JP5381170B2 - 速度測定方法及び装置 - Google Patents

速度測定方法及び装置 Download PDF

Info

Publication number
JP5381170B2
JP5381170B2 JP2009052236A JP2009052236A JP5381170B2 JP 5381170 B2 JP5381170 B2 JP 5381170B2 JP 2009052236 A JP2009052236 A JP 2009052236A JP 2009052236 A JP2009052236 A JP 2009052236A JP 5381170 B2 JP5381170 B2 JP 5381170B2
Authority
JP
Japan
Prior art keywords
frequency
value
speed
measurement
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009052236A
Other languages
English (en)
Other versions
JP2009294199A (ja
Inventor
啓佐敏 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009052236A priority Critical patent/JP5381170B2/ja
Publication of JP2009294199A publication Critical patent/JP2009294199A/ja
Application granted granted Critical
Publication of JP5381170B2 publication Critical patent/JP5381170B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、電動モータ等の被測定機器の速度を測定する技術に関する。
永久磁石と電磁コイルとを利用した電動モータとしては、例えば下記の特許文献1に記載されたものなどが知られている。
従来は、電動モータ等の回転機器の回転数を、例えば1回転に要する時間を測定することによって決定していた。
しかし、回転数が低い場合には1回転に要する時間が長いので、測定時間に長時間を要するという問題があった。また、高速回転時には測定誤差が低くなる傾向にあるという問題もあった。なお、このような問題は、回転機器の回転数を測定する場合に限らず、一般に、被測定機器の速度を測定する場合に共通する問題であった。
特開2001−298982号公報
本発明は、被測定機器の速度を短時間に精度良く測定する技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するために、以下の形態又は適用例を取ることが可能である。
本発明の第1の形態は、被測定機器の速度測定装置であって、
前記被測定機器の所定の移動距離当たりM個(Mは2以上の整数)の等位相差の位置を示す位置信号を生成する位置信号生成部と、
クロック信号を生成するクロック信号生成部と、
前記クロック信号の周波数を調整するクロック調整部と、
前記位置信号の1周期のα倍(0<α<1)の計測期間において、前記クロック信号のパルス数をカウントするカウンタと、
前記クロック信号の周波数と、前記αの値と、前記計測期間において前記カウンタで得られたカウント値とに基づいて、前記被測定機器の速度を算出する演算部と、
を備え、
前記クロック調整部は、
前記計測期間において得られた前記カウント値が所定の下限値未満か否かを判定する比較部と、
前記カウント値が前記下限値未満の場合に前記クロック信号の周波数を増大させる周波数変更部と、
を含み、
前記位置信号生成部は、
アナログ波形を有するセンサ出力を発生する磁気センサと、
前記磁気センサのセンサ出力のレベルと参照レベルとを比較する2つの電圧比較器と、
前記2つの電圧比較器の比較結果の論理和を取ることによって得られる2値信号を前記位置信号として生成するOR回路と、
を備えるとともに、前記2つの電圧比較器のそれぞれの参照レベルを調整することによって前記位置信号のHレベルの期間とLレベルの期間の長さを変更し、
前記カウンタは、前記位置信号のHレベルの期間とLレベルの期間のうちの少なくとも一方を前記計測期間として使用する。
この形態によれば、前記位置信号の1周期のα倍の計測期間においてカウンタによるパルス数のカウントを行うので、短時間で精度良く測定を行うことが可能である。また、カウント値が上限値を超えたときにクロック周波数を増大させるので、カウント値のオーバーフロー等による測定精度の悪化を防止できる。
[適用例1]
被測定機器の速度測定装置であって、
前記被測定機器の所定の移動距離当たりM個(Mは2以上の整数)の等位相差の位置を示す位置信号を出力する位置センサと、
クロック信号を生成するクロック信号生成部と、
前記クロック信号の周波数を調整するクロック調整部と、
前記位置信号の1周期のα倍(0<α<1)の計測期間において、前記クロック信号のパルス数をカウントするカウンタと、
前記クロック信号の周波数と、前記αの値と、前記計測期間において前記カウンタで得られたカウント値とに基づいて、前記被測定機器の速度を算出する演算部と、
を備え、
前記クロック調整部は、
前記計測期間において得られた前記カウント値が所定の下限値未満か否かを判定する比較部と、
前記カウント値が前記下限値未満の場合に前記クロック信号の周波数を増大させる周波数変更部と、
を含む、速度測定装置。
この装置によれば、前記位置信号の1周期のα倍の計測期間においてカウンタによるパルス数のカウントを行うので、短時間で精度良く測定を行うことが可能である。また、カウント値が上限値を超えたときにクロック周波数を増大させるので、カウント値のオーバーフロー等による測定精度の悪化を防止できる。
[適用例2]
適用例1記載の速度測定装置であって、
前記比較部は、さらに、前記計測期間において得られた前記カウント値が所定の上限値を超えたか否かを判定し、
前記周波数変更部は、前記カウント値が前記上限値を超えた場合に前記クロック信号の周波数を減少させる、速度測定装置。
この装置によれば、カウント値が下限値未満のときにクロック周波数を減小させるので、カウント値が過度に小さくなることによる測定精度の悪化を防止できる。
[適用例3]
適用例2記載の速度測定装置であって、
前記周波数変更部は、
前記カウント値が前記上限値を超えた場合には前記周波数を所定の係数で除算して前記周波数を減少させ、一方、前記カウント値が前記下限値未満の場合に前記周波数に前記所定の係数を乗算することによって前記周波数を増大させる、速度測定装置。
この装置によれば、クロックの周波数が、所定の係数を用いた乗算又は除算によって調整されるので、速度が急激に変化した場合にも素早く追従して精度の良い測定を行うことが可能である。
[適用例4]
適用例2記載の速度測定装置であって、
前記周波数変更部は、
前記クロック信号の周波数を表す周波数係数を大きさ順に予め格納したテーブルを有し、前記テーブルから前記周波数係数の1つの値を選択的に読み出して使用しており、
前記カウント値が前記上限値を超えた場合又は前記下限値未満の場合に、前記テーブルから読み出される前記周波数係数を次の値に変更し、
前記変更された周波数係数を用いて前記クロック信号の周波数を変更する、速度測定装置。
この構成によっても、精度良い測定を行うクロック周波数を適切に設定することが可能である。
[適用例5]
適用例1ないし4のいずれかに記載の速度測定装置であって、
前記被測定機器は、回転機器であり、
前記位置信号は、前記回転機器の1回転当たりM個の回転位置を示す位置信号を出力するセンサである、速度測定装置。
この構成では、回転機器の1回転当たりM回以上の計測期間において速度が計測されるので、速度の計測値を短い計測周期で得ることが可能である。
[適用例6]
適用例1ないし5のいずれかに記載の速度測定装置であって、
前記計測期間は、前記位置信号の半周期毎に設定される、速度測定装置。
この構成では、位置信号の半周期毎に速度が計測されるので、速度の計測値をさらに短い計測周期で得ることが可能である。
なお、本発明は、種々の形態で実現することが可能であり、例えば、速度測定方法及び装置、速度測定装置を備えた電動モータ及びその制御方法、それらを用いたアクチュエータや装置等の形態で実現することができる。
本発明の第1実施例としての速度測定システムの構成を示す説明図である。 第1実施例における回転計測装置の内部構成を示すブロック図である。 分周器の内部構成を示すブロック図である。 加速時におけるカウンタの動作を示すタイミングチャートである。 減速時におけるカウンタの動作を示すタイミングチャートである。 被測定機器の回転数Nrevと各種のパラメータTpulse,G,CNT,VBの関係を示す説明図である。 被測定機器の回転数Nrevと各種のパラメータTpulse,G,CNT,VBの関係を示す説明図である。 被測定機器の回転数Nrevと各種のパラメータTpulse,G,CNT,VBの関係を示す説明図である。 第2実施例における回転計測装置の内部構成を示すブロック図である。 第3実施例における回転計測装置の内部構成を示すブロック図である。 第3実施例の加速時の動作を示すタイミングチャートである。 第3実施例の減速時の動作を示すタイミングチャートである。 本発明の実施例による速度測定装置を適用したブラシレスサーボモータの構成を示す説明図である。 ブラシレスモータの駆動制御回路の構成を示すブロック図である。 ドライバ回路の内部構成を示す図である。 駆動制御回路の内部構成と動作を示す説明図である。 指令値演算部の内部構成を示すブロック図である。 磁気センサ出力波形と駆動信号波形の対応関係を示す説明図である。 PWM部の内部構成を示すブロック図である。 モータ正転時のPWM部の動作を示すタイミングチャートである。 モータ逆転時のPWM部の動作を示すタイミングチャートである。 励磁区間設定部の内部構成と動作を示す説明図である。 本発明の実施例による速度測定装置を適用したブラシレスサーボモータの他の構成を示す説明図である。 本発明の実施例による速度測定装置を適用したリニア駆動機構の構成を示す説明図である。 本発明の実施例によるモータを利用したプロジェクタを示す説明図である。 本発明の実施例によるモータを利用した燃料電池式携帯電話を示す説明図である。 本発明の実施例によるモータ/発電機を利用した移動体の一例としての電動自転車(電動アシスト自転車)を示す説明図である。 本発明の実施例によるモータを利用したロボットの一例を示す説明図である。
次に、本発明の実施の形態を以下の順序で説明する。
A.第1実施例:
B.第2実施例:
C.第3実施例:
D.速度測定装置の適用例:
E.変形例:
A.第1実施例:
図1は、本発明の第1実施例としての速度測定システムの構成を示す説明図である。この速度測定システムは、被測定機器50と、回転エンコーダ300と、回転計測装置400とを備えている。回転エンコーダ300は、スリット円板310と、発光素子320と、受光素子330と、出力信号生成回路340とを有するインクリメント型エンコーダである。スリット円板310は、被測定機器50の回転軸に連結されている。図1(A)に示すように、スリット円板310は、複数のスリット312が一定のピッチで等間隔に配置された円板であり、スリット312以外の部分では光を反射する。この反射光は、受光素子330で検出され、受光素子330の検出信号に応じて出力信号生成回路340が出力信号(位置信号)を生成する。回転計測装置400は、回転エンコーダ300の出力信号に応じて被測定機器50の回転軸の回転数を計測する。
図2は、回転計測装置400の内部構成を示すブロック図である。回転計測装置400は、CPU410と、速度計測部420とを備えている。速度計測部420は、クロック発振器600と、分周器602と、カウンタ部610と、比較部621,622と、係数決定部630と、記憶部651〜654と、演算部660,670と、ラッチ部680とを有している。なお、図2には、図1に示した回転エンコーダ300も併せて示している。
図3は、分周器602の内部構成を示すブロック図である。分周器602は、正規化変換部604と、分周値変換部605と、カウンタ606とを有している。正規化変換部604は、係数決定部630(図2)から与えられる係数Gに応じて、逆分周値1/Nを求める回路である。分周値変換部605は、逆分周値1/Nの逆数を取ることによって分周値Nを求める回路である。図3(B)に、係数Gの値と、逆分周値1/Nと、分周値Nとの関係を示している。逆分周値1/Nは、係数Gをその最大値Gmaxで除算することによって得られている。従って、係数Gがその最大値Gmaxに等しい場合には、分周値Nは1になる。一方、係数Gがその最大値Gmaxよりも小さな値の場合には、分周値Nは係数Gに反比例する大きな値となる。図3(B)の例では係数Gの最大値Gmaxは1000に等しく、G=Gmax=1000の場合にN=1となる。また、G=0.01の場合にはN=100000となる。カウンタ606は、クロック発振器600から受ける原クロック信号CLKのパルス数をカウントしており、そのパルス数が分周値Nに達する度に、1つのパルス分のクロック信号DCLKを生成する。この分周器602の出力信号であるクロック信号DCLKは、図2のカウンタ610に供給される。このように、分周器602は、係数Gに応じてクロック信号DCLKの周波数fDCLKを変更する回路として機能している。逆に言えば、係数Gは、クロック信号DCLKの周波数fDCLKを設定するために使用されており、クロック信号DCLKの周波数fDCLKは係数Gに比例して変更される。そこで、以下では、係数Gを「周波数係数G」とも呼ぶ。また、原クロック信号CLKの周波数fCLKを、係数Gの最大値Gmaxで除した値fCLK/Gmaxを、「測定周波数Fc」とも呼ぶ。クロック信号DCLKの周波数fDCLKは、周波数係数Gと測定周波数Fcとを乗算した値に等しい。
図4は、加速時におけるカウンタ610の動作を示すタイミングチャートであり、図5は、減速時におけるカウンタ610の動作を示すタイミングチャートである。カウンタ610は、分周器620によって周波数が調整されたクロック信号DCLKのパルス数をカウントする。この際、カウンタ610は、回転エンコーダ300から出力される位置信号REPの各1周期Tpの一部に設定された計測期間Tcの間だけパルス数をカウントしてカウント値CNTを得る。位置信号REPの周期Tpは、スリット板310の所定の回転角度(すなわち一定の位相差)に対応している。計測期間Tcは、位置信号REPがHレベルである期間に設定されている。計測期間Tcと、位置信号REPの周期Tpとの比α=(Tc/Tp)は、周期Tpの時間的な長さに拘わらずに一定値(具体的には1/2)に維持されている。以下では、この比αを「計測期間比α」とも呼ぶ。計測期間比αの値は、1/2以外の種々の値に設定可能である。また、計測期間Tcは、位置信号REPのHレベル以外の期間に設定してもよい。例えば、位置信号REPのLレベルの期間を計測期間Tcとして設定しても良く、また、Hレベルの期間の一部とLレベルの期間の一部との両方を計測期間Tcとして設定しても良い。
図2に示すように、カウンタ610で得られたカウント値CNTは、上限値比較部621と、下限値比較部622と、第2の演算部670とに与えられている。上限値比較部621は、カウント値CNTが、上限値記憶部651に予め格納されている所定の上限値を超えたか否かを判定する。下限値比較部622は、カウント値CNTが、下限値記憶部652に予め格納されている所定の下限値未満か否かを判定する。カウント値CNTが上限値を超えた場合又は下限値未満の場合には、その旨を示す警告信号Sover,SunderがHレベルに立ち上がり、比較部621,622から係数決定部630に供給される。これらの警告信号Sover,SunderがHレベルになると、後述するように周波数係数Gが変更されて、カウント値CNTが上限値と下限値の範囲に収まるようにクロック信号DCLKの周波数が変更される。図4では、被測定装置の回転が徐々に加速しており、カウント値CNTが下限値を下回る度に下限用警告信号SunderがHレベルに立ち上がって、周波数係数Gが増加し、クロック信号DCLKの周波数も増加してゆく様子が描かれている。図5では、被測定装置の回転が徐々に減速しており、カウント値CNTが上限値を超える度に上限用警告信号SoverがHレベルに立ち上がって、周波数係数Gが減少し、クロック信号DCLKの周波数も減少してゆく様子が描かれている。
なお、カウント値CNTの上限値としては、例えば、カウンタ610のビット数で制限される計測可能な最大値よりもやや小さな値(例えば10%小さな値)に設定することが好ましい。また、カウント値CNTの下限値としては、任意の小さな値(例えば100)を採用することができる。カウント値CNTを上限値以下の範囲に制限する理由は、カウント値CNTがオーバーフローしてしまうことを防止するためである。また、カウント値CNTを下限値以上の範囲に制限する理由は、カウント値CNTが過度に小さな値になると、回転数の測定誤差が大きくなるためである。
係数決定部630は、比較部621,622からの警告信号Sover,Sunderに応じて周波数係数Gを増減するための演算回路である。係数決定部630は、カウント値CNTがその上限値を超えたことを上限値比較部621から通知された場合には、周波数係数Gを所定値で除算して減少させて、分周器602に供給する。この結果、分周器602からカウンタ610に供給されるクロック信号DCLKの周波数が減少し、カウント値CNTも小さくなる。一方、カウント値CNTがその下限値未満であることを下限値比較部622から通知された場合には、係数決定部630は、周波数係数Gに所定値を乗算して増大させる。この結果、カウンタ610に供給されるクロック信号DCLKの周波数が増加するので、カウント値CNTも大きくなる。なお、周波数係数Gは、第2の演算部670にも供給されている。
演算部660,670は、カウント値CNTと、周波数係数Gと、分解能記憶部653に記憶されている回転エンコーダ300の分解能と、測定周波数記憶部654に記憶されている測定周波数Fc(図3)とに基づいてモータの回転数を求める演算を実行する。第1の演算部660は、以下の(1)式に従って第1の演算値VAを算出する。
VA=60×Fc/P …(1)
ここで、Pは回転エンコーダ300の分解能、Fcは測定周波数(=fCLK/Gmax)である(図3参照)。なお、回転エンコーダ300の分解能Pは、スリット円板310の1回転当たりの位置信号REP(図4,図5)のパルス数である。
第2の演算部670は、以下の(2)式に従って第2の演算値VBを算出する。
VB=α(VA×G)/CNT …(2)
なお、本実施例では、計測期間比αの値は1/2である。
(2)式に上記(1)式を代入すると、以下の(3)式が得られる。
VB=α(60×Fc×G)/(P×CNT) …(3)
以下に説明するように、この値VBは被測定機器50(図1)の回転数に等しい値を示す。ここで、まず被測定機器50の回転数をNrev[rpm]と仮定する。回転エンコーダ300の分解能がPのとき、エンコーダ300の出力信号REPの1周期のα倍の位相差だけ回転するのに要する時間Tpulseは、以下の(4)式で与えられる。
Tpulse=60×α/(Nrev×P) …(4)
この時間Tpulseは、図4,図5の計測期間Tcの長さに相当している。
一方、カウント値CNTは、この計測期間Tcにおいて、周波数fDCLK(=G×Fc)[Hz]のクロックパルスをカウントして得られた値である。従って、カウント値CNTは、以下の(5)式によって与えられる。
CNT=Tpulse×Fc×G
=α(60×Fc×G)/(Nrev×P) …(5)
上記(3)式の右辺に、(5)式を代入すると、以下の通りとなる。
VB=α(60×Fc×G)/(P×CNT)
={α(60×Fc×G)/P}×{(Nrev×P)/α(60×Fc×G)}
=Nrev …(6)
すなわち、第2の演算値VBは、被測定機器の回転数Nrev[rpm]と等しい値を示すことが理解できる。なお、第1と第2の演算部660,670による演算は、1つの演算部で実行することも可能である。
なお、上記(3)式のうち、周波数係数Gとカウント値CNT以外は予め設定された一定値なので、回転数の測定値VBは、周波数係数Gとカウント値CNTとに基づいて算出可能である。より具体的に言えば、回転数の測定値VBは、以下の(7a)式又は(7b)式で与えられる。
VB=k1×α×(Fc×G)/CNT
=k1×α×fDCLK/CNT …(7a)
VB=k2×fDCLK/CNT …(7b)
ここで、k1,k2は定数、α=Tc/Tp(図4参照)、Fc=fCLK/Gmax(図3参照)であり、本実施例ではα、Fcは定数である。
上記(7a)式から、回転数の測定値VBは、周波数係数G(又はクロック周波数fDCLK)と計測期間比αに比例し、カウント値CNTに反比例する値として算出することが可能である。また、常にαが一定値に維持される場合には、(7b)式から、回転数の測定値VBは、クロック周波数fDCLKに比例し、カウント値CNTに反比例する値として算出することが可能である。
図6は、被測定機器の回転数Nrevと、上述した各種のパラメータTpulse,G,CNT,VBの関係を示している。また、参考のために、被測定機器の1秒当たりの回転数Nsec[回転/S]と、回転数の測定誤差(=VB−Nrev)も示されている。ここで、センサ分解能Pは1000、測定周波数Fcは10MHz、カウント値CNTの上限値Doは100000,下限値Duは1000、周波数係数Gに乗除算されるファクタδは10と設定されている。
図6から理解できるように、本実施例では、カウント値CNTが上限値Doと下限値Duの間にほぼ収まるように、周波数係数Gが変更されている。具体的には、カウント値CNTが上限値Doを超えると周波数係数Gにファクタδ(=10)が乗算され、カウント値CNTが下限値Duを下回ると周波数係数Gがファクタδ(=10)で除算される。上述したように、カウント値CNTの上限値Doは、カウンタ610のビット数による制限値(すなわち、カウンタ610によりカウント可能な最大値)に応じて決められている。また、下限値Duは、測定精度が過度に低くならないようにすることを意図して決められている。このように、カウント値CNTが上限値と下限値の範囲にほぼ収まるように周波数係数Gが自動的に調節されるので、常に精度良く回転数を測定することが可能である。特に、図6に示されているように、回転数の値が広い範囲にわたっても、常に高い測定精度が保たれるという利点がある。また、図4,図5に示したように、回転数の測定は、回転エンコーダ300の出力信号である位置信号REPの半周期に相当する測定期間Tc毎に1回実行されるので、短時間で測定を完了することが可能である。
図7は、回転数の測定値VBを、1秒当たりの回転数の単位[rps]で表したものである。また、図8は、回転数の測定値VBを、角速度の単位[rad/s]で表したものである。
図2の回路では、第2の演算部670で得られた演算結果VBはラッチ部680でラッチされて、外部装置(例えばCPU410)に出力される。外部装置は、この演算結果VBを用い、必要に応じて被測定機器50の回転数を表示したり、その制御を変更したりすることができる。
以上のように、上記実施例では、回転エンコーダ300の出力信号REPの各周期Tpの一部の計測期間Tcにおいてクロック信号DCLKのパルス数がカウントされるので、短時間で回転数測定を完了することが可能である。また、カウント値CNTが上限値と下限値の範囲に収まるようにクロック周波数が自動的に調節されるので、広い回転数に渡って常に精度良く回転数を測定することが可能である。また、回転数が短時間に変化する場合にも、これに追従して正確な回転数測定を実行することが可能である。
B.第2実施例:
図9は、第2実施例における回転計測装置の構成を示すブロック図である。この回路は、速度計測部420a内の係数決定部630aの内部構成を図2から変更し、また、図2のクロック発振器600をクロック生成部700及びセレクタ710に置き換えものであり、他の構成は図2の回路と同じである。
係数決定部630aは、アップダウンカウンタ632と、係数テーブル634とを含んでいる。アップダウンカウンタ632は、比較部621,622からの信号に応じて係数テーブル634の読出アドレスをインクリメント又はデクリメントするための回路である。係数テーブル634には、周波数係数Gの複数の値が大きさ順に予め格納されており、その中の1つの値が選択的に読み出されて演算部670に供給される。周波数係数Gの値としては、例えば図6に例示した複数の値を採用可能である。なお、図6の例では、周波数係数Gの異なる値は、ファクタδを乗算又は除算することによって得られていたが、係数テーブル623にはこのような値に限らず任意の値を予め格納可能である。演算部670に供給される周波数係数Gの初期値は、これらの複数の値の中から選択された値(例えば0.01)に設定される。
クロック生成部700は、周波数の異なる複数のクロック信号を生成する回路である。セレクタ710は、アップダウンカウンタ632の出力である選択信号SELに応じて、複数のクロック信号の中の1つを選択してカウンタ610に供給する。
図9の回路では、カウント値CNTが上限値と下限値の範囲にほぼ収まるように選択値SELが変更され、これに応じてクロック信号DCLKの周波数が変更される。従って、第1実施例と同様に、常に精度良く回転数を測定することが可能である。
C.第3実施例:
図10は、第3実施例における回転計測装置の構成を示すブロック図である。この回路は、速度計測部420b内のいくつかの回路要素(具体的には、分周器602、カウンタ部610、比較部621,622、係数決定部630、演算部670、及びラッチ部680)をそれぞれ2重化し、また、図2の回路にタイミング制御部640とマルチプレクサ690とを加えたものであり、他の構成は図2の回路と同じである。なお、2重化した各回路要素の符号の末尾にa,bをそれぞれ付して区別している(例えば分周器602a,602b)。
回路要素の2重化は、回転エンコーダ300から出力される位置信号REPの各半周期Tp毎に回転数を測定するためである。すなわち、1組目の回路要素群602a、610a、621a,622a、630a、670a、680aは、位置信号REPの周期の前半に設定された計測期間の間だけクロック信号DCLKのパルス数をカウントし、そのカウント値CNTaに応じて回転数を測定する。一方、2組目の回路要素群602b、610b、621b,622b、630b、670b、680bは、位置信号REPの周期の後半に設定された計測期間の間だけクロック信号DCLKのパルス数をカウントし、そのカウント値CNTbに応じて回転数を測定する。演算部670a,670bによって算出された2つの回転数測定値は、ラッチ部680a,680bで保持された後、マルチプレクサ690で選択されて、最終的な回転数測定値VBとして速度計測部420bから出力される。
タイミング制御部640は、回転エンコーダ300から与えられた位置信号REPから、前半周期用位置信号REPaと、後半周期用位置信号REPbとを生成する。例えば、前半周期用位置信号REPaは回転エンコーダ300からの位置信号REPと同じものを使用することができ、後半周期用位置信号REPbはその反転信号とすることができる。タイミング制御部640は、さらに、回転エンコーダ300からの位置信号REPに応じて選択信号Lselを作成し、マルチプレクサ690に供給する。マルチプレクサ690は、この選択信号Lselに応じて、2つのラッチ部680a,680bの保持値の一方を選択して回転数測定値VBとして出力する。
図11は、第3実施例の加速時の動作を示すタイミングチャートであり、図12は、減速時の動作を示すタイミングチャートである。これらの図では、計測期間Tcが位置信号REPa,REPbの半周期毎に設定されており、回転数測定値VBが半周期毎に得られる点が図4,図5と異なっている。他の動作は、図4,図5とほぼ同様である。なお、この例では、計測期間Tcは位置信号REPa,REPbの半周期の長さTp/2に等しく設定されているが、計測期間Tcをより短く設定してもよい。後者の場合には、計測期間比α(=Tc/Tp)は、1/2未満の値となる。
このように、第3実施例では、位置信号の半周期毎に回転数を計測するので、より短い計測周期毎に回転数を測定することが可能である。
D.速度測定装置の適用例:
図13は、本発明による速度測定装置を適用したブラシレスサーボモータの構成を示す説明図である。このモータは、モータ本体100と、駆動制御回路200と、回転エンコーダ300とを備えている。モータ本体100は、ステータコイル10と、回転軸112を中心として回転するロータ30とを有している。なお、回転エンコーダ300としては、スリット円板を透過する透過光を測定する形式のものが使用されている。
図14は、ブラシレスモータの駆動制御回路の構成を示すブロック図である。駆動制御回路200は、CPU220と、駆動信号生成部240と、2相のドライバ回路250A,250Bととを備えている。2つの磁気センサ出力SSA,SSBは、AD変換部260でデジタル多値信号に変換されて、駆動信号生成部240に供給される。また、回転エンコーダ300の位置信号REPも駆動信号生成部240に供給される。駆動信号生成部240は、これらの信号SSA,SSB,REPに基づいて、2相の駆動信号を生成する。ドライバ回路250A,250Bは、これらの2相の駆動信号に従ってモータ本体100内の2相の電磁コイル群11,12を駆動する。
図15は、ドライバ回路の内部構成を示している。各相のドライバ回路250A,250Bは、それぞれH型ブリッジ回路を構成している。例えば、A相のドライバ回路250Aは、駆動信号DRVA1,DRVA2に応じてA相コイル11を駆動する。符号IA1,IA2が付された矢印は、駆動信号DRVA1,DRVA2によって流れる電流方向をそれぞれ示している。他の相も同様である。なお、ドライバ回路としては、複数の駆動トランジスタで構成される種々の構成の回路を利用可能である。
図16は、駆動信号生成部240(図14)の内部構成と動作を示す説明図である。なお、ここでは図示の便宜上、A相用の回路要素のみを示しているが、B相用にも同じ回路要素が設けられている。
駆動信号生成部240は、基本クロック生成回路510と、1/N分周器520と、PWM部530と、正逆方向指示値レジスタ540と、乗算器550と、符号化部560と、指令値演算部580と、励磁区間設定部590と、速度計測部420とを備えている。A相磁気センサ出力SSAは、符号化部560と励磁区間設定部590とに供給されている。回転エンコーダ300の位置信号REPは、速度計測部420に供給されている。なお、速度計測部420としては、図2,図9,又は図10に示したものを利用可能である。
基本クロック生成回路510は、所定の周波数を有するクロック信号PCLを発生する回路であり、例えばPLL回路で構成される。分周器520は、このクロック信号PCLの1/Nの周波数を有するクロック信号SDCを発生する。Nの値は所定の一定値に設定される。このNの値は、予めCPU220によって分周器520に設定される。PWM部530は、クロック信号PCL,SDCと、乗算器550から供給される乗算値Maと、正逆方向指示値レジスタ540から供給される正逆方向指示値RIと、符号化部560から供給される正負符号信号Paと、励磁区間設定部590から供給される励磁区間信号Eaとに応じて、A相駆動信号を生成する。この動作については後述する。
正逆方向指示値レジスタ540内には、モータの回転方向を示す値RIがCPU220によって設定される。本実施例では、正逆方向指示値RIがLレベルのときにモータが正転し、Hレベルのときに逆転する。PWM部530に供給される他の信号Ma,Pa,Eaは以下のように決定される。
磁気センサ40Aの出力SSAは、符号化部560に供給される。符号化部560は、磁気センサ出力SSAのレンジを変換するとともに、センサ出力の中位点の値を0に設定する。この結果、符号化部560で生成されるセンサ出力値Xaは、正側の所定の範囲(例えば+127〜0)と負側の所定の範囲(例えば0〜−127)の値を取る。但し、符号化部560から乗算器550に供給されるのは、センサ出力値Xaの絶対値であり、その正負符号は正負符号信号PaとしてPWM部530に供給される。
指令値演算部580は、速度計測部420から与えられた回転速度の測定値VBに基づいて、電圧指令値Yaを決定する。
図17は、指令値演算部580の内部構成を示すブロック図である。指令値演算部580は、5つの記憶部581〜585と、演算回路586とを有している。記憶部581〜585は、回転数の測定値VBと、回転数の指令値(目標値)VVと、比例係数PPと、積分係数PIと、微分係数PDとを格納している。回転数の測定値VBは速度計測部420から供給され、他のパラメータVV,PP,PI,PDはCPU220から供給される。演算回路586は、これらのパラメータVB,VV,PP,PI,PDに基づくPID制御を行って、指令値Yaを算出する回路である。すなわち、演算回路586は、回転数の測定値VBと目標値VVとの偏差(VB−VV)を求め、この偏差に対する比例動作と積分動作と微分動作を行うように、指令値Yaを決定する。なお、PID制御以外の他の制御方法を用いて指令値Yaを決定してもよい。
この電圧指令値Yaは、後述する励磁区間信号Eaとともに、モータの印加電圧を設定する値として機能するものであり、例えば0〜1.0の値を取る。仮に、非励磁区間を設けずに全区間を励磁区間とするように励磁区間信号Eaを設定した場合には、Ya=0は印加電圧をゼロとすることを意味し、Ya=1.0は印加電圧を最大値とすることを意味する。上述したように、本実施例のモータでは、この電圧指令値Yaが、回転数の測定値VBに応じたサーボ制御(PID制御)によって決定されるので、サーボモータとして利用することが可能である。
図16(A)の乗算器550は、符号化部560から出力されたセンサ出力値Xaと、電圧指令値Yaとを乗算して整数化し、その乗算値MaをPWM部530に供給する。図16(B)〜(E)は、乗算値Maが種々の値を取る場合におけるPWM部530の動作を示している。ここでは、全期間が励磁区間であり非励磁区間が無いものと仮定している。PWM部530は、クロック信号SDCの1周期の間に、デューティがMa/Nであるパルスを1つ発生させる回路である。すなわち、図16(B)〜(E)に示すように、乗算値Maが増加するに従って、A相駆動信号DRVA1,DRVA2のパルスのデューティが増加する。なお、第1の駆動信号DRVA1は、磁気センサ出力SSAが正のときにのみパルスを発生する信号であり、第2の駆動信号DRVA2は磁気センサ出力SSAが正のときにのみパルスを発生する信号であるが、図16(B)〜(E)ではこれらを合わせて記載している。また、便宜上、第2の駆動信号DRVA2を負側のパルスとして描いている。
図18(A)〜(C)は、磁気センサ出力の波形とPWM部530で生成される駆動信号の波形の対応関係を示す説明図である。図中、「Hiz」は電磁コイルを未励磁状態としたハイインピーダンス状態を意味している。図16で説明したように、A相駆動信号DRVA1,DRVA2は磁気センサ出力SSAのアナログ波形を利用したPWM制御によって生成される。従って、これらのA相駆動信号DRVA1,DRVA2を用いて、各コイルに、磁気センサ出力SSAの変化と対応するレベル変化を示す実効電圧を供給することが可能である。
PWM部530は、さらに、励磁区間設定部590から供給される励磁区間信号Eaで示される励磁区間のみに駆動信号を出力し、励磁区間以外の区間(非励磁区間)では駆動信号を出力しないように構成されている。図18(C)は、励磁区間信号Eaによって励磁区間EPと非励磁区間NEPを設定した場合の駆動信号波形を示している。励磁区間EPでは図18(B)の駆動信号パルスがそのまま発生し、非励磁区間NEPでは駆動信号パルスが発生しない。このように、励磁区間EPと非励磁区間NEPを設定するようにすれば、センサ出力の中位点近傍(これは逆起電力波形の中位点近傍に相当する)においてコイルに電圧を印加しないので、モータの効率をさらに向上させることが可能である。なお、励磁区間EPは、センサ出力波形(これは逆起電力波形にほぼ等しい)のピークを中心とする対称な区間に設定されることが好ましく、非励磁区間NEPは、センサ出力波形の中位点(中心点)を中心とする対称な区間に設定されることが好ましい。
上述の説明から理解できるように、本実施例のブラシレスモータでは、励磁区間信号Eaを利用して印加電圧を調整することが可能である。望ましい印加電圧と、励磁区間信号Eaとの関係は、予め駆動制御回路200(図18)内のメモリにテーブルとして格納されていることが望ましい。こうすれば、駆動制御回路200が、外部から望ましい印加電圧の目標値を受信したときに、CPU220がその目標値に応じて、励磁区間信号Eaを駆動信号生成部240に設定することが可能である。
図19は、PWM部530(図16)の内部構成の一例を示すブロック図である。PWM部530は、カウンタ531と、EXOR回路533と、駆動波形形成部535とを備えている。これらは以下のように動作する。
図20は、モータ正転時のPWM部530の動作を示すタイミングチャートである。この図には、2つのクロック信号PCL,SDCと、正逆方向指示値RIと、励磁区間信号Eaと、乗算値Maと、正負符号信号Paと、カウンタ531内のカウント値CM1と、カウンタ531の出力S1と、EXOR回路533の出力S2と、駆動波形形成部535の出力信号DRVA1,DRVA2とが示されている。カウンタ531は、クロック信号SDCの1期間毎に、クロック信号PCLに同期してカウント値CM1を0までダウンカウントする動作を繰り返す。カウント値CM1の初期値は乗算値Maに設定される。なお、図20では、図示の便宜上、乗算値Maとして負の値も描かれているが、カウンタ531で使用されるのはその絶対値|Ma|である。カウンタ531の出力S1は、カウント値CM1が0で無い場合にはHレベルに設定され、カウント値CM1が0になるとLレベルに立ち下がる。
EXOR回路533は、正負符号信号Paと正逆方向指示値RIとの排他的論理和を示す信号S2を出力する。モータが正転する場合には、正逆方向指示値RIがLレベルである。従って、EXOR回路533の出力S2は、正負符号信号Paと同じ信号となる。駆動波形形成部535は、カウンタ531の出力S1と、EXOR回路533の出力S2から、駆動信号DRVA1,DRVA2を生成する。すなわち、カウンタ531の出力S1のうち、EXOR回路533の出力S2がLレベルの期間の信号を第1の駆動信号DRVA1として出力し、出力S2がHレベルの期間の信号を第2の駆動信号DRVA2として出力する。なお、図20の右端部付近では、励磁区間信号EaがLレベルに立ち下がり、これによって非励磁区間NEPが設定されている。従って、この非励磁区間NEPでは、いずれの駆動信号DRVA1,DRVA2も出力されず、ハイインピーダンス状態に維持される。
図21は、モータ逆転時のPWM部530の動作を示すタイミングチャートである。モータ逆転時には、正逆方向指示値RIがHレベルに設定される。この結果、2つの駆動信号DRVA1,DRVA2が図20から入れ替わっており、この結果、モータが逆転することが理解できる。
図22は、励磁区間設定部590の内部構成と動作を示す説明図である。励磁区間設定部590は、電子可変抵抗器592と、電圧比較器594,596と、OR回路598とを有している。電子可変抵抗器592の抵抗値Rvは、CPU220によって設定される。電子可変抵抗器592の両端の電圧V1,V2は、電圧比較器594,596の一方の入力端子に与えられている。電圧比較器594,596の他方の入力端子には、磁気センサ出力SSAが供給されている。電圧比較器594,596の出力信号Sp,Snは、OR回路598に入力されている。OR回路598の出力は、励磁区間と非励磁区間とを区別するための励磁区間信号Eaである。
図22(B)は、励磁区間設定部590の動作を示している。電子可変抵抗器592の両端電圧V1,V2は、抵抗値Rvを調整することによって変更される。具体的には、両端電圧V1,V2は、電圧レンジの中央値(=VDD/2)からの差分が等しい値に設定される。磁気センサ出力SSAが第1の電圧V1よりも高い場合には第1の電圧比較器594の出力SpがHレベルとなり、一方、磁気センサ出力SSAが第2の電圧V2よりも低い場合には第2の電圧比較器596の出力SnがHレベルとなる。励磁区間信号Eaは、これらの出力信号Sp,Snの論理和を取った信号である。従って、図22(B)の下部に示すように、励磁区間信号Eaは、励磁区間EPと非励磁区間NEPとを示す信号として使用することができる。励磁区間EPと非励磁区間NEPの設定は、CPU220が可変抵抗値Rvを調整することによって行なわれる。
このように、本発明の実施例による速度測定装置をモータに適用することによって、サーボモータを実現することが可能である。なお、磁気センサ40A,40Bを省略し、これらの代わりに回転エンコーダ300を用いてモータの制御を行うようにしてもよい。また、回転エンコーダ300を省略し、この代わりに磁気センサ40A,40Bの一方又は両方を用いて回転数測定を行っても良い。但し、回転エンコーダ300の出力信号REPは、磁気センサ40A,40Bの出力信号SSA,SSBよりも分解能(モータ1回転当たりの周期の数)が大きいので、回転エンコーダ300を用いた方がより短時間でより精度の良い回転数測定を行うことが可能である。
図23は、本発明の実施例による速度測定装置を適用したブラシレスサーボモータの他の構成を示す説明図である。このモータでは、モータ本体100の外部に、回転エンコーダ300と、回転計測装置400とが設けられている。モータの駆動制御回路は、モータ本体100内に設置されてもよく、また、外部に設置されても良い。この構成では、モータ本体100の回転軸112にスリット円板310が連結されている。この構成によっても、モータ本体100の回転数を測定可能である。
図24は、本発明の実施例による速度測定装置を適用したリニア駆動機構の構成を示す説明図である。このリニア駆動機構は、リニアエンコーダ360と、速度計測装置400aと、移動機構60とを有している。移動機構60は、直線状ガイド62に沿って移動可能である。リニアエンコーダ360は、直線状スリット板362と、発光素子320と、受光素子330と、出力信号生成回路340とを有するインクリメント型エンコーダである。直線状スリット板312は、複数のスリットが一定のピッチで等間隔に配置された板状体である。速度計測装置400aは、図2,図9,又は図10に示した回転計測装置400とほぼ同じものである。
リニアエンコーダ360を用いた場合には、上述した(7a),(7b)式に準じた下記の(8a),(8b)式に従って、移動速度の測定値LVBを、周波数係数Gとカウント値CNTとに基づいて算出可能である。
LVB=k3×α×(Fc×G)/CNT
=k3×α×fDCLK/CNT …(8a)
LVB=k4×fDCLK/CNT …(8b)
ここで、k3,k4は定数である。
(8a)式から、移動速度の測定値LVBは、周波数係数G(又はクロック周波数fDCLK)と計測期間比αとに比例し、カウント値CNTに反比例する値として算出することが可能である。また、常にαが一定値に維持される場合には、(8b)式から、移動速度の測定値LVBは、クロック周波数fDCLKに比例し、カウント値CNTに反比例する値として算出することが可能である。
E.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
E1.変形例1:
上記実施例では、周波数係数Gを用いてクロック周波数を増減していたが、周波数係数Gを用いずにクロック周波数を増減するようにしてもよい。
E2.変形例2:
上記実施例では、カウント値CNTを所定の上限値と下限値の範囲に収めるように計測部が構成されていたが、上限値と下限値の少なくとも一方を利用しないように計測部を構成することも可能である。例えば、上限値を利用しない場合には、カウンタ610(図2)のビット数を、測定対象の回転数の最大値に比べて十分に大きくしておけば良い。また、下限値を利用しない場合には、低回転数の場合の測定精度が低下するが、これは実際上問題とならない場合もある。
E3.変形例3:
上記実施例では、回転エンコーダやリニアエンコーダを用いて位置信号を得ていたが、磁気センサなどの他の位置センサを利用することも可能である。但し、位置センサとしては、所定の移動距離毎又は1回転当たりM個(Mは2以上の整数)の等位相差の位置を示す位置信号を出力するものを利用することが好ましい。ここで、「位相差」とは、移動距離や回転角度を意味している。なお、上記実施例においては、整数Mはエンコーダの分解能Pと等しい。
E4.変形例4:
本発明の速度計測装置は、各種の装置に適用可能である。例えば、本発明は、ファンモータ、時計(針駆動)、ドラム式洗濯機(単一回転)、ジェットコースタ、振動モータなどの種々の装置のモータに適用可能である。本発明をファンモータに適用した場合には、上述した種々の効果(低消費電力、低振動、低騒音、低回転ムラ、低発熱、高寿命)が特に顕著である。このようなファンモータは、例えば、デジタル表示装置や、車載機器、燃料電池式パソコン、燃料電池式デジタルカメラ、燃料電池式ビデオカメラ、燃料電池式携帯電話などの燃料電池使用機器、プロジェクタ等の各種装置のファンモータとして使用することができる。本発明のモータは、さらに、各種の家電機器や電子機器のモータとしても利用可能である。例えば、光記憶装置や、磁気記憶装置、ポリゴンミラー駆動装置等において、本発明によるモータをスピンドルモータとして使用することが可能である。また、本発明によるモータは、移動体やロボット用のモータとしても利用可能である。
図25は、本発明の実施例によるモータを利用したプロジェクタを示す説明図である。このプロジェクタ1600は、赤、緑、青の3色の色光を発光する3つの光源1610R、1610G、1610Bと、これらの3色の色光をそれぞれ変調する3つの液晶ライトバルブ1640R、1640G、1640Bと、変調された3色の色光を合成するクロスダイクロイックプリズム1650と、合成された3色の色光をスクリーンSCに投写する投写レンズ系1660と、プロジェクタ内部を冷却するための冷却ファン1670と、プロジェクタ1600の全体を制御する制御部1680と、を備えている。冷却ファン1670を駆動するモータとしては、上述した各種のブラシレスモータを利用することができる。
図26(A)〜(C)は、本発明の実施例によるモータを利用した燃料電池式携帯電話を示す説明図である。図26(A)は携帯電話1700の外観を示しており、図26(B)は、内部構成の例を示している。携帯電話1700は、携帯電話1700の動作を制御するMPU1710と、ファン1720と、燃料電池1730とを備えている。燃料電池1730は、MPU1710やファン1720に電源を供給する。ファン1720は、燃料電池1730への空気供給のために携帯電話1700の外から内部へ送風するため、或いは、燃料電池1730で生成される水分を携帯電話1700の内部から外に排出するためのものである。なお、ファン1720を図26(C)のようにMPU1710の上に配置して、MPU1710を冷却するようにしてもよい。ファン1720を駆動するモータとしては、上述した各種のブラシレスモータを利用することができる。
図27は、本発明の実施例によるモータ/発電機を利用した移動体の一例としての電動自転車(電動アシスト自転車)を示す説明図である。この自転車1800は、前輪にモータ1810が設けられており、サドルの下方のフレームに制御回路1820と充電池1830とが設けられている。モータ1810は、充電池1830からの電力を利用して前輪を駆動することによって、走行をアシストする。また、ブレーキ時にはモータ1810で回生された電力が充電池1830に充電される。制御回路1820は、モータの駆動と回生とを制御する回路である。このモータ1810としては、上述した各種のブラシレスモータを利用することが可能である。
図28は、本発明の実施例によるモータを利用したロボットの一例を示す説明図である。このロボット1900は、第1と第2のアーム1910,1920と、モータ1930とを有している。このモータ1930は、被駆動部材としての第2のアーム1920を水平回転させる際に使用される。このモータ1930としては、上述した各種のブラシレスモータを利用することが可能である。
10…ステータコイル
11,12…電磁コイル群
30…ロータ
40A,40B…磁気センサ
50…被測定機器
60…移動機構
62…直線状ガイド
100…モータ本体
112…回転軸
200…駆動制御回路
220…CPU
240…駆動信号生成部
250A,250B…ドライバ回路
260…AD変換部
300…回転エンコーダ
310…スリット円板
312…スリット
320…発光素子
330…受光素子
340…出力信号生成回路
360…リニアエンコーダ
362…直線状スリット板
400…回転計測装置
400a…速度計測装置
410…CPU
420…速度計測部
510…基本クロック生成回路
520…分周器
530…PWM部
531…カウンタ
533…EXOR回路
535…駆動波形形成部
540…レジスタ
550…乗算器
560…符号化部
580…演算部
581〜585…記憶部
586…演算回路
590…励磁区間設定部
592…電子可変抵抗器
594,596…電圧比較器
598…OR回路
600…クロック発振器
602…分周器
604…正規化変換部
605…変換部
606…カウンタ
610…カウンタ
620…分周器
621,622…比較部
623…係数テーブル
630…係数決定部
632…アップダウンカウンタ
634…係数テーブル
640…タイミング制御部
651〜654…記憶部
660,670…演算部
680…ラッチ部
690…マルチプレクサ
700…クロック生成部
710…セレクタ
1600…プロジェクタ
1610R,1610G,1610B…光源
1640R,1640G,1640B…液晶ライトバルブ
1650…クロスダイクロイックプリズム
1660…投写レンズ系
1670…冷却ファン
1680…制御部
1700…携帯電話
1710…MPU
1720…ファン
1730…燃料電池
1800…電動自転車(電動アシスト自転車)
1810…モータ
1820…制御回路
1830…充電池
1900…ロボット
1910…アーム
1920…アーム
1930…モータ

Claims (11)

  1. 被測定機器の速度測定装置であって、
    前記被測定機器の所定の移動距離当たりM個(Mは2以上の整数)の等位相差の位置を示す位置信号を生成する位置信号生成部と、
    クロック信号を生成するクロック信号生成部と、
    前記クロック信号の周波数を調整するクロック調整部と、
    前記位置信号の1周期のα倍(0<α<1)の計測期間において、前記クロック信号のパルス数をカウントするカウンタと、
    前記クロック信号の周波数と、前記αの値と、前記計測期間において前記カウンタで得られたカウント値とに基づいて、前記被測定機器の速度を算出する演算部と、
    を備え、
    前記クロック調整部は、
    前記計測期間において得られた前記カウント値が所定の下限値未満か否かを判定する比較部と、
    前記カウント値が前記下限値未満の場合に前記クロック信号の周波数を増大させる周波数変更部と、
    を含み、
    前記位置信号生成部は、
    アナログ波形を有するセンサ出力を発生する磁気センサと、
    前記磁気センサのセンサ出力のレベルと参照レベルとを比較する2つの電圧比較器と、
    前記2つの電圧比較器の比較結果の論理和を取ることによって得られる2値信号を前記位置信号として生成するOR回路と、
    を備えるとともに、前記2つの電圧比較器のそれぞれの参照レベルを調整することによって前記位置信号のHレベルの期間とLレベルの期間の長さを変更し、
    前記カウンタは、前記位置信号のHレベルの期間とLレベルの期間のうちの少なくとも一方を前記計測期間として使用する、速度測定装置。
  2. 請求項1記載の速度測定装置であって、
    前記比較部は、さらに、前記計測期間において得られた前記カウント値が所定の上限値を超えたか否かを判定し、
    前記周波数変更部は、前記カウント値が前記上限値を超えた場合に前記クロック信号の周波数を減少させる、速度測定装置。
  3. 請求項2記載の速度測定装置であって、
    前記周波数変更部は、
    前記カウント値が前記上限値を超えた場合には前記周波数を所定の係数で除算して前記周波数を減少させ、一方、前記カウント値が前記下限値未満の場合に前記周波数に前記所定の係数を乗算することによって前記周波数を増大させる、速度測定装置。
  4. 請求項2記載の速度測定装置であって、
    前記周波数変更部は、
    前記クロック信号の周波数を表す周波数係数を大きさ順に予め格納したテーブルを有し、前記テーブルから前記周波数係数の1つの値を選択的に読み出して使用しており、
    前記カウント値が前記上限値を超えた場合又は前記下限値未満の場合に、前記テーブルから読み出される前記周波数係数を次の値に変更し、
    前記変更された周波数係数を用いて前記クロック信号の周波数を変更する、速度測定装置。
  5. 請求項1ないし4のいずれかに記載の速度測定装置であって、
    前記被測定機器は、回転機器であり、
    前記位置信号生成部は、前記回転機器の1回転当たり前記M個の回転位置を示す位置信号を出力する、速度測定装置。
  6. 請求項1ないし5のいずれかに記載の速度測定装置であって、
    前記計測期間は、前記位置信号の半周期毎に設定される、速度測定装置。
  7. 被測定機器の速度測定方法であって、
    (a)前記被測定機器の所定の移動距離当たりM個(Mは2以上の整数)の等位相差の位置を示す位置信号を生成する工程と、
    (b)クロック信号を生成する工程と、
    (c)前記クロック信号の周波数を調整する工程と、
    (d)前記位置信号の1周期のα倍(0<α<1)の計測期間において、前記クロック信号のパルス数をカウントする工程と、
    (e)前記クロック信号の周波数と、前記αの値と、前記計測期間において得られたカウント値とに基づいて、前記被測定機器の速度を算出する工程と、
    を備え、
    前記工程(c)は、
    前記計測期間において得られた前記カウント値が所定の下限値未満か否かを判定し、前記カウント値が前記下限値未満の場合に前記クロック信号の周波数を増大させる工程を含み、
    前記工程(a)は、
    アナログ波形を有するセンサ出力を発生する磁気センサと、
    前記磁気センサのセンサ出力のレベルと参照レベルとを比較する2つの電圧比較器と、
    前記2つの電圧比較器の比較結果の論理和を取ることによって得られる2値信号を前記位置信号として生成するOR回路と、
    を用いて、前記2つの電圧比較器のそれぞれの参照レベルを調整することによって前記パルス状の位置信号のHレベルの期間とLレベルの期間の長さを変更する工程を含み、
    前記工程(d)は、前記位置信号のHレベルの期間とLレベルの期間のうちの少なくとも一方を前記計測期間として使用する、速度測定方法。
  8. 請求項5記載の速度測定装置を備えるモータ。
  9. 請求項8記載のモータを備える装置。
  10. 請求項9記載の装置であって、
    前記装置は携帯機器である、装置。
  11. 請求項9記載の装置であって、
    前記装置はプロジェクタである、装置。
JP2009052236A 2008-05-07 2009-03-05 速度測定方法及び装置 Expired - Fee Related JP5381170B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052236A JP5381170B2 (ja) 2008-05-07 2009-03-05 速度測定方法及び装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008121200 2008-05-07
JP2008121200 2008-05-07
JP2009052236A JP5381170B2 (ja) 2008-05-07 2009-03-05 速度測定方法及び装置

Publications (2)

Publication Number Publication Date
JP2009294199A JP2009294199A (ja) 2009-12-17
JP5381170B2 true JP5381170B2 (ja) 2014-01-08

Family

ID=41542490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052236A Expired - Fee Related JP5381170B2 (ja) 2008-05-07 2009-03-05 速度測定方法及び装置

Country Status (1)

Country Link
JP (1) JP5381170B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033270A (zh) * 2017-10-10 2020-04-17 株式会社日立产机系统 速度计算装置和电力转换装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908823B2 (en) 2013-03-12 2014-12-09 Microchip Technology Incorporated Digital period divider
EP3100356A1 (en) 2014-01-31 2016-12-07 Microchip Technology Incorporated Digital period divider
EP3339584B1 (en) 2015-10-05 2020-03-11 Yamaha Hatsudoki Kabushiki Kaisha Engine valve-device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056273U (ja) * 1983-09-27 1985-04-19 株式会社リコー デジタルサ−ボ装置の速度検出装置
JPS61228359A (ja) * 1985-04-02 1986-10-11 Toyoda Autom Loom Works Ltd 作業車におけるブ−ム移動速度検出装置
JPS62239060A (ja) * 1986-04-11 1987-10-19 Nec Corp 回転数計測装置
JPS6327915A (ja) * 1986-07-22 1988-02-05 Mitsubishi Electric Corp 信号発生装置
JPH04346069A (ja) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> 速度信号生成回路
JPH05346435A (ja) * 1992-06-16 1993-12-27 Railway Technical Res Inst 速度検出方法
DE10346600A1 (de) * 2003-10-07 2005-05-12 Twinhead Internat Corp Taipei Motorgeschwindigkeits-Detektionsvorrichtung zur Verwendung zwischen einem Motor und einem System
JP2006106240A (ja) * 2004-10-04 2006-04-20 Sharp Corp 回転速度検出回路及び該回路を用いた投射型表示装置
JP5298502B2 (ja) * 2007-02-05 2013-09-25 セイコーエプソン株式会社 回転機器の回転数測定方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033270A (zh) * 2017-10-10 2020-04-17 株式会社日立产机系统 速度计算装置和电力转换装置

Also Published As

Publication number Publication date
JP2009294199A (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5298502B2 (ja) 回転機器の回転数測定方法及び装置
US8344684B2 (en) Driving circuit for motor and device equipped with driving circuit
JP3397007B2 (ja) ブラシレスモータ
JP2001025280A (ja) 回転機械におけるトルク不整の能動的低減
JP5381170B2 (ja) 速度測定方法及び装置
JP4220525B2 (ja) ステッピングモータの速度制御方法及びその装置
JP2008199783A (ja) 流体力を利用した発電装置
CN101150278B (zh) 无电刷电动机
KR101989138B1 (ko) Bldc 모터의 정현파 구동을 위한 전기각 추정 방법 및 이를 이용한 모터 제어 시스템
JP2010124653A (ja) 電動機の制御装置
KR20190053101A (ko) 반도체 장치, 각도값 보정 회로 및 방법
JP5540567B2 (ja) 電動機の特性を取得する方法、装置およびコンピュータープログラム
JP2008259347A (ja) モータ制御装置
JP3676350B2 (ja) モータ速度制御装置及び方法
JP2007010333A (ja) メータ装置
JP2005328644A (ja) モータ駆動装置、モータ制御装置及びモータ駆動方法
US8030876B2 (en) Stepper motor device with compensating non-sinusoidal driving values and method of producing the driving values
JP2000078892A (ja) ステッピングモータの駆動装置
JP4394086B2 (ja) ステッピングモータ駆動装置
JP4681130B2 (ja) ステッピングモータ原点設定方法
US11855561B2 (en) System and method for motor control through improved location measurement
JP3553861B2 (ja) デジタル入力信号のデューティ比検出回路
JP4694829B2 (ja) モータ駆動装置
JP6699241B2 (ja) インバータ装置
JP5378835B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees