時系列波形では、変動波形急勾配部に先だって略平行な傾き波形急勾配部が所定時間以上出現しているか否かを判定する。また、変動波形急勾配部の出現前の周波数変動時系列波形の基線と、変動波形急勾配部の出現後の周波数変動時系列波形の基線とを比較する。そして、変動波形急勾配部の出現後の基線が右下がりで現れていることを確認する。この右下がりの基線の確認により、上記の変動波形急勾配部が眠気波形であることが明確になる。
人の健康や睡眠状況の把握のために、試験や診断として上記分析を行う場合には、生体信号測定装置1による測定終了後に生体状態分析装置60による分析を行えばよい。つまり、周波数傾き時系列波形、周波数変動時系列波形及び周波数変動時系列波形の基線を全測定時間について同一時間軸上に出力し、その後に、眠気波形や入眠点を特定し、睡眠状況の診断等に用いることもできる。
これに対し、実際に乗物に搭載して、運転者の状態を検知して警告を発するシステムに適用する場合には、眠気波形や入眠点の特定を生体信号測定装置1による生体信号の検出とほぼ並行して処理する。すなわち、周波数傾き時系列波形、周波数変動時系列波形及び周波数変動時系列波形の基線を同一時間軸上に出力しながら上記略平行な急勾配波形変化を所定時間示した直後に警告を発するように設定する。その後、周波数変動時系列波形における変動波形急勾配部の傾きが変化し、周波数変動時系列波形の右下がりの基線が現れ、入眠点判定手段614aにより入眠点を示した際には、より刺激の大きい警告を発するように設定する。
なお、上記実施形態においては、生体信号測定装置1を構成するエアパック10、第1及び第2のビーズ発泡樹脂弾性部材20,30を自動車用のシートに組み込んでいるが、自動車用のシートに限らず、ベッドなどの寝具、病院設備における診断用の椅子等に組み込むこともできる。また、上記実施形態では、背部の大動脈(特に、下行大動脈)を検出可能な位置にエアパック10を配置したが、人の胴部の他の動脈を検出可能な位置に配置することも可能である。
(試験例1)
健康な30歳代の日本人男性4名(被験者A〜D)をそれぞれ上記シート500に着座させ、静的条件下で30分間の居眠り検知実験を行った。実験開始の最初の10〜15分までは開眼を維持させ、その後閉眼させた。同時に光学式指尖容積脈波計及び脳波計を装着し、指尖容積脈波及び脳波の測定も行った。結果を図9〜図12に示す。図9〜図12において、(a)は、脳波計による前頭前野のθ波、β波、α波の分布率の時系列波形を示し、(b)は、指尖容積脈波から求めたHF成分及びLF/HF成分の時系列波形を示し、(c)は、指尖容積脈波を用いて求めた従来技術の項で説明したパワー値の傾き(指尖脈波パワー値傾き)と最大リアプノフ指数の傾き(指尖脈波リアプノフ傾き)の時系列波形を示し、(d)は、上記実施形態のシート500に装着した生体信号測定装置1から得られる生体信号(エアパック脈波)を用いて求めた周波数傾き時系列波形と周波数変動時系列波形を示している。
・被験者A
図9(a)の脳波分布率の時系列波形を見ると、600秒以降の閉眼状態により、α波の分布率の増加とβ波の分布率の減少が観察される。これは閉眼によりα波ブロックが解除されたことによるものである。その後、θ波の分布率の増加とα波の減少が認められ、眠気の発生と共に実験開始後1050秒後に睡眠に入ったと考えられる.
図9(b)は末梢系から捉えられた自律神経系の変動の様子を示し、実験開始後400秒後に生じているLF/HFのバースト波はそれ以前か近傍に入眠予兆現象が生じたことを示す。その後900秒前後を境にして、副交感神経優位な状態を示している。従って、図9(b)から約900秒以降に眠気の発生とともに睡眠状態に入ったことが示唆される。
図9(c)の指尖容積脈波のパワー値傾きとリアプノフ傾きの時系列波形を見ると、破線で囲まれたA部はパワー値とリアプノフ指数の各傾き時系列波形が低周波−大振幅−逆位相の波形となっている。これによりA部近傍で入眠予兆現象が発現したことを示す。その後、振幅が小さくなり,入眠予兆現象発現を意味する時系列波形に比較して、高周波−小振幅の波形となったB部は睡眠導入部と認められ、入眠予兆現象発現後約10分間で入眠に至ったと考えられる。
図9(d)のエアパック脈波の周波数変動時系列波形と周波数傾き時系列波形を見ると、まず、エアパック脈波周波数変動時系列波形は、実験開始後の0点から増加していき、680秒近傍(a点)から一時的に減少した後、800秒近傍より再度増加し、850秒近傍(b点)から急激に減少し、1050秒近傍(C点)から減少が緩やかになっている。0点からa点への移動は眠気への抵抗でエアパック脈波の周波数が増加していることが考えられる。a点からb点への移動は閉眼により一時的にリラックス状態となったが、眠気への抵抗が一時的に生じたため、リバウンドするように周波数の増加が生じたと考えられる。その後眠気を受け入れたため急激に周波数が減少したと考えられる。この急激な減少変化の終点がC点であり、その後は、周波数変動時系列波形の基線Eが略直線的に右下がりに推移している。そのため、C点を入眠点と特定できる。また、C点以降の穏やかな変化は心拍が安定状態であることと睡眠段階の進行を示していると考えられる。
一方、周波数傾き時系列波形は、周波数変動波形の前兆を示しているものと考えられる。つまり、周波数傾き時系列波形のA点,B点は、周波数変動時系列波形においてa点,b点から周波数が減少していく前兆を示すポイントとしての意味がある。
波形判定手段614は、周波数変動時系列波形のa点又はb点から急激に下降する変動波形急勾配部を検出すると共に、この変動波形急勾配部の出現に先立って周波数傾き波形中に、変動波形急勾配部と略平行な傾き波形急勾配部が存在するか否かを判定する。すると、図9(d)の場合、周期の山側頂点であるA点又はB点の出現後、急激に下降する傾き波形急勾配部が存在する。また、a点からは約60秒間の略平行な波形変化が認められ、b点からは約200秒間の略平行な波形変化が認められる。上記したように、周波数変動時系列波形は、睡眠に移行する過程を示す指標である一方、周波数傾き時系列波形は、周波数変動時系列波形の波形変化に先んじた変化を示す。このため、上記した2つの波形の略平行な波形変化の時間が所定時間(例えば、30秒間)生じていたならば、その時点を睡眠直前期兆候と判定することで、周波数変動時系列波形が睡眠へ移行していく兆候を示し始めた早期において、入眠直前期兆候を捉えることができる。仮に、周波数変動時系列波形のみを観察して、a点又はb点から下降する波形を捉えたとしても、その波形は例えば体動が原因で生じることもあり、変動波形急勾配部の出現のみで眠気波形と判定することはできないが、周波数傾き時系列波形は、周波数変動時系列波形の変化を前もって示すことから、2つの波形を対比することで、より早期にかつ果実に眠気波形と判定することが可能である。また、変動波形急勾配部の出現後の周波数変動時系列波形の基線Eが右下がりで現れていることを確認する。この右下がりの基線の確認により、上記の変動波形急勾配部が眠気波形であることが明確になる。
なお、図9(d)の斜線部で示す時間帯は、はっきりとした眠気を自覚している領域にあることが図9(a)の脳波分布率のθ波の変化などからわかる。これに対し、図9(c)のAの中の斜線部で示される入眠予兆現象は交感神経が亢進状態にあり、また脳波に変化が乏しいことからもまだ人は眠気を感じていないことがわかる。末梢系の交感神経の反応の様子を捉えている指尖容積脈波に比べてエアパック脈波は7〜8分の遅れがあり、エアパック脈波を本発明の手法によって分析して捉えられる眠気波形は入眠に入る約3分前に発現している。この現象は眠気を伴っているため、人の感覚とよく一致する。
・被験者B
図10(a)の脳波分布率の時系列変動について見ると、900秒以降の閉眼状態により、α波の分布率の増加とβ波の分布率の減少が観察される。これは閉眼によろα波ブロックが解除されたことによるものである。その後、θ波の分布率の増加とα波の分布率の減少が認められ、眠気の発生が確認できた。その後θ波が増加してくる1300秒以降において睡眠状態に入った可能性があると考えられる。
図10(b)は自律神経の変動の様子を示し、実験開始後900秒後に生じているLF/HFのバースト波はそれ以前か近傍に入眠予兆現象が生じたことを示す。その後900秒前後を境にして副交感神経優位な状態を示している。従って、約900秒以降に眠気が発生したと考えられる。
図10(c)では、破線で囲まれたA部近傍で入眠予兆現象が発現したことを示す。さらに振幅が小さくなり、B部は睡眠導入部で、入眠予兆現象出現後約10分で入眠に至ったと考えられる。
図10(d)より、エアパック脈波の周波数変動時系列波形は400秒までは上昇傾向となり、その後800秒近傍までは緩やかに減少していき、800秒より一時的に増加して1100秒までは急激に減少し、それ以降は緩やかに減少している。実験開始後400秒までは緊張状態に突入しているが、その後リラックス状態に入ったと考えられる。800秒から900秒においては一時的に眠気への抵抗が生じたため周波数が増加したことが考えられる。その後、閉眼によりリラックス状態となったことと、眠気を受け入れたために周波数の減少が生じたと考えられる。
図10(d)では、900秒付近で周波数傾き時系列波形において山側頂点から急下降する一方、その後、周波数変動時系列波形においても周波数傾き波形に略平行な急下降の波形(変動波形急勾配部)が生じ、1100秒付近で周波数変動時系列波形に変曲点(入眠点)が生じている。すなわち、1100秒以降、周波数変動時系列波形の基線は、変動波形急勾配部の出現前の基線に戻らず小振幅になっており、その基線は右下がりになっている。また、周波数傾き時系列波形も小振幅になっているが、1600秒以降は振幅が大きくなっており、覚醒していることがわかる。2つの波形が略平行になっている斜線部は、眠気波形を示しており、この時点ではっきりとした眠気を自覚していることが、図10(a)及び図10(b)より認められる。一方、図10(c)の斜線部で示される入眠予兆現象は、はっきりとした眠気を自覚していないことが図10(a)及び図10(b)より認められる。また、図10(d)により特定される眠気波形は、被験者Aの場合と同様に、図10(c)の指尖容積脈波の入眠予兆現象と比較して6〜8分間の発現の遅れがあった。
・被験者C
図11(a)について、900秒以降の閉眼状態により、α波の分布率の増加とβ波の分布率の減少が観察される。その後、眠気の発生が観察される。またβ波が実験開始後1100秒から減少傾向にあることから眠気が連続的に生じていると認められ、また、交感神経の代償作用によりリラックスしていることが認められるが、睡眠には至っていないと判断できる。
図11(b)に示すA−1、A−2及びA−3は、LF/HFのバースト波であり、実験開始後350秒後、900秒後及び1380秒後に交感神経の活動レベルが上昇したことを示す。また900秒前後を境にして、副交感神経優位な状態を示している。この副交感神経優位な状態はリラックスしながら眠気が発生した様子を示す。
図11(c)のA部の斜線部領域は入眠予兆現象の発現を示している。その後はリラックス状態に移行していることが読み取れるが、振幅の大きな減少とはなっていないため、睡眠には至っていないと考えられる。すなわち、眠気はあるもののリラックス状態にあると考えられる。
図11(d)のエアパック脈波の周波数傾き時系列波形と周波数変動時系列波形を考察すると、周波数傾き時系列波形において、250秒付近、500秒付近に傾きの急な波形が生じているものの、その後、周波数変動時系列波形において略平行で急勾配の波形は生じていない(例えば、周波数傾き時系列波形の250秒付近の大振幅波形の山側頂部及び谷川頂部間の傾き線Xの傾斜角度と周波数変動波形の傾き線Yの傾斜角度との差が約25度と大きく、略平行とは言えない)。従って、本実施形態の波形判定手段614では、眠気波形が捉えられないことになる。図11(d)の斜線部は、図11(a)の脳波からリラックス状態であると考えられる。これは、周波数変動の変化に比べて周波数傾き時系列波形の振幅が大きく、交感神経の活動レベルが上昇しており、そのため,睡眠には至っていないものと考えられる。このことから、交感神経の活動レベルの上昇は、眠気の度合いを小さくする作用があると考えられる。なお、これらの点は、実験後の被験者のコメントとも一致した。図11(d)から、エアパック脈波の周波数傾き時系列波形が周波数変動時系列波形の前兆を示すといっても、周波数傾き時系列波形の急勾配部の出現のみでは、眠気波形を正確に捉えることはできないと言える。
・被験者D
図12(a)より、被験者Dは実験開始直後から睡眠状態に入り、その後再覚醒し、リラックス状態になったことが認められる。
図12(b)においてA部で示される700秒前後のバースト波は再覚醒ポイントを示す。その後1000秒前後を境にして副交感神経が優位な状態が続いている。
図12(c)において、A部で示される斜線部領域は入眠予兆現象発現状態を示し、覚醒状態にあることを示唆する。900秒付近のB部において振幅が小さくなってマイクロスリープを生じているが、その後は、大きな振幅低下には至らずリラックス状態にあると思われる。
図12(d)のエアパック脈波の周波数変動時系列波形では、実験開始直後が高くその後徐々に減少しており、実験開始直後から副交感神経優位な状態にあって次第にリラックス状態に入っていったことがわかる。Aで示された領域の900〜1000秒付近において略平行な部分が僅かにあるが、その後、周波数変動時系列波形及び周波数傾き時系列波形共に、振幅が小さくならず、基線のゆらぎも生じていることから、900秒付近ではマイクロスリープが生じたものの、一時的な再覚醒の後、リラックス状態に移行していったことが推測できる。
波形判定手段614は、図6に示したように、さらに、疲労状態推定手段(疲労状態推定手順)614fを備えていることが好ましい。疲労状態推定手段614fは、周波数傾き時系列解析演算手段612により得られた周波数傾き時系列波形と、周波数変動時系列解析演算手段613により得られた周波数変動時系列波形を比較し、両波形のずれ度合いから疲労状態を推定する。具体的には、この疲労状態推定手段614fは、周波数傾き時系列波形に対し、周波数変動時系列波形が所定の位相遅れ(好ましくは30〜180秒の位相遅れ)を伴って、初期位相角、位相差、振幅、角振動数が略同様に推移している場合に疲労のない状態(良好状態)と推定する。すなわち、適度な生体ゆらぎを保ちながら、前兆となる周波数傾き時系列波形に遅れて同じような周波数変動時系列波形が作られている場合に疲労のない状態(良好状態)と推定する。そして、この良好状態に対し、初期位相角、位相差、振幅、角振動数のいずれか少なくとも一つ以上の項目において所定以上の変化が生じるか否かにより、疲労状態を段階別(例えば、交感神経代償作用が生じている状態、入眠に至らないが眠気を自覚している状態等)に推定できる。
図13〜図17は、疲労状態推定手段614fにより推定される具体的な疲労状態を段階別に示したものである。いずれも、高周波のノイズ信号は無視して考察する。まず、図13(a)では、周波数傾き時系列波形に対し、約60〜150秒の位相遅れを伴って、周波数変動時系列波形が推移している。また、いずれもほぼ同じ振幅でプラスマイナスのバランスが良く、初期位相角、位相差、角振動数もほぼ同じである。また、図12(c)から交感神経と副交感神経のバランスが良いことがわかる。従って、図13から、被験者が疲労のない良好状態にあることがわかる。
図14(a)のデータでは、500秒付近までは、周波数傾き時系列波形に対し、周波数変動時系列波形が一定の位相遅れで推移し、振幅のバランスもよいが、800〜900秒付近では逆位相で現れており、一定の位相遅れではなく、乱れが生じてきている。このような位相の乱れは、疲労感を知覚していない状態から疲労感を知覚し、その後、さらに交感神経の代償作用が生じて疲労感を知覚しなくなっている状態を示している。図14(c)を見ても、700秒付近までは交感神経と副交感神経のバランスは良いが、その後、交感神経の活動が増し、代償作用が生じていることがわかる。
図15(a)では、300秒以降、2つの波形が逆位相で推移しており、交感神経の代償作用が働いていて疲労感を知覚しなくなっている。このことは、図15(c)において、300秒以降に交感神経の活動が増していることからもわかる。
図16(a)では、550秒付近までは閉眼していたため、両波形共に振幅が小さく、疲労感の少ないリラックス状態で推移し、休息(マイクロスリープ)状態になっている。このため、開眼した600秒以降では、振幅が大きくなると共に、周波数傾き時系列波形に対し、周波数変動時系列波形が約60〜150秒程度の位相遅れで推移し、疲労が回復していること(すなわち、良好状態に戻っていること)がわかる。
図17(a)では、800〜900秒付近で周波数変動時系列波形の急勾配変化が生じ、しかも、周波数傾き時系列波形中に、該周波数変動時系列波形の急勾配変化と略平行な急勾配部が見られる。また、900秒付近を境にして、周波数変動時系列波形の基線は右下がりになり、入眠したことがわかる。2000秒付近で、周波数変動時系列波形は右上がりの基線になり、その後、周波数変動時系列波形が周波数傾き時系列波形に対して約30〜100秒程度の位相遅れで推移し、疲労が回復していること(すなわち、良好状態に戻っていること)がわかる。図17(c)を見ると、眠気を感じた800秒付近で交感神経優位から副交感神経優位に変わり、覚醒後の2000秒以降では交感神経と副交感神経のバランスが良くなっている。
疲労状態推定手段614fは、上記のように、周波数傾き時系列波形及び周波数変動時系列波形の位相、振幅、周波数を比較することで、良好状態(疲労のない状態)、交感神経の代償作用が働いている状態、入眠に至らない眠気を感じている状態、休息(マイクロスリープ)により疲労が回復した状態、疲労のためにエラーや反応時間の遅延が見られる状態を判定できる(入眠点や入眠に至る眠気波形は、本実施形態では、上記した入眠点判定手段614a、眠気波形判定手段614bによりそれぞれ判定される)。なお、周波数傾き時系列波形に対し、所定の位相遅れを伴って周波数変動時系列波形が推移し、また、いずれもほぼ同じ振幅で周波数もほぼ同じであるという良好状態(疲労のない状態)については、位相遅れの程度、振幅の大きさ、周波数等において個人差がある。従って、良好状態(疲労のない状態)における位相遅れの程度、振幅の大きさ、周波数等については、個人毎に教師データを作成し、コンピュータに記憶させておき、実際の測定データをこの教師データと比較して疲労状態を推定する構成とすることが好ましい。
また、疲労状態をより明確に推定するために、周波数傾き時系列解析演算手段612から得られる周波数傾き時系列波形、及び、周波数変動時系列解析演算手段613から得られる周波数変動時系列波形をそのまま用いるのではなく、これらの波形から単振動の正弦波モデルを1以上求め、周波数傾き時系列波形の1以上の単振動の正弦波モデルと周波数変動時系列波形の1以上の単振動の正弦波モデルとを用いて、上記した疲労状態の推定を行うことができる。すなわち、周波数傾き時系列波形の正弦波モデルと周波数変動時系列波形の正弦波モデルとの初期位相角、位相差、振幅、角振動数を比較して疲労状態を推定する。
換言すれば、生体から採取した心拍変動の原波形から周波数傾き時系列波形及び周波数変動時系列波形を作り、これらの波形から、フーリエ級数解析を利用して、交感神経と副交感神経のバランスのよいときの基本調波を同定する。そして、交感神経優位のとき(指尖容積脈波のウエーブレット解析において交感神経のバースト波が生じるとき)の三角関数を同定する。また、副交感神経優位のとき(指尖容積脈波のウエーブレット解析において副交感神経の基線の上昇とバースト波が生じるとき)の三角関数を同定する。人の状態は、基本調波に、n次の高調波を加え、さらに自律神経系の影響を捉えたこれらの三角関数の級数の和として展開できる。
例えば、上記の図13(a)の疲労のない良好状態では、周波数傾き時系列波形及び周波数変動時系列波形の周期関数は、基本調波とn次の高調波の和として表すことができる。これに対し、図14(a)では、周波数変動時系列波形の予兆を示す周波数傾き時系列波形において、600〜700秒付近、850〜900秒付近で、三角関数:f(t)=sin2πt/T(T=周期、t=時間)が合成されており、交感神経の代償作用を表している。周波数変動時系列波形では、周波数傾き時系列波形よりも遅れたタイミング、すなわち、750秒付近、900〜950秒付近で、同様に、交感神経優位の三角関数が合成されている。
また、周波数傾き時系列波形の1以上の単振動の正弦波モデルと周波数変動時系列波形の1以上の単振動の正弦波モデルとから、両者の合成波を求めて疲労状態を推定することができる。この合成波は、振幅が緩やかに増減する一つの振動となるが、合成する単振動の正弦波モデルの振幅や振動数等が等しい場合とそうでない場合とで、合成波の振動波形が異なってくる。そこで、疲労のない状態(良好状態)の合成波の振動波形を基準とし、例えば、その状態方程式を求めておき、疲労のない状態(良好状態)の合成波の波形と、比較対象の合成波の波形とがどの程度異なるかを判定して、疲労状態を推定することもできる。
なお、周波数傾き時系列解析演算手段612から得られる周波数傾き時系列波形、及び、周波数変動時系列解析演算手段613から得られる周波数変動時系列波形から正弦波モデルを求め、その正弦波モデルを用いる手法は、上記した入眠点判定手段614a、眠気波形判定手段614bにおいても用いることができる。
図18は、本発明の生体状態分析装置60の他の実施形態の要部を示した図である。この実施形態では、状態分析部610に、コンピュータプログラムである、第1周波数演算手段(第1周波数演算手順)611a、第2周波数演算手段(第2周波数演算手順)611b、第1周波数傾き時系列解析演算手段(第1周波数傾き時系列解析演算手順)612a、第2周波数傾き時系列解析演算手段(第2周波数傾き時系列解析演算手順)612bが設定されている共に、波形判定手段(波形判定手順)614に、第1積分曲線演算手段(第1積分曲線演算手順)614c、第2積分曲線演算手段(第2積分曲線演算手順)614d、積分曲線判定手段(積分曲線判定手順)614eが設定されている。
第1周波数演算手段(第1周波数演算手順)611aには、図7に示したピーク検出法により生体信号の周波数の時系列波形を求めるプログラムが設定されている。つまり、上記実施形態で説明したように、エアパック脈波の時系列波形を平滑化微分して極大値(ピーク)を求め、次いで、5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値(波形の山側頂部)間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用し(図7の[1]のステップ)、さらに、この5秒毎に得られる周波数Fをプロットして、周波数の時系列波形を求める(図7の[2]のステップ)。
第2周波数演算手段(第2周波数演算手順)611bには、図8に示したゼロクロス法により脈波周波数の時系列波形を求めるプログラムが設定されている。つまり、上記実施形態で説明したように、エアパック脈波の時系列波形において、正から負に切り替わるゼロクロス地点を求め、次いで、5秒毎にゼロクロス地点を切り分け、その5秒間に含まれる時系列波形のゼロクロス地点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用し(図8の[1]のステップ)、さらに、この5秒毎に得られる周波数Fをプロットして、周波数の時系列波形を求める(図8の[2]のステップ)。
すなわち、本実施形態では、図7に示したピーク検出法と図8に示したゼロクロス法の2つの計算手法により求めた生体信号の周波数の時系列波形を共に利用する。
第1周波数演算手段611aにより得られた周波数の時系列波形は、第1周波数傾き時系列解析演算手段(第1周波数傾き時系列解析演算手順)612aによって図7の[3],[4],[5],[8]の処理がなされてピーク検出法による周波数傾き時系列波形が求められる。第2周波数演算手段611bにより得られた周波数の時系列波形は、第2周波数傾き時系列解析演算手段(第2周波数傾き時系列解析演算手順)612bによって図8の[3],[4],[5],[8]の処理がなされてゼロクロス法による周波数傾き時系列波形が求められる。
第1積分曲線演算手段(第1積分曲線演算手順)614cは、第1周波数傾き時系列解析演算手段612aにより得られた周波数傾き時系列波形を絶対値処理して積分し(図7の[9],[10]の処理)、第2積分曲線演算手段(第2積分曲線演算手順)614dは、第2周波数傾き演算手段612bにより得られた周波数傾き波形を絶対値処理して積分する(図8の[9],[10]の処理)。
積分曲線判定手段(積分曲線判定手順)614eは、第1積分曲線演算手段614cにより求められるピーク検出法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線と第2積分曲線演算手段614dにより求められるゼロクロス法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線とを同じ時間軸上に出力して比較する。
積分曲線判定手段614eによる2つの積分曲線の比較は、20例の測定データを集めて考察し、次のように積分曲線の形状パターンを特定した。
まず、図19に示したように、第2積分曲線演算手段614dにより求めたゼロクロス法による周波数傾き時系列波形を絶対値処理した積分曲線が、第1積分曲線演算手段614cにより求めたピーク検出法による周波数傾き時系列波形を絶対値処理した積分曲線よりも高い値で推移している場合には、交感神経が優位な状態である。そして、覚醒時の形状から、2つの積分曲線がいずれもか、あるいは、ピーク検出法による積分曲線が時間経過と共に値が小さくなるように変化してきた場合には、眠気と戦っている状態を示している。
図20に示したように、図19とは逆に、第1積分曲線演算手段614cにより求めたピーク検出法による周波数傾き時系列波形を絶対値処理した積分曲線が、第2積分曲線演算手段614dにより求めたゼロクロス法による周波数傾き時系列波形を絶対値処理した積分曲線よりも高い値で推移している場合には、副交感神経が優位な状態である。そして、2つの積分曲線の相互間隔が相対的に広いときは疲れが生じていることを示し、相対的に狭いときはリラックス状態で覚醒度が高いことを示す。時間経過と共に、両者間の間隔が乖離してくる場合には、時間経過と共に疲れが生じていくことを示す。
図21に示したように、2つの積分曲線が交錯して変化していると交感神経と副交感神経のバランスがよい状態であり、2つの曲線が交錯しているものの、交錯位置の間隔が広がってくると、副交感神経優位のリラックス状態である中で交感神経の代償作用も生じている状態であり、2つの曲線が交錯しているものの、時間経過と共に傾いてくるとリラックス状態から疲れが生じ、さらに睡眠に移っていくことが予測される。
図19〜図21の積分曲線の形状パターンは、予め、コンピュータの記憶部に記憶させておく。積分曲線判定手段614eは、第1積分曲線演算手段614cにより求められるピーク検出法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線と第2積分曲線演算手段614dにより求められるゼロクロス法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線とを同じ時間軸上に出力したならば、記憶部に記憶した図19〜図21の各形状パターンを比較し、いずれの形状パターンの近いかを判定し、その判定結果を出力する。
(試験例2)
大型トラックの運転席シートのシートバック部に上記した生体信号測定装置、エアパック等をセットし、実車実験を行い、ピーク検出法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線とゼロクロス法に基づいた周波数傾き時系列波形を絶対値処理した積分曲線とを同じ時間軸上に出力し、形状パターンの判定を行った。各被験者の判定結果を図22〜図25に示す。図22〜図25では、判定結果を見やすくするため、図19〜図21に示した形状パターンを基に、副交感神経優位で最もリラックスした状態から、交感神経優位で最も緊張した状態までを6つの段階に分けて示した。なお、実験条件は次の通りである。
・実験車両:HINO プロフィア 20t
・実験区間:東京〜大阪(約520km)
・実験時間:21:00〜4:00
・実験期間:2月〜4月
・被験者 :4名(30〜40歳代、男性)
図22〜図24から、被験者A氏、B氏、C氏の場合、いずれも、全体としては、副交感神経優位の状態でリラックスして運転を行っていることが判定できる。図25のD氏の場合には、若干、交感神経優位の状態であり、多少の緊張感の中で運転を行っていることが判定できる。また、長距離走行でありながら、図19〜図21に示したような眠気と戦っている状態や睡眠状態に近い状態は生じていなかった。
各被験者の積分曲線を実験開始時刻の順番に従って描いたグラフが図26である。この図から、ピーク検出法による積分曲線、ゼロクロス法による積分曲線の各出力位置が実験開始時刻により異なることがわかる。これは、連日の運転により恒常性維持機能が変化することによるものと考えられ、これを傾向別にまとめると図27に示したようになった。すなわち、まず、2つの積分曲線の差が小さいほど、恒常性維持機能が高く調子が良いと判定できる。これに対し、ゼロクロス法による積分曲線が時間経過と共に上方への変化を示した場合には活性度が高まるが、下方への変化を示した場合には活性度が低下すると判定できる。また、ピーク検出法の上方への変化は疲労の増大を示すものと判定できる。
このように、実験開始時刻の順番に従った比較を行うことにより、運転者がどの時間帯に出発するとより調子のよい状態を維持できるのかということも判定できる。
なお、生体状態分析装置60を運転席に備え付けの警告装置(音、シートの振動、シートバックの傾動等)に連動させることが好ましい。例えば、上記した各実施形態で説明した眠気状態、疲労状態等を推定し、所定の段階に至ったならば、警告装置(音、シートの振動、シートバックの傾動等)を作動させて、運転者を覚醒状態に戻すようにすることができる。また、生体状態分析装置60に通信装置を備え付け、生体状態分析装置60の出力データが、自動的にトラック等の運行を管理する管理センタのコンピュータに送信される構成とすることもできる。通信のタイミングは任意であり、生体状態分析装置60において、上記各実施形態で説明したような眠気状態、疲労状態を検知したならば管理センタに自動通知し、管理センタ側から、該通信装置を通じて運転者に警告したり、あるいは、管理センタ側から運転席に備え付けの上記警告装置を遠隔動作させるようにすることもできる。また、生体状態分析装置60の出力データを、常時管理センタ側でモニタし、運転者の生体状態の変化や体調を常にチェックするようにしてもよい。
また、生体信号測定装置としては、上記したエアパック10を用いたものに限らず、図28〜図29に示したものを用いることもできる。図28〜図29に示した生体信号測定装置200は、三次元立体編物210、三次元立体編物支持部材215、フィルム216、板状発泡体221,222、振動センサ230を有して構成される。
三次元立体編物210は、図1等に示した生体信号測定装置1と同様のものを用いることができる。三次元立体編物210は、厚み方向の荷重−たわみ特性が、測定板上に載置して直径30mm又は直径98mmの加圧板で加圧した際に、荷重100Nまでの範囲で、人の臀部の筋肉の荷重−たわみ特性に近似したバネ定数を備えることが好ましい。具体的には直径30mmの加圧板で加圧した際の当該バネ定数が0.1〜5N/mmの範囲、又は、直径98mmの加圧板で加圧した際の当該バネ定数が1〜10N/mmであるものを用いることが好ましい。人の臀部の筋肉の荷重−たわみ特性に近似していることにより、三次元立体編物と筋肉とが釣り合い、生体信号が伝播されると、三次元立体編物が人の筋肉と同様の振動を生じることになり、生体信号を大きく減衰させることなく伝播できる。
板状発泡体221,222は、ビーズ発泡体により構成することが好ましい。ビーズ発泡体としては、例えば、ポリスチレン、ポリプロピレン及びポリエチレンのいずれか少なくとも一つを含む樹脂のビーズ法による発泡成形体が用いることができる。ビーズ発泡体からなる板状発泡体221,222は、個々の微細なビーズを構成している発泡により形成された球状の樹脂膜の特性により、微小な振幅を伴う生体信号を膜振動として伝播する。この膜振動が三次元立体編物に弦振動として伝わり、これらの膜振動と弦振動が重畳され、生体信号は、膜振動と弦振動が重畳されることによって増幅された機械振動として、後述する振動センサ230により検出される。従って、生体信号の検出が容易になる。
板状発泡体221,222をビーズ発泡体から構成する場合、発泡倍率は25〜50倍の範囲で、厚さがビーズの平均直径以下に形成されていることが好ましい。例えば、30倍発泡のビーズの平均直径が4〜6mm程度の場合では、板状発泡体221,222の厚さは3〜5mm程度にスライスカットする。これにより、板状発泡体221,222に柔らかな弾性が付与され、振幅の小さな振動に共振した固体振動を生じやすくなる。なお、板状発泡体221,222は、本実施形態のように、三次元立体編物210を挟んで両側に配置されていても良いが、いずれか片側、好ましくは、シートバック側のみに配置した構成とすることもできる。
ここで、三次元立体編物210は、幅40〜100mm、長さ100〜300mmの範囲の短冊状のものが用いられる。この大きさのものだと、三次元立体編物210に予備圧縮(連結糸に張力が発生する状態)を生じやすくなり、人と三次元立体編物210との間で平衡状態が作りやすい。本実施形態では、人が背部が当接した際の違和感軽減のため、脊柱に対応する部位を挟んで対象に2枚配設するようにしている。三次元立体編物210を簡単に所定位置に配置するようにするため、図28に示したように、三次元立体編物210は三次元立体編物支持部材215に支持させた構成とすることが好ましい。三次元立体編物支持部材215は、板状に成形され、脊柱に対応する部位を挟んで対称位置に、縦長の配置用貫通孔215a,215aが2つ形成されている。三次元立体編物支持部材215は、上記板状発泡体221,222と同様に、板状に形成されたビーズ発泡体から構成することが好ましい。三次元立体編物支持部材215をビーズ発泡体から構成する場合の好ましい発泡倍率、厚さの範囲は上記板状発泡体221,222と同様である。但し、生体信号により膜振動をより顕著に起こさせるためには、三次元立体編物210,210の上下に積層される板状発泡体221,222の厚さが、三次元立体編物支持部材215の厚さよりも薄いことが好ましい。
三次元立体編物支持部材215に形成した配置用貫通孔215a,215aに、2つの三次元立体編物210,210を挿入配置した状態で、三次元立体編物210,210の表側及び裏側にフィルム216,216を積層する。なお、配置用貫通孔215a,215aの形成位置(すなわち、三次元立体編物210,210の配設位置)は、心房と大動脈(特に、「下行大動脈」)の拍出に伴う動きによって生じる揺れ及び大動脈弁の動きを検知可能な領域に相当する位置とすることが好ましい。この結果、三次元立体編物210,210は、上下面が板状発泡体221,222によりサンドイッチされ、周縁部が三次元立体編物支持部材215によって取り囲まれており、板状発泡体221,222及び三次元立体編物支持部材215が共振箱(共鳴箱)の機能を果たす。
また、三次元立体編物支持部材215よりも、三次元立体編物210,210の方が厚いものを用いることが好ましい。つまり、三次元立体編物210,210を配置用貫通孔215a,215aに配置した場合には、三次元立体編物210,210の表面及び裏面が、該配置用貫通孔215a,215aよりも突出するような厚さ関係とする。これにより、フィルム216,216の周縁部を配置用貫通孔215a,215aの周縁部に貼着すると、三次元立体編物210,210は厚み方向に押圧されるため、フィルム216,216の反力による張力が発生し、該フィルム216,216に固体振動(膜振動)が生じやすくなる。一方、三次元立体編物210,210にも予備圧縮が生じ、三次元立体編物の厚さ形態を保持する連結糸にも反力による張力が生じて弦振動が生じやすくなる。なお、フィルム216,216は、三次元立体編物210,210の表側及び裏側の両側に設けることが好ましいが、いずれか少なくとも一方に設けた構成とすることも可能である。フィルム216,216としては、例えば、ポリウレタンエラストマーからなるプラスチックフィルム(例えば、シーダム株式会社製、品番「DUS605−CDR」)等を用いることができる。
振動センサ230は、上記したフィルム216,216を積層する前に、いずれか一方の三次元立体編物210に固着して配設される。三次元立体編物210は一対のグランド編地と連結糸とから構成されるが、各連結糸の弦振動がグランド編地との節点を介してフィルム216,216及び板状発泡体221,222に伝達されるため、振動センサ230は感知部230aを三次元立体編物210の表面(グランド編地の表面)に固着することが好ましい。振動センサ230としては、マイクロフォンセンサ、中でも、コンデンサ型マイクロフォンセンサを用いることが好ましい。本実施形態では、マイクロフォンセンサを配置した部位(すなわち、三次元立体編物210を配置した配置用貫通孔215a)の密閉性を考慮する必要がないため、マイクロフォンセンサのリード線の配線は容易に行うことができる。生体信号によって生じる人の筋肉を介した体表面の振動は、三次元立体編物210だけでなく、板状発泡体221,222、フィルム216にも伝播され、それらが振動(弦振動、膜振動)して重畳されて増幅する。よって、振動センサ230は、三次元立体編物210に限らず、振動伝達経路を構成する板状発泡体221,222及びフィルム216に、その感知部230aを固定することもできる。
上記した生体信号測定装置200は、例えば、図29に示したように、自動車用シート1000のシートバックフレーム1100に被覆される表皮1200の内側に配置される。なお、配置作業を容易にするため、生体信号測定装置200を構成する三次元立体編物210、三次元立体編物支持部材215、フィルム216、板状発泡体221,222、振動センサ230等は予めユニット化しておくことが好ましい。
上記した生体信号測定装置200によれば、生体信号により、筋肉の荷重−たわみ特性に近似する荷重−たわみ特性をもつ板状発泡体221,222やフィルム216に膜振動が生じると共に、人の筋肉の荷重−たわみ特性に近似した荷重−たわみ特性を有する三次元立体編物210に弦振動が生じる。そして、三次元立体編物210の弦振動は再びフィルム216等の膜振動に影響を与え、これらの振動が重畳して作用する。その結果、生体信号に伴って体表面から入力される振動は、弦振動と膜振動との重畳によって増幅された固体振動として直接振動センサ230により検出されることになる。
図1等に示したエアパック10内の空気圧変動を検出する生体信号測定装置1の場合、体積と圧力が反比例関係にあるため、密閉袋の体積を小さくしないと圧力変動を検出しにくい。これに対し、図28〜図29に示した生体信号測定装置200によれば、空気圧変動ではなく、上記のように、機械的増幅デバイス(三次元立体編物210、板状発泡体221,222、フィルム216)に伝播される増幅された固体振動を検出するものであるため、その容積(体積)が検出感度の観点から制限されることはほとんどなく、心部揺動波という振幅の小さな振動を感度良く検出できる。このため、多様な体格を有する人に対応できる。従って、図28〜図29に示した生体信号測定装置200は、乗物用シートのように、多様な体格を有する人が利用し、さらに多様な外部振動が入力される環境下においても感度良く生体信号を検出できる。
1 生体信号測定装置
10 エアパック
11 表側エアパック
111 小空気袋
111b センサ
112 三次元立体編物
12 裏側エアパック
121 大空気袋
122 三次元立体編物
15 収容体
100 エアパックユニット
20 第1のビーズ発泡樹脂弾性部材
30 第2のビーズ発泡樹脂弾性部材
40,45 三次元立体編物
500 シート
510 シートバック部
511 表皮部材
512 クッション支持部材
520 シートクッション部
60 生体状態分析装置
610 状態分析部
611 脈波周波数演算手段
611a 第1脈波周波数演算手段
611b 第2脈波周波数演算手段
612 周波数傾き時系列解析手段
612a 第1周波数傾き時系列解析手段
612b 第2周波数傾き時系列解析手段
613 周波数変動時系列解析手段
614 波形判断手段
614a 入眠点判定手段
614b 眠気波形判定手段
614c 第1積分曲線演算手段
614d 第2積分曲線演算手段
614e 積分曲線判定手段
614f 疲労状態推定手段
200 生体信号測定装置
210 三次元立体編物
215 三次元立体編物支持部材
215a 配置用貫通孔
216 フィルム
221,222 板状発泡体
230 振動センサ

Claims (25)

  1. 生体信号測定装置により人の上体から採取した生体信号の時系列波形を分析して人の状態を分析する状態分析部を備えた生体状態分析装置であって、
    前記状態分析部は、
    前記生体信号の時系列波形における周波数の時系列波形を求める周波数演算手段と、
    前記周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する周波数傾き時系列解析演算手段と、
    前記周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の平均値を求める移動計算を行い、時間窓毎に得られる前記周波数の平均値の時系列変化を周波数変動時系列波形として出力する周波数変動時系列解析演算手段と、
    前記周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形、前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形及び周波数変動時系列波形の基線の変化の状態を分析して判定する波形判定手段と
    を有することを特徴とする生体状態分析装置。
  2. 前記波形判定手段は、前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形において急勾配変化を示す変動波形急勾配部が出現し、その後における周波数変動時系列波形の基線位置が、変動波形急勾配部の出現前の周波数変動時系列波形の基線位置まで戻らず、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅が、いずれも変動波形急勾配部の出現前の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅よりも小さく、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の基線が右下がりの低下傾向にある場合に、前記変動波形急勾配部の終点を入眠点と判定する入眠点判定手段を有する請求項1記載の生体状態分析装置。
  3. 前記入眠点判定手段は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列波形及び周波数傾き時系列波形の教師データと比較し、前記変動波形急勾配部の出現を判定する請求項2記載の生体状態分析装置。
  4. 前記波形判定手段は、さらに、前記周波数変動時系列解析演算手段の変動波形急勾配部の傾きラインが、該変動波形急勾配部の出現直前の前記周波数傾き時系列波形における傾き波形急勾配部の傾きラインと略平行である場合に、その時点の波形を眠気状態であると判定する眠気波形判定手段を有する請求項2記載の生体状態分析装置。
  5. 前記眠気波形判定手段は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列解析波形及び周波数傾き時系列解析波形の教師データと比較し、前記変動波形急勾配部及び傾き波形急勾配部の出現を判定する請求項4記載の生体状態分析装置。
  6. 前記波形判定手段は、さらに、前記周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形及び前記周波数変動時系列解析演算手段により得られた前記周波数変動時系列波形を比較し、両波形のずれ度合いから疲労状態を推定する疲労状態推定手段を備える請求項1記載の生体状態分析装置。
  7. 前記疲労状態推定手段は、前記周波数傾き時系列波形に対し、前記周波数変動時系列波形が所定の位相遅れを伴って、略同じ振幅及び略同じ周波数で推移している場合に疲労のない良好状態と判定し、この良好状態に対し、初期位相角、位相差、振幅、角振動数のいずれか少なくとも一つ以上の項目において所定以上の変化が生じるか否かにより、疲労状態を段階別に推定する手段を備える請求項6記載の生体状態分析装置。
  8. 前記疲労状態推定手段は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換し、両正弦波モデル間で前記疲労状態の推定を行う請求項6又は7記載の生体状態分析装置。
  9. 前記疲労状態推定手段は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換した後合成して合成波を求め、求めた合成波を、疲労のない良好状態において求めた合成波と比較して、疲労状態の推定を行う請求項6記載の生体状態分析装置。
  10. 前記周波数演算手段は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める手段と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める手段とのうち、いずれか少なくとも一方の手段を備える請求項1記載の生体状態分析装置。
  11. 前記周波数演算手段は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める第1周波数演算手段と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める第2周波数演算手段とを備えてなり、
    前記周波数傾き時系列解析演算手段は、前記第1周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第1周波数傾き時系列解析演算手段と、前記第2周波数演算手段により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第2周波数傾き時系列解析演算手段とを備えてなり、
    前記波形判定手段は、前記第1周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第1積分曲線を求める第1積分曲線演算手段と、前記第2周波数傾き時系列解析演算手段により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第2積分曲線を求める第2積分曲線演算手段と、前記第1積分曲線演算手段及び第2積分曲線演算手段によりそれぞれ得られる各積分曲線を比較する積分曲線判定手段とを備えてなる請求項1記載の生体状態分析装置。
  12. 前記積分曲線判定手段は、前記各積分曲線の形状パターンから人の状態を判定する請求項11記載の生体状態分析装置。
  13. 前記生体信号測定装置が人の背部に対応して配置され、背部を通じて採取される心房の動き及び大動脈の揺動による生体信号の時系列波形を検出するものであり、前記状態分析部は、この生体信号の時系列波形を用いて人の状態を分析するものである請求項1〜12のいずれか1に記載の生体状態分析装置。
  14. 生体信号測定装置により人の上体から採取した生体信号の時系列波形を分析して人の状態を分析する生体状態分析装置の記憶部に設定される状態分析部を構成するコンピュータプログラムであって、
    前記生体信号の時系列波形における周波数の時系列波形を求める周波数演算手順と、
    前記周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する周波数傾き時系列解析演算手順と、
    前記周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の平均値を求める移動計算を行い、時間窓毎に得られる前記周波数の平均値の時系列変化を周波数変動時系列波形として出力する周波数変動時系列解析演算手順と、
    前記周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形、前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形及び周波数変動時系列波形の基線の変化の状態を分析して判定する波形判定手順と
    を有することを特徴とするコンピュータプログラム。
  15. 前記波形判定手順は、前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形において急勾配変化を示す変動波形急勾配部が出現し、その後における周波数変動時系列波形の基線位置が、変動波形急勾配部の出現前の周波数変動時系列波形の基線位置まで戻らず、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅が、いずれも変動波形急勾配部の出現前の周波数変動時系列波形の振幅と周波数傾き時系列波形の振幅よりも小さく、かつ、変動波形急勾配部の出現後の周波数変動時系列波形の基線が右下がりの低下傾向にある場合に、前記変動波形急勾配部の終点を入眠点と判定する入眠点判定手順を有する請求項14記載のコンピュータプログラム。
  16. 前記入眠点判定手順は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列波形及び周波数傾き時系列波形の教師データと比較し、前記変動波形急勾配部の出現を判定する請求項15記載のコンピュータプログラム。
  17. 前記波形判定手順は、さらに、前記周波数変動時系列解析演算手順の変動波形急勾配部の傾きラインが、該変動波形急勾配部の出現直前の前記周波数傾き時系列波形における傾き波形急勾配部の傾きラインと略平行である場合に、その時点の波形を眠気状態であると判定する眠気波形判定手順を有する請求項15記載のコンピュータプログラム。
  18. 前記眠気波形判定手順は、予め測定した、入眠に至る眠気状態及び入眠点を生じた際の前記周波数変動時系列解析波形及び周波数傾き時系列解析波形の教師データと比較し、前記変動波形急勾配部及び傾き波形急勾配部の出現を判定する請求項17記載のコンピュータプログラム。
  19. 前記波形判定手順は、さらに、前記周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形及び前記周波数変動時系列解析演算手順により得られた前記周波数変動時系列波形を比較し、両波形のずれ度合いから疲労状態を推定する疲労状態推定手順を備える請求項14記載のコンピュータプログラム。
  20. 前記疲労状態推定手順は、前記周波数傾き時系列波形に対し、前記周波数変動時系列波形が所定の位相遅れを伴って、略同じ振幅及び略同じ周波数で推移している場合に疲労のない良好状態と判定し、この良好状態に対し、初期位相角、位相差、振幅、角振動数のいずれか少なくとも一つ以上の項目において所定以上の変化が生じるか否かにより、疲労状態を段階別に推定する手順を備える請求項19記載のコンピュータプログラム。
  21. 前記疲労状態推定手順は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換し、両正弦波モデル間で前記疲労状態の推定を行う請求項19又は20記載のコンピュータプログラム。
  22. 前記疲労状態推定手順は、前記周波数傾き時系列波形と前記周波数変動時系列波形とをそれぞれ単振動の正弦波モデルに変換した後合成して合成波を求め、求めた合成波を、疲労のない良好状態において求めた合成波と比較して、疲労状態の推定を行う請求項19記載のコンピュータプログラム。
  23. 前記周波数演算手順は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める手順と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める手順とのうち、いずれか少なくとも一方の手順を備える請求項14記載のコンピュータプログラム。
  24. 前記周波数演算手順は、前記生体信号の時系列波形を平滑化微分して極大値を求め、この極大値を用いて生体信号の周波数の時系列波形を求める第1周波数演算手順と、前記生体信号の時系列波形において、正から負に切り替わるゼロクロス地点を求め、このゼロクロス地点を用いて生体信号の周波数の時系列波形を求める第2周波数演算手順とを備えてなり、
    前記周波数傾き時系列解析演算手順は、前記第1周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第1周波数傾き時系列解析演算手順と、前記第2周波数演算手順により得られた前記生体信号の周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に前記周波数の傾きを求める移動計算を行い、時間窓毎に得られる前記周波数の傾きの時系列変化を周波数傾き時系列波形として出力する第2周波数傾き時系列解析演算手順とを備えてなり、
    前記波形判定手順は、前記第1周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第1積分曲線を求める第1積分曲線演算手順と、前記第2周波数傾き時系列解析演算手順により得られた前記周波数傾き時系列波形を絶対値処理して積分し、第2積分曲線を求める第2積分曲線演算手順と、前記第1積分曲線演算手順及び第2積分曲線演算手順によりそれぞれ得られる各積分曲線を比較する積分曲線判定手順とを備えてなる請求項14記載のコンピュータプログラム。
  25. 前記積分曲線判定手順は、前記各積分曲線の形状パターンから人の状態を判定する請求項24記載のコンピュータプログラム。
JP2011510390A 2009-04-25 2010-04-24 生体状態分析装置及びコンピュータプログラム Active JP5429946B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510390A JP5429946B2 (ja) 2009-04-25 2010-04-24 生体状態分析装置及びコンピュータプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009107197 2009-04-25
JP2009107197 2009-04-25
PCT/JP2010/057299 WO2010123125A1 (ja) 2009-04-25 2010-04-24 生体状態分析装置及びコンピュータプログラム
JP2011510390A JP5429946B2 (ja) 2009-04-25 2010-04-24 生体状態分析装置及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JPWO2010123125A1 JPWO2010123125A1 (ja) 2012-10-25
JP5429946B2 true JP5429946B2 (ja) 2014-02-26

Family

ID=43011239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510390A Active JP5429946B2 (ja) 2009-04-25 2010-04-24 生体状態分析装置及びコンピュータプログラム

Country Status (4)

Country Link
US (1) US8603001B2 (ja)
EP (1) EP2422700B1 (ja)
JP (1) JP5429946B2 (ja)
WO (1) WO2010123125A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679541B2 (ja) * 2010-01-26 2015-03-04 株式会社デルタツーリング 生体信号検出装置
WO2012040388A2 (en) * 2010-09-21 2012-03-29 Somaxis Incorporated Metrics and algorithms for interpretation of muscular use
JP5733499B2 (ja) 2010-10-29 2015-06-10 株式会社デルタツーリング 生体状態推定装置及びコンピュータプログラム
DE102012215301A1 (de) * 2012-08-29 2014-03-06 Continental Automotive Gmbh Stellelement für einen Fahrzeugsitz
JP6003493B2 (ja) * 2012-10-01 2016-10-05 富士通株式会社 ノイズ検知装置及びノイズ検知方法並びにノイズ検知プログラム
JP6118097B2 (ja) * 2012-12-14 2017-04-19 株式会社デルタツーリング 運転時生体状態判定装置及びコンピュータプログラム
WO2014200061A1 (ja) * 2013-06-14 2014-12-18 テイ・エス テック株式会社 骨格形状測定装置
US9504416B2 (en) * 2013-07-03 2016-11-29 Sleepiq Labs Inc. Smart seat monitoring system
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
JP6460560B2 (ja) 2013-12-07 2019-01-30 株式会社デルタツーリング 音・振動情報収集機構及び音・振動情報センシングシステム
DE102014000468A1 (de) * 2014-01-16 2015-07-16 Faurecia Autositze Gmbh Kraftfahrzeugsitz
US10448749B2 (en) 2014-10-10 2019-10-22 Sleep Number Corporation Bed having logic controller
US9949568B2 (en) * 2015-12-09 2018-04-24 Lear Corporation Pelvic and sacral bladder assembly
US10085565B2 (en) 2015-12-09 2018-10-02 Lear Corporation Sacral air bladder assembly
JP6511486B2 (ja) * 2017-05-30 2019-05-15 クラリオン株式会社 振動発生装置および振動発生方法
US11660053B2 (en) 2018-04-16 2023-05-30 Samsung Electronics Co., Ltd. Apparatus and method for monitoring bio-signal measuring condition, and apparatus and method for measuring bio-information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071184A (ja) * 2003-08-26 2005-03-17 Fuji Heavy Ind Ltd 運転者の覚醒度推定装置及び覚醒度推定方法
JP2006149470A (ja) * 2004-11-25 2006-06-15 Delta Tooling Co Ltd 快適感評価方法及び快適感評価装置
JP2008194321A (ja) * 2007-02-14 2008-08-28 Delta Tooling Co Ltd 生体信号分析装置、シート及び生体信号分析方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001290292A1 (en) * 2000-10-31 2002-05-15 Takeshi Sahashi Body movement analysis system and body movement analysis method
JP4789342B2 (ja) 2001-05-10 2011-10-12 株式会社デルタツーリング クッション材、シート及びパイル糸の植毛方法
JP4247055B2 (ja) 2003-05-21 2009-04-02 株式会社デルタツーリング 運転席用座席システム
JP4347621B2 (ja) 2003-05-21 2009-10-21 株式会社デルタツーリング 生体評価システム、コンピュータプログラム及び記録媒体
JP3790266B2 (ja) * 2003-06-27 2006-06-28 株式会社総合医科学研究所 疲労度評価装置、疲労度評価装置の制御方法、および疲労度評価プログラム、並びに該プログラムを記録した記録媒体
ATE499878T1 (de) 2003-10-23 2011-03-15 Delta Tooling Co Ltd Vorrichtung zur messung des ermüdungsgrads, vorrichtung zum nachweis von müdigkeit und computerprogramm
EP2113198B1 (en) 2004-03-25 2012-07-11 Delta Tooling Co., Ltd. Load body state judgment device, vehicle seat, and computer program
JP4959178B2 (ja) 2005-02-28 2012-06-20 株式会社デルタツーリング クッション材及び圧力変動検出装置
JP4751683B2 (ja) 2005-09-28 2011-08-17 Kbセーレン株式会社 着色弾性繊維不織布
JP5561552B2 (ja) 2008-08-19 2014-07-30 株式会社デルタツーリング 生体信号測定装置及び生体状態分析システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071184A (ja) * 2003-08-26 2005-03-17 Fuji Heavy Ind Ltd 運転者の覚醒度推定装置及び覚醒度推定方法
JP2006149470A (ja) * 2004-11-25 2006-06-15 Delta Tooling Co Ltd 快適感評価方法及び快適感評価装置
JP2008194321A (ja) * 2007-02-14 2008-08-28 Delta Tooling Co Ltd 生体信号分析装置、シート及び生体信号分析方法

Also Published As

Publication number Publication date
US20120101395A1 (en) 2012-04-26
US8603001B2 (en) 2013-12-10
WO2010123125A1 (ja) 2010-10-28
JPWO2010123125A1 (ja) 2012-10-25
EP2422700A1 (en) 2012-02-29
EP2422700B1 (en) 2019-06-05
EP2422700A4 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5429946B2 (ja) 生体状態分析装置及びコンピュータプログラム
JP5733499B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5553303B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5669287B2 (ja) 飲酒検知システム及びコンピュータプログラム
JP6460560B2 (ja) 音・振動情報収集機構及び音・振動情報センシングシステム
JP5704651B2 (ja) 生体状態推定装置、生体状態推定システム及びコンピュータプログラム
JP5044230B2 (ja) 生体信号分析装置、シート及び生体信号分析方法
JP5561552B2 (ja) 生体信号測定装置及び生体状態分析システム
JP5582478B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5892678B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5327584B2 (ja) 生体状態分析装置、コンピュータプログラム及び記録媒体
JP5751475B2 (ja) 生体状態推定装置及びコンピュータプログラム
JP5236424B2 (ja) 脈波検出装置及び生体状態分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Ref document number: 5429946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250