US20050098379A1 - Noise absorbing structure and noise absorbing/insulating structure - Google Patents

Noise absorbing structure and noise absorbing/insulating structure Download PDF

Info

Publication number
US20050098379A1
US20050098379A1 US10/959,419 US95941904A US2005098379A1 US 20050098379 A1 US20050098379 A1 US 20050098379A1 US 95941904 A US95941904 A US 95941904A US 2005098379 A1 US2005098379 A1 US 2005098379A1
Authority
US
United States
Prior art keywords
noise absorbing
noise
holes
wall
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/959,419
Inventor
Takahiko Sato
Yoshikazu Hirose
Akihito Yamada
Tomokazu Inoue
Akira Yamauchi
Shigeru Yabuya
Masaki Ishiduka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Motor East Japan Inc
Original Assignee
Toyoda Gosei Co Ltd
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003350764A external-priority patent/JP4250496B2/en
Priority claimed from JP2004206245A external-priority patent/JP2006030396A/en
Priority claimed from JP2004206246A external-priority patent/JP4231822B2/en
Application filed by Toyoda Gosei Co Ltd, Kanto Auto Works Ltd filed Critical Toyoda Gosei Co Ltd
Assigned to TOYODA GOSEI CO., LTD., KANTO AUTO WORKS, LTD. reassignment TOYODA GOSEI CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIDUKA, MASAKI, HIROSE, YOSHIKAZU, INOUE, TOMOKAZU, SATO, TAKAHIKO, YABUYA, SHIGERU, YAMADA, AKIHITO, YAMAUCHI, AKIRA
Publication of US20050098379A1 publication Critical patent/US20050098379A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8485Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the opening being restricted, e.g. forming Helmoltz resonators

Definitions

  • the present invention relates to a noise absorbing structure and a noise absorbing/insulating structure for absorbing noise, and more particularly, to a noise absorbing structure and a noise absorbing/insulating structure for absorbing noise in the passenger compartment of a vehicle.
  • noise absorbing structure which includes a base with a plurality of holes (noise absorbing wall) and a space provided at the back of the base.
  • This type of noise absorbing structure exhibits its noise absorbing effect based on the Helmholtz resonance principle when noise generated by a noise source passes through the holes formed in the noise absorbing wall. The sonic energy is absorbed rapidly by this noise absorbing effect.
  • Japanese Laid-Open Utility Model Publication No. 2-115049 describes an example of a vehicle ceiling that absorbs noise.
  • the vehicle ceiling is provided with a hollow member. Further, a plurality of holes (noise absorbing holes) for air-column resonance reduction is formed on the passenger compartment side of a base. With this vehicle ceiling, the noise in the passenger compartment is guided through the holes into an air layer within the hollow member and reduced therein.
  • Japanese Laid-Open Patent Publication No. 2000-16189 describes a rear shelf trim for absorbing noise.
  • the rear shelf trim is provided with a hollow member having an upper wall. Additionally, a plurality of holes is formed in the upper wall. The total area of the holes corresponds to about 20 to 50% of the area of the upper wall having these holes. With this rear shelf trim, the noise in the passenger compartment is also guided through the holes into the hollow space within the hollow member and absorbed therein.
  • Japanese Laid-Open Patent Publication No. 5-92441 describes a noise-insulating board having cylindrical hollow bodies arranged in a concentrated manner on a support board. The distal end of the cylindrical hollow body is open.
  • felt or THINSULATE is applied to the rear face of a console box.
  • the noise generated from the engine and gears is absorbed and reduced by the felt or THINSULATE.
  • the holes all have an identical diameter. That is, the openings have an identical area. Accordingly, the frequency range of the noise absorbed by these holes is limited to a narrow range. Also, as for the noise-insulating board described above, since it is difficult to enlarge the volume of space in the cylindrical hollow bodies, the noise absorbing effect based on the Helmholtz resonance principle cannot be exhibited sufficiently. Consequently, the conventional noise absorbing mechanisms still need improvement, particularly in terms of absorbing the interior noise in a wide frequency range.
  • the present invention provides a noise absorbing structure and a noise absorbing/insulating structure capable of effectively absorbing noise in a wide frequency range.
  • One aspect of the present invention is a noise absorbing structure for absorbing noise.
  • the structure is provided with a first noise absorbing portion that is hollow and includes one or more first holes, and a second noise absorbing portion that is hollow and includes one or more second holes.
  • the one or more first holes has a total area different from that of the one or more second holes.
  • the body is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall.
  • the body is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall.
  • the one or more first holes has a total area different from that of the one or more second holes.
  • a further aspect of the present invention is a noise absorbing structure for absorbing noise.
  • the structure is provided with a first sub-box that is hollow and includes one or more first holes, and a second sub-box that is hollow, includes one or more second holes, and has the same shape as the first sub-box.
  • the one or more first holes has a total area different from that of the one or more second holes.
  • the structure is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes.
  • the structure is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes.
  • the first noise absorbing portion and the second noise absorbing portion each have a volume that is different from one another.
  • a further aspect of the present invention is a noise absorbing/insulating structure for absorbing and insulating noise.
  • the structure is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall.
  • the structure is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall.
  • the first noise absorbing portion and the second noise absorbing portion each include a volume that is different from one another.
  • the structure is provided with a first sub-box that is hollow and includes one or more first holes, and a second sub-box that is hollow and includes one or more second holes having the same shape as the first holes.
  • the one or more first holes has a total area and the one or more second holes has a total area that is the same as the total area of the one or more first holes.
  • the first sub-box and the second sub-box each have a volume that is different from one another.
  • FIG. 1 is a perspective view showing a passenger compartment in which a noise absorbing/insulating box according to a first embodiment of the present invention is installed;
  • FIG. 2 is a horizontal cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 1 is installed;
  • FIG. 3 is a vertical cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 1 is installed;
  • FIG. 4 is a perspective view showing the noise absorbing/insulating box of FIG. 1 ;
  • FIG. 5 is a cross-sectional view taken along line 5 - 5 of FIG. 4 ;
  • FIG. 6 is a perspective view showing a noise absorbing/insulating box according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line 7 - 7 of FIG. 6 ;
  • FIG. 8 is a horizontal cross-sectional view of a console showing the position where a noise absorbing/insulating box according to a third embodiment of the present invention is installed;
  • FIG. 9 is a vertical cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 8 is installed;
  • FIG. 10 is a perspective view showing the noise absorbing/insulating box of FIG. 8 ;
  • FIG. 11 is a cross-sectional view taken along line 11 - 11 of FIG. 10 ;
  • FIG. 12 is a perspective view showing a noise absorbing/insulating box according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along line 13 - 13 of FIG. 12 ;
  • FIG. 14 is a perspective view showing a noise absorbing/insulating box according to a fifth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along line 15 - 15 of FIG. 14 ;
  • FIG. 16 is a perspective view showing a console box in which a noise absorbing/insulating box according to a sixth embodiment of the present invention is installed;
  • FIG. 17 is a partial cross-sectional view showing the console box of FIG. 16 ;
  • FIG. 18 is a schematic view showing a glove compartment in which a noise absorbing/insulating box according to a seventh embodiment of the present invention is installed;
  • FIG. 19 is a cross-sectional view showing the glove compartment of FIG. 18 ;
  • FIG. 20 is a schematic view showing a glove compartment in which a noise absorbing/insulating box according to an eighth embodiment of the present invention is installed.
  • FIGS. 21A and 21B are perspective views showing further examples of the noise absorbing/insulating box.
  • a first embodiment of a noise absorbing/insulating structure according to the present invention will now be described with reference to FIG. 1 through FIG. 5 .
  • the noise absorbing/insulating structure of the first embodiment is installed in a console 111 , which is an interior equipment of a vehicle.
  • the console 111 is arranged between the driver's seat and passenger seat in the passenger compartment.
  • Drive train components (not shown) including the engine and gears are mounted in the front lower part of the vehicle.
  • Various kinds of noise, generated by the drive train components, are propagated through the inner space of the console 111 and leak into the passenger compartment through gaps thereby creating the noise in the passenger compartment.
  • Two noise absorbing/insulating boxes 112 are installed inside the console 111 as noise absorbing bodies for reducing the passenger compartment noise.
  • the two noise absorbing/insulating boxes 112 form a noise absorbing/insulating structure.
  • attachment portions 114 are defined on the inner faces of opposing side walls 111 a .
  • a noise absorbing/insulating box 112 is attached to each attachment portion 114 .
  • the attachment portions 114 each have a pair of guide walls 115 projecting towards the inside of the console 111 .
  • a guide groove 116 is formed between the pair of guide walls 115 .
  • These attachment portions 114 are located at front and rear parts of the console 111 at positions corresponding to where the noise absorbing/insulating boxes 112 are to be installed.
  • the lateral sides of each noise absorbing/insulating box 112 are inserted in the guide grooves 116 of the corresponding attachment portion 114 . This fixes the noise absorbing/insulating boxes 112 at predetermined positions in the console 111 .
  • the noise absorbing/insulating boxes 112 each have a substantially rectangular box shape and are formed by blow molding or injection molding synthetic resin, such as polypropylene (PP), polyethylene (PE), or acrylonitrile-butadiene copolymer (ABS).
  • the noise absorbing/insulating box 112 has a first wall 121 , a second wall 122 opposing the first wall 121 , and four side walls 124 , which link the first wall 121 and the second wall 122 .
  • the noise absorbing/insulating box 112 is a hollow structure and is provided with a space 123 therein.
  • the first wall 121 is provided with a plurality of circular holes 128 , which communicate the space in the console 111 with the space 123 in the noise absorbing/insulating box 112 .
  • No holes are formed in the second wall 122 or the side walls 124 so that the second wall 122 and side walls 124 block the space 123 in the noise absorbing/insulating box 112 from the space in the console 111 .
  • the noise absorbing/insulating boxes 112 held by the attachment portions 114 are arranged with their respective first walls 121 facing the front side of the vehicle.
  • One of the noise absorbing/insulating boxes 112 is arranged in a front part of the console 1111 and the other one is in a rear part of the console 111 so as to block the path of noise propagated in the console 111 .
  • the heights of these two noise absorbing/insulating boxes 112 are determined according to the height of the console 111 .
  • the lateral sides and upper and lower sides of the noise absorbing/insulating boxes 112 which are held by the attachment portions 114 , abut against the inner walls of the console 111 .
  • the noise absorbing/insulating boxes 112 are arranged such that no gap is formed between the noise absorbing/insulating boxes 112 and the inner walls of the console 111 . Consequently, the noise absorbing/insulating boxes 112 prevent engine noise or gear noise generated by the drive train components from leaking into the passenger compartment and creating noise in the passenger compartment.
  • air in the holes 128 of the first wall 121 acts as a mass when noise propagated from the front side of the vehicle passes through the holes 128 in the console 111 .
  • air in the space 123 of the noise absorbing/insulating box 112 isolated by the second wall 122 and the side walls 124 from the space in the console 111 acts as a spring.
  • the air in the holes 128 is vibrated acutely by the interaction of the mass (air in the holes 128 ) with the spring (air in the space 123 ) to convert sonic energy into thermal energy. This rapidly reduces noise.
  • the noise absorbing/insulating box 112 exhibits its noise absorbing capability in this manner and rapidly absorbs the noise generated by a noise source.
  • FIG. 4 is a general perspective view of the noise absorbing/insulating box 112
  • FIG. 5 is a cross-sectional view taken along line 5 - 5 of FIG. 4 .
  • the noise absorbing/insulating box 112 has a first noise absorbing portion 126 a and a second noise absorbing portion 126 b , which are hollow and partitioned by a partition wall 125 that connects the first wall 121 and the second wall 122 .
  • the noise absorbing/insulating box 112 of the first embodiment is formed by integrating the first noise absorbing portion 126 a , which has a rectangular box shape, with the second noise absorbing portion 126 b , which also has a rectangular box shape.
  • the first noise absorbing portion 126 a is defined by parts of the first wall 121 and the second wall 122 , the side walls 124 and the partition wall 125 .
  • the second noise absorbing portion 126 b is defined by other parts of the first wall 121 and the second wall 122 , the side walls 124 and the partition wall 125 .
  • the partition wall 125 divides the space 123 in the noise absorbing/insulating box 112 into two sub-spaces 123 a and 123 b .
  • the sub-space 123 a in the first noise absorbing portion 126 a has the same volume as the sub-space 123 b in the second noise absorbing portion 126 b.
  • the part of the first wall 121 forming the first noise absorbing portion 126 a is defined as a first noise absorbing wall 121 a .
  • the part of the second wall 122 forming the first noise absorbing portion 126 a and facing towards the first noise absorbing wall 121 a is defined as a first noise insulating wall 122 a .
  • the other part of the first wall 121 forming the second noise absorbing portion 126 b is defined as a second noise absorbing wall 121 b .
  • the other part of the second wall 122 forming the second noise absorbing portion 126 b and facing towards the second noise absorbing wall 121 b is defined as a second noise insulating wall 122 b.
  • a plurality of holes 128 are formed in the first noise absorbing wall 121 a at equal intervals in the longitudinal and lateral directions of the first noise absorbing wall 121 a .
  • a plurality of holes 128 are formed in the second noise absorbing wall 121 b at equal intervals in the longitudinal and lateral directions of the second noise absorbing wall 121 b .
  • the group of the plurality of holes 128 formed in the first noise absorbing wall 121 a constitutes a first noise absorbing hole group 120 a .
  • the group of the plurality of holes 128 formed in the second noise absorbing wall 121 b constitutes a second noise absorbing hole group 120 b.
  • the holes 128 constituting the first noise absorbing hole group 120 a have an identical diameter and identical opening area.
  • the holes 128 constituting the second noise absorbing hole group 120 b also have an identical diameter and an identical opening area.
  • the holes 128 constituting the second noise absorbing hole group 120 b have a larger diameter, and hence a larger opening area, than the holes 128 constituting the first noise absorbing hole group 120 a .
  • the opening area S 1 of the first noise absorbing hole group 120 a which is the total sum of the opening areas of the holes 128 in the first noise absorbing wall 121 a
  • the opening area S 2 of the second noise absorbing hole group 120 b which is the total sum of the opening areas of the holes 128 in the second noise absorbing wall 121 b
  • the opening area S 2 of the second noise absorbing hole group 120 b is larger than the opening area S 1 of the first noise absorbing hole group 120 a.
  • the noise absorbing/insulating box 112 exhibits its noise absorbing capability as the result of air in the holes 128 acting as a mass and air in the space 123 acting as a spring.
  • the first and second noise absorbing portions 126 a and 126 b exhibit their noise absorbing capability as the result of air in the first and second noise absorbing hole groups 120 a and 120 b acting as a mass and air in the sub-spaces 123 a and 123 b of the first and second noise absorbing portion 126 a and 126 b acting as a spring.
  • the noise absorbing/insulating box 112 is capable of absorbing a wide range of noise including the frequency range absorbed by the first noise absorbing portion 126 a and the frequency range absorbed by the second noise absorbing portion 126 b.
  • the opening areas S 1 and S 2 of the first and second noise absorbing hole groups 120 a and 120 b are determined as required according to the frequency range of noise to be absorbed by the noise absorbing/insulating box 112 , or the frequency range of noise generated by the noise source. Additionally, the first and second noise insulating walls 122 a and 122 b that do not have the first and second noise absorbing hole groups 120 a and 120 b are arranged to block the noise propagated in the console 111 from the front side of the vehicle. Consequently, the noise absorbing/insulating box 112 has a noise insulating capability for insulating noise in addition to the noise absorbing capability for absorbing noise generated by a noise source.
  • the noise absorbing/insulating box 112 of the first embodiment has the advantages described below.
  • the noise absorbing/insulating box 112 is designed such that the opening area S 1 of the first noise absorbing hole group 120 a of the first noise absorbing portion 126 a differs from the opening area S 2 of the second noise absorbing hole group 120 b of the second noise absorbing portion 126 b .
  • the noise absorbing/insulating box 112 absorbs noise in a wider frequency range than the conventional techniques.
  • the noise absorbing/insulating box 112 exhibits a favorable noise absorbing capability with respect to noise in a wide frequency range. Accordingly, with the noise absorbing/insulating box 112 of the first embodiment, noise such as that of the engine and the gears in the drive train is further reduced compared to the prior art. This achieves improved quietness in the passenger compartment.
  • all of the plurality of holes 128 constituting the first noise absorbing hole group 120 a have an identical diameter and identical opening area
  • all of the plurality of holes 128 constituting the second noise absorbing hole group 120 b also have an identical diameter and an identical opening area.
  • the frequency ranges of the noises absorbed by the first and second noise absorbing portions 126 a and 126 b may be determined separately and explicitly.
  • the noise absorbing/insulating box 112 includes the first and second noise insulating walls 122 a and 122 b opposing the first and second noise absorbing walls 121 a and 121 b , respectively.
  • the first and second noise insulating walls 122 a and 122 b have no holes 128 and separate the space 123 in the noise absorbing/insulating box 112 from the outside. Therefore, the first and second noise insulating walls 122 a and 122 b block the noise that is propagated through air and inhibits noise generated by a noise source from leaking outside. Accordingly, the noise absorbing/insulating box 112 exhibits excellent noise absorbing/insulating capability with respect to noise in a wide frequency range.
  • the first and second noise absorbing portions 126 a and 126 b have an identical volume, while the opening areas S 1 and S 2 of the first and second noise absorbing hole groups 120 a and 120 b of the first and second noise absorbing portions 126 a and 126 b differ from each other.
  • the noise absorbing/insulating box 112 is constructed in this manner, the range of the noise absorbed by the noise absorbing/insulating box 112 is varied easily by changing only the first wall 121 having the holes 128 . Therefore, the configuration of the noise absorbing/insulating box 112 may easily be modified in correspondence with the frequency range of the noise that is to be absorbed.
  • the noise absorbing/insulating box 112 may thus be used for many purposes.
  • the noise absorbing/insulating box 112 is thin and has a rectangular box shape and, therefore, occupies a relatively small volume. Accordingly, it is easy to ensure space for installing the noise absorbing/insulating box 112 even in a limited space within vehicle interior equipment such as the console 111 .
  • Two noise absorbing/insulating boxes 112 are arranged in the interior of the console 111 so as to block the path of noise generated by the drive train components and propagated in the console 111 .
  • the positions where the noise absorbing/insulating boxes 112 are arranged are optimal for absorbing noise generated by the noise source and for insulating noise generated by the noise source.
  • the noise generated by the drive train components are absorbed and insulated effectively by installing the two noise absorbing/insulating boxes 112 in these positions.
  • FIG. 6 is a perspective view of the noise absorbing/insulating box 132
  • FIG. 7 is a cross-sectional view taken along line 7 - 7 of FIG. 6 .
  • the noise absorbing/insulating box 132 includes first and second noise absorbing/insulating sub-boxes 132 a and 132 b , which are assembled integrally with each other.
  • the volumes in the first and second noise absorbing/insulating sub-boxes 132 a and 132 b are the same.
  • the noise absorbing/insulating box 132 is thin and has a rectangular box shape formed by joining the side of the first noise absorbing/insulating sub-box 132 a with the side of the second noise absorbing/insulating sub-box 132 b.
  • the first noise absorbing/insulating sub-box 132 a is constructed as a first noise absorbing portion 146 a and the second noise absorbing/insulating sub-box 132 b is constructed as a second noise absorbing portion 146 b .
  • the first noise absorbing/insulating sub-box 132 a has a first noise absorbing wall 141 a and a first noise insulating wall 142 a facing towards the first noise absorbing wall 141 a .
  • the first noise absorbing wall 141 a has a plurality of holes 148 formed at equal intervals in the longitudinal and lateral directions of the first noise absorbing wall 141 a .
  • a group of the holes 148 formed in the first noise absorbing wall 141 a constitutes a first noise absorbing hole group 140 a.
  • the second noise absorbing/insulating sub-box 132 b has a second noise absorbing wall 141 b and a second noise insulating wall 142 b facing towards the second noise absorbing wall 141 b .
  • the second noise absorbing wall 141 b has a plurality of holes 149 having a larger diameter than the holes 148 of the first noise absorbing hole group 140 a .
  • the holes 149 are formed at equal intervals in the longitudinal and lateral directions of the second noise absorbing wall 141 b .
  • a group of the holes 149 formed in the second noise absorbing wall 141 b constitutes a second noise absorbing hole group 140 b.
  • the first and second noise absorbing portions 146 a and 146 b have the same volume, while the opening area S 1 of the first noise absorbing hole group 140 a differs from the opening area S 2 of the second noise absorbing hole group 140 b . Accordingly, the noise absorbing/insulating box 132 is capable of absorbing a wide range of noise.
  • the noise absorbing/insulating box 132 of the second embodiment has the advantages described below.
  • the noise absorbing/insulating box 132 is formed by assembling the first noise absorbing/insulating sub-box 132 a having the first noise absorbing hole group 140 a integrally with the second noise absorbing/insulating sub-box 132 b having the second noise absorbing hole group 140 b .
  • the noise absorbing/insulating box 132 exhibits further a preferable noise absorbing capability in a wide frequency range by optimizing the combination of various noise absorbing/insulating sub-boxes designed to absorb noise in various frequency areas.
  • a noise absorbing/insulating box 212 according to a third embodiment of the present invention will now be described with reference to FIGS. 8 to 11 .
  • the noise absorbing/insulating box 212 has a step-like shape as shown in FIG. 10 and is installed in a console 111 as shown in FIGS. 8 and 9 .
  • the noise absorbing/insulating box 212 has a first noise absorbing portion 226 a , a second noise absorbing portion 226 b , and a third noise absorbing portion 226 c , which are hollow and are partitioned from each other by first and second partition walls 225 a and 225 b that link a first wall 221 and a second wall 222 .
  • the noise absorbing/insulating box 212 of the third embodiment is constituted by integrating the first, second, and third noise absorbing portions 226 a , 226 b , and 226 c , each of which has a rectangular box shape.
  • the first wall 221 is formed to have a step-like shape as a whole.
  • the first and second partition walls 225 a and 225 b are located at positions corresponding to steps 227 a and 227 b of the first wall 221 . Accordingly, the first noise absorbing portion 226 a , the second noise absorbing portion 226 b , and the third noise absorbing portion 226 c respectively include sub-spaces 223 a , 223 b , and 223 c , the volumes of which differ from each other.
  • the part of first wall 221 forming the first noise absorbing portion 226 a is defined as a first noise absorbing wall 221 a .
  • the part of the second wall 222 forming the first noise absorbing portion 226 a and facing towards the first noise absorbing wall 221 a is defined as a first noise insulating wall 222 a .
  • the part of the first wall 221 forming the second noise absorbing portion 226 b is defined as a second noise absorbing wall 221 b .
  • the part of the second wall 222 forming the second noise absorbing portion 226 b and facing towards the second noise absorbing wall 221 b is defined as a second noise insulating wall 222 b .
  • the part of the first wall 221 forming the third noise absorbing portion 226 c is defined as a third noise absorbing wall 221 c .
  • the part of the second wall 222 forming the third noise absorbing portion 226 c and facing towards the third noise absorbing wall 22 . 1 c is defined as a third noise insulating wall 222 c.
  • the first to third noise absorbing walls 221 a to 221 c each have an elongated rectangular shape and equal lateral and longitudinal dimensions.
  • the first to third noise absorbing walls 221 a to 221 c are each provided with eight holes 228 .
  • the holes 228 are circular and have the same diameter.
  • the holes 228 are formed at substantially equal intervals in the lateral and longitudinal directions of the first to third noise absorbing walls 221 a to 221 c .
  • the holes 228 formed in the first noise absorbing wall 221 a constitute a first noise absorbing hole group 220 a .
  • the holes 228 formed in the second noise absorbing wall 221 b constitute a second noise absorbing hole group 220 b .
  • the holes 228 formed in the third noise absorbing wall 221 c constitute a third noise absorbing hole group 220 c .
  • All the holes 228 constituting the first to third noise absorbing hole groups 220 a to 220 c have the same diameter, and hence, the same opening area.
  • the first to third noise absorbing hole groups 220 a to 220 c include the same number of holes 228 . Accordingly, the respective opening areas of the first noise absorbing hole group 220 a , the second noise absorbing hole group 220 b , and the third noise absorbing hole group 220 c , or the total sum of the opening areas of the holes 228 in the respective groups, are equal to one another.
  • the first to third noise absorbing walls 221 a to 221 c extend parallel to the opposing first to third noise insulating walls 222 a to 222 c . Since the first wall 221 has a step-like shape as a whole, the distance d 1 between the first noise absorbing wall 221 a and the first noise insulating wall 222 a , the distance d 2 between the second noise absorbing wall 221 b and the second noise insulating wall 222 b , and the distance d 3 between the third noise absorbing wall 221 c and the third noise insulating wall 222 c are different from one another.
  • the volume V 1 of the first noise absorbing portion 226 a , the volume V 2 of the second noise absorbing portion 226 b , and the volume V 3 of the third noise absorbing portion 226 c are different from one another.
  • the volumes V 1 to V 3 of the first to third noise absorbing portions 226 a to 226 c are determined in accordance with the frequency range of the noise that is to be absorbed, that is, in accordance with the frequency range of the noise generated by the noise source.
  • the volume V 1 of the first noise absorbing portion 226 a is larger than the volume V 2 of the second noise absorbing portion 226 b
  • the volume V 2 is larger than the volume V 3 of the third noise absorbing portion 226 c
  • the distances d 1 to d 3 each represent a minimum distance between the noise absorbing wall and the noise insulating wall in each of the noise absorbing portions.
  • the noise absorbing/insulating box 212 exhibits its noise absorbing capability as the result of air in the holes 228 acting as a mass and air in the space 223 acting as a spring.
  • the noise absorbing portions 226 a to 226 c also exhibit their noise absorbing capability as the result of air in the holes of the noise absorbing hole groups 220 a to 220 c acting as a mass, and air in the sub-spaces 223 a to 223 c of the noise absorbing portions 226 a to 226 c acting as a spring.
  • the noise absorbing/insulating box 212 is capable of absorbing a wide range of noise due to the respective frequency ranges of noise that can be absorbed by the first to third noise absorbing portions 226 a to 226 c.
  • the noise absorbing/insulating box 212 of the third embodiment has the advantages described below.
  • the noise absorbing/insulating box 212 is designed such that the first to third noise absorbing portions 226 a to 226 c have different volumes V 1 to V 3 .
  • the noise absorbing effect is achieved based on the Helmholtz resonance principle when various types of noise in a wide frequency range pass through the holes of the noise absorbing hole groups 220 a to 220 c , and noise is absorbed by the noise absorbing/insulating box 212 more rapidly. Therefore, the frequency range of noise absorbed by the noise absorbing/insulating box 212 is wider compared to the conventional techniques. That is, the noise absorbing/insulating box 212 exhibits a preferable noise absorbing capability to noise in a wide frequency range.
  • the noise absorbing/insulating box 212 of the third embodiment reduces noise in the passenger compartment that is generated by the drive train components, such as the noise of the engine or gears, more effectively than in the prior art. This achieves a greater level of quietness in the passenger compartment.
  • the first wall 221 including the first to third noise absorbing walls 221 a to 221 c has a step-like shape.
  • the volumes V 1 to V 3 of the noise absorbing portions 226 a to 226 c can be varied easily by adjusting the number or positions of the steps 227 a and 227 b in the first wall 221 . This fact facilitates a designer to design the noise absorbing/insulating box 212 and convenience in fabricating the noise absorbing/insulating box 212 is improved.
  • the noise absorbing/insulating box 212 includes the first to third noise insulating walls 222 a to 222 c respectively facing towards the first to third noise absorbing walls 221 a to 221 c .
  • the first to third noise insulating walls 222 a to 222 c have no noise absorbing hole and separate the space 223 in the noise absorbing/insulating box 212 from the outside. Therefore, the first to third noise insulating walls 222 a to 222 c block the noise propagated through air and inhibit the noise generated by a noise source from leaking outside. Accordingly, the noise absorbing/insulating box 212 exhibits excellent capability of absorbing/insulating noise in a wide frequency range. Thus, noise is reduced and quietness is improved in the passenger compartment.
  • Two noise absorbing/insulating boxes 212 are arranged in the console 111 so as to block the path of noise generated by the drive train components and propagated in the console 111 .
  • the noise absorbing/insulating boxes 212 are located at optimal positions for absorbing noise generated by the noise source and for insulating the noise generated by the noise source. Therefore, the noise generated by the drive train components is effectively absorbed and insulated by installing the two noise absorbing/insulating boxes 212 in the console 111 .
  • FIG. 12 is a perspective view of a noise absorbing/insulating box 232
  • FIG. 13 is a cross-sectional view taken along line 13 - 13 of FIG. 12 .
  • the noise absorbing/insulating box 232 has a planar first wall 241 and a second wall 242 facing towards the first wall 241 .
  • the second wall 242 is bent towards the first wall 241 so that part of the second wall 242 inclines toward the first wall 241 .
  • Side walls 244 of the noise absorbing/insulating box 232 are shaped in correspondence with the first wall 241 and second wall 242 .
  • Three partition walls 245 a , 245 b , and 245 c extend between the first wall 241 and the part of the second wall 242 , inclining with respect to the first wall 241 such that the space 243 in the noise absorbing/insulating box 232 is divided into four sub-spaces 243 a , 243 b , 243 c , and 243 d .
  • the noise absorbing/insulating box 232 has first to fourth noise absorbing portions 246 a to 246 d , which are hollow and separated from each other by the three partition walls 245 a , 245 b , and 245 c .
  • the first wall 241 is divided into first to fourth noise absorbing walls 241 a to 241 d respectively corresponding to the first to fourth noise absorbing portions 246 a to 246 d .
  • the second wall 242 is also divided into first to fourth noise insulating walls 242 a to 242 d in the same manner.
  • Each of the first to fourth noise absorbing walls 241 a to 241 d is provided with circular holes 248 having the same diameter and arranged at substantially equal intervals in the lateral and longitudinal directions of the noise absorbing/insulating box 232 .
  • the holes 248 formed in the first to fourth noise absorbing walls 241 a to 241 d respectively constitute first, second, third, and fourth noise absorbing hole groups 240 a , 240 b , 240 c and 240 d .
  • the opening areas of the second to fourth noise absorbing hole groups 240 b to 240 d which are the total sums of the opening areas of the holes 248 in the respective groups, are equal to one another.
  • the opening area of the first noise absorbing hole group 240 a is larger than the opening areas of the second to fourth noise absorbing hole groups 240 b to 240 d.
  • the respective distances d 1 to d 4 between the first to fourth noise absorbing walls 241 a to 241 d and the first to fourth noise insulating walls 242 a to 242 d become smaller in this order towards the distal side of the noise absorbing/insulating box 232 (downward side in FIGS. 12 and 13 ).
  • the volumes V 1 , V 2 , V 3 , and V 4 of the first to fourth noise absorbing portions 246 a to 246 d are determined in accordance with the distances d 1 to d 4 .
  • the volumes V 1 to V 4 differ from one another and the opening area of the first noise absorbing wall 241 a differ from the opening areas of the second to fourth noise absorbing walls 241 b to 241 d , frequency ranges of noise absorbed by the first to fourth noise absorbing portions 246 a to 246 d differ from one another.
  • the volumes V 2 to V 4 of the second to fourth noise absorbing portions 246 b to 246 d are determined in accordance with the frequency ranges of the noise that is to be absorbed. In the fourth embodiment, the volumes become smaller in the order of the second noise absorbing portion 246 b , the third noise absorbing portion 246 c , and then the fourth noise absorbing portion 246 d .
  • the volume V 1 of the first noise absorbing portion 246 a is obviously larger than the volumes V 2 to V 4 of the second to fourth noise absorbing portions 246 b to 246 d , and the opening area of the first noise absorbing hole group 240 is also obviously larger than the other opening areas.
  • the noise absorbing/insulating box 232 of the fourth embodiment has the advantages described below.
  • the bent portion 247 of the second wall 242 is inclined relative to the first wall 241 . Therefore, the respective volumes V 2 to V 4 of the noise absorbing portions 246 b to 246 d may easily be varied by adjusting the angle ⁇ between the bent portion 247 of the second wall 242 and the first wall 241 . This facilitates the designing and manufacturing of the noise absorbing/insulating box 232 .
  • a noise absorbing/insulating box 252 according to a fifth embodiment of the present invention will now be described with reference to FIGS. 14 and 15 .
  • the noise absorbing/insulating box 252 includes noise absorbing/insulating sub-boxes 252 a to 252 c of different sizes.
  • the noise absorbing/insulating box 252 is formed by adhesively bonding the sides of the noise absorbing/insulating sub-boxes 252 a to 252 c to one another.
  • the noise absorbing/insulating box 252 of the fifth embodiment has the advantageous described below.
  • the noise absorbing/insulating box 252 is formed by adhesively bonding the noise absorbing/insulating sub-boxes 252 a to 252 c , which have simple shapes. Accordingly, the noise absorbing/insulating box 252 is easy to manufacture.
  • the noise absorbing/insulating sub-boxes 252 a to 252 c respectively absorb noise in different frequency ranges. Therefore, the noise absorbing/insulating box 252 exhibits a preferable noise absorbing capability relative to noise in a wide frequency range by optimizing the combination of the noise absorbing/insulating sub-boxes 252 a to 252 c.
  • FIGS. 16 and 17 A sixth embodiment of the present invention will now be described with reference to FIGS. 16 and 17 .
  • five noise absorbing/insulating boxes 112 of the first embodiment 112 A to 112 C are installed inside a console 111 .
  • a console 111 is arranged between the driver's seat and the passenger seat of a vehicle.
  • a gearshift lever 312 is arranged in the front portion of the console 111 .
  • Cup holders 307 are arranged just behind the gearshift lever 312 on the driver's seat side of the console 111 .
  • a parking brake 308 is located next to the cup holder 307 on the passenger seat side of the console 111 .
  • a storage box 310 is provided behind the cup holder 307 to accommodate small articles.
  • An ash tray 309 is provided behind the storage box 310 .
  • the noise absorbing/insulating boxes 112 A to 112 C are provided in the console 111 as shown by the broken lines in FIG. 16 .
  • the five noise absorbing/insulating boxes 112 A to 112 C are arranged at positions corresponding to the gearshift lever 312 , the cup holders 307 , and the parking brake 308 . That is, the noise absorbing/insulating boxes 112 A to 112 C are located in the front part of the console 111 so as to surround the mechanical parts associated with the gearshift lever 312 and parking brake 308 .
  • the arrow FR in FIG. 17 indicates the front direction.
  • the sixth embodiment three different types of noise absorbing/insulating boxes 112 A to 112 C having different widths are employed.
  • the first noise absorbing/insulating box 112 A has the smallest width
  • the third noise absorbing/insulating box 112 C has the largest width.
  • the second noise absorbing/insulating box 112 B has an intermediate width between those of the first noise absorbing/insulating box 112 A and third noise absorbing/insulating box 112 C.
  • Two first noise absorbing/insulating boxes 112 A are arranged on the left and right sides of the gearshift lever 312 such that the holes 128 of the two first noise absorbing/insulating boxes 112 A face each other.
  • a third noise absorbing/insulating box 112 C is provided just behind the gearshift lever 312 with the holes 128 of the third noise absorbing/insulating box 112 C facing the front side of the vehicle. That is, the gearshift lever 312 is surrounded from three directions by the three noise absorbing/insulating boxes consisting of the first two first noise absorbing/insulating boxes 112 A and the third noise absorbing/insulating box 112 C.
  • a second noise absorbing/insulating box 112 B is provided on the driver's seat side of the cup holder 307 .
  • the holes 128 of the second noise absorbing/insulating box 112 B face toward the cup holder 307 , that is, toward the inside of the console 111 .
  • Another third noise absorbing/insulating box 112 C is provided behind the cup holder 307 and the parking brake 308 with the holes 128 of the third noise absorbing/insulating box 112 C facing the front side of the vehicle.
  • the holes 128 of all five noise absorbing/insulating boxes 112 A to 112 C face the front side of the vehicle or the inside of the console 111 . That is, the holes 128 of the noise absorbing/insulating boxes 112 A to 112 C are directed to the noise source constituted by drive train components such as the engine and the transmission.
  • the noise absorbing/insulating boxes 112 A to 112 C are respectively held and fixed by a plurality of guide walls 316 and 317 formed on the inner surface of the side walls of the console 111 . More specifically, a pair of guide walls 317 are formed spaced apart from each other by a distance equal to the thickness of the third noise absorbing/insulating box 112 C to hold the third noise absorbing/insulating box 112 C. Two pairs of the guide walls 317 facing towards each other hold the third noise absorbing/insulating box 112 C therebetween.
  • a pair of guide walls 316 each having a hook 316 a are spaced from each other by a distance equal to the width of the first noise absorbing/insulating box 112 A or second noise absorbing/insulating box 112 B to hold the first noise absorbing/insulating box 112 A or second noise absorbing/insulating box 112 B.
  • the distal end of the hook 316 a of the front guide wall 316 and the distal end of the hook 316 a of the rear guide wall 316 face each other.
  • the distance from the hook 316 a of the guide wall 316 to the side wall of the console 111 where the guide wall 316 is formed is equal to the thickness of the first or second noise absorbing/insulating box 112 A or 112 B.
  • the hooks 316 a and the side walls of the console 111 hold the first noise absorbing/insulating box 112 A and the second noise absorbing/insulating box 112 B.
  • the noise absorbing/insulating box 112 absorbs noise generated by the drive train effectively.
  • the total area of the holes 128 is about 1.5% of the area of the first wall 121 having the holes 128 .
  • the noise absorbing/insulating box 112 effectively absorbs noise having a frequency of about 800 Hz. Noise having a frequency of about 800 Hz is generated by the transmission when the vehicle is traveling and perceived as an unpleasant noise by the driver.
  • the noise absorbing/insulating box 112 absorbs noise effectively. Additionally, when the diameter of the holes 128 is 0.01 mm or greater, more preferably, 0.1 mm or greater, the noise absorbing/insulating box 112 is capable of effectively absorbing noise.
  • the holes 128 are directed toward the drive train of the vehicle. Therefore, noise generated by the drive train when the vehicle is traveling is guided into the noise absorbing/insulating boxes 112 A to 112 C through the holes 128 and effectively attenuated. This absorbs the noise in the passenger compartment. As a result, noise leaking into the passenger compartment through the gaps of the console 111 is reduced.
  • the sixth embodiment has the advantages described below.
  • the holes 128 are directed to the drive train. Therefore, noise from the drive train is reduced effectively. Furthermore, the possibility of sound from an audio system being absorbed is reduced.
  • the total area of the holes 128 is 1.5% of the area of the first wall 121 . Therefore, the noise absorbing/insulating boxes 112 A to 112 C effectively reduce noise generated by the transmission.
  • the noise absorbing/insulating boxes 112 A to 112 C are attached to the console 111 by inserting the noise absorbing/insulating boxes 112 A to 112 C between the guide walls 316 and 317 . Accordingly, it is easy to install the noise absorbing/insulating boxes 112 A to 112 C. Moreover, no special parts are required to attach the noise absorbing/insulating boxes 112 A to 112 C to the console 111 , and an increase of the number of parts is avoided.
  • the holes 128 of the five noise absorbing/insulating boxes 112 A to 112 C installed in the console 111 are directed in a number of different directions. Accordingly, noise is effectively absorbed from various directions.
  • a seventh embodiment of the present invention will now be described with reference to FIGS. 18 and 19 .
  • a typical vehicle includes a glove compartment for accommodating small articles.
  • a glove compartment 320 according to the seventh embodiment includes a lid 321 and a container 322 formed integrally with the lid 321 .
  • the lid 321 and the container 322 which are integrally formed with each other, are pulled open.
  • An inner cover 323 is attached to an instrument panel 325 so as to surround the container 322 .
  • One first noise absorbing/insulating box 112 D and two second noise absorbing/insulating boxes 112 E are attached to the inner cover 323 next to the gaps between the lid 321 and the instrument panel 325 .
  • the noise absorbing/insulating boxes 112 D and 112 E are arranged along the rear wall and the left and right side walls of the inner cover 323 , respectively.
  • the noise absorbing/insulating boxes 112 D and 112 E are held by hooks 316 a of the guide walls 316 formed integrally with the inner cover 323 such that the holes 128 face the outer side of the glove compartment 320 .
  • the noise absorbing/insulating boxes 112 D and 112 E of the seventh embodiment has the advantages described below.
  • the noise absorbing/insulating box 112 D and 112 E are arranged next to the gaps between the lid 321 and the instrument panel 325 . Thus, noise entering the passenger compartment through the gaps is effectively reduced.
  • a glove compartment 330 according to the eighth embodiment includes a lid 321 and a container 322 , which is separate from the lid 321 .
  • One first noise absorbing/insulating box 112 F and two second noise absorbing/insulating boxes 112 G are provided next to the gaps between the container 322 and the instrument panel 325 .
  • the noise absorbing/insulating boxes 112 F and 112 G are arranged along the rear wall and the left and right walls of the container 322 , respectively.
  • the noise absorbing/insulating boxes 112 F and 112 G are held by hooks 316 a of guide walls 316 formed integrally with the container 322 such that the holes 128 face the outer side of the glove compartment 330 .
  • the noise absorbing/insulating boxes 112 F and 112 G of the eighth embodiment has the same advantages as the noise absorbing/insulating boxes 112 D and 112 E of the seventh embodiment.
  • the noise absorbing/insulating boxes 112 and 132 may each include three or more noise absorbing portions.
  • the noise absorbing/insulating box 112 may have three or more different types of noise absorbing holes with different opening areas, that is, three or more different types of noise absorbing portions.
  • the noise absorbing/insulating box 132 may have three or more noise absorbing/insulating sub-boxes.
  • the noise absorbing/insulating structure includes the two noise absorbing/insulating boxes 112 .
  • the noise absorbing/insulating structure may include one noise absorbing/insulating box 112 or three or more noise absorbing/insulating boxes 112 .
  • the noise absorbing/insulating box 112 , 132 , 212 , 232 may be arranged at any position in accordance with the position of a noise source or the shape of a component on which the noise absorbing/insulating box is to be attached.
  • the noise absorbing/insulating box 112 may be adhesively bonded to the inner surface of each of the side walls 111 a of the console 111 .
  • the holes 128 constituting the first and second noise absorbing hole groups 120 a and 120 b may be formed at any position (randomly) on the first and second noise absorbing walls 121 a and 121 b , respectively. Also, each of the first and second noise absorbing hole groups 120 a and 120 b may be constituted by holes having different opening areas.
  • the holes 128 constituting the first and second noise absorbing hole groups 120 a and 120 b does not have to be spaced at equal intervals in the longitudinal and lateral directions of the noise absorbing/insulating box 112 .
  • the volume of the first noise absorbing portion 126 a is equal to the volume of the second noise absorbing portion 126 b .
  • the volume of the first noise absorbing portion 126 a may differ from the volume of the second noise absorbing portion 126 b.
  • the noise absorbing/insulating box 132 may be constituted by assembling a plurality of noise absorbing/insulating boxes 112 of the first embodiment into a single body.
  • the noise absorbing/insulating sub-boxes may be attached to the console 111 without being formed integrally with each other as separate bodies.
  • the holes 128 , 148 , 149 , 228 , and 248 are all circular.
  • the holes 128 , 148 , 149 , 228 and 248 may have any shape.
  • the hole 128 may have an elliptical or polygonal shape.
  • the polygonal shape may be, for example, the shape of a triangle or a diamond.
  • the noise absorbing/insulating box 112 , 132 is thin and has a rectangular box shape.
  • the shape of the noise absorbing/insulating box 112 , 132 may be modified according to the required noise absorbing capability or the position where the noise absorbing/insulating box 112 , 132 is installed.
  • the shape of the noise absorbing/insulating box 112 , 132 may be spherical, disk-like, or trapezoidal.
  • the noise absorbing/insulating box 112 , 132 , 212 , 232 may be attached to a vehicle interior equipment item other than the console 111 , for example, to an instrument panel, a door trim, a rear trim, a roof trim, or a pillar trim.
  • the noise absorbing/insulating box 112 , 132 , 212 , and 232 may be used to absorb noise other than noise from the vehicle's drive train components, for example, sound from an audio system or a human voice.
  • the noise absorbing hole group may be composed of a single hole.
  • the space 223 in the noise absorbing/insulating box 212 may be divided into two, or four or more sub-spaces.
  • the number of the steps 227 a and 227 b of the first wall 221 , and the number of the partition walls 225 a and 225 b extending from the steps 227 a and 227 b to second wall 222 may be changed from one to three or more so that the space 223 in the noise absorbing/insulating box 212 is divided into two or into four or more sub-spaces.
  • the second wall 222 may have a step-like shape and the first wall 221 may have a planar shape. Further, the first wall 221 and the second wall 222 may both have a step-like shape.
  • the distances d 1 to d 3 between the respective noise absorbing walls and the respective noise insulating walls in the first to third noise absorbing portions 226 a to 226 c become smaller in this order.
  • the relationship of the distances d 1 , d 2 , and d 3 may be changed as required.
  • the cross-sectional shape of the noise absorbing/insulating box 212 may be concave or convex.
  • the noise absorbing hole groups 220 a to 220 c have an identical opening area
  • the noise absorbing hole groups 240 b to 240 d also have an identical opening area
  • the noise absorbing hole groups 220 a to 220 c , and 240 b to 240 d may have different opening areas, respectively.
  • part of the second wall 242 is inclined with respect to the first wall 241 .
  • the entire second wall 242 may be inclined with respect to the first wall 241 .
  • the space 243 in the noise absorbing/insulating box 232 may be divided into three or less sub-spaces or five or more sub-spaces.
  • the number of the partition walls 245 a to 245 c extending from the second wall 242 to the first wall 241 is changed to two or less or four or more so that the space 243 in the noise absorbing/insulating box 232 is divided into three or less sub-spaces or five or more sub-spaces.
  • the middle of the second wall 242 may be bent more gradually (or with a larger curvature radius) than that shown in FIG. 12 .
  • the bent portion of the second wall 242 may be formed in the first wall 241 .
  • the side walls 224 , 244 provided along the circumference of the first and second walls may be step-like or slope-shaped.
  • a pair of the opposing side walls 224 , 244 may be inclined so that the noise absorbing/insulating box 212 , 232 has a trapezoidal or triangular shape as seen from the front.
  • the side wall 224 , 244 may have a step-like shape so that the noise absorbing/insulating box has a concave or convex shape as seen from the front.
  • the noise absorbing/insulating box 232 of the fourth embodiment may be composed of a plurality of noise absorbing/insulating sub-boxes like the noise absorbing/insulating box 252 of the fifth embodiment.
  • the noise absorbing/insulating box 112 may be attached to the upper side or lower side of the glove compartment 320 , 330 .
  • a plurality of noise absorbing/insulating boxes 112 is attached to the inner cover 323 . Instead, a plurality of noise absorbing/insulating boxes 112 may be attached directly to the container 322 so as to surround the container 322 .
  • the noise absorbing/insulating box 112 is arranged outside the container 322 . Instead, the noise absorbing/insulating box 112 may be arranged inside the container 322 . In these cases, the noise absorbing/insulating box 112 provided for the container 322 may be covered with a sheet or a cover such that the noise absorbing/insulating box 112 cannot be seen by passengers.
  • the noise absorbing/insulating box 112 , 132 , 212 , 232 is attached to vehicle interior equipment such as the console 111 by the guide walls 115 , 316 , and 317 .
  • the noise absorbing/insulating box 112 , 132 , 212 , 232 may be provided with a tongue 327 having a hole 326 so that the noise absorbing/insulating box 112 , 132 , 212 , 232 is fixed to part of the vehicle body by means of the tongue 327 and a screw (not shown).
  • the noise absorbing/insulating box 112 , 132 , 212 , and 232 may be bonded to part of the vehicle body by the use of an adhesive.
  • the second noise absorbing/insulating box 112 B may be arranged between the cup holder 307 and the parking brake 308 . Further, if the vehicle is provided with a pedal parking brake, the second noise absorbing/insulating box 112 B may be arranged at the position of the parking brake 308 in the sixth embodiment. In this case, the holes 128 of the second noise absorbing/insulating box 112 B still face the inside of the console 11 .
  • the noise absorbing/insulating box 112 of the first embodiment is attached to the console 111 or to the glove compartment 320 , 330 .
  • the noise absorbing/insulating box 132 , 212 , 232 , or 252 of any of the second to fifth embodiments may be attached to the console 111 or to the glove compartment 320 , 330 in a similar manner to the sixth to eighth embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)

Abstract

A noise absorbing structure for effectively absorbing noise in a wide frequency range includes a first noise absorbing portion that is hollow and includes one or more first holes. The structure further includes a second noise absorbing portion that is hollow and includes one or more second holes. The total area of the one or more first holes differs from the total area of the one or more second holes.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a noise absorbing structure and a noise absorbing/insulating structure for absorbing noise, and more particularly, to a noise absorbing structure and a noise absorbing/insulating structure for absorbing noise in the passenger compartment of a vehicle.
  • In recent years, there has been an increasing demand for quietness in the passenger compartment of a vehicle. Accordingly, it is required that noise be further reduced in the passenger compartment. As a measure for reducing the noise, there has been proposed a noise absorbing structure, which includes a base with a plurality of holes (noise absorbing wall) and a space provided at the back of the base. This type of noise absorbing structure exhibits its noise absorbing effect based on the Helmholtz resonance principle when noise generated by a noise source passes through the holes formed in the noise absorbing wall. The sonic energy is absorbed rapidly by this noise absorbing effect.
  • Japanese Laid-Open Utility Model Publication No. 2-115049 describes an example of a vehicle ceiling that absorbs noise. The vehicle ceiling is provided with a hollow member. Further, a plurality of holes (noise absorbing holes) for air-column resonance reduction is formed on the passenger compartment side of a base. With this vehicle ceiling, the noise in the passenger compartment is guided through the holes into an air layer within the hollow member and reduced therein.
  • Japanese Laid-Open Patent Publication No. 2000-16189 describes a rear shelf trim for absorbing noise. The rear shelf trim is provided with a hollow member having an upper wall. Additionally, a plurality of holes is formed in the upper wall. The total area of the holes corresponds to about 20 to 50% of the area of the upper wall having these holes. With this rear shelf trim, the noise in the passenger compartment is also guided through the holes into the hollow space within the hollow member and absorbed therein.
  • Japanese Laid-Open Patent Publication No. 5-92441 describes a noise-insulating board having cylindrical hollow bodies arranged in a concentrated manner on a support board. The distal end of the cylindrical hollow body is open.
  • Further, as one of other noise reduction measures, felt or THINSULATE is applied to the rear face of a console box. The noise generated from the engine and gears is absorbed and reduced by the felt or THINSULATE.
  • In the above-described vehicle ceiling and rear shelf trim of the prior art, the holes all have an identical diameter. That is, the openings have an identical area. Accordingly, the frequency range of the noise absorbed by these holes is limited to a narrow range. Also, as for the noise-insulating board described above, since it is difficult to enlarge the volume of space in the cylindrical hollow bodies, the noise absorbing effect based on the Helmholtz resonance principle cannot be exhibited sufficiently. Consequently, the conventional noise absorbing mechanisms still need improvement, particularly in terms of absorbing the interior noise in a wide frequency range.
  • SUMMARY OF THE INVENTION
  • The present invention provides a noise absorbing structure and a noise absorbing/insulating structure capable of effectively absorbing noise in a wide frequency range.
  • One aspect of the present invention is a noise absorbing structure for absorbing noise. The structure is provided with a first noise absorbing portion that is hollow and includes one or more first holes, and a second noise absorbing portion that is hollow and includes one or more second holes. The one or more first holes has a total area different from that of the one or more second holes.
  • Another aspect of the present invention is a noise absorbing/insulating body for absorbing and insulating noise. The body is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall. The body is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall. The one or more first holes has a total area different from that of the one or more second holes.
  • A further aspect of the present invention is a noise absorbing structure for absorbing noise. The structure is provided with a first sub-box that is hollow and includes one or more first holes, and a second sub-box that is hollow, includes one or more second holes, and has the same shape as the first sub-box. The one or more first holes has a total area different from that of the one or more second holes.
  • Another aspect of the present invention is a noise absorbing structure for absorbing noise. The structure is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes. The structure is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes. The first noise absorbing portion and the second noise absorbing portion each have a volume that is different from one another.
  • A further aspect of the present invention is a noise absorbing/insulating structure for absorbing and insulating noise. The structure is provided with a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall. The structure is further provided with a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall. The first noise absorbing portion and the second noise absorbing portion each include a volume that is different from one another.
  • Another aspect of the present invention is a noise absorbing structure for absorbing noise. The structure is provided with a first sub-box that is hollow and includes one or more first holes, and a second sub-box that is hollow and includes one or more second holes having the same shape as the first holes. The one or more first holes has a total area and the one or more second holes has a total area that is the same as the total area of the one or more first holes. The first sub-box and the second sub-box each have a volume that is different from one another.
  • Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
  • FIG. 1 is a perspective view showing a passenger compartment in which a noise absorbing/insulating box according to a first embodiment of the present invention is installed;
  • FIG. 2 is a horizontal cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 1 is installed;
  • FIG. 3 is a vertical cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 1 is installed;
  • FIG. 4 is a perspective view showing the noise absorbing/insulating box of FIG. 1;
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4;
  • FIG. 6 is a perspective view showing a noise absorbing/insulating box according to a second embodiment of the present invention;
  • FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6;
  • FIG. 8 is a horizontal cross-sectional view of a console showing the position where a noise absorbing/insulating box according to a third embodiment of the present invention is installed;
  • FIG. 9 is a vertical cross-sectional view of the console showing the position where the noise absorbing/insulating box of FIG. 8 is installed;
  • FIG. 10 is a perspective view showing the noise absorbing/insulating box of FIG. 8;
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. 10;
  • FIG. 12 is a perspective view showing a noise absorbing/insulating box according to a fourth embodiment of the present invention;
  • FIG. 13 is a cross-sectional view taken along line 13-13 of FIG. 12;
  • FIG. 14 is a perspective view showing a noise absorbing/insulating box according to a fifth embodiment of the present invention;
  • FIG. 15 is a cross-sectional view taken along line 15-15 of FIG. 14;
  • FIG. 16 is a perspective view showing a console box in which a noise absorbing/insulating box according to a sixth embodiment of the present invention is installed;
  • FIG. 17 is a partial cross-sectional view showing the console box of FIG. 16;
  • FIG. 18 is a schematic view showing a glove compartment in which a noise absorbing/insulating box according to a seventh embodiment of the present invention is installed;
  • FIG. 19 is a cross-sectional view showing the glove compartment of FIG. 18;
  • FIG. 20 is a schematic view showing a glove compartment in which a noise absorbing/insulating box according to an eighth embodiment of the present invention is installed; and
  • FIGS. 21A and 21B are perspective views showing further examples of the noise absorbing/insulating box.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the drawings, like numerals are used for like elements throughout.
  • First Embodiment
  • A first embodiment of a noise absorbing/insulating structure according to the present invention will now be described with reference to FIG. 1 through FIG. 5. The noise absorbing/insulating structure of the first embodiment is installed in a console 111, which is an interior equipment of a vehicle.
  • As shown in FIG. 1, the console 111 is arranged between the driver's seat and passenger seat in the passenger compartment. Drive train components (not shown) including the engine and gears are mounted in the front lower part of the vehicle. Various kinds of noise, generated by the drive train components, are propagated through the inner space of the console 111 and leak into the passenger compartment through gaps thereby creating the noise in the passenger compartment. Two noise absorbing/insulating boxes 112 are installed inside the console 111 as noise absorbing bodies for reducing the passenger compartment noise. The two noise absorbing/insulating boxes 112 form a noise absorbing/insulating structure.
  • In the console 111, as shown in FIG. 2, attachment portions 114 are defined on the inner faces of opposing side walls 111 a. A noise absorbing/insulating box 112 is attached to each attachment portion 114. The attachment portions 114 each have a pair of guide walls 115 projecting towards the inside of the console 111. A guide groove 116 is formed between the pair of guide walls 115. These attachment portions 114 are located at front and rear parts of the console 111 at positions corresponding to where the noise absorbing/insulating boxes 112 are to be installed. The lateral sides of each noise absorbing/insulating box 112 are inserted in the guide grooves 116 of the corresponding attachment portion 114. This fixes the noise absorbing/insulating boxes 112 at predetermined positions in the console 111.
  • The noise absorbing/insulating boxes 112 each have a substantially rectangular box shape and are formed by blow molding or injection molding synthetic resin, such as polypropylene (PP), polyethylene (PE), or acrylonitrile-butadiene copolymer (ABS). The noise absorbing/insulating box 112 has a first wall 121, a second wall 122 opposing the first wall 121, and four side walls 124, which link the first wall 121 and the second wall 122. In other words, the noise absorbing/insulating box 112 is a hollow structure and is provided with a space 123 therein. The first wall 121 is provided with a plurality of circular holes 128, which communicate the space in the console 111 with the space 123 in the noise absorbing/insulating box 112. No holes are formed in the second wall 122 or the side walls 124 so that the second wall 122 and side walls 124 block the space 123 in the noise absorbing/insulating box 112 from the space in the console 111.
  • The noise absorbing/insulating boxes 112 held by the attachment portions 114 are arranged with their respective first walls 121 facing the front side of the vehicle. One of the noise absorbing/insulating boxes 112 is arranged in a front part of the console 1111 and the other one is in a rear part of the console 111 so as to block the path of noise propagated in the console 111. As shown in FIG. 3, the heights of these two noise absorbing/insulating boxes 112 are determined according to the height of the console 111. The lateral sides and upper and lower sides of the noise absorbing/insulating boxes 112, which are held by the attachment portions 114, abut against the inner walls of the console 111. This means that the noise absorbing/insulating boxes 112 are arranged such that no gap is formed between the noise absorbing/insulating boxes 112 and the inner walls of the console 111. Consequently, the noise absorbing/insulating boxes 112 prevent engine noise or gear noise generated by the drive train components from leaking into the passenger compartment and creating noise in the passenger compartment.
  • In each of the noise absorbing/insulating boxes 112, air in the holes 128 of the first wall 121 acts as a mass when noise propagated from the front side of the vehicle passes through the holes 128 in the console 111. Aside from the air in the holes 128 of the first wall 121, air in the space 123 of the noise absorbing/insulating box 112 isolated by the second wall 122 and the side walls 124 from the space in the console 111 acts as a spring. The air in the holes 128 is vibrated acutely by the interaction of the mass (air in the holes 128) with the spring (air in the space 123) to convert sonic energy into thermal energy. This rapidly reduces noise. The noise absorbing/insulating box 112 exhibits its noise absorbing capability in this manner and rapidly absorbs the noise generated by a noise source.
  • Next, the principal parts of the present invention will be described. FIG. 4 is a general perspective view of the noise absorbing/insulating box 112, and FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4. The two noise absorbing/insulating boxes 112 located at the front and rear parts of the console 111, respectively, have an identical configuration.
  • As shown in FIGS. 4 and 5, the noise absorbing/insulating box 112 has a first noise absorbing portion 126 a and a second noise absorbing portion 126 b, which are hollow and partitioned by a partition wall 125 that connects the first wall 121 and the second wall 122. In other words, the noise absorbing/insulating box 112 of the first embodiment is formed by integrating the first noise absorbing portion 126 a, which has a rectangular box shape, with the second noise absorbing portion 126 b, which also has a rectangular box shape. The first noise absorbing portion 126 a is defined by parts of the first wall 121 and the second wall 122, the side walls 124 and the partition wall 125. The second noise absorbing portion 126 b is defined by other parts of the first wall 121 and the second wall 122, the side walls 124 and the partition wall 125. The partition wall 125 divides the space 123 in the noise absorbing/insulating box 112 into two sub-spaces 123 a and 123 b. The sub-space 123 a in the first noise absorbing portion 126 a has the same volume as the sub-space 123 b in the second noise absorbing portion 126 b.
  • The part of the first wall 121 forming the first noise absorbing portion 126 a is defined as a first noise absorbing wall 121 a. The part of the second wall 122 forming the first noise absorbing portion 126 a and facing towards the first noise absorbing wall 121 a is defined as a first noise insulating wall 122 a. The other part of the first wall 121 forming the second noise absorbing portion 126 b is defined as a second noise absorbing wall 121 b. The other part of the second wall 122 forming the second noise absorbing portion 126 b and facing towards the second noise absorbing wall 121 b is defined as a second noise insulating wall 122 b.
  • A plurality of holes 128 are formed in the first noise absorbing wall 121 a at equal intervals in the longitudinal and lateral directions of the first noise absorbing wall 121 a. A plurality of holes 128 are formed in the second noise absorbing wall 121 b at equal intervals in the longitudinal and lateral directions of the second noise absorbing wall 121 b. The group of the plurality of holes 128 formed in the first noise absorbing wall 121 a constitutes a first noise absorbing hole group 120 a. The group of the plurality of holes 128 formed in the second noise absorbing wall 121 b constitutes a second noise absorbing hole group 120 b.
  • The holes 128 constituting the first noise absorbing hole group 120 a have an identical diameter and identical opening area. The holes 128 constituting the second noise absorbing hole group 120 b also have an identical diameter and an identical opening area. The holes 128 constituting the second noise absorbing hole group 120 b have a larger diameter, and hence a larger opening area, than the holes 128 constituting the first noise absorbing hole group 120 a. Accordingly, the opening area S1 of the first noise absorbing hole group 120 a, which is the total sum of the opening areas of the holes 128 in the first noise absorbing wall 121 a, differs from the opening area S2 of the second noise absorbing hole group 120 b, which is the total sum of the opening areas of the holes 128 in the second noise absorbing wall 121 b. In the first embodiment, the opening area S2 of the second noise absorbing hole group 120 b is larger than the opening area S1 of the first noise absorbing hole group 120 a.
  • As described above, the noise absorbing/insulating box 112 exhibits its noise absorbing capability as the result of air in the holes 128 acting as a mass and air in the space 123 acting as a spring. In a similar manner, the first and second noise absorbing portions 126 a and 126 b exhibit their noise absorbing capability as the result of air in the first and second noise absorbing hole groups 120 a and 120 b acting as a mass and air in the sub-spaces 123 a and 123 b of the first and second noise absorbing portion 126 a and 126 b acting as a spring.
  • Since the sub-spaces 123 a and 123 b have the same volume, air in the sub-spaces 123 a and 123 b act as springs that act in the same manner. In contrast, since the opening area S1 of the first absorbing hole group 120 differs from the opening area S2 of the second noise absorbing hole group 120 b, the mass of the air in the first noise absorbing hole group 120 a differs from that of the air in the second noise absorbing hole group 120 b. Since the masses acting in the first and second noise absorbing portions 126 a and 126 b differ from each other, the frequency ranges of the noise absorbed in the first and second noise absorbing portion 126 a and 126 b differ from each other. Accordingly, the noise absorbing/insulating box 112 is capable of absorbing a wide range of noise including the frequency range absorbed by the first noise absorbing portion 126 a and the frequency range absorbed by the second noise absorbing portion 126 b.
  • The opening areas S1 and S2 of the first and second noise absorbing hole groups 120 a and 120 b are determined as required according to the frequency range of noise to be absorbed by the noise absorbing/insulating box 112, or the frequency range of noise generated by the noise source. Additionally, the first and second noise insulating walls 122 a and 122 b that do not have the first and second noise absorbing hole groups 120 a and 120 b are arranged to block the noise propagated in the console 111 from the front side of the vehicle. Consequently, the noise absorbing/insulating box 112 has a noise insulating capability for insulating noise in addition to the noise absorbing capability for absorbing noise generated by a noise source.
  • The noise absorbing/insulating box 112 of the first embodiment has the advantages described below.
  • The noise absorbing/insulating box 112 is designed such that the opening area S1 of the first noise absorbing hole group 120 a of the first noise absorbing portion 126 a differs from the opening area S2 of the second noise absorbing hole group 120 b of the second noise absorbing portion 126 b. As a result, when various types of noise in a wide frequency range pass through the first and second noise absorbing hole groups 120 a and 120 b, the noise absorbing effect based on the Helmholtz resonance principle is exhibited, and the noise is rapidly absorbed by the noise absorbing/insulating box 112. Therefore, the noise absorbing/insulating box 112 absorbs noise in a wider frequency range than the conventional techniques. That is, the noise absorbing/insulating box 112 exhibits a favorable noise absorbing capability with respect to noise in a wide frequency range. Accordingly, with the noise absorbing/insulating box 112 of the first embodiment, noise such as that of the engine and the gears in the drive train is further reduced compared to the prior art. This achieves improved quietness in the passenger compartment.
  • In the first and second noise absorbing portions 126 a and 126 b, all of the plurality of holes 128 constituting the first noise absorbing hole group 120 a have an identical diameter and identical opening area, and all of the plurality of holes 128 constituting the second noise absorbing hole group 120 b also have an identical diameter and an identical opening area. In the noise absorbing/insulating box 112, the frequency ranges of the noises absorbed by the first and second noise absorbing portions 126 a and 126 b may be determined separately and explicitly.
  • The noise absorbing/insulating box 112 includes the first and second noise insulating walls 122 a and 122 b opposing the first and second noise absorbing walls 121 a and 121 b, respectively. The first and second noise insulating walls 122 a and 122 b have no holes 128 and separate the space 123 in the noise absorbing/insulating box 112 from the outside. Therefore, the first and second noise insulating walls 122 a and 122 b block the noise that is propagated through air and inhibits noise generated by a noise source from leaking outside. Accordingly, the noise absorbing/insulating box 112 exhibits excellent noise absorbing/insulating capability with respect to noise in a wide frequency range.
  • In the noise absorbing/insulating box 112, the first and second noise absorbing portions 126 a and 126 b have an identical volume, while the opening areas S1 and S2 of the first and second noise absorbing hole groups 120 a and 120 b of the first and second noise absorbing portions 126 a and 126 b differ from each other. When the noise absorbing/insulating box 112 is constructed in this manner, the range of the noise absorbed by the noise absorbing/insulating box 112 is varied easily by changing only the first wall 121 having the holes 128. Therefore, the configuration of the noise absorbing/insulating box 112 may easily be modified in correspondence with the frequency range of the noise that is to be absorbed. The noise absorbing/insulating box 112 may thus be used for many purposes.
  • The noise absorbing/insulating box 112 is thin and has a rectangular box shape and, therefore, occupies a relatively small volume. Accordingly, it is easy to ensure space for installing the noise absorbing/insulating box 112 even in a limited space within vehicle interior equipment such as the console 111.
  • Two noise absorbing/insulating boxes 112 are arranged in the interior of the console 111 so as to block the path of noise generated by the drive train components and propagated in the console 111. The positions where the noise absorbing/insulating boxes 112 are arranged are optimal for absorbing noise generated by the noise source and for insulating noise generated by the noise source. Thus, the noise generated by the drive train components are absorbed and insulated effectively by installing the two noise absorbing/insulating boxes 112 in these positions.
  • Second Embodiment
  • Hereafter, a noise absorbing/insulating box 132 according to a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 6 is a perspective view of the noise absorbing/insulating box 132, and FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6.
  • As shown in FIG. 6 and FIG. 7, the noise absorbing/insulating box 132 includes first and second noise absorbing/insulating sub-boxes 132 a and 132 b, which are assembled integrally with each other. The volumes in the first and second noise absorbing/insulating sub-boxes 132 a and 132 b are the same. The noise absorbing/insulating box 132 is thin and has a rectangular box shape formed by joining the side of the first noise absorbing/insulating sub-box 132 a with the side of the second noise absorbing/insulating sub-box 132 b.
  • In the noise absorbing/insulating box 132 of the second embodiment, the first noise absorbing/insulating sub-box 132 a is constructed as a first noise absorbing portion 146 a and the second noise absorbing/insulating sub-box 132 b is constructed as a second noise absorbing portion 146 b. Specifically, the first noise absorbing/insulating sub-box 132 a has a first noise absorbing wall 141 a and a first noise insulating wall 142 a facing towards the first noise absorbing wall 141 a. The first noise absorbing wall 141 a has a plurality of holes 148 formed at equal intervals in the longitudinal and lateral directions of the first noise absorbing wall 141 a. A group of the holes 148 formed in the first noise absorbing wall 141 a constitutes a first noise absorbing hole group 140 a.
  • The second noise absorbing/insulating sub-box 132 b has a second noise absorbing wall 141 b and a second noise insulating wall 142 b facing towards the second noise absorbing wall 141 b. The second noise absorbing wall 141 b has a plurality of holes 149 having a larger diameter than the holes 148 of the first noise absorbing hole group 140 a. The holes 149 are formed at equal intervals in the longitudinal and lateral directions of the second noise absorbing wall 141 b. A group of the holes 149 formed in the second noise absorbing wall 141 b constitutes a second noise absorbing hole group 140 b.
  • In the second embodiment, like in the first embodiment, the first and second noise absorbing portions 146 a and 146 b have the same volume, while the opening area S1 of the first noise absorbing hole group 140 a differs from the opening area S2 of the second noise absorbing hole group 140 b. Accordingly, the noise absorbing/insulating box 132 is capable of absorbing a wide range of noise.
  • Consequently, the noise absorbing/insulating box 132 of the second embodiment has the advantages described below.
  • The noise absorbing/insulating box 132 is formed by assembling the first noise absorbing/insulating sub-box 132 a having the first noise absorbing hole group 140 a integrally with the second noise absorbing/insulating sub-box 132 b having the second noise absorbing hole group 140 b. The noise absorbing/insulating box 132 exhibits further a preferable noise absorbing capability in a wide frequency range by optimizing the combination of various noise absorbing/insulating sub-boxes designed to absorb noise in various frequency areas.
  • Third Embodiment
  • A noise absorbing/insulating box 212 according to a third embodiment of the present invention will now be described with reference to FIGS. 8 to 11. In the third embodiment, the noise absorbing/insulating box 212 has a step-like shape as shown in FIG. 10 and is installed in a console 111 as shown in FIGS. 8 and 9.
  • As shown in FIGS. 10 and 11, the noise absorbing/insulating box 212 has a first noise absorbing portion 226 a, a second noise absorbing portion 226 b, and a third noise absorbing portion 226 c, which are hollow and are partitioned from each other by first and second partition walls 225 a and 225 b that link a first wall 221 and a second wall 222. In other words, the noise absorbing/insulating box 212 of the third embodiment is constituted by integrating the first, second, and third noise absorbing portions 226 a, 226 b, and 226 c, each of which has a rectangular box shape. The first wall 221 is formed to have a step-like shape as a whole. The first and second partition walls 225 a and 225 b are located at positions corresponding to steps 227 a and 227 b of the first wall 221. Accordingly, the first noise absorbing portion 226 a, the second noise absorbing portion 226 b, and the third noise absorbing portion 226 c respectively include sub-spaces 223 a, 223 b, and 223 c, the volumes of which differ from each other.
  • The part of first wall 221 forming the first noise absorbing portion 226 a is defined as a first noise absorbing wall 221 a. The part of the second wall 222 forming the first noise absorbing portion 226 a and facing towards the first noise absorbing wall 221 a is defined as a first noise insulating wall 222 a. The part of the first wall 221 forming the second noise absorbing portion 226 b is defined as a second noise absorbing wall 221 b. The part of the second wall 222 forming the second noise absorbing portion 226 b and facing towards the second noise absorbing wall 221 b is defined as a second noise insulating wall 222 b. Further, the part of the first wall 221 forming the third noise absorbing portion 226 c is defined as a third noise absorbing wall 221 c. The part of the second wall 222 forming the third noise absorbing portion 226 c and facing towards the third noise absorbing wall 22.1 c is defined as a third noise insulating wall 222 c.
  • The first to third noise absorbing walls 221 a to 221 c each have an elongated rectangular shape and equal lateral and longitudinal dimensions. The first to third noise absorbing walls 221 a to 221 c are each provided with eight holes 228. The holes 228 are circular and have the same diameter. The holes 228 are formed at substantially equal intervals in the lateral and longitudinal directions of the first to third noise absorbing walls 221 a to 221 c. The holes 228 formed in the first noise absorbing wall 221 a constitute a first noise absorbing hole group 220 a. The holes 228 formed in the second noise absorbing wall 221 b constitute a second noise absorbing hole group 220 b. The holes 228 formed in the third noise absorbing wall 221 c constitute a third noise absorbing hole group 220 c. All the holes 228 constituting the first to third noise absorbing hole groups 220 a to 220 c have the same diameter, and hence, the same opening area. Also, the first to third noise absorbing hole groups 220 a to 220 c include the same number of holes 228. Accordingly, the respective opening areas of the first noise absorbing hole group 220 a, the second noise absorbing hole group 220 b, and the third noise absorbing hole group 220 c, or the total sum of the opening areas of the holes 228 in the respective groups, are equal to one another.
  • The first to third noise absorbing walls 221 a to 221 c extend parallel to the opposing first to third noise insulating walls 222 a to 222 c. Since the first wall 221 has a step-like shape as a whole, the distance d1 between the first noise absorbing wall 221 a and the first noise insulating wall 222 a, the distance d2 between the second noise absorbing wall 221 b and the second noise insulating wall 222 b, and the distance d3 between the third noise absorbing wall 221 c and the third noise insulating wall 222 c are different from one another. Since the distances d1 to d3 are different from one another, the volume V1 of the first noise absorbing portion 226 a, the volume V2 of the second noise absorbing portion 226 b, and the volume V3 of the third noise absorbing portion 226 c are different from one another. The volumes V1 to V3 of the first to third noise absorbing portions 226 a to 226 c are determined in accordance with the frequency range of the noise that is to be absorbed, that is, in accordance with the frequency range of the noise generated by the noise source. In the third embodiment, the volume V1 of the first noise absorbing portion 226 a is larger than the volume V2 of the second noise absorbing portion 226 b, and the volume V2 is larger than the volume V3 of the third noise absorbing portion 226 c. The distances d1 to d3 each represent a minimum distance between the noise absorbing wall and the noise insulating wall in each of the noise absorbing portions.
  • As described above, the noise absorbing/insulating box 212 exhibits its noise absorbing capability as the result of air in the holes 228 acting as a mass and air in the space 223 acting as a spring. In the similar manner, the noise absorbing portions 226 a to 226 c also exhibit their noise absorbing capability as the result of air in the holes of the noise absorbing hole groups 220 a to 220 c acting as a mass, and air in the sub-spaces 223 a to 223 c of the noise absorbing portions 226 a to 226 c acting as a spring. Since the opening areas of the first to third noise absorbing hole groups 220 a to 220 c are the same, the masses of air in the first to third noise absorbing hole groups 220 a to 220 c are also the same. In contrast, since the volumes V1 to V3 of the first to third noise absorbing portions 226 a to 226 c are different from one another, the spring actions of air in the sub-spaces 223 a to 223 c are also different from one another. Since the spring actions are different among the first to third noise absorbing hole groups 220 a to 220 c, the frequency ranges of the noise absorbed in the first to third noise absorbing hole groups 220 a to 220 c are also different from one another. For this reason, the noise absorbing/insulating box 212 is capable of absorbing a wide range of noise due to the respective frequency ranges of noise that can be absorbed by the first to third noise absorbing portions 226 a to 226 c.
  • The noise absorbing/insulating box 212 of the third embodiment has the advantages described below.
  • The noise absorbing/insulating box 212 is designed such that the first to third noise absorbing portions 226 a to 226 c have different volumes V1 to V3. Thus, the noise absorbing effect is achieved based on the Helmholtz resonance principle when various types of noise in a wide frequency range pass through the holes of the noise absorbing hole groups 220 a to 220 c, and noise is absorbed by the noise absorbing/insulating box 212 more rapidly. Therefore, the frequency range of noise absorbed by the noise absorbing/insulating box 212 is wider compared to the conventional techniques. That is, the noise absorbing/insulating box 212 exhibits a preferable noise absorbing capability to noise in a wide frequency range. Accordingly, the noise absorbing/insulating box 212 of the third embodiment reduces noise in the passenger compartment that is generated by the drive train components, such as the noise of the engine or gears, more effectively than in the prior art. This achieves a greater level of quietness in the passenger compartment.
  • The first wall 221 including the first to third noise absorbing walls 221 a to 221 c has a step-like shape. The volumes V1 to V3 of the noise absorbing portions 226 a to 226 c can be varied easily by adjusting the number or positions of the steps 227 a and 227 b in the first wall 221. This fact facilitates a designer to design the noise absorbing/insulating box 212 and convenience in fabricating the noise absorbing/insulating box 212 is improved.
  • The noise absorbing/insulating box 212 includes the first to third noise insulating walls 222 a to 222 c respectively facing towards the first to third noise absorbing walls 221 a to 221 c. The first to third noise insulating walls 222 a to 222 c have no noise absorbing hole and separate the space 223 in the noise absorbing/insulating box 212 from the outside. Therefore, the first to third noise insulating walls 222 a to 222 c block the noise propagated through air and inhibit the noise generated by a noise source from leaking outside. Accordingly, the noise absorbing/insulating box 212 exhibits excellent capability of absorbing/insulating noise in a wide frequency range. Thus, noise is reduced and quietness is improved in the passenger compartment.
  • Two noise absorbing/insulating boxes 212 are arranged in the console 111 so as to block the path of noise generated by the drive train components and propagated in the console 111. The noise absorbing/insulating boxes 212 are located at optimal positions for absorbing noise generated by the noise source and for insulating the noise generated by the noise source. Therefore, the noise generated by the drive train components is effectively absorbed and insulated by installing the two noise absorbing/insulating boxes 212 in the console 111.
  • Fourth Embodiment
  • A fourth embodiment of the present invention will now be described with reference to FIGS. 12 and 13. FIG. 12 is a perspective view of a noise absorbing/insulating box 232, and FIG. 13 is a cross-sectional view taken along line 13-13 of FIG. 12.
  • As shown in FIGS. 12 and 13, the noise absorbing/insulating box 232 has a planar first wall 241 and a second wall 242 facing towards the first wall 241. In the middle of the noise absorbing/insulating box 232, the second wall 242 is bent towards the first wall 241 so that part of the second wall 242 inclines toward the first wall 241. Side walls 244 of the noise absorbing/insulating box 232 are shaped in correspondence with the first wall 241 and second wall 242.
  • Three partition walls 245 a, 245 b, and 245 c extend between the first wall 241 and the part of the second wall 242, inclining with respect to the first wall 241 such that the space 243 in the noise absorbing/insulating box 232 is divided into four sub-spaces 243 a, 243 b, 243 c, and 243 d. Thus, the noise absorbing/insulating box 232 has first to fourth noise absorbing portions 246 a to 246 d, which are hollow and separated from each other by the three partition walls 245 a, 245 b, and 245 c. The first wall 241 is divided into first to fourth noise absorbing walls 241 a to 241 d respectively corresponding to the first to fourth noise absorbing portions 246 a to 246 d. The second wall 242 is also divided into first to fourth noise insulating walls 242 a to 242 d in the same manner.
  • Each of the first to fourth noise absorbing walls 241 a to 241 d is provided with circular holes 248 having the same diameter and arranged at substantially equal intervals in the lateral and longitudinal directions of the noise absorbing/insulating box 232. The holes 248 formed in the first to fourth noise absorbing walls 241 a to 241 d respectively constitute first, second, third, and fourth noise absorbing hole groups 240 a, 240 b, 240 c and 240 d. The opening areas of the second to fourth noise absorbing hole groups 240 b to 240 d, which are the total sums of the opening areas of the holes 248 in the respective groups, are equal to one another. The opening area of the first noise absorbing hole group 240 a is larger than the opening areas of the second to fourth noise absorbing hole groups 240 b to 240 d.
  • Since the second wall 242 is partially inclined, the respective distances d1 to d4 between the first to fourth noise absorbing walls 241 a to 241 d and the first to fourth noise insulating walls 242 a to 242 d become smaller in this order towards the distal side of the noise absorbing/insulating box 232 (downward side in FIGS. 12 and 13). The volumes V1, V2, V3, and V4 of the first to fourth noise absorbing portions 246 a to 246 d are determined in accordance with the distances d1 to d4. Since the volumes V1 to V4 differ from one another and the opening area of the first noise absorbing wall 241 a differ from the opening areas of the second to fourth noise absorbing walls 241 b to 241 d, frequency ranges of noise absorbed by the first to fourth noise absorbing portions 246 a to 246 d differ from one another. The volumes V2 to V4 of the second to fourth noise absorbing portions 246 b to 246 d are determined in accordance with the frequency ranges of the noise that is to be absorbed. In the fourth embodiment, the volumes become smaller in the order of the second noise absorbing portion 246 b, the third noise absorbing portion 246 c, and then the fourth noise absorbing portion 246 d. The volume V1 of the first noise absorbing portion 246 a is obviously larger than the volumes V2 to V4 of the second to fourth noise absorbing portions 246 b to 246 d, and the opening area of the first noise absorbing hole group 240 is also obviously larger than the other opening areas.
  • Accordingly, the noise absorbing/insulating box 232 of the fourth embodiment has the advantages described below.
  • The bent portion 247 of the second wall 242 is inclined relative to the first wall 241. Therefore, the respective volumes V2 to V4 of the noise absorbing portions 246 b to 246 d may easily be varied by adjusting the angle α between the bent portion 247 of the second wall 242 and the first wall 241. This facilitates the designing and manufacturing of the noise absorbing/insulating box 232.
  • Fifth Embodiment
  • A noise absorbing/insulating box 252 according to a fifth embodiment of the present invention will now be described with reference to FIGS. 14 and 15.
  • As shown in FIGS. 14 and 15, the noise absorbing/insulating box 252 includes noise absorbing/insulating sub-boxes 252 a to 252 c of different sizes. The noise absorbing/insulating box 252 is formed by adhesively bonding the sides of the noise absorbing/insulating sub-boxes 252 a to 252 c to one another.
  • The noise absorbing/insulating box 252 of the fifth embodiment has the advantageous described below.
  • The noise absorbing/insulating box 252 is formed by adhesively bonding the noise absorbing/insulating sub-boxes 252 a to 252 c, which have simple shapes. Accordingly, the noise absorbing/insulating box 252 is easy to manufacture. The noise absorbing/insulating sub-boxes 252 a to 252 c respectively absorb noise in different frequency ranges. Therefore, the noise absorbing/insulating box 252 exhibits a preferable noise absorbing capability relative to noise in a wide frequency range by optimizing the combination of the noise absorbing/insulating sub-boxes 252 a to 252 c.
  • Sixth Embodiment
  • A sixth embodiment of the present invention will now be described with reference to FIGS. 16 and 17. In the sixth embodiment, five noise absorbing/insulating boxes 112 of the first embodiment (112A to 112C) are installed inside a console 111.
  • As shown in FIG. 16, a console 111 is arranged between the driver's seat and the passenger seat of a vehicle. A gearshift lever 312 is arranged in the front portion of the console 111. Cup holders 307 are arranged just behind the gearshift lever 312 on the driver's seat side of the console 111. A parking brake 308 is located next to the cup holder 307 on the passenger seat side of the console 111. A storage box 310 is provided behind the cup holder 307 to accommodate small articles. An ash tray 309 is provided behind the storage box 310. The noise absorbing/insulating boxes 112A to 112C are provided in the console 111 as shown by the broken lines in FIG. 16.
  • As shown in FIGS. 16 and 17, the five noise absorbing/insulating boxes 112A to 112C are arranged at positions corresponding to the gearshift lever 312, the cup holders 307, and the parking brake 308. That is, the noise absorbing/insulating boxes 112A to 112C are located in the front part of the console 111 so as to surround the mechanical parts associated with the gearshift lever 312 and parking brake 308. The arrow FR in FIG. 17 indicates the front direction.
  • In the sixth embodiment, three different types of noise absorbing/insulating boxes 112A to 112C having different widths are employed. The first noise absorbing/insulating box 112A has the smallest width, and the third noise absorbing/insulating box 112C has the largest width. Accordingly, the second noise absorbing/insulating box 112B has an intermediate width between those of the first noise absorbing/insulating box 112A and third noise absorbing/insulating box 112C.
  • Two first noise absorbing/insulating boxes 112A are arranged on the left and right sides of the gearshift lever 312 such that the holes 128 of the two first noise absorbing/insulating boxes 112A face each other. A third noise absorbing/insulating box 112C is provided just behind the gearshift lever 312 with the holes 128 of the third noise absorbing/insulating box 112C facing the front side of the vehicle. That is, the gearshift lever 312 is surrounded from three directions by the three noise absorbing/insulating boxes consisting of the first two first noise absorbing/insulating boxes 112A and the third noise absorbing/insulating box 112C.
  • A second noise absorbing/insulating box 112B is provided on the driver's seat side of the cup holder 307. The holes 128 of the second noise absorbing/insulating box 112B face toward the cup holder 307, that is, toward the inside of the console 111. Another third noise absorbing/insulating box 112C is provided behind the cup holder 307 and the parking brake 308 with the holes 128 of the third noise absorbing/insulating box 112C facing the front side of the vehicle.
  • As described above, the holes 128 of all five noise absorbing/insulating boxes 112A to 112C face the front side of the vehicle or the inside of the console 111. That is, the holes 128 of the noise absorbing/insulating boxes 112A to 112C are directed to the noise source constituted by drive train components such as the engine and the transmission.
  • The noise absorbing/insulating boxes 112A to 112C are respectively held and fixed by a plurality of guide walls 316 and 317 formed on the inner surface of the side walls of the console 111. More specifically, a pair of guide walls 317 are formed spaced apart from each other by a distance equal to the thickness of the third noise absorbing/insulating box 112C to hold the third noise absorbing/insulating box 112C. Two pairs of the guide walls 317 facing towards each other hold the third noise absorbing/insulating box 112C therebetween.
  • A pair of guide walls 316 each having a hook 316 a are spaced from each other by a distance equal to the width of the first noise absorbing/insulating box 112A or second noise absorbing/insulating box 112B to hold the first noise absorbing/insulating box 112A or second noise absorbing/insulating box 112B. The distal end of the hook 316 a of the front guide wall 316 and the distal end of the hook 316 a of the rear guide wall 316 face each other. The distance from the hook 316 a of the guide wall 316 to the side wall of the console 111 where the guide wall 316 is formed is equal to the thickness of the first or second noise absorbing/insulating box 112A or 112B. The hooks 316 a and the side walls of the console 111 hold the first noise absorbing/insulating box 112A and the second noise absorbing/insulating box 112B.
  • If the total area of the holes 128 is in the range of 0.5 to 15.0% of the area of the first wall 121 having the holes 128, the noise absorbing/insulating box 112 absorbs noise generated by the drive train effectively. In the sixth embodiment, the total area of the holes 128 is about 1.5% of the area of the first wall 121 having the holes 128. When the percentage is 1.5%, the noise absorbing/insulating box 112 effectively absorbs noise having a frequency of about 800 Hz. Noise having a frequency of about 800 Hz is generated by the transmission when the vehicle is traveling and perceived as an unpleasant noise by the driver.
  • If the diameter of the holes 128 is 10 mm or less, the noise absorbing/insulating box 112 absorbs noise effectively. Additionally, when the diameter of the holes 128 is 0.01 mm or greater, more preferably, 0.1 mm or greater, the noise absorbing/insulating box 112 is capable of effectively absorbing noise.
  • In the sixth embodiment, the holes 128 are directed toward the drive train of the vehicle. Therefore, noise generated by the drive train when the vehicle is traveling is guided into the noise absorbing/insulating boxes 112A to 112C through the holes 128 and effectively attenuated. This absorbs the noise in the passenger compartment. As a result, noise leaking into the passenger compartment through the gaps of the console 111 is reduced.
  • The sixth embodiment has the advantages described below.
  • The holes 128 are directed to the drive train. Therefore, noise from the drive train is reduced effectively. Furthermore, the possibility of sound from an audio system being absorbed is reduced.
  • The total area of the holes 128 is 1.5% of the area of the first wall 121. Therefore, the noise absorbing/insulating boxes 112A to 112C effectively reduce noise generated by the transmission.
  • The noise absorbing/insulating boxes 112A to 112C are attached to the console 111 by inserting the noise absorbing/insulating boxes 112A to 112C between the guide walls 316 and 317. Accordingly, it is easy to install the noise absorbing/insulating boxes 112A to 112C. Moreover, no special parts are required to attach the noise absorbing/insulating boxes 112A to 112C to the console 111, and an increase of the number of parts is avoided.
  • The holes 128 of the five noise absorbing/insulating boxes 112A to 112C installed in the console 111 are directed in a number of different directions. Accordingly, noise is effectively absorbed from various directions.
  • Seventh Embodiment
  • A seventh embodiment of the present invention will now be described with reference to FIGS. 18 and 19.
  • A typical vehicle includes a glove compartment for accommodating small articles. A glove compartment 320 according to the seventh embodiment includes a lid 321 and a container 322 formed integrally with the lid 321. The lid 321 and the container 322, which are integrally formed with each other, are pulled open. An inner cover 323 is attached to an instrument panel 325 so as to surround the container 322. One first noise absorbing/insulating box 112D and two second noise absorbing/insulating boxes 112E are attached to the inner cover 323 next to the gaps between the lid 321 and the instrument panel 325. The noise absorbing/insulating boxes 112D and 112E are arranged along the rear wall and the left and right side walls of the inner cover 323, respectively. The noise absorbing/insulating boxes 112D and 112E are held by hooks 316 a of the guide walls 316 formed integrally with the inner cover 323 such that the holes 128 face the outer side of the glove compartment 320.
  • The holes 128 of the first and second noise absorbing/insulating boxes 112D and 112E respectively provided on the rear wall and right wall of the inner cover 323 face the engine room and therefore effectively absorbs engine noise and transmission noise. The holes 128 of the second noise absorbing/insulating box 112E provided on the left wall of the inner cover 323 face the outer side of the vehicle and therefore effectively absorb noise picked up from the road.
  • In addition to the advantages of the sixth embodiment, the noise absorbing/insulating boxes 112D and 112E of the seventh embodiment has the advantages described below.
  • The noise absorbing/insulating box 112D and 112E are arranged next to the gaps between the lid 321 and the instrument panel 325. Thus, noise entering the passenger compartment through the gaps is effectively reduced.
  • Eighth Embodiment
  • An eighth embodiment of the present invention will now be described with reference to FIG. 20.
  • A glove compartment 330 according to the eighth embodiment includes a lid 321 and a container 322, which is separate from the lid 321.
  • One first noise absorbing/insulating box 112F and two second noise absorbing/insulating boxes 112G are provided next to the gaps between the container 322 and the instrument panel 325. The noise absorbing/insulating boxes 112F and 112G are arranged along the rear wall and the left and right walls of the container 322, respectively. The noise absorbing/insulating boxes 112F and 112G are held by hooks 316 a of guide walls 316 formed integrally with the container 322 such that the holes 128 face the outer side of the glove compartment 330.
  • The noise absorbing/insulating boxes 112F and 112G of the eighth embodiment has the same advantages as the noise absorbing/insulating boxes 112D and 112E of the seventh embodiment.
  • It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the present invention may be embodied in the following forms.
  • In the first and second embodiments, the noise absorbing/insulating boxes 112 and 132 may each include three or more noise absorbing portions. For example, in the first embodiment, the noise absorbing/insulating box 112 may have three or more different types of noise absorbing holes with different opening areas, that is, three or more different types of noise absorbing portions. In the second embodiment, the noise absorbing/insulating box 132 may have three or more noise absorbing/insulating sub-boxes.
  • In the first embodiment, the noise absorbing/insulating structure includes the two noise absorbing/insulating boxes 112. However, the noise absorbing/insulating structure may include one noise absorbing/insulating box 112 or three or more noise absorbing/insulating boxes 112.
  • In each of the above embodiments, the noise absorbing/insulating box 112, 132, 212, 232 may be arranged at any position in accordance with the position of a noise source or the shape of a component on which the noise absorbing/insulating box is to be attached. For example, the noise absorbing/insulating box 112 may be adhesively bonded to the inner surface of each of the side walls 111 a of the console 111.
  • In the first embodiment, the holes 128 constituting the first and second noise absorbing hole groups 120 a and 120 b may be formed at any position (randomly) on the first and second noise absorbing walls 121 a and 121 b, respectively. Also, each of the first and second noise absorbing hole groups 120 a and 120 b may be constituted by holes having different opening areas.
  • In the first embodiment, the holes 128 constituting the first and second noise absorbing hole groups 120 a and 120 b does not have to be spaced at equal intervals in the longitudinal and lateral directions of the noise absorbing/insulating box 112.
  • In the first and second embodiments described above, the volume of the first noise absorbing portion 126 a is equal to the volume of the second noise absorbing portion 126 b. However, the volume of the first noise absorbing portion 126 a may differ from the volume of the second noise absorbing portion 126 b.
  • In the second embodiment, the noise absorbing/insulating box 132 may be constituted by assembling a plurality of noise absorbing/insulating boxes 112 of the first embodiment into a single body. Alternatively, the noise absorbing/insulating sub-boxes may be attached to the console 111 without being formed integrally with each other as separate bodies.
  • In each of the above embodiments, the holes 128, 148, 149, 228, and 248 are all circular. However, the holes 128, 148, 149, 228 and 248 may have any shape. For example, the hole 128 may have an elliptical or polygonal shape. The polygonal shape may be, for example, the shape of a triangle or a diamond.
  • In the first and second embodiments, the noise absorbing/insulating box 112, 132 is thin and has a rectangular box shape. However, the shape of the noise absorbing/insulating box 112, 132 may be modified according to the required noise absorbing capability or the position where the noise absorbing/insulating box 112, 132 is installed. For example, the shape of the noise absorbing/insulating box 112, 132 may be spherical, disk-like, or trapezoidal.
  • In each of the above embodiments, the noise absorbing/insulating box 112, 132, 212, 232 may be attached to a vehicle interior equipment item other than the console 111, for example, to an instrument panel, a door trim, a rear trim, a roof trim, or a pillar trim. In this case, the noise absorbing/insulating box 112, 132, 212, and 232 may be used to absorb noise other than noise from the vehicle's drive train components, for example, sound from an audio system or a human voice.
  • In the first and second embodiments, as long as the noise absorbing hole groups of the respective noise absorbing portions have different opening areas, the noise absorbing hole group may be composed of a single hole.
  • In the third embodiment, the space 223 in the noise absorbing/insulating box 212 may be divided into two, or four or more sub-spaces. In this case, the number of the steps 227 a and 227 b of the first wall 221, and the number of the partition walls 225 a and 225 b extending from the steps 227 a and 227 b to second wall 222 may be changed from one to three or more so that the space 223 in the noise absorbing/insulating box 212 is divided into two or into four or more sub-spaces.
  • In the third embodiment, the second wall 222 may have a step-like shape and the first wall 221 may have a planar shape. Further, the first wall 221 and the second wall 222 may both have a step-like shape.
  • In the third embodiment, the distances d1 to d3 between the respective noise absorbing walls and the respective noise insulating walls in the first to third noise absorbing portions 226 a to 226 c become smaller in this order. However, the relationship of the distances d1, d2, and d3 may be changed as required. In this case, the cross-sectional shape of the noise absorbing/insulating box 212 may be concave or convex.
  • In the third and fourth embodiments, the noise absorbing hole groups 220 a to 220 c have an identical opening area, and the noise absorbing hole groups 240 b to 240 d also have an identical opening area. However, the noise absorbing hole groups 220 a to 220 c, and 240 b to 240 d may have different opening areas, respectively.
  • In the fourth embodiment, part of the second wall 242 is inclined with respect to the first wall 241. Instead, the entire second wall 242 may be inclined with respect to the first wall 241.
  • In the fourth embodiment, the space 243 in the noise absorbing/insulating box 232 may be divided into three or less sub-spaces or five or more sub-spaces. In this case, the number of the partition walls 245 a to 245 c extending from the second wall 242 to the first wall 241 is changed to two or less or four or more so that the space 243 in the noise absorbing/insulating box 232 is divided into three or less sub-spaces or five or more sub-spaces.
  • In the fourth embodiment, the middle of the second wall 242 may be bent more gradually (or with a larger curvature radius) than that shown in FIG. 12.
  • In the fourth embodiment, the bent portion of the second wall 242 may be formed in the first wall 241.
  • In the third to fifth embodiments, the side walls 224, 244 provided along the circumference of the first and second walls may be step-like or slope-shaped. For example, a pair of the opposing side walls 224, 244 may be inclined so that the noise absorbing/insulating box 212, 232 has a trapezoidal or triangular shape as seen from the front. Alternatively, the side wall 224, 244 may have a step-like shape so that the noise absorbing/insulating box has a concave or convex shape as seen from the front.
  • The noise absorbing/insulating box 232 of the fourth embodiment may be composed of a plurality of noise absorbing/insulating sub-boxes like the noise absorbing/insulating box 252 of the fifth embodiment.
  • In the seventh and eighth embodiments, the noise absorbing/insulating box 112 may be attached to the upper side or lower side of the glove compartment 320, 330.
  • In the seventh embodiment, a plurality of noise absorbing/insulating boxes 112 is attached to the inner cover 323. Instead, a plurality of noise absorbing/insulating boxes 112 may be attached directly to the container 322 so as to surround the container 322. In the third embodiment, the noise absorbing/insulating box 112 is arranged outside the container 322. Instead, the noise absorbing/insulating box 112 may be arranged inside the container 322. In these cases, the noise absorbing/insulating box 112 provided for the container 322 may be covered with a sheet or a cover such that the noise absorbing/insulating box 112 cannot be seen by passengers.
  • In each of the above embodiments, the noise absorbing/insulating box 112, 132, 212, 232 is attached to vehicle interior equipment such as the console 111 by the guide walls 115, 316, and 317. However, as shown in FIG. 21A or 21B, for example, the noise absorbing/insulating box 112, 132, 212, 232 may be provided with a tongue 327 having a hole 326 so that the noise absorbing/insulating box 112, 132, 212, 232 is fixed to part of the vehicle body by means of the tongue 327 and a screw (not shown). Further, the noise absorbing/insulating box 112, 132, 212, and 232 may be bonded to part of the vehicle body by the use of an adhesive.
  • In the sixth embodiment, if there is sufficient space between the cup holder 307 and the parking brake 308, the second noise absorbing/insulating box 112B may be arranged between the cup holder 307 and the parking brake 308. Further, if the vehicle is provided with a pedal parking brake, the second noise absorbing/insulating box 112B may be arranged at the position of the parking brake 308 in the sixth embodiment. In this case, the holes 128 of the second noise absorbing/insulating box 112B still face the inside of the console 11.
  • In the sixth to eighth embodiments, the noise absorbing/insulating box 112 of the first embodiment is attached to the console 111 or to the glove compartment 320, 330. Instead, the noise absorbing/insulating box 132, 212, 232, or 252 of any of the second to fifth embodiments may be attached to the console 111 or to the glove compartment 320, 330 in a similar manner to the sixth to eighth embodiments.
  • The present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.

Claims (23)

1. A noise absorbing structure for absorbing noise, the structure comprising:
a first noise absorbing portion that is hollow and includes one or more first holes; and
a second noise absorbing portion that is hollow and includes one or more second holes,
wherein the one or more first holes has a total area different from that of the one or more second holes.
2. The noise absorbing structure according to claim 1, wherein the one or more first holes include two or more first holes each with the same opening area, and the one or more second holes include two or more second holes each with the same opening area.
3. The noise absorbing structure according to claim 1, wherein each of the first and second noise absorbing portions includes a noise insulating wall for insulating noise.
4. The noise absorbing structure according to claim 1, wherein the first noise absorbing portion and the second noise absorbing portion each include a volume that is the same as one another.
5. The noise absorbing structure according to claim 1, wherein the noise absorbing structure is arranged in a vehicle including interior equipment and a drive train for driving the vehicle, the noise absorbing structure being installed in the interior equipment such that the one or more first and second holes are directed toward the drive train.
6. The noise absorbing structure according to claim 5, wherein the first noise absorbing portion has a first noise absorbing wall including the one or more first holes, the second noise absorbing portion has a second noise absorbing wall including one or more second holes, and the total area of the one or more first hole and the one or more second holes is 0.5 to 15.0% of the area of the first and second noise absorbing walls.
7. The noise absorbing structure according to claim 5, wherein the one or more first holes and the one or more second holes each have a diameter that is ten millimeters or less.
8. The noise absorbing structure according to claim 5, wherein the vehicle interior equipment includes a guide wall for holding the noise absorbing structure, and the noise absorbing structure is held by the guide wall.
9. The noise absorbing structure according to claim 5, wherein the interior equipment includes a plurality of parts assembled with a space defined therebetween, and the noise absorbing structure is arranged as a part next to the space.
10. The noise absorbing structure according to claim 5, wherein the first and second noise absorbing portions constitute a noise absorbing body, and the noise absorbing body is one of a plurality of noise absorbing bodies arranged such that the first and second holes in the noise absorbing bodies are directed in different directions.
11. A noise absorbing/insulating body for absorbing and insulating noise, the body comprising:
a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall; and
a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall,
wherein the one or more first holes has a total area different from that of the one or more second holes.
12. A noise absorbing structure for absorbing noise, the structure comprising:
a first sub-box that is hollow and includes one or more first holes; and
a second sub-box that is hollow, includes one or more second holes, and has the same shape as the first sub-box,
wherein the one or more first holes has a total area different from that of the one or more second holes.
13. A noise absorbing structure for absorbing noise, the structure comprising:
a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes; and
a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes,
wherein the first noise absorbing portion and the second noise absorbing portion each have a volume that is different from one another.
14. The noise absorbing structure according to claim 13, wherein:
the first noise absorbing portion includes a first opposing wall facing towards the first noise absorbing wall;
the second noise absorbing portion includes a second opposing wall facing towards the second noise absorbing wall; and
at least either a set of the first and second noise absorbing walls or a set of the first and second opposing walls includes a step such that the noise absorbing structure corresponds as a whole to a step-like shape.
15. The noise absorbing structure according to claims 13, wherein:
the first noise absorbing portion includes a first opposing wall facing towards the first noise absorbing wall; and
the second noise absorbing portion includes a second opposing wall facing towards the second noise absorbing wall,
either one of a set of the first and second noise absorbing walls or a set of the first and second opposing walls includes a part inclined with respect to the other one of the set of the first and second noise absorbing walls or the set of the first and second opposing walls.
16. The noise absorbing structure according to claim 13, wherein the noise absorbing structure is arranged in a vehicle including interior equipment and a drive train for driving the vehicle, the noise absorbing structure being installed in the interior equipment such that the one or more first and second holes are directed toward the drive train.
17. The noise absorbing structure according to claim 16, wherein the total area of the one or more first holes and the one or more second holes is 0.5 to 15.0% of the area of the first and second noise absorbing walls.
18. The noise absorbing structure according to claim 16, wherein the one or more first holes and the one or more second holes each have a diameter that is ten millimeters or less.
19. The noise absorbing structure according to claim 16, wherein the vehicle interior equipment includes a guide wall for holding the noise absorbing structure, and the noise absorbing structure is held by the guide wall.
20. The noise absorbing structure according to claim 16, wherein the interior equipment includes a plurality of parts assembled with a space defined therebetween, and the noise absorbing structure is arranged as a part next to the space.
21. The noise absorbing structure according to claim 16, wherein the first and second noise absorbing portions constitute a noise absorbing body, and the noise absorbing body is one of a plurality of noise absorbing bodies arranged such that the first and second holes in the noise absorbing bodies are directed in different directions.
22. A noise absorbing/insulating structure for absorbing and insulating noise, the structure comprising:
a first noise absorbing portion that is hollow and includes a first noise absorbing wall having one or more first holes and a first noise insulating wall for insulating noise facing towards the first noise absorbing wall; and
a second noise absorbing portion that is hollow and includes a second noise absorbing wall having one or more second holes and a second noise insulating wall for insulating noise facing towards the second noise absorbing wall,
wherein the first noise absorbing portion and the second noise absorbing portion each include a volume that is different from one another.
23. A noise absorbing structure for absorbing noise, the structure comprising:
a first sub-box that is hollow and includes one or more first holes; and
a second sub-box that is hollow and includes one or more second holes having the same shape as the first holes,
wherein the one or more first holes has a total area and the one or more second holes has a total area that is the same as the total area of the one or more first holes, and the first sub-box and the second sub-box each have a volume that is different from one another.
US10/959,419 2003-10-09 2004-10-07 Noise absorbing structure and noise absorbing/insulating structure Abandoned US20050098379A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003350764A JP4250496B2 (en) 2003-10-09 2003-10-09 Assembly structure for vehicle interior parts
JPPAT.2003-350764 2003-10-09
JPPAT.2004-206246 2004-07-13
JPPAT.2004-206245 2004-07-13
JP2004206245A JP2006030396A (en) 2004-07-13 2004-07-13 Noise absorbing structure and noise absorbing/insulating structure
JP2004206246A JP4231822B2 (en) 2004-07-13 2004-07-13 Sound absorber mounting structure

Publications (1)

Publication Number Publication Date
US20050098379A1 true US20050098379A1 (en) 2005-05-12

Family

ID=34557003

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/959,419 Abandoned US20050098379A1 (en) 2003-10-09 2004-10-07 Noise absorbing structure and noise absorbing/insulating structure

Country Status (1)

Country Link
US (1) US20050098379A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161280A1 (en) * 2002-12-26 2005-07-28 Fujitsu Limited Silencer and electronic equipment
US20070045042A1 (en) * 2005-08-25 2007-03-01 L&L Products, Inc. Sound reduction system with sound reduction chamber
US20070144827A1 (en) * 2005-12-22 2007-06-28 Deere & Company, A Delaware Corporation Vehicle cab noise suppressing system
US20070165328A1 (en) * 2006-01-18 2007-07-19 Maxtor Corporation Acoustic Damping Pad That Reduces Deflection of a Circuit Board
US20080135327A1 (en) * 2005-03-30 2008-06-12 Toshiyuki Matsumura Sound Absorbing Structure
US20090084627A1 (en) * 2005-09-08 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Double wall structure
US20090120717A1 (en) * 2007-10-11 2009-05-14 Yamaha Corporation Sound absorbing structure and sound chamber
US20090200103A1 (en) * 2006-10-27 2009-08-13 Airbus Deutschland Gmbh Sonic absorption device for an air pipeline of an aircraft, in particular of an air conditioning system of an aircraft
US20090205901A1 (en) * 2008-02-01 2009-08-20 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing property
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property
US20100065369A1 (en) * 2008-09-02 2010-03-18 Yamaha Corporation Acoustic structure and acoustic room
US20100224441A1 (en) * 2009-03-06 2010-09-09 Yamaha Corporation Acoustic structure
US20110056763A1 (en) * 2009-09-07 2011-03-10 Yamaha Corporation Acoustic resonance device
EP2341192A1 (en) * 2008-09-30 2011-07-06 Kabushiki Kaisha Kobe Seiko Sho Construction machine with device for acoustically insulating cabin
US20110179795A1 (en) * 2009-07-08 2011-07-28 General Electric Company Injector with integrated resonator
US8443935B2 (en) 2009-08-19 2013-05-21 Yukihiro Nishikawa Sound absorbing body
US20130126268A1 (en) * 2011-11-22 2013-05-23 Yamaha Corporation Acoustic Structure
CN103452199A (en) * 2013-09-13 2013-12-18 苏州岸肯电子科技有限公司 Sound-absorbing wedge
CN103469909A (en) * 2013-08-14 2013-12-25 苏州岸肯电子科技有限公司 Sound-absorbing wedge
US20160185442A1 (en) * 2014-05-13 2016-06-30 The Boeing Company Method and apparatus for reducing structural vibration and noise
US20160265214A1 (en) * 2013-11-18 2016-09-15 Philips Lighting Holding B.V. Acoustically absorbing room divider
CN106098050A (en) * 2016-06-07 2016-11-09 西安交通大学 A kind of continuous gradient sound absorption structure
US20170263235A1 (en) * 2014-09-08 2017-09-14 Sonobex Limited Acoustic attenuator
JP2018030414A (en) * 2016-08-23 2018-03-01 しげる工業株式会社 Vehicle helmholtz type sound absorption structure
US20180135515A1 (en) * 2016-11-17 2018-05-17 General Electric Company System and method for fluid acoustic treatment
US20180337653A1 (en) * 2017-05-18 2018-11-22 Research & Business Foundation Sungkyunkwan University Acoustic resonator
CN109285534A (en) * 2018-11-06 2019-01-29 株洲国创轨道科技有限公司 Sound absorber
CN109643537A (en) * 2016-08-31 2019-04-16 富士胶片株式会社 Noise reduction structure and anti-system for electrical teaching
CN109733299A (en) * 2018-12-10 2019-05-10 山东国金汽车制造有限公司 A kind of automobile center console and preparation method thereof with sound absorption
EP3438969A4 (en) * 2016-03-29 2019-05-22 FUJIFILM Corporation Soundproofing structure, partition structure, window member, and cage
US20210129479A1 (en) * 2019-10-31 2021-05-06 National Gypsum Properties, Llc Gypsum Panel Containing a Fluted Layer
US11204204B2 (en) * 2019-03-08 2021-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic absorber with integrated heat sink
US20220189446A1 (en) * 2020-12-11 2022-06-16 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorbing structure having one or more acoustic scatterers attached to or forming a vehicle structure
WO2023076587A1 (en) * 2021-10-29 2023-05-04 The Penn State Research Foundation Sound absorbing panels
US20230349151A1 (en) * 2022-04-28 2023-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorber and sound absorbing device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074339A (en) * 1959-12-24 1963-01-22 Gomma Antivibranti Applic Sound-proofing, ventilating and conditioning
US4084367A (en) * 1975-11-14 1978-04-18 Haworth Mfg., Inc. Sound absorbing panel
US4141427A (en) * 1976-09-03 1979-02-27 Hans List Motor vehicle with a noise suppressing engine encapsulation
US4898419A (en) * 1987-03-20 1990-02-06 Honda Giken Kogyo Kabushiki Kaisha Underbody structure of a motor vehicle
US5283600A (en) * 1992-02-21 1994-02-01 Nec Corporation LCD projector
US5457291A (en) * 1992-02-13 1995-10-10 Richardson; Brian E. Sound-attenuating panel
US5681072A (en) * 1994-04-15 1997-10-28 Georg Naher Gmbh Sound absorber for motor vehicles
US5935677A (en) * 1992-07-04 1999-08-10 Hp-Chemie Pelzer Research & Development Ltd. Textile floor coverings in motor vehicles
US6125965A (en) * 1999-10-04 2000-10-03 Wang; Chao-Shun Acoustic board
US6290022B1 (en) * 1998-02-05 2001-09-18 Woco Franz-Josef Wolf & Co. Sound absorber for sound waves
US6550571B1 (en) * 1999-06-17 2003-04-22 Komatsu, Ltd. Noise reduction structure for cab of working vehicle
US6561562B1 (en) * 1996-08-13 2003-05-13 Moller Plast Gmbh Motor vehicle with heat insulation
US6609592B2 (en) * 2000-06-30 2003-08-26 Short Brothers Plc Noise attenuation panel
US20040041428A1 (en) * 2000-06-09 2004-03-04 Graham Tompson Absorptive automobile coverings

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074339A (en) * 1959-12-24 1963-01-22 Gomma Antivibranti Applic Sound-proofing, ventilating and conditioning
US4084367A (en) * 1975-11-14 1978-04-18 Haworth Mfg., Inc. Sound absorbing panel
US4141427A (en) * 1976-09-03 1979-02-27 Hans List Motor vehicle with a noise suppressing engine encapsulation
US4898419A (en) * 1987-03-20 1990-02-06 Honda Giken Kogyo Kabushiki Kaisha Underbody structure of a motor vehicle
US5457291A (en) * 1992-02-13 1995-10-10 Richardson; Brian E. Sound-attenuating panel
US5283600A (en) * 1992-02-21 1994-02-01 Nec Corporation LCD projector
US5935677A (en) * 1992-07-04 1999-08-10 Hp-Chemie Pelzer Research & Development Ltd. Textile floor coverings in motor vehicles
US5681072A (en) * 1994-04-15 1997-10-28 Georg Naher Gmbh Sound absorber for motor vehicles
US6561562B1 (en) * 1996-08-13 2003-05-13 Moller Plast Gmbh Motor vehicle with heat insulation
US6290022B1 (en) * 1998-02-05 2001-09-18 Woco Franz-Josef Wolf & Co. Sound absorber for sound waves
US6550571B1 (en) * 1999-06-17 2003-04-22 Komatsu, Ltd. Noise reduction structure for cab of working vehicle
US6125965A (en) * 1999-10-04 2000-10-03 Wang; Chao-Shun Acoustic board
US20040041428A1 (en) * 2000-06-09 2004-03-04 Graham Tompson Absorptive automobile coverings
US6609592B2 (en) * 2000-06-30 2003-08-26 Short Brothers Plc Noise attenuation panel

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161280A1 (en) * 2002-12-26 2005-07-28 Fujitsu Limited Silencer and electronic equipment
US20080135327A1 (en) * 2005-03-30 2008-06-12 Toshiyuki Matsumura Sound Absorbing Structure
US7743880B2 (en) * 2005-03-30 2010-06-29 Panasonic Corporation Sound absorbing structure
US20070045042A1 (en) * 2005-08-25 2007-03-01 L&L Products, Inc. Sound reduction system with sound reduction chamber
US20090084627A1 (en) * 2005-09-08 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Double wall structure
US7503424B2 (en) * 2005-12-22 2009-03-17 Deere & Company Vehicle cab noise suppressing system
US20070144827A1 (en) * 2005-12-22 2007-06-28 Deere & Company, A Delaware Corporation Vehicle cab noise suppressing system
US20070165328A1 (en) * 2006-01-18 2007-07-19 Maxtor Corporation Acoustic Damping Pad That Reduces Deflection of a Circuit Board
US7742257B2 (en) * 2006-01-18 2010-06-22 Seagate Technology Llc Acoustic damping pad that reduces deflection of a circuit board
US20090200103A1 (en) * 2006-10-27 2009-08-13 Airbus Deutschland Gmbh Sonic absorption device for an air pipeline of an aircraft, in particular of an air conditioning system of an aircraft
US8210307B2 (en) * 2006-10-27 2012-07-03 Airbus Operations Gmbh Sonic absorption device for an air pipeline of an aircraft, in particular of an air conditioning system of an aircraft
US20090120717A1 (en) * 2007-10-11 2009-05-14 Yamaha Corporation Sound absorbing structure and sound chamber
US8360201B2 (en) * 2007-10-11 2013-01-29 Yamaha Corporation Sound absorbing structure and sound chamber
US8011472B2 (en) * 2008-02-01 2011-09-06 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing property
US20090205901A1 (en) * 2008-02-01 2009-08-20 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorbing property
US20090223738A1 (en) * 2008-02-22 2009-09-10 Yamaha Corporation Sound absorbing structure and vehicle component having sound absorption property
US20100065369A1 (en) * 2008-09-02 2010-03-18 Yamaha Corporation Acoustic structure and acoustic room
EP2159787A3 (en) * 2008-09-02 2011-05-04 Yamaha Corporation Acoustic structure and acoustic room
US8006802B2 (en) * 2008-09-02 2011-08-30 Yamaha Corporation Acoustic structure and acoustic room
EP2341192A4 (en) * 2008-09-30 2014-01-15 Kobe Steel Ltd Construction machine with device for acoustically insulating cabin
EP2341192A1 (en) * 2008-09-30 2011-07-06 Kabushiki Kaisha Kobe Seiko Sho Construction machine with device for acoustically insulating cabin
US8157052B2 (en) * 2009-03-06 2012-04-17 Yamaha Corporation Acoustic structure
US20100224441A1 (en) * 2009-03-06 2010-09-09 Yamaha Corporation Acoustic structure
US20110179795A1 (en) * 2009-07-08 2011-07-28 General Electric Company Injector with integrated resonator
US8789372B2 (en) 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
US8443935B2 (en) 2009-08-19 2013-05-21 Yukihiro Nishikawa Sound absorbing body
CN102013251A (en) * 2009-09-07 2011-04-13 雅马哈株式会社 Acoustic resonance device
US20110056763A1 (en) * 2009-09-07 2011-03-10 Yamaha Corporation Acoustic resonance device
US8714303B2 (en) * 2011-11-22 2014-05-06 Yamaha Corporation Acoustic structure
US20130126268A1 (en) * 2011-11-22 2013-05-23 Yamaha Corporation Acoustic Structure
CN103469909A (en) * 2013-08-14 2013-12-25 苏州岸肯电子科技有限公司 Sound-absorbing wedge
CN103452199A (en) * 2013-09-13 2013-12-18 苏州岸肯电子科技有限公司 Sound-absorbing wedge
US9765516B2 (en) * 2013-11-18 2017-09-19 Philips Lighting Holding B.V. Acoustically absorbing room divider
US20160265214A1 (en) * 2013-11-18 2016-09-15 Philips Lighting Holding B.V. Acoustically absorbing room divider
US9725154B2 (en) * 2014-05-13 2017-08-08 The Boeing Company Method and apparatus for reducing structural vibration and noise
US20160185442A1 (en) * 2014-05-13 2016-06-30 The Boeing Company Method and apparatus for reducing structural vibration and noise
US20170263235A1 (en) * 2014-09-08 2017-09-14 Sonobex Limited Acoustic attenuator
US10699688B2 (en) * 2014-09-08 2020-06-30 Sonobex Limited Acoustic attenuator
US11155993B2 (en) * 2016-03-29 2021-10-26 Fujifilm Corporation Soundproofing structure, partition structure, window member, and cage
EP3438969A4 (en) * 2016-03-29 2019-05-22 FUJIFILM Corporation Soundproofing structure, partition structure, window member, and cage
CN106098050A (en) * 2016-06-07 2016-11-09 西安交通大学 A kind of continuous gradient sound absorption structure
JP2018030414A (en) * 2016-08-23 2018-03-01 しげる工業株式会社 Vehicle helmholtz type sound absorption structure
CN109643537A (en) * 2016-08-31 2019-04-16 富士胶片株式会社 Noise reduction structure and anti-system for electrical teaching
US20190186127A1 (en) * 2016-08-31 2019-06-20 Fujifilm Corporation Sound-proofing structure and sound-proofing system
US10577791B2 (en) * 2016-08-31 2020-03-03 Fujifilm Corporation Soundproof structure and soundproof system
US20180135515A1 (en) * 2016-11-17 2018-05-17 General Electric Company System and method for fluid acoustic treatment
US20180337653A1 (en) * 2017-05-18 2018-11-22 Research & Business Foundation Sungkyunkwan University Acoustic resonator
US10957298B2 (en) * 2017-05-18 2021-03-23 Research & Business Foundation Sungkyunkwan University Acoustic resonator
CN109285534A (en) * 2018-11-06 2019-01-29 株洲国创轨道科技有限公司 Sound absorber
CN109733299A (en) * 2018-12-10 2019-05-10 山东国金汽车制造有限公司 A kind of automobile center console and preparation method thereof with sound absorption
US11204204B2 (en) * 2019-03-08 2021-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic absorber with integrated heat sink
US20210129479A1 (en) * 2019-10-31 2021-05-06 National Gypsum Properties, Llc Gypsum Panel Containing a Fluted Layer
US20220189446A1 (en) * 2020-12-11 2022-06-16 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorbing structure having one or more acoustic scatterers attached to or forming a vehicle structure
US11776521B2 (en) * 2020-12-11 2023-10-03 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorbing structure having one or more acoustic scatterers attached to or forming a vehicle structure
WO2023076587A1 (en) * 2021-10-29 2023-05-04 The Penn State Research Foundation Sound absorbing panels
US20230349151A1 (en) * 2022-04-28 2023-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. Sound absorber and sound absorbing device

Similar Documents

Publication Publication Date Title
US20050098379A1 (en) Noise absorbing structure and noise absorbing/insulating structure
US7762375B2 (en) Soundproofing material
CA2256475C (en) Sound insulating layer with integral boot
JP5547564B2 (en) Vehicle fender liner and vehicle sound absorption structure
KR101499218B1 (en) Intercooler pipe having the low vibration property for a car
US10160407B2 (en) Noise insulation structure of automotive vehicle
US6814182B2 (en) Air-diffusion panel for a motor vehicle
JP2014069702A (en) Trim for vehicle
JP2019142373A (en) vehicle
KR101147718B1 (en) The sound absorption sheet for a bonnet
US6808045B2 (en) Secondary acoustic attenuator for vehicle
JP4231822B2 (en) Sound absorber mounting structure
JP4209947B2 (en) Rib integrated soundproof layer
KR102166325B1 (en) Armrest device for reducing vibration noise
JP2006030396A (en) Noise absorbing structure and noise absorbing/insulating structure
JP2002087179A (en) Interior trim for car
JP2006284658A (en) Sound absorbing and blocking structure
JP4250496B2 (en) Assembly structure for vehicle interior parts
JPH07117404A (en) Partition-equipped tire structure
WO2023085105A1 (en) Interior component for vehicle
US6575495B2 (en) Airbag mounting module
JP2005119469A (en) Vehicular air duct
US20230069876A1 (en) Device for reducing noise using sound meta-material
WO2024004919A1 (en) Sound insulation structure and soundproof structure
JP2023140841A (en) Interior structure for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: KANTO AUTO WORKS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, TAKAHIKO;HIROSE, YOSHIKAZU;YAMADA, AKIHITO;AND OTHERS;REEL/FRAME:016158/0367;SIGNING DATES FROM 20041022 TO 20041025

Owner name: TOYODA GOSEI CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, TAKAHIKO;HIROSE, YOSHIKAZU;YAMADA, AKIHITO;AND OTHERS;REEL/FRAME:016158/0367;SIGNING DATES FROM 20041022 TO 20041025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION