JP4681130B2 - ステッピングモータ原点設定方法 - Google Patents

ステッピングモータ原点設定方法 Download PDF

Info

Publication number
JP4681130B2
JP4681130B2 JP2001012392A JP2001012392A JP4681130B2 JP 4681130 B2 JP4681130 B2 JP 4681130B2 JP 2001012392 A JP2001012392 A JP 2001012392A JP 2001012392 A JP2001012392 A JP 2001012392A JP 4681130 B2 JP4681130 B2 JP 4681130B2
Authority
JP
Japan
Prior art keywords
rotation
stepping motor
reference position
origin
stable point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012392A
Other languages
English (en)
Other versions
JP2002218795A (ja
Inventor
浩二 脇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001012392A priority Critical patent/JP4681130B2/ja
Publication of JP2002218795A publication Critical patent/JP2002218795A/ja
Application granted granted Critical
Publication of JP4681130B2 publication Critical patent/JP4681130B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステッピングモータの制御に関し、特にステッピングモータ原点設定方法に関する。
【0002】
【従来の技術】
ステッピングモータ(パルスモータ)は、所望の回転角を得るため、その回転の始点となる原点を正確に設定する必要がある。従来の第1の原点設定方法では、例えば特開平1−214300号公報や特開平9−135595号公報に示されるように、機械的なストッパを配置して、これを回転部に押し当てて所定位置にステッピングモータの回転軸を停止させるようにしている。また、従来の第2の原点設定方法では、例えば特開平1−198589号公報に示されるように、位置検出手段によりステッピングモータの原点を検出し、そのときの励磁状態を記憶し、位置検出により再度原点を検出したときの励磁状態と記憶されている励磁状態が一致したとき、ステッピングモータが原点に位置したことを検出するようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、第1の従来技術の機械的なストッパを用いる方法では、回転軸の回転位置をセンサなどで監視しているわけではないので、回転軸あるいは、これに取り付けられた回転部分がストッパの位置で確実に停止しないと、原点位置に誤差を生じることとなる。また、ストッパ位置でステッピングモータに供給される駆動電流の波形がどのような状態であるかはわからないので、駆動電流波形により定まる駆動ステップ単位での原点管理を精密に行うことはできない。さらに、ストッパを機械的に回転部分に押し当てる構成では、回転軸などにストレスがかかりやすく、信頼性が低下するおそれがある。また、ステッピングモータをエンドレス回転に適用する場合には、原点設定後にストッパを取り外さなければならなかった。
【0004】
また、第2の従来技術の励磁状態を検出して連続する励磁状態の一致をもって、原点とする方法では、位置検出手段によって検出された回転位置を原点とするため、こうして設定された原点は、ステッピングモータの最大トルクを得る位置である安定点に必ずしも一致するものではない。
【0005】
したがって、本発明は上記各課題を解決し、安価で高精度にステッピングモータの原点を最大トルク発生点に設定することが可能なステッピングモータ原点設定装置及びステッピングモータ原点設定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明ではステッピングモータの所定回転基準位置を仮の原点として回転基準位置センサで検出し、検出された回転基準位置の近傍で最大トルクを与える安定点、すなわち励磁電流の所定波形位置を真の原点として設定するようにしている。
【0008】
すなわち、本発明によれば、ステッピングモータの回転軸の所定の回転位置を回転基準位置として検出する回転基準位置検出ステップと、
前記回転軸の回転量を検出する回転量検出ステップと、
前記ステッピングモータの励磁電流波形を監視して前記ステッピングモータの安定点となる前記励磁電流の所定波形位置を検出する安定点検出ステップと、
前記ステッピングモータを駆動して前記回転基準位置を検出した後、前記安定点を検出したとき、前記安定点を原点として設定し、前記回転量をリセットするステップと、
前記回転量が回転角度に対応し、前記回転基準位置から前記安定点までの回転量を得るステップと、
前記回転量を得るステップを複数回実行するステップと、
前記複数回実行して得られた前記回転量のばらつきが所定範囲内か否かを判定するステップと、
を有し、
前記複数回実行して得られた複数の前記回転量があらかじめ得られている隣接する安定点間の回転量に相当するときは、ばらつきがないものと判断するステッピングモータ原点設定方法が提供される。
この構成により、わずかな費用で高精度にステッピングモータの原点を最大トルク発生点に設定することが可能となり、測定のばらつきを考慮して判断することができ、、隣接する安定点間だけ離れた安定点が検出されたとき、これをばらつきと認識しないようにすることができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施の形態について説明する。図1は本発明に係るステッピングモータの原点設定方法を実現する本発明のステッピングモータ原点設定装置10の第1の実施の形態のブロック図である。図1中、ステッピングモータ12は駆動回路14から供給される多相駆動励磁電流により回転する構成となっている。また、回転量検出装置18は、駆動回路14における正逆方向のパルス数をカウントし、所定の基準位置からの回転量、すなわち回転角度を示す信号を生成する。制御回路20は、外部から与えられる指定回転量信号と回転量検出装置18からの回転量信号を受けて制御信号を生成し、切換回路24を介して駆動回路14に与える。切換回路24には、ユーザの指令により切換信号が与えられ、その2つの入力信号が択一的に選択される。駆動回路14、回転量検出装置18、制御回路20は、従来のステッピングモータのものと同様の構成のものでよい。駆動回路14からは2相の励磁電流φA、φAの反転(図ではオーバーラインで示す、以下同じ)、φB、φBの反転がステッピングモータ12のステータコイルにそれぞれ供給されている。
【0016】
回転基準位置センサ16はステッピングモータ12の回転軸の所定の回転位置を検出するものである。具体的には、磁気や光学センサなどを用いることができるが、図2に示した例は、磁気を用いた構成例である。すなわち、図2に示すように、ステッピングモータ12の回転軸26に取り付けられた板状部材28の端部には永久磁石30が固定されていて、その回転軌跡の近傍に磁気を検出するホール素子32が固定されている。ホール素子32の出力信号はアンプ・比較回路34を介して2値信号として出力される。図2中、点線で示した部分が回転基準位置センサ16を構成している。したがって、ステッピングモータ12の回転軸26が所定角度位置を通過したときに回転基準位置センサ16が出力信号を生成する。なお、この出力信号は後述するように、上記通過位置で2値信号のレベルが変化するものである。回転基準位置センサ16の出力信号は、回転原点設定回路22に入力される。また、励磁電流φA、φBと同一の波形信号(便宜上φA、φBで示す)が回転原点設定回路22に入力されている。
【0017】
図1に示した実施の形態の動作を図3の各種信号波形図と図4のフローチャートに沿って説明する。図3中、励磁電流φAとφBは、駆動回路14からステッピングモータ12に与えられる2相の駆動電流であり、回転基準位置センサ波形は、回転基準位置センサ16の出力信号の波形である。回転量値Rで示されるのは、回転量検出装置18の出力信号である回転量信号の波形であり、ステッピングモータ12の回転軸の所定位置からの回転角度を示すものである。図4の安定点設定処理1のフローチャートは、図1の回転原点設定回路22をCPU(中央演算処理装置)で構成した場合のCPUの処理手順を示している。図4に沿って説明すると、まずステップS1でステッピングモータ12を所定方向に1マイクロステップ回転させる。次いでステップS2で回転基準位置センサ16からの信号が入力されているか否かが判断される(ハイ(H)レベルからロー(L)レベルへ変化したか否かが判断される)。
【0018】
回転基準位置センサ16からの入力がなければステップS1に戻り、入力があるとステップS3へ行き、ステップS3では励磁電流φAとφBの所定波形位置か否かを判断する。図3で、回転基準位置センサ波形がHレベルからLレベルに変化する位置を回転基準位置Qとする。また、励磁電流φAとφBの所定波形位置を本明細書では、所定励磁位置という。所定励磁位置は、ステッピングモータ12が最大トルクを出す点であり、安定点Pという。なお、安定点Pは、図3の例では、励磁電流φAのピーク位置に一致しているが、波形のどの位置で最大トルクを得ることができるかは、個々のステッピングモータ12の特質によるので、必ずしも図3に示した位置となるわけではない。
【0019】
ステップS3で所定励磁位置(安定点P)でなければ、ステップS4でステッピングモータ12を所定方向に1マイクロステップ回転させ、ステップS3へ戻る。ステップS3で所定励磁位置(安定点P)であれば、ステップS5で回転量検出装置18の回転量値Rをリセットする。この回転量値Rのリセットは、図1に示す回転原点設定回路22から回転量検出装置18に送られるリセット信号によりなされる。これにより、回転量検出装置18にそれまで回転量値Rとして保持されていた信号は回転量値Rがゼロにリセットされる。すなわち、ステップS3で検出された安定点が回転の真の原点として設定されるのである。
【0020】
図5は、真の原点が設定された後、所定の目標位置(回転角度)までステッピングモータ12を回転させるための制御処理を示すフローチャートである。まず、ステップS11で回転量信号で表される現在の回転角度(回転量値R)が目標位置か否かを判断し、Noであれば、ステップS12で目標位置が回転量値Rより大きいか否かを判断する。目標位置が回転量値Rより大きいときは、まだ目標に到達していないので、ステップS13で正転方向に1マイクロステップ回転させ、次いでステップS14で回転量値Rを1つインクリメントする。一方、目標位置が回転量値Rより大きくないときは、すでに目標を過ぎているので、ステップS15で逆方向に1マイクロステップ回転させ、次いでステップS16で回転量値Rを1つデクリメントする。ステップS14又はステップS16の終了後は、ステップS11に戻り同様の動作を行う。ステップS11にて目標位置が回転量値Rと一致すると、制御を終了し、ステッピングモータ12は停止する。
【0021】
次に図6の波形図と図7のフローチャートを用いて上記実施の形態の第1変形例について説明する。図6、図7は、励磁電流波形及び回転基準位置センサの出力信号波形についてはそれぞれ図3、図4に対応している。図6では、さらにモータ動作の時間経過に伴う回転方向及び回転速度が模式的に示され、最初高速で逆方向に移動し、次いで低速で正転方向に移動する様子が示されている。この動作は原点設定を行う前において、回転基準位置センサ16が回転基準位置から正転方向にずれている場合に相当する。図7のフローチャートに沿って説明すると、まずステップS21で回転基準位置Qが検出済みか否かを判断する。これは、回転基準位置センサ16の出力信号がLレベルか否かを判断するもので、Lレベルであれば、HレベルになるまでステップS22で数ステップずつステッピングモータ12を高速で逆転させる。回転基準位置センサ16の出力信号が得られない位置まで逆回転し、回転基準位置センサ16の出力信号がHレベルになると、ステップS23に進んで正転方向に1マイクロステップのみ回転させる。
【0022】
次いでステップS24で再度回転基準位置センサの出力信号がLレベルか否かを判断し、Lレベルでないときは、HレベルになるまでステップS23とステップS24を繰り返し、1マイクロステップずつ正転方向にステッピングモータ12を低速で回転させる。ステップS24でLレベルであることが判断されると、次にステップS25で所定励磁位置か否か、すなわち安定点Pか否かを判断し、Noであれば、ステップS26で正転方向にさらに1マイクロステップ回転させる。ステップS25で安定点であると判断されると、ステップS27で回転量値Rをリセットする。すなわち、ステップS24、S25、S27はそれぞれ図4のステップS2、S3、S5に対応している。こうして原点が設定されるのである。
【0023】
次に図8の波形図と図9のフローチャートを用いて上記実施の形態の第2変形例について説明する。図8、図9はそれぞれ図5、図6に対応している。図8では、モータ動作の時間経過に伴う回転方向及び回転速度が模式的に示され、最初高速で正転方向に移動し、次いで高速で逆方向に移動し、その後低速で正転方向に移動する様子が示されている。この動作は、原点設定を行う前において、回転基準位置センサ16が回転基準位置から逆転方向にずれている場合に相当する。図9のフローチャートに沿って説明すると、まずステップS31で回転基準位置Qが検出済みか否かを判断する。これは、回転基準位置センサ16の出力信号がHレベルか否かを判断するもので、Hレベルであれば、LレベルになるまでステップS32で数ステップずつ高速で正転方向にステッピングモータを回転させる。Lレベルになると、ステップS21からステップS27を実行する。このステップS21からステップS27は図7のそれと全く同一であるので、図7で説明したような高速逆方向回転とその後の低速正転方向回転が行われる。こうして回転基準位置センサ16が正転、逆転のどちらの方向にずれていても安定点Pに到達し原点が設定される。
【0024】
図10は、本発明の原点設定装置10の他の実施の形態を示すブロック図である。図10に示した実施の形態は、図1の実施の形態とは次の点でのみ異なる。すなわち、回転基準位置センサ16と回転原点設定回路22のそれぞれの出力信号と励磁電流φAに応答するステップ番号検出・記憶回路36と、基準位置・原点間角度算出回路38と、算出された角度を記憶するメモリ40と、メモリ40に記憶された角度を基準角度信号により示される基準角度と比較して、所定の関係のときエラー信号を発生する比較回路42が設けられている。ステップ番号検出・記憶回路36は、図11に示すように励磁電流φAの0πのときステップゼロ(0)で、π/2のときステップ8となるような8ステップの番号をメモリ上で管理していて、回転基準位置センサ16の出力信号が入力されたときと、回転原点設定回路22の出力信号が入力されたとき、そのときのステップ番号をメモリに記憶する。
【0025】
図11に示した例では、回転基準位置センサ16の出力信号は、2番目のステップ(ステップ1と2の間)に入力されているので、ステップ2を記憶し、次いで、回転原点設定回路22の出力信号が、8番目のステップで入力されているので、ステップ8を記憶する。これらのステップ番号は、それぞれ読み出されて基準位置・原点間角度算出回路38に与えられ、その差が計算され、基準位置と原点の間の角度が算出される。この例の場合、8−2=6となり、同角度は6ステップ分となる。この角度がメモリ40に記憶される。記憶された角度は読み出されて比較回路にて基準角度信号により示される基準角度と比較される。基準角度は、例えば2ステップ相当角度とされる。回転基準位置Qと原点の間の角度が基準角度より小さいときは、エラー信号が出力される。これは、あらかじめ回転基準位置Qと原点の間の角度が6ステップ分程度になるよう回転基準位置Qを設定しているにもかかわらず、後述するように環境変化や経時変化などによって図2に示したホール素子32の劣化や永久磁石30の減磁、あるいは部品の取り付け緩みなどにより基準位置が正確に検出できなくなるような場合を見いだすためである。
【0026】
図12は、図10に示した実施の形態において安定点Pを見いだして原点を設定するためのフローチャートである。図12のフローチャートは、次の点でのみ図4のフローチャートと異なる。すなわち、図4のフローチャートのステップS2とステップS3の間に新たにステップS33が設けられている。ステップS33は、図10のブロック図中、ステップ番号検出・記憶回路36と基準位置・原点間角度算出回路38の動作に相当する部分である。
【0027】
図13は、本発明の原点設定装置10の他の実施の形態を示すブロック図である。図13に示した実施の形態は、図10に示した実施の形態同様、基準位置と原点の間の角度を基準角度と比較してエラー信号を発生させるものである。すなわち、回転量検出装置18の出力信号である回転量信号を記憶するメモリ40と、メモリ40に記憶された角度を基準角度信号により示される基準角度と比較して、所定の関係のときエラー信号を発生する比較回路42が設けられている。なお、メモリ40での記憶のタイミングは回転原点設定回路22からの記憶指令信号により決められる。また、回転量検出装置18をリセットするリセット信号は、回転原点設定回路22からのリセット信号と回転基準位置センサ16の出力信号に応答するOR回路44の出力信号となっている。メモリ40に与えられる記憶指令信号は、回転原点設定回路22から出力されるリセット信号よりわずかに早いタイミングとされる。これは、メモリ40が回転量値Rを記憶した後、回転量検出装置18をリセットすることにより、検出した回転量値Rを確実に記憶するためである。
【0028】
図14は、図13に示した実施の形態の動作を説明するための波形図であり、図15は図13の回転原点設定回路22をCPUで構成した場合のCPUの動作を示すフローチャートである。図14には、安定点Pで回転量値Rが記憶され、その後、回転量値Rがゼロにリセットされて回転量値Rが原点(安定点P)から計測される様子が示されている。図15のフローチャートは、図4のフローチャートに対して、ステップS34、S35、S36を加えたものである。ステップS34では、回転基準位置を検出した段階で回転量値Rをゼロにリセットして、増加方向に設定する。また、ステップS35では回転量値Rを記憶し、次いでステップS36で回転量値Rをゼロにリセットしている。
【0029】
図12及び図15の実施の形態では、前述のように角度を算出したり、回転量値Rを得たりしてこれを所定の基準値と比較してエラー信号を得ているが、角度や回転量値Rが異常な値であるか否かを正確に判断するためには、複数の値を得て、そのばらつきの大きさを見ることが好ましい。図11の場合を例にとると、回転基準位置Qと安定点P(原点)の間の角度が6ステップであるが、この値を得る動作、すなわち図12のフローチャートの動作を複数回実行して複数の角度データを得、そのばらつきが所定値、例えば+xステップから−xステップの間の範囲内か否かを判断することができる。xステップとしては、例えば4ステップを設定する。
【0030】
なお、図16では安定点P1と次の安定点P2がそれぞれ回転基準位置Qからのステップ数で与えられているが、図示のように得られた角度データ同士のステップ差が隣接する安定点間角度(図16の場合は8ステップ)に相当するときは、誤差を0として取り扱う。したがって、まず角度データのばらつきを検出する前に、それらが隣接する安定点間角度に相当する開きを有しているかどうかを見て、もし安定点間角度だけ差があるときは、大きい方のデータから安定点間角度(図16の場合は8ステップ)を差し引いて補正値を求めておく。次いで補正値に置き換えられたものを含む角度データ間のばらつきを見いだすのである。上記ばらつきの検出に用いたxとしては、例えば、安定点間角度(図16の場合は8ステップ)の1/2を用いることができる。
【0031】
以上のようにして安定点Pが求められ、これを原点として設定するわけであるが、ステッピングモータ12を工場で組み立て調整して出荷する際にこのような原点設定が行われる。こうして出荷されたステッピングモータ12がある程度の期間使用されると、前述のように経時変化によりホール素子32や永久磁石30などの部品に劣化や、取り付けゆるみ、位置ずれなどが見られることがある。したがって、かかる環境変化や経時変化の影響を除外して正確に安定点を検出するためには、工場出荷時の安定点Pを中心として、所定の角度範囲でのみ新たに安定点を検出するようにすることが好ましい。図17はかかる手法を説明する波形図である。
【0032】
図17においてP0は工場出荷時の安定点であり、図10の実施の形態の場合、工場出荷時に基準位置・原点間角度算出回路38で検出されてメモリ40の所定アドレスに記憶されているものとする。したがって、環境変化や経時変化などの影響を除外するためには、ステッピングモータ12の実際の使用の前に、まずメモリ40の所定アドレスから工場出荷時に測定して記憶してある安定点P0を読み出し、この安定点P0を中心として+yステップから−yステップの範囲で新たに安定点Pを求めるのである。もし安定点Pがこの範囲内にないときは、エラー信号を出力する。
【0033】
なお、工場出荷時の安定点P0は回転基準位置Qからのステップ数で与えることもできるし、ステッピングモータ12の回転軸26にエンコーダの一部を構成する回転板が取り付けられている場合は、エンコーダからのパルス数で与えることもできる。なお、上記yの値は、2y<隣接安定点間角度として定められる。また、工場出荷時の安定点P0の検出において、回転基準位置Qから安定点P0間での距離があまり近いと(角度があまり少ないと)、経時変化などで安定点Pが回転基準位置Qより手前に移動した場合などに検出不可能となることがある。そこで、工場出荷時の安定点P0は、回転基準位置Qからある程度離れた位置になるよう、あらかじめ回転基準位置Qを設定しておくことが好ましい。この場合回転基準位置Qと、工場出荷時の安定点P0との間隔は、安定点間角度の1/2以上とすることが好ましい。したがって、安定点間角度が8ステップで与えられる図10の例であれば、この角度は4ステップ以上となる。
【0034】
このようにして使用時の直前に求められた安定点Pと工場出荷時の安定点P0とが得られるわけだが、両者の差すなわちP0−Pを演算して出力することは、本発明の好ましい態様である。すなわち、この差があまり大きい場合は、経時変化による不良と判断することができるのである。
【0035】
上記各実施の形態やそれらの変形例あるいは好ましい態様は、すべてステッピングモータが単一の場合について説明している。しかし、1つの装置に複数のステッピングモータを組み込む場合、例えばカメラのフォーカスや絞り、フィルム巻き取りなどの制御を個々のステッピングモータで行う場合は、1つの装置に複数のステッピングモータが組み込まれている。かかる複数のステッピングモータが存在する場合、原点設定のための処理のタイミングを同一とせず、ステッピングモータ毎にずらすことは、要する動力(消費電流)やノイズの発生の抑制の点から、また制御のしやすさの点などから好ましい。
【0036】
また、図1、図10、図13では、回転量検出装置18として、駆動パルスのカウントにより回転量を生成する例を示したが、ステッピングモータによって回転する軸にエンコーダを設け、そのパルスをカウントすることなどによっても実現でき、回転量検出方法を限定するものではない。
【0037】
以上本発明は、ステッピングモータの原点設定方法及び装置として説明したが、本発明の方法及び装置は、カメラなどの光学装置に適用した場合、正確な原点設定の効果を発揮するものである。すなわち、カメラの絞りやシャッタなどを駆動するステッピングモータの原点が正確に設定されることにより、これらの精密な制御が可能となるのであり、経時変化や環境変化による劣化を修正することができる。
【0038】
【発明の効果】
以上説明したように本発明によれば、ステッピングモータの所定回転基準位置を仮の原点として回転基準位置センサで検出し、検出された回転基準位置の近傍で最大トルクを与える安定点、すなわち励磁電流の所定波形位置を真の原点として設定するようにしているので、従来の原点設定における各課題を解決し、安価で高精度にステッピングモータの原点を最大トルク発生点に設定することが可能なステッピングモータ原点設定装置及びステッピングモータ原点設定方法並びにかかる原点設定装置を有する光学装置が提供される。
【図面の簡単な説明】
【図1】本発明に係るステッピングモータ原点設定方法を実現するステッピングモータ原点設定装置の第1の実施の形態のブロック図
【図2】本発明の装置中の回転基準位置センサの構成例の模式図
【図3】図1の装置の動作を説明するための波形図
【図4】図1の装置による安定点設定処理の一例を示すフローチャート
【図5】図1の装置により、安定点を設定した後の回転制御処理の一例を示すフローチャート
【図6】図3に示した実施の形態の第1変形例における動作を示す波形図
【図7】図6の第1変形例における処理手順を示すフローチャート
【図8】図3に示した実施の形態の第2変形例における動作を示す波形図
【図9】図8の第2変形例における処理手順を示すフローチャート
【図10】本発明の原点設定装置の他の実施の形態を示すブロック図
【図11】本発明において、励磁電流の変化サイクル中のπ/2の相当の時間(回転角度)を8ステップに分割して管理する手法を説明する波形図
【図12】図10の実施の形態において安定点を見いだして原点を設定するためのフローチャート
【図13】本発明の原点設定装置の他の実施の形態を示すブロック図
【図14】図13に示した他の実施の形態における動作を示す波形図
【図15】図14の実施の形態における処理手順を示すフローチャート
【図16】図10の実施の形態で角度データ同士のステップ差が安定点間角度に相当するときの処理を説明する波形図
【図17】本発明において、工場出荷時の安定点が定められている場合、この安定点を中心として、所定の角度範囲でのみ新たに安定点を検出する様子を示す波形図
【符号の説明】
10 ステッピングモータ原点設定装置
12 ステッピングモータ
14 駆動回路
16 回転基準位置センサ
18 回転量検出装置
20 制御回路
22 回転原点設定回路
24 切換回路
26 回転軸
28 回転板
30 永久磁石
32 ホール素子
34 アンプ・比較回路
36 ステップ番号検出・記憶回路
38 基準位置・原点間角度算出回路
40 メモリ
42 比較回路
44 OR回路
P 安定点
Q 回転基準位置

Claims (1)

  1. ステッピングモータの回転軸の所定の回転位置を回転基準位置として検出する回転基準位置検出ステップと、
    前記回転軸の回転量を検出する回転量検出ステップと、
    前記ステッピングモータの励磁電流波形を監視して前記ステッピングモータの安定点となる前記励磁電流の所定波形位置を検出する安定点検出ステップと、
    前記ステッピングモータを駆動して前記回転基準位置を検出した後、前記安定点を検出したとき、前記安定点を原点として設定し、前記回転量をリセットするステップと、
    前記回転量が回転角度に対応し、前記回転基準位置から前記安定点までの回転量を得るステップと、
    前記回転量を得るステップを複数回実行するステップと、
    前記複数回実行して得られた前記回転量のばらつきが所定範囲内か否かを判定するステップと、
    を有し、
    前記複数回実行して得られた複数の前記回転量があらかじめ得られている隣接する安定点間の回転量に相当するときは、ばらつきがないものと判断するステッピングモータ原点設定方法。
JP2001012392A 2001-01-19 2001-01-19 ステッピングモータ原点設定方法 Expired - Fee Related JP4681130B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012392A JP4681130B2 (ja) 2001-01-19 2001-01-19 ステッピングモータ原点設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012392A JP4681130B2 (ja) 2001-01-19 2001-01-19 ステッピングモータ原点設定方法

Publications (2)

Publication Number Publication Date
JP2002218795A JP2002218795A (ja) 2002-08-02
JP4681130B2 true JP4681130B2 (ja) 2011-05-11

Family

ID=18879404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012392A Expired - Fee Related JP4681130B2 (ja) 2001-01-19 2001-01-19 ステッピングモータ原点設定方法

Country Status (1)

Country Link
JP (1) JP4681130B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406101B2 (en) 2008-11-21 2013-03-26 Mediatek Inc. Optical disk drive and method for driving a feeding device of an optical disk drive
KR20170136774A (ko) * 2016-06-02 2017-12-12 세메스 주식회사 위치 검출 방법 및 기구물 이동 장치
CN110277939B (zh) * 2018-03-15 2022-08-09 浙江三花智能控制股份有限公司 控制系统及控制方法、带有步进电机的冷媒阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359796A (ja) * 1986-08-28 1988-03-15 Yaskawa Electric Mfg Co Ltd パルスモ−タの原点復帰方式
JPH03276315A (ja) * 1990-03-27 1991-12-06 Shimadzu Corp 可動部駆動装置の基準位置決定装置
JPH0869326A (ja) * 1994-08-30 1996-03-12 Keyence Corp 位置決め制御器
JPH08289595A (ja) * 1995-04-17 1996-11-01 Sanyo Electric Co Ltd ステッピングモータ制御装置
JPH10174493A (ja) * 1996-12-05 1998-06-26 Canon Inc ステッピングモータの制御回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359796A (ja) * 1986-08-28 1988-03-15 Yaskawa Electric Mfg Co Ltd パルスモ−タの原点復帰方式
JPH03276315A (ja) * 1990-03-27 1991-12-06 Shimadzu Corp 可動部駆動装置の基準位置決定装置
JPH0869326A (ja) * 1994-08-30 1996-03-12 Keyence Corp 位置決め制御器
JPH08289595A (ja) * 1995-04-17 1996-11-01 Sanyo Electric Co Ltd ステッピングモータ制御装置
JPH10174493A (ja) * 1996-12-05 1998-06-26 Canon Inc ステッピングモータの制御回路

Also Published As

Publication number Publication date
JP2002218795A (ja) 2002-08-02

Similar Documents

Publication Publication Date Title
EP1650571B1 (en) Indicating instrument and initializing device
US20130009588A1 (en) Drive controlling apparatus and drive controlling method for stepping motor, drive controlling system, and optical apparatus
KR101748188B1 (ko) 스텝 로스 조건을 검출하기 위한 방법
US9304019B2 (en) Rotation detection apparatus, motor control apparatus, motor driven apparatus, method of correcting rotation detection apparatus, and non-transitory computer-readable storage medium storing correction program
US7370508B2 (en) Rotor position detection in an electrical machine
US9124203B2 (en) Motor having pulse mode and brushless mode, and control method and apparatus of the motor
JP4686738B2 (ja) Ecモータの作動方法
US8817169B2 (en) Motor driven optical apparatus
CN115833683B (zh) 一种电角度偏移量的校准方法、装置和永磁同步电机
US7622882B2 (en) Position detection device for permanent magnetic machines
JP3806985B2 (ja) ステッピングモータ駆動装置
US9110227B2 (en) Motor drive apparatus and optical apparatus
JP4681130B2 (ja) ステッピングモータ原点設定方法
JP5665383B2 (ja) モータ制御装置及び制御方法
JP5350029B2 (ja) 光学機器
JP2002291280A (ja) 永久磁石電動機の制御装置
JP2017093071A (ja) モータ制御装置および光学機器
US7868579B2 (en) Micro-step driving method of stepping motor and electrically-driven device using stepping motor
JP5885419B2 (ja) モータ駆動装置及びモータ駆動装置の制御方法
KR100377362B1 (ko) 감시카메라 및 감시카메라의 위치제어방법
JP5159287B2 (ja) 像振れ補正装置、撮像装置および像振れ補正装置の制御方法
CN114710068A (zh) 永磁同步电动机控制装置及方法
JP5306055B2 (ja) 撮像装置
JPH04347590A (ja) スピンドルモータのサーボ装置および回転速度監視装置
JPH02276492A (ja) ブラシレスモータの駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees