JP5326946B2 - 音響構造体および音響室 - Google Patents
音響構造体および音響室 Download PDFInfo
- Publication number
- JP5326946B2 JP5326946B2 JP2009202085A JP2009202085A JP5326946B2 JP 5326946 B2 JP5326946 B2 JP 5326946B2 JP 2009202085 A JP2009202085 A JP 2009202085A JP 2009202085 A JP2009202085 A JP 2009202085A JP 5326946 B2 JP5326946 B2 JP 5326946B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- intermediate layer
- hollow
- hollow member
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000694 effects Effects 0.000 abstract description 89
- 230000009471 action Effects 0.000 abstract description 11
- 239000002245 particle Substances 0.000 description 52
- 238000010521 absorption reaction Methods 0.000 description 50
- 230000008859 change Effects 0.000 description 20
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 238000005192 partition Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/8209—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/86—Sound-absorbing elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8457—Solid slabs or blocks
- E04B2001/8476—Solid slabs or blocks with acoustical cavities, with or without acoustical filling
- E04B2001/848—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
- E04B2001/8485—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the opening being restricted, e.g. forming Helmoltz resonators
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Building Environments (AREA)
Description
本発明は、吸音及び音を散乱する技術に関する。
ホールや劇場等の音響空間においてフラッタエコー等の音響障害を除去するために、音を散乱させるための音響部材が設置される。例えば特許文献1には、1方向に延在する空洞が形成され、その空洞と外部空間とを連通させる開口部を有する部材が複数並べられた音響構造体が開示されており、その空洞に音波が入射すると、開口部から音響再放射されて散乱効果を得ることができる。
住宅の居室や会議室、音楽室等の比較的小さい空間では、適度な散乱効果とともに吸音効果を得ることが求められる。そのために、散乱効果を得るための音響部材と、吸音効果を得るための音響部材とを別々に空間に設けようとするとスペースを取ってしまうし、フェルト等の多孔質吸音材を用いて低周波数帯域に対する吸音効果を高めようとすると、厚み方向へのサイズが大型化してしまい、空間をさらに狭めてしまう。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、音響部材のサイズの大型化を抑制しつつ、音を効果的に散乱させるとともに広い周波数帯で吸音効果を得ることである。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、音響部材のサイズの大型化を抑制しつつ、音を効果的に散乱させるとともに広い周波数帯で吸音効果を得ることである。
上述した課題を解決するために、本発明に係る第1の構成の音響構造体は、内部に一方向に延在する中空領域が形成され、前記中空領域を外部空間に連通させる開口部と、前記外部空間に面しており、当該開口部に隣接する反射面とを有する中空部材を備え、前記中空領域において、前記開口部に連なる近傍の空間領域が中間層となり、前記中空領域の一端から前記中間層までの間が共鳴体として構成され、前記中間層は、前記外部空間から前記中空部材の開口部及び反射面に音波が入射して、当該音波に応じた反射波を前記反射面が放射するときに、前記共鳴体の共鳴により生じる反射波であって前記反射面からの反射波とは位相の異なる反射波を前記開口部から放射させ、且つそのときの前記開口部の比音響インピーダンスを、当該開口部の媒質の特性インピーダンスで除した値の実数部をほぼ0とするように構成されている
ことを特徴とする。
ことを特徴とする。
本発明に係る第2の構成の音響構造体は、上記第1の構成の音響構造体において、前記中間層は、前記外部空間から前記中空部材の開口部及び反射面に音波が入射して、当該音波に応じた反射波を前記反射面が放射するときに、前記開口部の比音響インピーダンスを、当該開口部の媒質の特性インピーダンスで除した値の絶対値が1未満となるように構成されていることを特徴とする。
本発明に係る第3の構成の音響構造体は、上記第1又は第2の構成の音響構造体において、前記中空部材は、前記中空領域の一端から前記中間層までの間が第1の共鳴体として構成され、前記中空領域の他端から前記中間層までの間が第2の共鳴体として構成されていることを特徴とする。
本発明に係る第4の構成の音響構造体は、上記第1又は第2の構成の音響構造体において、前記中空領域には1の前記共鳴体が構成されており、前記中間層は、前記1の前記共鳴体との境界面以外の面が前記中空部材の内側の面に隣接するか、又は前記開口部に面するように構成されていることを特徴とする。
本発明に係る第4の構成の音響構造体は、上記第1又は第2の構成の音響構造体において、前記中空領域には1の前記共鳴体が構成されており、前記中間層は、前記1の前記共鳴体との境界面以外の面が前記中空部材の内側の面に隣接するか、又は前記開口部に面するように構成されていることを特徴とする。
本発明に係る第5の構成の音響構造体は、上記第1〜4のいずれか1の構成の音響構造体において、前記中間層は、前記共鳴体が共鳴するときに音圧が一様に分布するように構成されていることを特徴とすることを特徴とする。
本発明に係る第6の構成の音響構造体は、上記第1〜5のいずれか1の構成の音響構造体において、前記共鳴体と前記中間層との境界面の面積は、前記開口部の面積よりも大きいことを特徴とする。
本発明に係る第7の構成の音響構造体は、上記第1〜6のいずれか1の構成の音響構造体において、前記中空領域が延在する方向と交わる方向に配列された複数の前記中空部材を備えることを特徴とする。
本発明に係る第8の構成の音響構造体は、上記第7の構成の音響構造体において、複数の前記中空部材の前記中空領域の一端から前記中間層までの長さがそれぞれ異なることを特徴とする。
また、本発明の音響室は、第1〜8のいずれか1の構成の音響構造体を備えることを特徴とする。
本発明に係る第6の構成の音響構造体は、上記第1〜5のいずれか1の構成の音響構造体において、前記共鳴体と前記中間層との境界面の面積は、前記開口部の面積よりも大きいことを特徴とする。
本発明に係る第7の構成の音響構造体は、上記第1〜6のいずれか1の構成の音響構造体において、前記中空領域が延在する方向と交わる方向に配列された複数の前記中空部材を備えることを特徴とする。
本発明に係る第8の構成の音響構造体は、上記第7の構成の音響構造体において、複数の前記中空部材の前記中空領域の一端から前記中間層までの長さがそれぞれ異なることを特徴とする。
また、本発明の音響室は、第1〜8のいずれか1の構成の音響構造体を備えることを特徴とする。
本発明によれば、音響部材のサイズの大型化を抑制しつつ、効果的に音を吸音・散乱させるとともに広い周波数帯で吸音・散乱効果を得ることができる。
[実施形態]
以下、図面を参照して本発明の実施形態について説明する。
図1は、音響構造体1の外観を示す斜視図である。
同図に示すように、音響構造体1は、厚さ方向の長さが小さな直方体状の部材である。音響構造体1は、一方向に延在する角筒状の中空部材10−1〜10−10が、それらの両端部の位置が一致するようにして、延在方向と垂直な方向に複数(ここでは、10個)配列された構成となっている。音響構造体1は、隣り合う中空部材どうしが接着される等して一体の部材として構成されている。中空部材10−1〜10−10は、それぞれアクリル樹脂等の、剛性率が比較的高い材質の反射性の材料で構成されている。また、音響構造体1は、中空部材10−1〜10−10の側面部によって形成された、全体として平坦な「反射面2」を有している。反射面2は、音響構造体1の外部の空間に面しており、その外部空間から入射した音波に応じて反射波を放射する。また、音響構造体1にあっては、反射面2に隣接するように開口部14−1〜14−10が設けられ、中空部材10−1〜10−10のそれぞれに1つずつ開口部が形成されている。これら開口部14−1〜14−10が、音が伝搬する外部空間に面するようになっている。
なお、ここでは、音響構造体1を構成する中空部材の数を「10」としているが、この数は一例に過ぎず、さらに多くてもよいし、少なくてもよく、1つ以上であればよい。また、説明の便宜のために、以下では、中空部材10−1〜10−10の延在方向を「y方向」とし、それに直交し、中空部材10−1〜10−10が並べられた方向を「x方向」とする。また、反射面2から見た法線方向であって、x、y方向に直交する方向を「z方向」とする。
以下、図面を参照して本発明の実施形態について説明する。
図1は、音響構造体1の外観を示す斜視図である。
同図に示すように、音響構造体1は、厚さ方向の長さが小さな直方体状の部材である。音響構造体1は、一方向に延在する角筒状の中空部材10−1〜10−10が、それらの両端部の位置が一致するようにして、延在方向と垂直な方向に複数(ここでは、10個)配列された構成となっている。音響構造体1は、隣り合う中空部材どうしが接着される等して一体の部材として構成されている。中空部材10−1〜10−10は、それぞれアクリル樹脂等の、剛性率が比較的高い材質の反射性の材料で構成されている。また、音響構造体1は、中空部材10−1〜10−10の側面部によって形成された、全体として平坦な「反射面2」を有している。反射面2は、音響構造体1の外部の空間に面しており、その外部空間から入射した音波に応じて反射波を放射する。また、音響構造体1にあっては、反射面2に隣接するように開口部14−1〜14−10が設けられ、中空部材10−1〜10−10のそれぞれに1つずつ開口部が形成されている。これら開口部14−1〜14−10が、音が伝搬する外部空間に面するようになっている。
なお、ここでは、音響構造体1を構成する中空部材の数を「10」としているが、この数は一例に過ぎず、さらに多くてもよいし、少なくてもよく、1つ以上であればよい。また、説明の便宜のために、以下では、中空部材10−1〜10−10の延在方向を「y方向」とし、それに直交し、中空部材10−1〜10−10が並べられた方向を「x方向」とする。また、反射面2から見た法線方向であって、x、y方向に直交する方向を「z方向」とする。
図2は、音響構造体1を、反射面2に対して垂直な、図1に示す矢印II方向に見た図である。中空部材10−1〜10−10はそれぞれ中空領域を有しており、同図に示す点線の位置に中空領域20−1〜20−10が形成されている。中空領域20−1〜20−10は、それぞれy方向に延在しており、その延在方向に交わる方向に配列された構成となっている。中空領域20−1〜20−10は、中空部材10−1〜10−10の両端までは達しておらず、両端で閉じている。また、各中空部材に形成された開口部14−1〜14−10は、それぞれy方向に対する位置が異なる。この構成により、中空部材10−1〜10−10の中空領域20−1〜20−10において、中空領域の一端から後述する中間層13までの長さがそれぞれ異なる。
続いて、中空部材10−1〜10−10の構成について、より具体的に説明する。なお、中空部材10−1〜10−10はそれぞれ同じ構造的特徴を有しており、図1,2に示すように、開口部(開口部14−1〜14−10)の位置が異なっているだけである。よって、以下では、音響構造体1を構成する中空部材、開口部及び中空領域を、「中空部材10」、「開口部14」及び「中空領域20」と総称して説明する。
図3は、図2の切断線III−III(y方向に直交する平面)で切断したときの中空部材10の断面を表している。
図2,3に示すように、中空部材10の中空領域20は、中空部材10の内部において、y方向に延在する直方体状に形成されている。また、中空領域20の両端である端部112及び端部122はそれぞれ閉口端である。
図2,3に示すように、中空部材10の中空領域20は、中空部材10の内部において、y方向に延在する直方体状に形成されている。また、中空領域20の両端である端部112及び端部122はそれぞれ閉口端である。
中空部材10の構成は、共鳴体11,12と、中間層13と、開口部14とに大別される。
共鳴体11は、中空部材10の一端である端部112から、中間層13との境界面111までの間が共鳴体(第1の共鳴体)として構成され、共鳴体12は、中空部材10の他端である端部122から、中間層13との境界面121までの間が共鳴体(第2の共鳴体)として構成されている。共鳴体11,12は共鳴周波数の音波が入射すると共鳴し、共鳴によって生じる反射波を、中間層13及び開口部14を介して外部空間に放射する。これら共鳴体11,12は、それぞれの中心軸が中心軸y0を共有するように、中間層13を介して連結されたような構成となっている。
共鳴体11のy方向の長さはl1で、共鳴体12のy方向の長さはl2である。また、共鳴体11として構成された中空領域20と、中間層13との境界である境界面111の面積はSpであり、共鳴体12として構成された中空領域20と、中間層13との境界である境界面121の面積もSpである。共鳴体11,12は、中空領域20の延在方向に垂直な、xz平面で切断したときの断面積がSpとなるように構成されており、その断面のx,z方向の長さは、共鳴体11,12のそれぞれの共鳴周波数に対する波長λ1,λ2に対して十分に短くされ、この方向に共鳴周波数の音波は分布しない。
共鳴体11は、中空部材10の一端である端部112から、中間層13との境界面111までの間が共鳴体(第1の共鳴体)として構成され、共鳴体12は、中空部材10の他端である端部122から、中間層13との境界面121までの間が共鳴体(第2の共鳴体)として構成されている。共鳴体11,12は共鳴周波数の音波が入射すると共鳴し、共鳴によって生じる反射波を、中間層13及び開口部14を介して外部空間に放射する。これら共鳴体11,12は、それぞれの中心軸が中心軸y0を共有するように、中間層13を介して連結されたような構成となっている。
共鳴体11のy方向の長さはl1で、共鳴体12のy方向の長さはl2である。また、共鳴体11として構成された中空領域20と、中間層13との境界である境界面111の面積はSpであり、共鳴体12として構成された中空領域20と、中間層13との境界である境界面121の面積もSpである。共鳴体11,12は、中空領域20の延在方向に垂直な、xz平面で切断したときの断面積がSpとなるように構成されており、その断面のx,z方向の長さは、共鳴体11,12のそれぞれの共鳴周波数に対する波長λ1,λ2に対して十分に短くされ、この方向に共鳴周波数の音波は分布しない。
中間層13は、開口部14近傍の中空領域(つまり、空間領域)であって、開口部14に直接連なる中空領域のことである。中間層13は、振動することにより音波を伝搬させる気体分子からなる層である。ここでは、図3に示すように、開口部14に対して垂直方向に隣接する中空領域であって、共鳴体11,12を開口部14と連通させる中空領域を、中間層13と称している。すなわち、中間層13の寸法は、開口部14の寸法、及び共鳴体11,12の延在方向に直交する断面の寸法により定まる。中間層13は、境界面111を介して共鳴体11と面しており、境界面121を介して共鳴体12と面している。これにより、面積Spとなる境界面111,121は、矩形状の面状とみなすことになる。なお、ここでは、中間層13において音波を伝搬する媒質は空気であり、中空領域20及び外部空間において音波を伝搬する媒質も、同じく空気である。
開口部14は、図1〜3に示すように正方形であり、中空領域20にある中間層13と外部空間とを連通させる。開口部14の一辺の長さはdであり、長さdは、共鳴体11,12の共鳴周波数に対応する波長λ1,λ2よりも十分に小さくなるよう、その長さが定められている。例えば、d<λ1/6、且つ、d<λ2/6である。この条件を満たすことにより、共鳴周波数に対応する波長λ1,λ2の音波が中間層13を伝搬するときには(すなわち、共鳴体11,12が共鳴するときには)、中間層13に音圧分布が生じないとみなすことができる。すなわち、共鳴周波数の音波が中間層13を伝搬するときには、中間層13の音圧の分布にばらつきが生じず、その全体で音圧が一様に分布するとみなせる。これは、中空領域20の反射面2に垂直な方向(z方向)の長さ、及び開口部14の一辺の長さdがそれぞれ波長λ1,λ2に対して十分に小さいが故に、中間層13全体で位相のずれがほとんど生じないことによるものである。よって、本実施形態で、“中間層13に音圧分布がない”ということは、音圧分布のばらつきが“ゼロ”であることを意味する。また、“中間層13に音圧分布がない”ということは、中間層13の寸法が、共鳴周波数に対応する音波の波長よりも短い閾値以下となり、そこでの音圧分布のばらつきが閾値以下に小さくなって中間層13に実質的に音圧分布がない場合をも含んでいる。中間層13に音圧分布のばらつきが生じなければ、共鳴体11が共鳴したときには、境界面111における反射波の位相と、開口部14における反射波に位相とは同じとなり、共鳴体12が共鳴したときには、境界面121における反射波の位相と、開口部14における反射波の位相とは同じとなる。
また、開口部14の面積はSoであり、Sp>Soという関係を満たしている。すなわと、境界面111,121の面積Spは、開口部14の面積Soよりも大きい。なお、開口部14は正方形状に限らず、円形や多角形等の別の形状であってもよい。開口部14が正方形でない場合においては、開口部14の面積Soと同じ面積である正方形の一辺の長さdを採用する。若しくは、開口部14の形状を表す図形の外接矩形或いは内接矩形の一辺の長さdを採用してもよい。
以上説明した構成を有する中空部材10に対して、外部空間から音波(以下、「入射波」という。)が入射すると、その入射波には、反射面2に入射するものと、開口部14に入射するものとが存在する。そのうちの開口部14に入射する入射波は、開口部14及び中間層13を介して、共鳴体11,12に入射する。入射波の周波数帯に、共鳴体11,12の共鳴周波数の音波が含まれるときには、共鳴体11,12はその入射波に応じて共鳴し、中空領域20の延在方向(y方向)のみに対して音圧分布が発生する。ここで、共鳴体11,12のそれぞれの共鳴周波数に対する波長λ1,λ2は、共鳴体11,12のy方向の長さl1、l2を用いて、式(1)の関係を満たす。なお、式(1)において、nは1以上の整数であり、ここでは開口端補正を無視している。
li=(2n−1)λi/4 (i=1,2) ・・・(1)
li=(2n−1)λi/4 (i=1,2) ・・・(1)
式(1)に示すように、一端が閉じ、他端が開いた中空領域を有する(いわゆる、閉管)の共鳴体11,12の長さl1、l2は、共鳴周波数に対応する波長λ1,λ2の1/4の奇数倍の長さとなるから、目的とする共鳴周波数となるようにその長さが決められて、中空部材10は設計されている。ところで、中空部材10の端部112,122は共に閉じた構成となっているが、両端部の一方、或いは両方が開いた構成(いわゆる、開管)なっていてもよい。図4に示すように、端部112,122が共に開口端である場合には、両端が開口した中空領域を有する構成の共鳴体11,12の共鳴周波数に対する波長λ1,λ2は、共鳴体11,12のy方向の長さl1、l2を用いると、式(2)の関係を満たす。なお、ここでも開口端補正を無視しており、nは1以上の整数である。
li=n・λi/2 (i=1,2) ・・・(2)
li=n・λi/2 (i=1,2) ・・・(2)
端部112,122が開口端である場合、式(2)に示すように、共鳴体11,12の長さl1、l2は、共鳴周波数に対応する波長λ1,λ2の1/2の整数倍の長さとなるから、この場合も、意図する共鳴周波数となるよう中空部材10は設計される。
ここで、l1=l2とした場合には、共鳴体11及び共鳴体12の共鳴周波数は同じである。共鳴体11及び共鳴体12の共鳴周波数を一致させるときには、端部112,122のそれぞれが開口端であるか、或いは閉口端であるかに応じて、(I)〜(IV)を満たすように、それらの長さl1、l2は決められる。なお、n1,n2はそれぞれ1以上の整数である。また、図3に示すように、端部112,122が共に閉じている場合には中空部材10のように、l1=l2という関係のみでなく、(IV)に示す関係を満たしていれば良いのはもちろんである。
(I)共鳴体11の端部112が開口端であり、共鳴体12の端部122が閉口端である場合
l1:l2=2n1−1:2n2
(II)共鳴体11の端部112が閉口端であり、共鳴体12の端部122が開口端である場合
l1:l2=2n1:2n2−1
(III)共鳴体11の端部112が開口端であり、共鳴体12の端部122が開口端である場合
l1:l2=n1:n2
(IV)共鳴体11の端部112が閉口端であり、共鳴体12の端部122が閉口端である場合
l1:l2=2n1−1:2n2−1
以下では特に断りのない限り、端部112,122が閉じている構成について説明するが、両端部の一方、又は両方が開口端であっても、共鳴体の長さと共鳴周波数との関係が異なるだけで、以下に説明する作用について同じである。
(I)共鳴体11の端部112が開口端であり、共鳴体12の端部122が閉口端である場合
l1:l2=2n1−1:2n2
(II)共鳴体11の端部112が閉口端であり、共鳴体12の端部122が開口端である場合
l1:l2=2n1:2n2−1
(III)共鳴体11の端部112が開口端であり、共鳴体12の端部122が開口端である場合
l1:l2=n1:n2
(IV)共鳴体11の端部112が閉口端であり、共鳴体12の端部122が閉口端である場合
l1:l2=2n1−1:2n2−1
以下では特に断りのない限り、端部112,122が閉じている構成について説明するが、両端部の一方、又は両方が開口端であっても、共鳴体の長さと共鳴周波数との関係が異なるだけで、以下に説明する作用について同じである。
図5は、中空部材10の共鳴体11及び12の共鳴周波数を含む所定周波数帯の入射波が中空部材10に入射し、これに応じて共鳴体11,12が共鳴したときの、開口部14付近の中空領域の挙動を説明する図である。
同図に示すように、境界面111における音圧はp0であり、境界面111においてその法線方向に作用する気体分子の粒子速度はu1である。また、境界面121における音圧はp0であり、境界面121においてその法線方向に作用する気体分子の粒子速度はu2である。ただし、以下では、境界面111における粒子速度u1を、共鳴体11から中間層13の方向に作用する場合には正の値で表し、中間層13から共鳴体11の方向に作用する場合には負の値で表す。また、境界面121における粒子速度u2は、共鳴体12から中間層13の方向に作用する場合は正の値で表し、中間層13から共鳴体12の方向に作用する場合は負の値で表す。すなわち、中間層13の方向に作用する粒子速度を正の値で表している。中空部材10において、l1=l2となるように共鳴体11,12は構成されているから、それらの共鳴時において、粒子速度u1が正のときには、粒子速度u2は正となるし、粒子速度u1が負のときには、粒子速度u2は負となる。すなわち、共鳴体11,12から中間層13に対して作用する粒子速度は、同位相の関係で変化する。
同図に示すように、境界面111における音圧はp0であり、境界面111においてその法線方向に作用する気体分子の粒子速度はu1である。また、境界面121における音圧はp0であり、境界面121においてその法線方向に作用する気体分子の粒子速度はu2である。ただし、以下では、境界面111における粒子速度u1を、共鳴体11から中間層13の方向に作用する場合には正の値で表し、中間層13から共鳴体11の方向に作用する場合には負の値で表す。また、境界面121における粒子速度u2は、共鳴体12から中間層13の方向に作用する場合は正の値で表し、中間層13から共鳴体12の方向に作用する場合は負の値で表す。すなわち、中間層13の方向に作用する粒子速度を正の値で表している。中空部材10において、l1=l2となるように共鳴体11,12は構成されているから、それらの共鳴時において、粒子速度u1が正のときには、粒子速度u2は正となるし、粒子速度u1が負のときには、粒子速度u2は負となる。すなわち、共鳴体11,12から中間層13に対して作用する粒子速度は、同位相の関係で変化する。
また、中間層13と外部空間との境界面である開口部14における音圧はp0であり、開口部14で法線方向に作用する気体分子の粒子速度はu0である。ただし、粒子速度u0は、開口部14から外部空間の方向に作用する粒子速度を正の値で表し、外部空間から開口部14の方向に作用する粒子速度を負の値で表す。ここで、境界面111,121及び開口部14における音圧がp0で一致しているのは、上述したように、共鳴体11,12が共鳴したときに、中間層13全体で音圧分布が生じないよう中空部材10が構成されているからである。
外部空間から入射する入射波により発生する開口部14における音圧p0を、p0(t)=P0・exp(jωt)という式で定義すると、境界面111,121における粒子速度u1,u2は、式(3)の関係を満たす。音圧p0は、入射波の音圧と、共鳴体11,12の共鳴によって中間層13に生じた反射波の音圧とを合成させた音圧である。式(3)において、jは虚数単位を表し、P0は音圧の振幅値を表し、ωは角速度を表し、ρcは外部空間の媒質である空気の特性インピーダンス(ρ:空気の密度、c:空気中での音速)を表し、k(=ω/c)は波数を表し、tは時刻を表している。
また、中間層13は、気体分子から成る気体層であるから、その体積が不変である「非圧縮性」を有する。すなわち、中間層13は、共鳴に伴う弾性変形はするものの、内部の圧力を一定に保つように働き、その体積は一定となる。このような性質を有する中間層13は、共鳴体11,12から境界面111及び121を介して作用された音圧を、そのまま開口部14、すなわち中間層13と外部空間との境界面に作用させる。このとき、中間層13に対して境界面111,121から作用させられる体積速度の和は、中間層13から開口部14を介して外部空間に作用させられる体積速度と一致する。
図6は、粒子速度u1及び粒子速度u2が共に正のときの、共鳴時における中間層13の挙動を説明する図である。
図6(a)に示すように、入射波が入射しないときの中間層13は体積Vであって、同図(a)に示すような寸法及び形状となっている。これに対し、共鳴時において、粒子速度u1及び粒子速度u2が正の方向に作用するときには、中間層13は同図(b)に示すような状態となる。すなわち、中間層13は、その粒子速度の作用によりy方向に対してΔyだけ小さくなり、z方向にΔzだけ大きくなる。このとき、中間層13が非圧縮性を有しているが故に、その体積Vは維持される。つまり、中間層13は、共鳴時において、粒子速度u1及び粒子速度u2が共に正のときには、開口部14から外部空間に作用する粒子速度u0は正となり、開口部14を介して中空部材10の外部空間に突出したようになる。このようにして共鳴時には、共鳴体11,12から中間層13へ作用する体積速度が合算されて、中間層13から中空部材10の外部空間にその体積速度の作用が加わる。一方で、粒子速度u1及び粒子速度u2が共に負のときには、粒子速度u0は負の値で表され、開口部14から中空領域20に向かう方向へと作用する。よって、中間層13は、y方向に対して大きくなり、z方向に対して小さくなる。このとき、開口部14から外部空間に作用するu0は負となり、中間層13は、開口部14に対して中空領域20に引っ込んだようになる。
図6(a)に示すように、入射波が入射しないときの中間層13は体積Vであって、同図(a)に示すような寸法及び形状となっている。これに対し、共鳴時において、粒子速度u1及び粒子速度u2が正の方向に作用するときには、中間層13は同図(b)に示すような状態となる。すなわち、中間層13は、その粒子速度の作用によりy方向に対してΔyだけ小さくなり、z方向にΔzだけ大きくなる。このとき、中間層13が非圧縮性を有しているが故に、その体積Vは維持される。つまり、中間層13は、共鳴時において、粒子速度u1及び粒子速度u2が共に正のときには、開口部14から外部空間に作用する粒子速度u0は正となり、開口部14を介して中空部材10の外部空間に突出したようになる。このようにして共鳴時には、共鳴体11,12から中間層13へ作用する体積速度が合算されて、中間層13から中空部材10の外部空間にその体積速度の作用が加わる。一方で、粒子速度u1及び粒子速度u2が共に負のときには、粒子速度u0は負の値で表され、開口部14から中空領域20に向かう方向へと作用する。よって、中間層13は、y方向に対して大きくなり、z方向に対して小さくなる。このとき、開口部14から外部空間に作用するu0は負となり、中間層13は、開口部14に対して中空領域20に引っ込んだようになる。
式(4)に示すように、粒子速度u0は、境界面111,121の面積Spと、開口部14の面積Soとの面積比により決定付けられる。ここで、共鳴体11,12の共鳴周波数が同じで、且つ反射面2に垂直方向の断面積が同じであるときには、u1=u2である。よって、2Sp/So>1という関係を満たし、共鳴体11,12の断面積Spが、開口部14の面積積Soの1/2以上であれば、式(4)の関係からも分かるように、粒子速度u1とu2との和よりもさらに高い粒子速度u0が、開口部14に生じ得る。中空部材10にあっては、Sp>Soという関係を満たしているので、開口部14における粒子速度u0は、u1とu2との和よりも大きくなるための条件を満たしている。
式(5)に示すように、比音響インピーダンス比ζは、開口部14の比音響インピーダンスp0/u0を、外部空間の媒質であって、開口部14の媒質(空気)の特性インピーダンスρc(固有音響抵抗)で除した値である。要するに、比音響インピーダンス比ζは、音場内の或る点の比音響インピーダンスと、その点の媒質の特性インピーダンスとの比を表す値である。開口部14に対して垂直方向に共鳴周波数に属する入射波が入射すると、式(5)の関係を満たす比音響インピーダンス比ζの大きさに応じて、共鳴体11,12の共鳴によって生じる反射波が、中間層13および開口部14を介して外部空間に放射される。ここで、比音響インピーダンス比ζ=r+jxと定める。rは、比音響インピーダンス比ζの実数部(つまり、Re(ζ))であり、比音響抵抗比と呼ばれることがある値である。xは、比音響インピーダンス比ζの虚数部(つまり、Im(ζ))であり、比音響リアクタンス比と呼ばれることがある値である。次に、比音響インピーダンス比ζと反射波との関係について説明する。
(I)ζ=0、すなわちr=0かつx=0の場合
ζ=0(r=0かつx=0)を満たす領域に対して入射波が入射すると、共鳴によって生じる反射波として、入射波と振幅が同じで、位相が180度変位した反射波がその領域から放射される。これにより、入射波と反射波との干渉により、互いの振幅を完全に打ち消しあうように作用する。このような共鳴を「完全共鳴」と呼ぶこととする。
(II)ζ=1、すなわちr=1かつx=0の場合
ζ=1(r=1かつx=0)を満たす領域に対して入射波が入射すると、その領域からは反射波は放射されない。この現象を「完全吸音」と呼ぶこととする。
(III)ζ=∞、すなわちr=∞かつx=0の場合
ζ=∞(r=∞かつx=0)を満たす領域(すなわち、剛体)に入射波が入射すると、反射によって生じる反射波として、入射波と振幅が同じで、位相の変位がない(位相の変位が0度の)反射波が放射される。この場合、入射波と反射波とが干渉して定在波が生じる。この現象を「完全反射」と呼ぶこととする。
ζ=0(r=0かつx=0)を満たす領域に対して入射波が入射すると、共鳴によって生じる反射波として、入射波と振幅が同じで、位相が180度変位した反射波がその領域から放射される。これにより、入射波と反射波との干渉により、互いの振幅を完全に打ち消しあうように作用する。このような共鳴を「完全共鳴」と呼ぶこととする。
(II)ζ=1、すなわちr=1かつx=0の場合
ζ=1(r=1かつx=0)を満たす領域に対して入射波が入射すると、その領域からは反射波は放射されない。この現象を「完全吸音」と呼ぶこととする。
(III)ζ=∞、すなわちr=∞かつx=0の場合
ζ=∞(r=∞かつx=0)を満たす領域(すなわち、剛体)に入射波が入射すると、反射によって生じる反射波として、入射波と振幅が同じで、位相の変位がない(位相の変位が0度の)反射波が放射される。この場合、入射波と反射波とが干渉して定在波が生じる。この現象を「完全反射」と呼ぶこととする。
上記(I)ではr=0であり、中空部材10が抵抗成分を有しない場合であるが、中空部材10が抵抗成分を有している場合もある。この場合に、共鳴体11,12の共鳴周波数の音波が中空領域20に入射すると、例えば上記(II)、(III)の場合のように、開口部14における比音響インピーダンス比ζの実数部rが0でない値をとることがある。このときに、開口部14に対して垂直に入射波が入射すると、開口部14から放射される共鳴によって生じる反射波にあっては、その振幅は中空部材10が有する抵抗成分に応じて減衰する。このように、開口部14の比音響インピーダンス比ζが0となる完全共鳴の場合以外にも、共鳴体が共鳴による反射波を放射する「共鳴現象」が発生しているとみなすことができる場合がある。
ところで、或る部材上の領域の点における比音響インピーダンス比ζ=r+jxと、複素音圧反射係数R=|R|exp(jφ)とは、R=(ζ−1)/(ζ+1)という関係を満たす。複素音圧反射係数は、空間のある1点における反射波と入射波の複素数比を表す物理量である。|R|は、入射波に対する反射波の相対的な振幅の大きさを表す値であり、その値が大きいほど、反射波の振幅が相対的に大きくなることを意味している。φは、入射波に対する反射波の位相の変化の大きさを表す値(以下、「位相変化量」という。)である。上記関係式からも明らかなように、比音響インピーダンス比ζ、及び複素音圧反射係数Rのうちの一方が定まれば、もう一方も一義的に定まる。例えば、ζ=0(つまり、完全共鳴)の場合にはR=−1となり、このときの反射波は、入射波に対して逆位相となり、且つ振幅は互いに同一である。ζ=1(つまり、完全吸音)の場合にはR=0となり、このときは反射波は放射されず、その振幅は0である。ζ=∞(つまり、完全反射)の場合には、R=1となり、このときの反射波は、入射波に対して同位相となり、且つ振幅は互いに同一である。
続いて、上記共鳴現象によって奏する吸音・散乱効果について、位相からの観点と、振幅からの観点とに分けてそれぞれ説明する。なお、吸音効果については、中空部材10が開口部14から放射する反射波によって奏する効果であり、散乱効果については、中空部材10が開口部14から放射する反射波と、反射面2から放射する反射波との相互作用によって奏する効果である。これら各効果を奏するための作用については詳しくは後述する。
まず、位相の観点から説明する。
図7は、比音響インピーダンス比ζと、位相変化量φとの関係を表したグラフである。このグラフにおいて、横軸は比音響インピーダンス比ζの実数部であるr=Re(ζ)を表し、縦軸は比音響インピーダンス比ζの虚数部であるx=Im(ζ)を表している。同図においてζ=∞の場合となる点では、原点からの距離が∞となる。このときには、上記完全反射が生じて、位相変化量φは0°となる。
まず、位相の観点から説明する。
図7は、比音響インピーダンス比ζと、位相変化量φとの関係を表したグラフである。このグラフにおいて、横軸は比音響インピーダンス比ζの実数部であるr=Re(ζ)を表し、縦軸は比音響インピーダンス比ζの虚数部であるx=Im(ζ)を表している。同図においてζ=∞の場合となる点では、原点からの距離が∞となる。このときには、上記完全反射が生じて、位相変化量φは0°となる。
|ζ|<1となる場合は、図7にハッチングで示した領域で表され、この場合の位相変化量φは90°よりも大きい。この条件を満たす場合、|ζ|の値が小さくなるほど位相変化量φは±180°に近づく。より具体的には、Im(ζ)>0であれば位相変化量φは180°に近づいていき、Im(ζ)<0であれば位相変化量φは−180°に近づいていく。また、横軸上に位置する点であり、0≦Re(ζ)<1、且つIm(ζ)=0となる場合は、上記完全共鳴が生じて位相変化量φは±180°となる。このように、図7に示すグラフでハッチングで示した領域であり、原点を中心とした半径が「1」の円の内側で表される領域(ただし、線上の領域を含まず。)で表されるζの値の場合には、入射波と反射波との位相干渉による吸音効果を、特に効果的に奏することができる。一方、例えば図7に破線で図示した領域のように、|ζ|の値が1以上となる場合には、位相変化量φが90°よりも小さい。この領域においては、吸音効果を奏することはできるが、|ζ|の値が1未満となる場合よりは位相干渉による吸音効果は低くなる。また、上記散乱効果については、開口部14から放射する反射波と、反射面2から放射する反射波とに同位相でない位相差があり、特に逆位相の関係に近いほど、より顕著にその効果を奏する。よって、この散乱効果の発現においても、|ζ|の値が1以上となる場合にもその効果を奏するが、|ζ|<1となることが好ましく、更に好ましくは、|ζ|がなるべく0に近く、位相変化量φが±180°に近い条件が実現されるとよい。
すなわち、吸音・散乱効果を奏するための共鳴現象においては、φ=±180°となるように、Im(ζ)=0となることが理想的であるが、90°≦φ≦180°又は−180°≦φ≦−90°という関係を満たしており、すなわち|ζ|の値が1未満となっていれば、共鳴による吸音・散乱効果を効果的に奏する。また、|ζ|の値が1未満となる条件下において、より好ましくは、135°≦φ≦180°又は−180°≦φ≦−135°という条件を満たし、更に好ましくは160°≦φ≦180°又は−180°≦φ≦−160°という条件を満たしているとよい。
続いて、振幅の観点から説明する。
図8は、比音響インピーダンス比ζと、複素音圧反射係数の振幅|R|との関係を示すグラフである。同図には、|R|=0.0,0.1,0.3,0.5,0.7,0.8,0.9,1.0という各値をとるときのRe(ζ)及びIm(ζ)の値を示している。同図に示すように、Re(ζ)=1で、且つIm(ζ)=0の場合、|R|=0となり、振幅が0で極小となる。つまり、上記完全吸音が生じており、反射波は生じない。
同図に破線で示した領域は、図7を用いて説明した|ζ|=1となる領域であり、この内側の領域(ただし、線上の領域を含まず。)においては、共鳴現象より、入射波と反射波との間に90°〜180°の位相差が生じている。また、この領域では、|R|>0であるから反射波の振幅が0を超えている。
図8は、比音響インピーダンス比ζと、複素音圧反射係数の振幅|R|との関係を示すグラフである。同図には、|R|=0.0,0.1,0.3,0.5,0.7,0.8,0.9,1.0という各値をとるときのRe(ζ)及びIm(ζ)の値を示している。同図に示すように、Re(ζ)=1で、且つIm(ζ)=0の場合、|R|=0となり、振幅が0で極小となる。つまり、上記完全吸音が生じており、反射波は生じない。
同図に破線で示した領域は、図7を用いて説明した|ζ|=1となる領域であり、この内側の領域(ただし、線上の領域を含まず。)においては、共鳴現象より、入射波と反射波との間に90°〜180°の位相差が生じている。また、この領域では、|R|>0であるから反射波の振幅が0を超えている。
続いて、縦軸上の位置であり、Re(ζ)=0となる場合、Im(ζ)の値とは無関係に|R|は1.0となる。このとき、入射波と同じ振幅の反射波が放射されるので、振幅の観点からは、入射波と反射波との位相が異なる条件下において、吸音・散乱効果を奏する場合において最も好ましい。同図から分かるように、Re(ζ)<1である条件では、Im(ζ)を仮に一定とした場合に、Re(ζ)の値が小さいほど|R|の値が大きくなっていることが分かる。つまり、比音響インピーダンス比ζの実数部Re(ζ)の値が小さく、特にその値がほぼ0である場合には、Im(ζ)の値に関係なく反射波の振幅が大きいから、入射波と反射波との位相が異なるときに、位相干渉により奏する吸音・散乱効果においては好適である。
この実施形態の中空部材10において、開口部14は中間層13を介して共鳴体11,12と接続されている。よって、共鳴体11,12の各々の共鳴周波数付近の周波数では、開口部14において|Im(ζ)|<1という条件を満たす。よって、この場合、開口部14からの反射波の位相は入射波に対して90°以上変位する。そして、例えばRe(ζ)=0.30である場合、反射波の振幅|R|=0.54であるから、入射波の振幅に対して1/2以上の振幅の反射波が放射される。このように、開口部14のRe(ζ)とIm(ζ)がともに十分に小さい場合には、開口部14に隣接する反射面からの反射波に対して、開口部14からは振幅が十分に大きく、且つ位相変化の大きな反射波が得られる。理想的には、Re(ζ)=0、且つIm(ζ)=0となれば、|R|=1.0となり、入射波と反射波との振幅が同じになる上記完全共鳴が実現されるとよいが、|R|が1.0未満である場合について詳述すると、以下のとおりである。
例えば|R|=0.5の場合、およそ1/4のエネルギーが開口部14から放射されて、この場合も、吸音・散乱効果を効果的に得ることができる。なお、Im(ζ)=0である場合には、Re(ζ)≒0.335であり、比音響インピーダンスの実数部の値は、およそ139.025Kg/m2・sec以下となる。より好ましくは、|R|=0.7という条件を満たしているとよく、この場合、およそ1/2のエネルギーが開口部14から放射され、上述の効果をより強く奏する。この場合にIm(ζ)=0であれば、Re(ζ)≒0.175であり、比音響インピーダンスの実数部の値は、およそ72.625Kg/m2・sec以下となる。さらに好ましくは、|R|=0.9という条件を満たしているとよく、この場合、およそ4/5のエネルギーが開口部14から放射され、吸音・散乱効果を顕著に得ることができる。この場合にIm(ζ)=0とであれば、Re(ζ)≒0.055であり、比音響インピーダンスの実数部の値は、およそ22.825Kg/m2・sec以下となる。
例えば、図8に示したように、好ましい態様である|R|≧0.7である場合には、Re(ζ)はおよそ0.175以下となるし、さらに好ましい態様である|R|≧0.9である場合には、Re(ζ)はおよそ0.055以下となるから、これらの結果に鑑みても、Re(ζ)の値をほぼ0とするように中空部材10の中間層13を構成することが、良好な吸音・散乱効果を奏するためには好適であることが分かる。
例えば、図8に示したように、好ましい態様である|R|≧0.7である場合には、Re(ζ)はおよそ0.175以下となるし、さらに好ましい態様である|R|≧0.9である場合には、Re(ζ)はおよそ0.055以下となるから、これらの結果に鑑みても、Re(ζ)の値をほぼ0とするように中空部材10の中間層13を構成することが、良好な吸音・散乱効果を奏するためには好適であることが分かる。
ところで、上述した式(5)の関係からも分かるように、境界面111及び121の面積Spと開口部14の面積Soとの面積比So/Sp(面積比=rs)を変化させることにより、比音響インピーダンス比ζの絶対値|ζ|は変化する。
図9は、l1=300mm,l2=485mmとした場合の、比音響インピーダンス比ζの虚数部の絶対値|Im(ζ)|の周波数特性を示したグラフである。同図は、rs=0.25,1.0,4.0とした場合の、それぞれの|Im(ζ)|の計算値を示している。ただし、ここではl1≠l2である。ここで|Im(ζ)|を示した理由は、図7に示したように、|Im(ζ)|<1となる範囲では、90°≦φ≦180°又は−180°≦φ≦−90°という値をとるから、図9中でこの範囲を直観的に分かるようにするためである。なお、|Im(ζ)|=∞となるのは、反共鳴(反共振)が生じるときであり、この周波数を境界として、当該周波数の両側でIm(ζ)の符号が反転する。
図9は、l1=300mm,l2=485mmとした場合の、比音響インピーダンス比ζの虚数部の絶対値|Im(ζ)|の周波数特性を示したグラフである。同図は、rs=0.25,1.0,4.0とした場合の、それぞれの|Im(ζ)|の計算値を示している。ただし、ここではl1≠l2である。ここで|Im(ζ)|を示した理由は、図7に示したように、|Im(ζ)|<1となる範囲では、90°≦φ≦180°又は−180°≦φ≦−90°という値をとるから、図9中でこの範囲を直観的に分かるようにするためである。なお、|Im(ζ)|=∞となるのは、反共鳴(反共振)が生じるときであり、この周波数を境界として、当該周波数の両側でIm(ζ)の符号が反転する。
同図から分かるように、境界面111,121の面積Spが、開口部14の面積Soに対して大きく、面積比rsが小さくなるほど、0≦|Im(ζ)|<1となる周波数帯域が広くなっている。また、面積比rsが小さくなるほど、Im(ζ)=1.0の直線と、Im(ζ)を表すグラフとによって囲まれる領域の面積が大きくなっている。換言すれば、開口部14に入射する入射波に応じて、“共鳴現象が生じるとみなせる”周波数帯域が広くなり、且つ完全共鳴(ζ=0)に近い現象がより広い周波数帯域で発現する。
また、同図から分かるように、面積比rs<1.0とすれば、面積比rs=1.0となる従来構成の音響管に対して上記作用効果の度合いが大きくなる。好ましくは、面積比rs≦0.5とすれば、上記領域面積が従来の音響管のおよそ1.2倍もの大きさに広がっており、|Im(ζ)|の値が、従来のおよそ半分以下になっていることを確認した。これにより、より強い吸音・散乱効果を奏し得る。更に好ましくは、面積比rs≦0.25とすれば、上記領域面積が従来の音響管のおよそ1.5倍もの大きさに広がっており、|Im(ζ)|の値が従来のおよそ1/4以下になっており、顕著な吸音・散乱効果を奏し得る。
以上のように、音響構造体1にあっては、面積比rsを規定して、中間層13の作用により、開口部14における比音響インピーダンス比の絶対値|ζ|が|ζ|<1となるようにし、さらにζの実数部r=Re(ζ)がほぼ0となるようにすれば、共鳴現象によって効果的な吸音・散乱効果を奏する。
以上のように、音響構造体1にあっては、面積比rsを規定して、中間層13の作用により、開口部14における比音響インピーダンス比の絶対値|ζ|が|ζ|<1となるようにし、さらにζの実数部r=Re(ζ)がほぼ0となるようにすれば、共鳴現象によって効果的な吸音・散乱効果を奏する。
ところで、中空部材10にあっては、中間層13や開口部14に気体分子の運動を阻害する抵抗材などの部材が設けられていない。また、面積比rsの設定によって、共鳴体11,12の共鳴により生じる大きな粒子速度を開口部14に生み出すことができる。また、開口部14に隣接する共鳴体11,12の共鳴により、開口部14では|ζ|<1という条件を満たしているから、その場所での音圧は、共鳴現象によって発現する位相干渉によりかなり低くなる(理想的には0)。このように、中空部材10にあっては、気体分子の粒子速度が大きく、且つ音圧が低いという現象を共鳴体11,12の共鳴により開口部14において発現させることにより、開口部14における比音響インピーダンス比ζの実数部r=Re(ζ)がほぼ0となるという条件を実現する。上述のように、Re(ζ)の値は0に近いほど好ましいが、中空部材10の構成によれば、共鳴体11,12の共鳴によってその条件を実現し得る。
ここで、図10は、0Hzから1000Hzまでの周波数帯域において、|Im(ζ)|が或る値未満になる周波数割合と面積比rsとの関係を示したグラフである。図10(a)は、横軸を|Im(ζ)|とし、縦軸を周波数割合[%]及び位相変化量[度(°)]としたグラフであり、図10(b)は横軸を面積比rsとし、縦軸を周波数割合[%]としたグラフである。なお、図10(a)には、|Im(ζ)|毎に反射波の位相変化量の下限を破線で表している。この周波数割合とは、0Hzから1000Hzという周波数帯域の帯域幅に対する、|Im(ζ)|が上記或る値となる帯域幅の占める割合である。ここで、|Im(ζ)|の上記或る値を、それぞれ0.1,0.2,0.4,0.6,0.8,1.0とする。なお、図10においては、Re(ζ)=0とした計算結果を表し、ここでもl1=300mm,l2=485mmとしている。
図10(a)から明らかなように、面積比rsが小さいほど(つまり、開口部14の面積が小さいほど)、反射波の位相変化量が或る一定値以上大きくなる割合が増している。例えば、rs=0.25の場合には、|Im(ζ)|<0.2となる周波数割合はおよそ70%である。一方、従来方式であるrs=1.0の場合の同周波数割合は、およそ27%であり、例えば位相変化量が157.4°以上である周波数帯域は約3倍もあることが分かる。また、図10(b)から明らかなように、例えば|Im(ζ)|が或る値未満となる周波数割合は、面積比rsが小さいほど増加している。図10の結果からも、面積比rsが小さいほど反射波の位相変化量が大きくなる周波数帯域が増していることが分かる。
図10(a)から明らかなように、面積比rsが小さいほど(つまり、開口部14の面積が小さいほど)、反射波の位相変化量が或る一定値以上大きくなる割合が増している。例えば、rs=0.25の場合には、|Im(ζ)|<0.2となる周波数割合はおよそ70%である。一方、従来方式であるrs=1.0の場合の同周波数割合は、およそ27%であり、例えば位相変化量が157.4°以上である周波数帯域は約3倍もあることが分かる。また、図10(b)から明らかなように、例えば|Im(ζ)|が或る値未満となる周波数割合は、面積比rsが小さいほど増加している。図10の結果からも、面積比rsが小さいほど反射波の位相変化量が大きくなる周波数帯域が増していることが分かる。
続いて、吸音効果及び散乱効果を奏するための作用について説明する。
図11は、中空部材10の開口部14周辺の外部空間をyz平面に直交する方向(x方向)から見たときの、共鳴時における反射波の挙動を説明する図である。同図は、反射面2及び開口部14に対して垂直に入射波の音圧が極大となる「山」が反射面2及び開口部14に到達し、それに対応する反射波が生成される様子を示している。ただし、ここでは、開口部14の比音響インピーダンス比ζ=0であり、上述した“完全共鳴”が生じるものとする。また、同図には、反射波を実線と破線とで示しているが、実線は、反射波の音圧が極大となる「山」の位置を表しており、破線は、音圧が極小(「山」とは逆位相)となる「谷」の位置を表している。
図11は、中空部材10の開口部14周辺の外部空間をyz平面に直交する方向(x方向)から見たときの、共鳴時における反射波の挙動を説明する図である。同図は、反射面2及び開口部14に対して垂直に入射波の音圧が極大となる「山」が反射面2及び開口部14に到達し、それに対応する反射波が生成される様子を示している。ただし、ここでは、開口部14の比音響インピーダンス比ζ=0であり、上述した“完全共鳴”が生じるものとする。また、同図には、反射波を実線と破線とで示しているが、実線は、反射波の音圧が極大となる「山」の位置を表しており、破線は、音圧が極小(「山」とは逆位相)となる「谷」の位置を表している。
中空部材10の中空領域20に対して、共鳴周波数に属する入射波が、開口部14に垂直方向に入射すると、共鳴によって生じる反射波として、入射波に対して位相が180°変位した反射波が、開口部14からz方向に向かって放射される。よって、同図に示すように、開口部14での反射波は「谷」となり、そこでの音圧は極小となっている。一方で、中空部材10は、上述したようにアクリル樹脂等の剛性率の高い材質のもので形成されているから、その比音響インピーダンス比はかなり大きい。よって、反射面2から放射される反射波の位相は、入射波の位相に対する変位はほとんどない(図11の領域C3,C4)。反射面2を剛体とみなすと、上述した“完全反射”が生じ、反射面2から放射される反射波の位相は、入射波の位相に対する変位がゼロで、入射波と同位相の反射波となる。すなわち、開口部14の比音響インピーダンス比ζがゼロで完全共鳴し、反射面2の比音響インピーダンス比が∞で完全反射した場合には、開口部14からの反射波と反射面2からの反射波とは、それらの振幅が同じで、互いの位相が180°異なる関係となる。この現象により、開口部14と反射面2との境界のz方向にある領域(空間)では、図11に楕円で示したように、反射面2からの反射波と開口部14からの反射波とが互いに隣接する領域C1,C2では、両者の反射波の位相が不連続となる現象が発生する。
以上の作用により、吸音効果は、開口部14付近の領域での共鳴現象により発現する。散乱効果は、反射面2に入射する入射波と反射波との位相干渉と、開口部14付近に入射する入射波と共鳴により生じる反射波との位相干渉との相互作用によって生じるものであり、これを原因として開口部14付近で気体分子の流れが生じて、音が散乱する。このように、開口部14からの反射波と反射面2からの反射波とは、それらの位相角度が異なり、その位相差に応じて異なる現象が領域C1〜C4という近接した空間で発現するので、音響構造体1によれば、音の散乱、及び吸音を同時に発現させることができる。
さらに、式(4)に示す関係から分かるように、境界面111,121の面積Spが、開口部14の面積Soに対して大きい(すなわち、面積比rsが小さい)ほど、開口部14での粒子速度u0はさらに大きくなる。よって、Sp>Soという関係を満たすことにより、開口部14付近で気体分子の振動が更に増大して、その付近の外部空間での吸音効果、及び散乱効果はより一層高まる。以上説明したように、開口部14付近の外部空間では、反射面2からの反射波と開口部14からの反射波との位相差により、高い吸音効果と散乱効果を得ることができる。
また、式(5)から分かるように、比音響インピーダンス比ζは中間層13の寸法(面積比rs)に依存するものであるため、反射面2における反射波と、開口部14における反射波との位相差の関係も、面積比rsに依存することとなる。反射面2が完全反射して、共鳴体11,12が完全共鳴するときに、中間層13に音圧分布のばらつきが生じない理想的な状態であれば、反射面2における反射波と開口部14における反射波とは逆位相の関係になる。また、中間層13に微小な音圧分布のばらつきが生じていたとしても、両者の反射波がほぼ逆位相の関係になるように、中間層13が構成されていれば、上述した作用により、吸音効果及び散乱効果は発現する。
また、式(5)から分かるように、比音響インピーダンス比ζは中間層13の寸法(面積比rs)に依存するものであるため、反射面2における反射波と、開口部14における反射波との位相差の関係も、面積比rsに依存することとなる。反射面2が完全反射して、共鳴体11,12が完全共鳴するときに、中間層13に音圧分布のばらつきが生じない理想的な状態であれば、反射面2における反射波と開口部14における反射波とは逆位相の関係になる。また、中間層13に微小な音圧分布のばらつきが生じていたとしても、両者の反射波がほぼ逆位相の関係になるように、中間層13が構成されていれば、上述した作用により、吸音効果及び散乱効果は発現する。
図12は、開口部14の中心点Oからの距離と、開口部14付近での吸音率との関係を求めた実験結果を示す図である。同図(a)は、開口部14付近を上側(xy平面に直交する方向)から見た図であり、同図(b)は、開口部14の中心点Oからの距離と、開口部14付近での吸音率との関係を示すグラフである。なお、ここでは、l1=458mmであり、端部112が開口端である共鳴体11と、l2=369mmであり、端部122が閉口端である共鳴体12からなる中空部材10を用いた。また、音響構造体1の反射面2の面積は、900mm(y方向)×600mm(x方向)である。また、ここでは、開口部14の一辺の長さdは50mmである。このような測定条件のもと、反射面2からz方向に1m離れた位置に設置したスピーカからピンクノイズを発生させ、図12(a)に示すように、反射面2から高さ0m(反射面2上)における開口部14の中心点Oからのxy平面上での距離と、吸音率との関係を表す実測値が、同図(b)である。
図12(b)に示すように、開口部14の中心点Oから、xy平面上でおよそ25mm〜100mm(特に、50mm)の反射面2上(z=0)において高い吸音率を得られていることが分かる。この位置は、領域C1,C2付近であって、開口部14付近の反射面2上の位置である。この結果からも、開口部14付近の外部空間において気体分子の流れが生じて高い散乱効果が得られ、反射面2からの反射波のエネルギーの一部が、領域C1,C2の方へ流れ込むことにより、開口部14の中心点Oからおよそ100mmも離れた位置において、高い吸音効果が発現していることが分かる。
図13は、上記測定条件における粒子速度の実測値を示した図である。同図(a)は、開口部14付近を上側(xy平面に直交する方向)から見た図である。同図(b),(c)において、x軸は、開口部14の中心点Oから見たx方向の位置を表し、縦軸は開口部14の中心点Oから見たとしたz方向の位置を表す。また、矢印の向きは、粒子速度が作用する向きを表しており、その長さは粒子速度の大きさを意味している。また、同図において、(a)は共鳴体11の共鳴周波数248Hzのときの粒子速度を表し、(b)は共鳴体12の共鳴周波数349Hzのときの粒子速度を表している。
同図に示すように、開口部14付近の外部空間で粒子速度が特に大きくなっており、反射面2上よりも40dB程度も高くなっていることを、発明者らは確認した。また、入射波が開口部14に対して垂直方向(z方向)に入射しているのに対し、x、y方向に対する成分を持つ高い粒子速度が発生する。この作用によって、開口部14付近の反射面2上の広い領域で、高い吸音効果及び散乱効果を得ることができる。
同図に示すように、開口部14付近の外部空間で粒子速度が特に大きくなっており、反射面2上よりも40dB程度も高くなっていることを、発明者らは確認した。また、入射波が開口部14に対して垂直方向(z方向)に入射しているのに対し、x、y方向に対する成分を持つ高い粒子速度が発生する。この作用によって、開口部14付近の反射面2上の広い領域で、高い吸音効果及び散乱効果を得ることができる。
以上説明した音響構造体1によれば、反射面2に入射する入射波と反射波との位相干渉と、開口部14付近に入射する入射波と共鳴により生じる反射波との位相干渉との相互作用によって、反射面2及び開口部14に直交しない斜め方向に気体分子の運動エネルギーの流れが発生して散乱効果が得られる。更に、共鳴現象により開口部14付近の外部空間において、開口部14からの反射波が、開口部14への入射波を位相差により振幅を打ち消すことによる吸音効果も得られる。これにより、広い周波数帯域で、開口部14付近の広い領域で吸音効果及び散乱効果を得ることができる。特に、Sp>Soという関係を満たしていると、開口部14での比音響インピーダンス比ζはさらに小さくなり、吸音効果が発揮される周波数帯がさらに広くなるので、吸音効果及び散乱効果をより一層高めることができる。
また、音響構造体1を構成する中空部材10−1〜10−10のそれぞれで、開口部14−1〜14−10の位置が異なっているから、各々の中空部材の共鳴周波数は異なり、低周波数帯域を含む広い周波数帯で高い吸音効果を得られる。これらに加えて、音響構造体1の厚さ方向(z方向)の大きさは、共鳴周波数の波長に比べてかなり小さく、音響構造体1が設置される空間を狭めてしまうこともない。
このような音響構造体1によれば、サイズの大型化を抑制した音響部材により、音を効果的に吸音・散乱させるとともに、広い周波数帯で良好な吸音・散乱効果を得ることができる。また、本発明によれば抵抗材のような気体分子の振動を抑制する部材を敢えて用いずに、高い粒子速度を生じさせることで吸音効果が得られるにしており、開口部14から離れた反射面2上の位置での吸音効果に特に優れている。また、発明者らは、音響構造体1を用いて、xyzの各軸方向に対する寸法を900mm×600mm×28mmとしたパネルを構成し、そのパネルを10枚並べて残響室法吸音率を実測した結果、125Hz〜4000Hzまでの周波数帯域でおよそ0.25〜0.40の値となり、グラスウールパネルや合板などを用いた音響構造体では得ることのできない、平坦な吸音特性を得られることを確認した。よって、本発明によって得られる知見に基づいた、今後の音響部材の開発への応用にも期待される。
このような音響構造体1によれば、サイズの大型化を抑制した音響部材により、音を効果的に吸音・散乱させるとともに、広い周波数帯で良好な吸音・散乱効果を得ることができる。また、本発明によれば抵抗材のような気体分子の振動を抑制する部材を敢えて用いずに、高い粒子速度を生じさせることで吸音効果が得られるにしており、開口部14から離れた反射面2上の位置での吸音効果に特に優れている。また、発明者らは、音響構造体1を用いて、xyzの各軸方向に対する寸法を900mm×600mm×28mmとしたパネルを構成し、そのパネルを10枚並べて残響室法吸音率を実測した結果、125Hz〜4000Hzまでの周波数帯域でおよそ0.25〜0.40の値となり、グラスウールパネルや合板などを用いた音響構造体では得ることのできない、平坦な吸音特性を得られることを確認した。よって、本発明によって得られる知見に基づいた、今後の音響部材の開発への応用にも期待される。
[変形例]
本発明は、上述した実施形態と異なる形態で実施することが可能である。また、以下に示す変形例は、各々を適宜に組み合わせてもよい。なお、以下の変形例においても、特に断りのない限り、中空部材10の端部112,122に相当する端部は、閉口端であってもよいし、開口端であってもよい。
[変形例1]
上述した実施形態では、音響構造体1は、それぞれ別の部材である中空部材10−1〜10−10によって構成され、その各々が中空領域を有することにより、音響構造体1に中空領域20−1〜20−10が形成されていた。これに対し、音響構造体1は、内部に一方向に延在する大きな直方体状の中空領域が形成されて、その中空領域にy方向に延在する仕切部材を設けることにより、実施形態と同等の構成の中空領域20−1〜20−10が形成されていてもよい。このような構成の音響構造体であっても、実施形態の音響構造体1と同じ作用効果を得ることができる。
また、実施形態では、音響構造体1の1つの面を反射面2としていたが、その面の反対側の面にも開口部14を設けて、音響構造体1の両面で実施形態で述べたような、吸音効果及び散乱効果を得られるようにしてもよい。また、開口部14は、音圧透過性及び通気性(粒子速度透過性)があって、抵抗成分が媒質(空気)の固有音響抵抗に対して十分小さい不織布状の布材や、ネット、メッシュ等によって覆われていてもよく、開口部14を介して外部空間及び中空領域20の間を音波が伝搬するように構成されていればよい。
本発明は、上述した実施形態と異なる形態で実施することが可能である。また、以下に示す変形例は、各々を適宜に組み合わせてもよい。なお、以下の変形例においても、特に断りのない限り、中空部材10の端部112,122に相当する端部は、閉口端であってもよいし、開口端であってもよい。
[変形例1]
上述した実施形態では、音響構造体1は、それぞれ別の部材である中空部材10−1〜10−10によって構成され、その各々が中空領域を有することにより、音響構造体1に中空領域20−1〜20−10が形成されていた。これに対し、音響構造体1は、内部に一方向に延在する大きな直方体状の中空領域が形成されて、その中空領域にy方向に延在する仕切部材を設けることにより、実施形態と同等の構成の中空領域20−1〜20−10が形成されていてもよい。このような構成の音響構造体であっても、実施形態の音響構造体1と同じ作用効果を得ることができる。
また、実施形態では、音響構造体1の1つの面を反射面2としていたが、その面の反対側の面にも開口部14を設けて、音響構造体1の両面で実施形態で述べたような、吸音効果及び散乱効果を得られるようにしてもよい。また、開口部14は、音圧透過性及び通気性(粒子速度透過性)があって、抵抗成分が媒質(空気)の固有音響抵抗に対して十分小さい不織布状の布材や、ネット、メッシュ等によって覆われていてもよく、開口部14を介して外部空間及び中空領域20の間を音波が伝搬するように構成されていればよい。
[変形例2]
上述した実施形態では、音響構造体1の中空部材10が、2つの共鳴体11,12を備える構成であったが、共鳴体を1つだけ備える構成としてもよい。図14は、本変形例の音響構造体を成す中空部材10aの断面(図2の切断線III−IIIで切断したときの断面)を表した図である。
図14(a)に示すように、中空部材10aは、y方向に延在する中空領域20aを有し、閉口端である端部112aから中間層13aまでの間に共鳴体11aが構成されている。また、中空部材10aの他端の端部122aに隣接する反射面を有する側面部には、開口部14aが設けられ、この中空部材10aにおいて、開口部14a近傍の中空領域20aが中間層13aである。この構成において、同図(a),(b)に示すように、中空領域20aの他端である端部112aから中間層13aまでの間に1の共鳴体が構成される。中間層13aについては、共鳴体との境界面以外の面が中空部材10aの内側の面に隣接するか、又は開口部14aに隣接するように構成されている。この構成においても、中間層13aとの境界面111aから中間層13aに共鳴による音圧が作用すると、その体積速度の大きさに応じて、中間層13aは、開口部14aを介して外部空間に音圧を作用させる。これにより、開口部14周辺の外部空間には、実施形態と同じ作用が発現する。
したがって、このような構成の中空部材10aを音響構造体に適用しても、吸音効果、及び散乱効果を得ることができる。ただし、この場合、共鳴体から中間層13aに作用する体積速度は、実施形態の構成の場合よりも小さくなるので、開口部14aでの粒子速度は小さくなりやすく、吸音効果及び散乱効果が低下してしまうことがある。これに対し、音響構造体のサイズをさらに小さくすることができるという利点もあるので、音響空間に音響構造体を設置しやすくなり、音響構造体の設計の自由度を高めるという効果を得ることができる。
上述した実施形態では、音響構造体1の中空部材10が、2つの共鳴体11,12を備える構成であったが、共鳴体を1つだけ備える構成としてもよい。図14は、本変形例の音響構造体を成す中空部材10aの断面(図2の切断線III−IIIで切断したときの断面)を表した図である。
図14(a)に示すように、中空部材10aは、y方向に延在する中空領域20aを有し、閉口端である端部112aから中間層13aまでの間に共鳴体11aが構成されている。また、中空部材10aの他端の端部122aに隣接する反射面を有する側面部には、開口部14aが設けられ、この中空部材10aにおいて、開口部14a近傍の中空領域20aが中間層13aである。この構成において、同図(a),(b)に示すように、中空領域20aの他端である端部112aから中間層13aまでの間に1の共鳴体が構成される。中間層13aについては、共鳴体との境界面以外の面が中空部材10aの内側の面に隣接するか、又は開口部14aに隣接するように構成されている。この構成においても、中間層13aとの境界面111aから中間層13aに共鳴による音圧が作用すると、その体積速度の大きさに応じて、中間層13aは、開口部14aを介して外部空間に音圧を作用させる。これにより、開口部14周辺の外部空間には、実施形態と同じ作用が発現する。
したがって、このような構成の中空部材10aを音響構造体に適用しても、吸音効果、及び散乱効果を得ることができる。ただし、この場合、共鳴体から中間層13aに作用する体積速度は、実施形態の構成の場合よりも小さくなるので、開口部14aでの粒子速度は小さくなりやすく、吸音効果及び散乱効果が低下してしまうことがある。これに対し、音響構造体のサイズをさらに小さくすることができるという利点もあるので、音響空間に音響構造体を設置しやすくなり、音響構造体の設計の自由度を高めるという効果を得ることができる。
[変形例3]
上述した実施形態では、中空部材10がSp>So(すなわち、rs<1)という関係を満たすように構成されていたが、この関係を満たしていなくてもよい。この関係を満たすことにより、式(5)の関係から分かるように比音響インピーダンス比ζがゼロに近づいて、吸音効果が発現する周波数帯域が広くなり、式(4)の関係から分かるように、開口部14付近の外部空間でより高い粒子速度が生じて、それによる良好な散乱効果及び吸音効果の発現に寄与していた。これに対し、Sp≦Soという関係であっても、比音響インピーダンス比ζの絶対値|ζ|が1未満という関係を満たしていれば、共鳴体11,12の共鳴現象が発生して吸音効果は得られるし、開口部14における高い粒子速度に起因する気体分子の流れにより散乱効果を得られる。
上述した実施形態では、中空部材10がSp>So(すなわち、rs<1)という関係を満たすように構成されていたが、この関係を満たしていなくてもよい。この関係を満たすことにより、式(5)の関係から分かるように比音響インピーダンス比ζがゼロに近づいて、吸音効果が発現する周波数帯域が広くなり、式(4)の関係から分かるように、開口部14付近の外部空間でより高い粒子速度が生じて、それによる良好な散乱効果及び吸音効果の発現に寄与していた。これに対し、Sp≦Soという関係であっても、比音響インピーダンス比ζの絶対値|ζ|が1未満という関係を満たしていれば、共鳴体11,12の共鳴現象が発生して吸音効果は得られるし、開口部14における高い粒子速度に起因する気体分子の流れにより散乱効果を得られる。
[変形例4]
また、音響構造体の構成を以下のようにしてもよい。
図15は、本変形例の音響構造体1bを、図1の矢印II方向と同じ方向から見た図である。なお、図15では、中空領域の図示を省略しているが、図2に示した位置と同じようにして、y方向に延在する複数の直方体状の中空領域が形成される。
同図に示すように、音響構造体1bは複数の中空部材10b−1〜10b−10からなる。中空部材10b−1〜10b−10はそれぞれ両端が閉じているとともに、両端付近の反射面2には、開口部142b,143bが設けられている。さらに、y方向に対する中心付近の位置には開口部141bが設けられている。また、音響構造体1bには、図15の点線で示すように、各開口部どうしの間に、中空領域をy方向に複数の中空領域に隔てるための隔壁151b,152bが設けられている。なお、図が煩雑になるのを防ぐため、中空部材10b−1のみに開口部141b〜143b、及び隔壁151b,152bという符号を付しているが、その他の中空部材についても、開口部及び隔壁の位置は異なるものの、同等の構成が設けられている。また、中空部材10b−1〜10b−10はそれぞれ同じ構造的特徴を有するため、以下では、「中空部材10b」と総称してその構成を説明する。
また、音響構造体の構成を以下のようにしてもよい。
図15は、本変形例の音響構造体1bを、図1の矢印II方向と同じ方向から見た図である。なお、図15では、中空領域の図示を省略しているが、図2に示した位置と同じようにして、y方向に延在する複数の直方体状の中空領域が形成される。
同図に示すように、音響構造体1bは複数の中空部材10b−1〜10b−10からなる。中空部材10b−1〜10b−10はそれぞれ両端が閉じているとともに、両端付近の反射面2には、開口部142b,143bが設けられている。さらに、y方向に対する中心付近の位置には開口部141bが設けられている。また、音響構造体1bには、図15の点線で示すように、各開口部どうしの間に、中空領域をy方向に複数の中空領域に隔てるための隔壁151b,152bが設けられている。なお、図が煩雑になるのを防ぐため、中空部材10b−1のみに開口部141b〜143b、及び隔壁151b,152bという符号を付しているが、その他の中空部材についても、開口部及び隔壁の位置は異なるものの、同等の構成が設けられている。また、中空部材10b−1〜10b−10はそれぞれ同じ構造的特徴を有するため、以下では、「中空部材10b」と総称してその構成を説明する。
図16は、図15に示す中空部材10bを、切断線V−V(すなわち、反射面に対して垂直な面)で切断したときの断面を表している。同図に示すように、中空部材10bには隔壁151b,152bが設けられているから、その中空領域(中空部材10b)の延在方向に対して隔絶された、3つの中空領域が形成されている。ここで、隔壁151b,152bは、中空部材10bと一体となった部材であってもよいし、別の部材であってもよい。このような構成の中空部材10bにおいて、その一方の端部側には、中空部材10aの端部161と共鳴体11bとの間に中間層131bが構成され、他端部側には、中空部材10bの端部162と共鳴体12bとの間に中間層132bが構成されている。また、中空部材10bの中央部であって、隔壁151bと隔壁152bとの間に形成された中空領域においては、隔壁151bと中間層133bとの間に共鳴体16bが構成され、隔壁152bと中間層133bとの間に共鳴体17bが構成されている。
このように、中空部材10bにおいては、隔壁により、中空領域がその延在方向に対して複数の中空領域に隔絶されて、中空部材の端部と中間層との間に共鳴体が構成されるようにするとともに、隔壁と中間層との間に共鳴体が構成されるようにしている。この構成により、例えば中空部材10bには4つの共鳴体が存在しており、実施形態で述べた構成よりも多い共鳴体を確保することができる。よって、このような音響構造体1bによれば、音響構造体1よりも、さらに広い周波数帯での吸音効果及び散乱効果を得ることができる。また、中空部材10bにおいて、隔壁の数を更に多くして、中空部材が更に多くの数の中空領域を備えるようにしてもよい。
このように、中空部材10bにおいては、隔壁により、中空領域がその延在方向に対して複数の中空領域に隔絶されて、中空部材の端部と中間層との間に共鳴体が構成されるようにするとともに、隔壁と中間層との間に共鳴体が構成されるようにしている。この構成により、例えば中空部材10bには4つの共鳴体が存在しており、実施形態で述べた構成よりも多い共鳴体を確保することができる。よって、このような音響構造体1bによれば、音響構造体1よりも、さらに広い周波数帯での吸音効果及び散乱効果を得ることができる。また、中空部材10bにおいて、隔壁の数を更に多くして、中空部材が更に多くの数の中空領域を備えるようにしてもよい。
[変形例5]
上述した実施形態では、音響構造体1の開口部14−1〜14−10が、外部空間である音響空間に面するよう音響室の内壁面や天井面に設置されていた。これに対し、音響構造体1は、壁面内部や天井内部に埋め込まれることにより設置されていてもよい。また、反射面2以外の音響構造体1の側面にキャスタ等の移動手段を設ける等して、移動可能なパネル体として構成されていてもよい。
また、複数の中空部材10の延在方向が一致するように並べられていなくてもよく、その設置方向は任意である。例えば、図17に示すように、平板状の支持パネル30上に、中空部材10の延在方向を様々にして配置するようにしてもよい。平板状の支持パネル30上に多数の中空部材10を設置する場合には、当該支持パネル上での各中空部材10の設置位置を変更できるような構成としてもよい。1枚の平板状の支持パネル30上に各中空部材10を設置する場合には、当該パネルに移動手段を取り付けるようにして移動可能にしてもよい。
上述した実施形態では、音響構造体1の開口部14−1〜14−10が、外部空間である音響空間に面するよう音響室の内壁面や天井面に設置されていた。これに対し、音響構造体1は、壁面内部や天井内部に埋め込まれることにより設置されていてもよい。また、反射面2以外の音響構造体1の側面にキャスタ等の移動手段を設ける等して、移動可能なパネル体として構成されていてもよい。
また、複数の中空部材10の延在方向が一致するように並べられていなくてもよく、その設置方向は任意である。例えば、図17に示すように、平板状の支持パネル30上に、中空部材10の延在方向を様々にして配置するようにしてもよい。平板状の支持パネル30上に多数の中空部材10を設置する場合には、当該支持パネル上での各中空部材10の設置位置を変更できるような構成としてもよい。1枚の平板状の支持パネル30上に各中空部材10を設置する場合には、当該パネルに移動手段を取り付けるようにして移動可能にしてもよい。
[変形例6]
上述した実施形態の中空部材10は、2つの共鳴体11,12の中心軸が中心軸y0を共有する構成であったが、各共鳴体の中心軸が共通しなくてもよく、例えば、「L」字型や「V」字型をなすように所定の角度をなしてもよい。図18は、このような構成の中空部材10cの一例を示した図である。同図に示すように、共鳴体11cと12cとがなす角度(すなわち、共鳴体11cの中心軸y1と共鳴体12cの中心軸y2とが成す角度)はθであるが、この値はいくつであってもよい。実施形態の中空部材10は、θ=180°の場合の構成である。このような中空部材10cを備えた音響構造体であっても、開口部14cと、それぞれの共鳴体11c,12cとの間に構成される中間層が、実施形態と同じ条件を満たすことにより、吸音効果及び散乱効果が発現する。
上述した実施形態の中空部材10は、2つの共鳴体11,12の中心軸が中心軸y0を共有する構成であったが、各共鳴体の中心軸が共通しなくてもよく、例えば、「L」字型や「V」字型をなすように所定の角度をなしてもよい。図18は、このような構成の中空部材10cの一例を示した図である。同図に示すように、共鳴体11cと12cとがなす角度(すなわち、共鳴体11cの中心軸y1と共鳴体12cの中心軸y2とが成す角度)はθであるが、この値はいくつであってもよい。実施形態の中空部材10は、θ=180°の場合の構成である。このような中空部材10cを備えた音響構造体であっても、開口部14cと、それぞれの共鳴体11c,12cとの間に構成される中間層が、実施形態と同じ条件を満たすことにより、吸音効果及び散乱効果が発現する。
また、図19(a)に示す中空部材10dのように、中空領域が「T」字状に構成され、3つ以上の共鳴体が構成されていてもよい。図19(b)は、中空部材10dを、矢印VII方向に見た図である。同図に示すように、中空部材10dは、中空部材10dのそれぞれの端部と、開口部14に連なる中間層との間に構成された、3つの共鳴体11d,12d,16dを有する。これら共鳴体11d,12d,16dは、開口部14近傍の中空領域20dである中間層を介して開口部14dと連通している。また、この構成においても、各々の共鳴体の中心軸どうしが成す角度も任意でよい。また、中空部材は、中間層13にさらに多くの共鳴体が面するように構成されていてもよい。また、各共鳴体が同一平面(xy平面)上に構成されていなくてもよく、各共鳴体の延在方向はxyz空間内においてどの方向であってもよい。
[変形例7]
上述した実施形態では、中空部材10は角筒状の部材であり、その中空領域20は直方体状であった。これに対し、音響構造体を構成する中空部材は、円柱状や底面が多角形の柱状に構成されていてもよい。また、中空領域を中心軸に対して垂直に切断したときの断面においても、円状や多角形状であってもよく、その形状は実施形態で述べた形状に限定されるものではない。要するに、中空領域が一方向に延在し、その中空領域が、共鳴体によって実現される機能と、中間層13とによって実現される機能とを有していればよい。また、中空領域20をxz平面で切断したときの断面の形状も他の形状でもよく、それらは延在方向に一様でなくても良く、その中空領域において共鳴体としての機能及び中間層としての機能とが実現されればよい。
上述した実施形態では、中空部材10は角筒状の部材であり、その中空領域20は直方体状であった。これに対し、音響構造体を構成する中空部材は、円柱状や底面が多角形の柱状に構成されていてもよい。また、中空領域を中心軸に対して垂直に切断したときの断面においても、円状や多角形状であってもよく、その形状は実施形態で述べた形状に限定されるものではない。要するに、中空領域が一方向に延在し、その中空領域が、共鳴体によって実現される機能と、中間層13とによって実現される機能とを有していればよい。また、中空領域20をxz平面で切断したときの断面の形状も他の形状でもよく、それらは延在方向に一様でなくても良く、その中空領域において共鳴体としての機能及び中間層としての機能とが実現されればよい。
図20(a)は、管状(円筒状)の中空部材10eの外観を示した図である。同図に示すように、中空部材10eの側面部には円形の開口部14eが設けられ、その側面部が反射面として機能する。同図(b)は、中空部材10eを矢印VIII方向から見た図で、点線で示す位置に円筒状の中空領域20eが設けられている。同図(b)に示すように、中空部材10eは、開口部14eを介して外部空間と中空領域20eを連通させる。このような構成であっても、実施形態で述べた作用による吸音効果及び散乱効果を得ることができる。また、中空部材10eをその延在方向に複数並べた音響構造体を構成した場合、それらの側面からなる反射面全体として平らな面とならないが、管状部材10eに対して入射波が入射すると、曲面上の反射面から反射波が放射されるから、共鳴時において開口部14により生じる反射波によって、実施形態と同質の作用により散乱効果を得ることもできる。
[変形例8]
上述した実施形態では、音響構造体1の中空領域20−1〜20−10の延在方向(y方向)の長さは一致していたが、それぞれの長さが異なっていてもよい。図21に示すように、中空部材10f−1〜10f−10の外形は中空部材10とそれぞれ同じで、共鳴体の実現したい共鳴周波数に応じて、同図に示す中空領域20f−1〜20f−10のように、それぞれの中空領域の直線方向の長さが異なっていてもよい。このような構成によれば、各中空部材が備える共鳴体の共鳴周波数をより自在に決めることができ、音響構造体の設計の自由度が高まる。また、中空部材そのものの長さがそれぞれ異なっていてもよいのはもちろんである。
上述した実施形態では、音響構造体1の中空領域20−1〜20−10の延在方向(y方向)の長さは一致していたが、それぞれの長さが異なっていてもよい。図21に示すように、中空部材10f−1〜10f−10の外形は中空部材10とそれぞれ同じで、共鳴体の実現したい共鳴周波数に応じて、同図に示す中空領域20f−1〜20f−10のように、それぞれの中空領域の直線方向の長さが異なっていてもよい。このような構成によれば、各中空部材が備える共鳴体の共鳴周波数をより自在に決めることができ、音響構造体の設計の自由度が高まる。また、中空部材そのものの長さがそれぞれ異なっていてもよいのはもちろんである。
[変形例9]
上述した実施形態では、共鳴体11,12の長さl1=l2であるが故に、境界面111における粒子速度u1,境界面121における粒子速度u2は同位相で変化する。これにより、或る周波数帯での開口部14の気体分子の粒子速度を大きくし、その周波数帯での吸音効果及び散乱効果を増大させることには好適であった。これに対し、共鳴体11,12の長さl1≠l2でとした場合には、比音響インピーダンス比の絶対値|ζ|<1となり、吸音効果及び散乱効果が発現する周波数帯が広がる。この場合、式(5)に示す関係に基づいて、開口部14の比音響インピーダンス比ζが周波数の変化に対して不規則に変化する。これにより、ひとつひとつの比音響インピーダンス比の絶対値|ζ|<1となる周波数帯は、l1=l2の場合よりも狭くなることがあっても、その条件を満たす周波数帯を合算すると、l1≠l2である場合の方がその条件を満たす周波数帯が広くなる、ということである。このようになるのは、比音響インピーダンス比ζ=0の完全共鳴だけでなく、比音響インピーダンス比の絶対値|ζ|<1となって共鳴現象とみなせる現象を生じさせることで、音響構造体1が、吸音効果及び散乱効果を発揮するからこその効果ということもできる。また、この場合であっても、Sp>Soという条件をみなせば、u0>u1+u2という、粒子速度の増大の効果が得られる。
上述した実施形態では、共鳴体11,12の長さl1=l2であるが故に、境界面111における粒子速度u1,境界面121における粒子速度u2は同位相で変化する。これにより、或る周波数帯での開口部14の気体分子の粒子速度を大きくし、その周波数帯での吸音効果及び散乱効果を増大させることには好適であった。これに対し、共鳴体11,12の長さl1≠l2でとした場合には、比音響インピーダンス比の絶対値|ζ|<1となり、吸音効果及び散乱効果が発現する周波数帯が広がる。この場合、式(5)に示す関係に基づいて、開口部14の比音響インピーダンス比ζが周波数の変化に対して不規則に変化する。これにより、ひとつひとつの比音響インピーダンス比の絶対値|ζ|<1となる周波数帯は、l1=l2の場合よりも狭くなることがあっても、その条件を満たす周波数帯を合算すると、l1≠l2である場合の方がその条件を満たす周波数帯が広くなる、ということである。このようになるのは、比音響インピーダンス比ζ=0の完全共鳴だけでなく、比音響インピーダンス比の絶対値|ζ|<1となって共鳴現象とみなせる現象を生じさせることで、音響構造体1が、吸音効果及び散乱効果を発揮するからこその効果ということもできる。また、この場合であっても、Sp>Soという条件をみなせば、u0>u1+u2という、粒子速度の増大の効果が得られる。
[変形例10]
また、音響構造体1を成す中空部材10−1〜10−10の両端を開口端として、中空部材10の相互間で連成振動を生じさせるようにしてもよい。この場合、開口端から放射される音波は、開口端を回折してエネルギーを放射する。そのエネルギーの一部は相互に隣接する中空部材10の開口端を介してから中空領域に入射する。このようにして連成振動を生じさせると、複数の中空部材10間でエネルギーの授受が行なわれる。この連成振動の際に、中空部材10の内壁面での摩擦が生じたり、開口端での気体分子間の粘性作用が生じるので、音響エネルギーを消費し、さらに吸音効果を高めることができる。
また、音響構造体1を成す中空部材10−1〜10−10の両端を開口端として、中空部材10の相互間で連成振動を生じさせるようにしてもよい。この場合、開口端から放射される音波は、開口端を回折してエネルギーを放射する。そのエネルギーの一部は相互に隣接する中空部材10の開口端を介してから中空領域に入射する。このようにして連成振動を生じさせると、複数の中空部材10間でエネルギーの授受が行なわれる。この連成振動の際に、中空部材10の内壁面での摩擦が生じたり、開口端での気体分子間の粘性作用が生じるので、音響エネルギーを消費し、さらに吸音効果を高めることができる。
[変形例11]
上述した実施形態又は変形例に係る音響構造体は、音響特性を制御する各種の音響室に配置することが可能である。ここで各種音響室は、防音室、ホール、劇場、音響機器のリスニングルーム、会議室等の居室、各種輸送機器の空間、スピーカや楽器などの筐体等である。
上述した実施形態又は変形例に係る音響構造体は、音響特性を制御する各種の音響室に配置することが可能である。ここで各種音響室は、防音室、ホール、劇場、音響機器のリスニングルーム、会議室等の居室、各種輸送機器の空間、スピーカや楽器などの筐体等である。
1,1b…音響構造体、10,10a,10b,10c,10d,10e…中空部材、11,11a,11b,11c,11d,12,12b,12c,12d,16b,16d,17b…共鳴体、111,121…境界面、112,122…端部、13,13a,13d…中間層、14,14a,14c,14c、14d,14e,141b,142b,143b…開口部、151a,151b…隔壁、2,2d…反射面、20,20a,20d,20e…中空領域。
Claims (9)
- 内部に一方向に延在する中空領域が形成され、前記中空領域を外部空間に連通させる開口部と、前記外部空間に面しており、当該開口部に隣接する反射面とを有する中空部材を備え、
前記中空領域において、前記開口部に連なる近傍の空間領域が中間層となり、前記中空領域の一端から前記中間層までの間が共鳴体として構成され、
前記中間層は、
前記外部空間から前記中空部材の開口部及び反射面に音波が入射して、当該音波に応じた反射波を前記反射面が放射するときに、前記共鳴体の共鳴により生じる反射波であって前記反射面からの反射波とは位相の異なる反射波を前記開口部から放射させ、且つそのときの前記開口部の比音響インピーダンスを、当該開口部の媒質の特性インピーダンスで除した値の実数部をほぼ0とするように構成されている
ことを特徴とする音響構造体。 - 前記中間層は、
前記外部空間から前記中空部材の開口部及び反射面に音波が入射して、当該音波に応じた反射波を前記反射面が放射するときに、前記開口部の比音響インピーダンスを、当該開口部の媒質の特性インピーダンスで除した値の絶対値が1未満となるように構成されている
ことを特徴とする請求項1に記載の音響構造体。 - 前記中空部材において、前記中空領域の一端から前記中間層までの間が第1の共鳴体として構成され、前記中空領域の他端から前記中間層までの間が第2の共鳴体として構成されていることを特徴とする請求項1又は2に記載の音響構造体。
- 前記中空領域には1の前記共鳴体が構成されており、
前記中間層は、前記共鳴体との境界面以外の面が前記中空部材の内側の面に隣接するか、又は前記開口部に隣接するように構成されていることを特徴とする請求項1又は2に記載の音響構造体。 - 前記中間層は、前記共鳴体が共鳴するときに音圧が一様に分布するように構成されていることを特徴とする請求項1〜4のいずれか1項に記載の音響構造体。
- 前記共鳴体と前記中間層との境界面の面積は、前記開口部の面積よりも大きいことを特徴とする請求項1〜5のいずれか1項に記載の音響構造体。
- 前記中空領域が延在する方向と交わる方向に配列された複数の前記中空部材を備えることを特徴とする請求項1〜6のいずれか1項に記載の音響構造体。
- 複数の前記中空部材の前記中空領域の一端から前記中間層までの長さがそれぞれ異なることを特徴とする請求項7に記載の音響構造体。
- 請求項1〜8のいずれか1項に記載の音響構造体を備えることを特徴とする音響室。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009202085A JP5326946B2 (ja) | 2008-09-02 | 2009-09-01 | 音響構造体および音響室 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008225317 | 2008-09-02 | ||
JP2008225317 | 2008-09-02 | ||
JP2009202085A JP5326946B2 (ja) | 2008-09-02 | 2009-09-01 | 音響構造体および音響室 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010084509A JP2010084509A (ja) | 2010-04-15 |
JP5326946B2 true JP5326946B2 (ja) | 2013-10-30 |
Family
ID=41506549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009202085A Expired - Fee Related JP5326946B2 (ja) | 2008-09-02 | 2009-09-01 | 音響構造体および音響室 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8006802B2 (ja) |
EP (1) | EP2159787A3 (ja) |
JP (1) | JP5326946B2 (ja) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5691197B2 (ja) * | 2009-03-06 | 2015-04-01 | ヤマハ株式会社 | 音響構造体、プログラムおよび設計装置 |
JP5771973B2 (ja) * | 2010-05-17 | 2015-09-02 | ヤマハ株式会社 | 音響構造体 |
JP5834816B2 (ja) | 2011-11-22 | 2015-12-24 | ヤマハ株式会社 | 音響構造体 |
JP5810884B2 (ja) * | 2011-12-15 | 2015-11-11 | ヤマハ株式会社 | 音響構造体 |
JP6031760B2 (ja) * | 2011-12-28 | 2016-11-24 | ヤマハ株式会社 | 楽器、グランドピアノおよびアップライトピアノ |
JP6127376B2 (ja) * | 2012-04-09 | 2017-05-17 | ヤマハ株式会社 | 中空の構造体 |
JP5761136B2 (ja) * | 2012-07-31 | 2015-08-12 | ヤマハ株式会社 | 音響構造体 |
US9145675B2 (en) | 2013-05-29 | 2015-09-29 | Wenger Corporation | Tunable acoustic panel |
CN104299608A (zh) * | 2013-07-17 | 2015-01-21 | 青钢金属建材(上海)有限公司 | 吸音减噪组件及其方法 |
CN103469909A (zh) * | 2013-08-14 | 2013-12-25 | 苏州岸肯电子科技有限公司 | 吸音尖劈 |
JP6295595B2 (ja) * | 2013-10-18 | 2018-03-20 | ヤマハ株式会社 | 音響構造体 |
JP6260380B2 (ja) * | 2014-03-19 | 2018-01-17 | ヤマハ株式会社 | 音響構造体 |
CN103821243A (zh) * | 2014-03-19 | 2014-05-28 | 北京朗新明环保科技有限公司南京分公司 | 一种用于防治固体噪声波的贴合式建筑物结构 |
GB201415874D0 (en) * | 2014-09-08 | 2014-10-22 | Sonobex Ltd | Acoustic Attenuator |
US9697817B2 (en) * | 2015-05-14 | 2017-07-04 | Zin Technologies, Inc. | Tunable acoustic attenuation |
CN105913837B (zh) * | 2016-04-15 | 2019-09-13 | 南京大学 | 一种超薄的施罗德散射体 |
JP6625227B2 (ja) * | 2016-08-31 | 2019-12-25 | 富士フイルム株式会社 | 防音構造、及び防音システム |
WO2018051780A1 (ja) * | 2016-09-13 | 2018-03-22 | 富士フイルム株式会社 | 防音構造、及び防音システム |
JP2018080685A (ja) * | 2016-11-18 | 2018-05-24 | 株式会社Roki | 消音装置 |
US20180174566A1 (en) * | 2016-12-19 | 2018-06-21 | Caterpillar Inc. | Compact acoustic resonator for enclosed systems |
US10657947B2 (en) * | 2017-08-10 | 2020-05-19 | Zin Technologies, Inc. | Integrated broadband acoustic attenuator |
US10720136B2 (en) * | 2017-12-04 | 2020-07-21 | Zin Technologies, Inc. | Layered chamber acoustic attenuation |
JP2019143478A (ja) * | 2018-02-15 | 2019-08-29 | 株式会社Roki | 消音装置 |
EP3869497B1 (en) * | 2018-10-19 | 2023-10-18 | FUJIFILM Corporation | Soundproof structural body |
DE102019002157B4 (de) * | 2019-03-26 | 2023-03-02 | Stefanie Gernert | Wand zur tieffrequenten und breit-frequenzbandingen, massiven schalldämpfung flächig einfallenden schalls |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3275101A (en) * | 1963-12-16 | 1966-09-27 | James G Milne Jr | Acoustic structural unit |
US3991848A (en) * | 1974-08-16 | 1976-11-16 | Frigitemp | Acoustical board |
US4189027A (en) * | 1976-08-19 | 1980-02-19 | United Technologies Corporation | Sound suppressor liners |
US4231447A (en) * | 1978-04-29 | 1980-11-04 | Rolls-Royce Limited | Multi-layer acoustic linings |
US4821839A (en) * | 1987-04-10 | 1989-04-18 | Rpg Diffusor Systems, Inc. | Sound absorbing diffusor |
US4821841A (en) * | 1987-06-16 | 1989-04-18 | Bruce Woodward | Sound absorbing structures |
US5457291A (en) * | 1992-02-13 | 1995-10-10 | Richardson; Brian E. | Sound-attenuating panel |
JP2555832B2 (ja) * | 1992-05-01 | 1996-11-20 | 日東紡績株式会社 | 吸音体 |
FR2693754B1 (fr) * | 1992-07-16 | 1994-09-02 | Saint Gobain Vitrage Int | Caisson isolant acoustique. |
JP3076945B2 (ja) * | 1993-06-15 | 2000-08-14 | 松下電器産業株式会社 | 吸音装置 |
JP2785687B2 (ja) | 1994-05-02 | 1998-08-13 | ヤマハ株式会社 | 吸音構造体 |
CH690143A5 (de) * | 1995-01-27 | 2000-05-15 | Rieter Automotive Int Ag | Lambda/4-Schallabsorber. |
US6021612A (en) * | 1995-09-08 | 2000-02-08 | C&D Technologies, Inc. | Sound absorptive hollow core structural panel |
CH691942A5 (de) * | 1997-02-19 | 2001-11-30 | Rieter Automotive Int Ag | Lambda/4-Absorber mit einstellbarer Bandbreite. |
DE19804567C2 (de) * | 1998-02-05 | 2003-12-11 | Woco Franz Josef Wolf & Co Gmbh | Flächenabsorber für Schallwellen und Verwendung |
JP2000075866A (ja) * | 1998-08-31 | 2000-03-14 | Nippon Soken Inc | 通気性を備えた遮音壁構造 |
US6435303B1 (en) * | 2000-01-15 | 2002-08-20 | Future Technologies Llc | Sound absorbing structure |
JP3475917B2 (ja) | 2000-07-13 | 2003-12-10 | ヤマハ株式会社 | 音響放射構造体および音響室 |
US20030006090A1 (en) * | 2001-06-27 | 2003-01-09 | Reed John Douglas | Broadband noise-suppressing barrier |
JP3791374B2 (ja) | 2001-09-21 | 2006-06-28 | ヤマハ株式会社 | 遮音床および床下地パネル |
US20050098379A1 (en) * | 2003-10-09 | 2005-05-12 | Takahiko Sato | Noise absorbing structure and noise absorbing/insulating structure |
US7314114B2 (en) * | 2004-02-11 | 2008-01-01 | Acoustics First Corporation | Flat panel diffuser |
US20060059801A1 (en) * | 2004-09-15 | 2006-03-23 | Quality Research Development & Consulting, Inc. | Acoustically intelligent structures with resonators |
JP2008309050A (ja) * | 2007-06-14 | 2008-12-25 | Mahle Filter Systems Japan Corp | レゾネータ |
-
2009
- 2009-09-01 JP JP2009202085A patent/JP5326946B2/ja not_active Expired - Fee Related
- 2009-09-01 US US12/584,180 patent/US8006802B2/en not_active Expired - Fee Related
- 2009-09-02 EP EP09011270A patent/EP2159787A3/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US20100065369A1 (en) | 2010-03-18 |
JP2010084509A (ja) | 2010-04-15 |
US8006802B2 (en) | 2011-08-30 |
EP2159787A3 (en) | 2011-05-04 |
EP2159787A2 (en) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5326946B2 (ja) | 音響構造体および音響室 | |
JP5691197B2 (ja) | 音響構造体、プログラムおよび設計装置 | |
JP5866751B2 (ja) | 音響共鳴体及び音響室 | |
US20210237394A1 (en) | Acoustic material structure and method for assembling same and acoustic radiation structure | |
Jang et al. | Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation | |
JP5444683B2 (ja) | 吸音構造 | |
JP2010085989A (ja) | 音響構造体および音響室 | |
US8631901B2 (en) | Acoustic structure | |
JP6847246B2 (ja) | 防音構造体 | |
JP5332495B2 (ja) | 吸音構造 | |
WO2019167795A1 (ja) | 防音構造体 | |
WO2020080152A1 (ja) | 防音構造体 | |
Kim et al. | Broadband muffler by merging negative density and negative compressibility | |
JP6914004B2 (ja) | 騒音低減装置 | |
JP7127073B2 (ja) | 防音構造体 | |
WO2019167572A1 (ja) | 防音構造体 | |
JP3831263B2 (ja) | ダクト消音装置 | |
JP4223438B2 (ja) | 多孔質防音構造体 | |
Sheng | Optimal sound-absorbing structures | |
JP6275608B2 (ja) | 吸音構造および防音室 | |
JP2011058188A (ja) | 音響室 | |
JP5663845B2 (ja) | 音響構造体 | |
WO2018074200A1 (ja) | 吸音パネル | |
WO2023021916A1 (ja) | 吸音部材及び吸音壁 | |
JP2010232172A (ja) | 照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130708 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |