JP5255668B2 - Solder plated wire manufacturing method and manufacturing apparatus - Google Patents

Solder plated wire manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5255668B2
JP5255668B2 JP2011078951A JP2011078951A JP5255668B2 JP 5255668 B2 JP5255668 B2 JP 5255668B2 JP 2011078951 A JP2011078951 A JP 2011078951A JP 2011078951 A JP2011078951 A JP 2011078951A JP 5255668 B2 JP5255668 B2 JP 5255668B2
Authority
JP
Japan
Prior art keywords
wire
winding
copper wire
plating
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011078951A
Other languages
Japanese (ja)
Other versions
JP2012017517A (en
Inventor
勝敏 若菜
高敏 上村
隆之 増井
智 富松
勝好 藤間
峻 塚野
孝政 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Riken Electric Wire Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Riken Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Riken Electric Wire Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011078951A priority Critical patent/JP5255668B2/en
Publication of JP2012017517A publication Critical patent/JP2012017517A/en
Application granted granted Critical
Publication of JP5255668B2 publication Critical patent/JP5255668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/003Regulation of tension or speed; Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/10Winding-up or coiling by means of a moving guide
    • B21C47/12Winding-up or coiling by means of a moving guide the guide moving parallel to the axis of the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • B21C47/345Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the tension or advance of the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

この発明は、電気電子機器や通信機器に用いられる半田メッキ線の製造方法及び製造装置に関し、詳しくは、太陽電池のリード線として用いるのに好適な低耐力特性を有する半田メッキ線の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for producing a solder plated wire used in electrical and electronic equipment and communication equipment, and more specifically, a method for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell, and It relates to a manufacturing apparatus.

電子部品に用いられるメッキ線の中には、0.2%耐力値が低いという低耐力特性であることが要求されるものがある。例えば、太陽電池用リード線もその1つである。   Some plated wires used for electronic parts are required to have low yield strength characteristics such as a low 0.2% yield strength value. For example, the lead wire for solar cells is one of them.

太陽電池セルは、該太陽電池セルを構成するシリコン材料のコストダウンを図るためや材料供給不足の影響を緩和するため、薄型化が求められている。
しかし、太陽電池セルが薄型化すると強度が弱くなり、太陽電池セルにおける太陽電池用リード線を半田接続した接続部分は、互いの膨張率の違いにより太陽電池セルに反りや破損が発生し易くなるという問題があった。
Solar cells are required to be thin in order to reduce the cost of the silicon material constituting the solar cells and to mitigate the effects of insufficient material supply.
However, when the solar cell is thinned, the strength is weakened, and the connecting portion where the solar cell lead wire in the solar cell is soldered is likely to be warped or damaged due to the difference in expansion coefficient. There was a problem.

よって、太陽電池用リード線は、太陽電池セルとの接続部分が太陽電池セルの変形に追従する必要があり、0.2%耐力値を低下させることが重要となる。このことから、太陽電池用リード線としては、低耐力特性を有する半田メッキ線が用いられる。   Therefore, the solar cell lead wire needs to follow the deformation of the solar cell at the connection portion with the solar cell, and it is important to reduce the 0.2% proof stress value. For this reason, a solder plated wire having a low yield strength characteristic is used as the lead wire for the solar cell.

このような半田メッキ線は、低耐力特性を有しているか否かに関わらず特許文献1に開示するような半田メッキ工程を経て被メッキ線に対してメッキ層を形成して成る。   Such a solder-plated wire is formed by forming a plating layer on the wire to be plated through a solder plating process as disclosed in Patent Document 1 regardless of whether or not it has low strength characteristics.

特許文献1に開示の半田メッキ工程は、被メッキ線としての金属素線を、金属素線導入口を通じて溶融半田メッキ液の入ったメッキ液部に導入し、半田メッキ線導出口から導出させ、大気冷却するなどして金属素線にメッキを施す工程である。   In the solder plating process disclosed in Patent Document 1, a metal wire as a wire to be plated is introduced into a plating solution containing molten solder plating solution through a metal wire introduction port, and is led out from a solder plating wire outlet. This is a step of plating the metal wires by cooling to the atmosphere.

さらに、半田メッキ線の製造工程においては、上述した半田メッキ工程以外にも、金属素線の表面に対して洗浄や焼鈍などの半田メッキ前処理工程を施したり、半田メッキ工程の後工程では、メッキ線を巻取る巻取り工程が行われる。   Furthermore, in the solder plating wire manufacturing process, in addition to the solder plating process described above, the surface of the metal element wire is subjected to a solder plating pretreatment process such as cleaning and annealing, A winding process for winding the plated wire is performed.

そして、このような工程を低耐力化した被メッキ線に対して連続して行おうとした場合には、被メッキ線に負荷がかかり易くなるため、連続加工することが困難になり、連続加工することができたとしても所望の品質のメッキ線を安定して得ることが困難であった。   And when it is going to perform such a process continuously with respect to the to-be-plated wire which carried out low yield strength, since it becomes easy to apply a load to a to-be-plated wire, it becomes difficult to carry out a continuous process and it carries out a continuous process. Even if it was possible, it was difficult to stably obtain a plated wire having a desired quality.

例えば、低耐力化した被メッキ線にかかる負荷を抑制することに重点を置くあまり、被メッキ線の表面を十分に洗浄することができず、表面に不純物や酸化層が残留することがあった。   For example, too much emphasis is placed on suppressing the load applied to the plated wire whose strength has been lowered, and the surface of the plated wire cannot be sufficiently cleaned, and impurities and oxide layers may remain on the surface. .

そうすると、その後の半田メッキ工程で被メッキ線の表面にメッキ層を形成する際に、メッキ層が剥離し易くなるなど所望の品質のメッキ線を安定して得ることが困難であった。   Then, when forming a plating layer on the surface of the wire to be plated in the subsequent solder plating process, it is difficult to stably obtain a plating wire of a desired quality such that the plating layer is easily peeled off.

その他にも、メッキ線の製造途中に、メッキ線(被メッキ線)の耐力が低いために、メッキ線の走行速度を上げることができず、製造時間が大幅にかかり、連続して行おうとすると、かえって製造効率が低下する場合も生じるという難点を有していた。   In addition, during the production of the plated wire, because the proof strength of the plated wire (wire to be plated) is low, it is not possible to increase the traveling speed of the plated wire, it takes a lot of production time, and if you try to do it continuously On the contrary, there is a problem that the production efficiency may be lowered.

低耐力特性を有する半田メッキ線の製造方法としては、例えば、特許文献2において太陽電池用平角導体の製造方法が提案されている。
特許文献2における太陽電池用平角導体の製造方法は、導体を圧延などの工程により平角状に成形した後、熱処理工程により0.2%耐力を低減することや、導体の表面に半田メッキ膜を施す製造方法である。
As a method for producing a solder-plated wire having low yield strength characteristics, for example, Patent Document 2 proposes a method for producing a flat conductor for solar cells.
In the method of manufacturing a rectangular conductor for solar cell in Patent Document 2, the conductor is formed into a rectangular shape by a process such as rolling, and then 0.2% proof stress is reduced by a heat treatment process, or a solder plating film is formed on the surface of the conductor. It is a manufacturing method to be applied.

しかし、引用文献2には、熱処理を行う上での温度設定や、軟化焼鈍炉の内部の雰囲気ガスの成分といった具体的な記載や、例えば、洗浄工程といった熱処理工程以外の工程についての具体的な言及がされていない。このため、仮に、洗浄工程を行うにしても、これら熱処理工程、洗浄工程、或いは、メッキ工程といった各工程を独立した生産ラインで行うか否かといった点や、仮に、これら複数の工程を連続して行うにしても、如何なる工程順で行うかについて定かではない。   However, the cited document 2 includes specific descriptions such as temperature setting for performing heat treatment, components of atmospheric gas inside the softening annealing furnace, and specific processes other than the heat treatment process such as a cleaning process. There is no mention. For this reason, even if the cleaning process is performed, these processes such as the heat treatment process, the cleaning process, or the plating process are performed on an independent production line. Even if it is performed, it is not certain in what process order.

すなわち、引用文献2は、上述したように、平角導体の0.2%耐力を低減したことに伴い太陽電池のリード線としての品質を確保することが困難となる一方で、0.2%耐力値を低減したメッキ線の品質を確保するために製造効率が低下するという2つの相反する製造上の課題について何ら着目されていないといわざるを得ない。   That is, as described above, Cited Document 2 has a 0.2% proof stress while it becomes difficult to ensure the quality of the lead wire of the solar cell as the 0.2% proof stress of the flat conductor is reduced. It must be said that no attention has been paid to two conflicting manufacturing problems that the manufacturing efficiency is lowered in order to ensure the quality of the plated wire with a reduced value.

特開2000−80460号公報JP 2000-80460 A 特開2006−54355号公報JP 2006-54355 A

そこで本発明は、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置の提供を目的とする。   Therefore, the present invention can obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire, the product yield can be improved. It is another object of the present invention to provide a method and apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.

この発明は、銅線に対してメッキ前処理を行うメッキ前処理手段と、銅線の表面に半田メッキを施すメッキ手段と、表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、前記銅線を、純銅系材料で形成し、前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置し、前記巻取り手段による銅線の巻取りを補助する送りキャプスタンを、前記軟化焼鈍手段よりも銅線走行方向の上流側に備え、前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、前記溶融半田メッキ槽の内部に、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラを備え、前記送りキャプスタン、及び、前記槽中方向転換ローラを、駆動手段により能動回転する能動回転ローラにより構成し、前記送りキャプスタンを、銅線のブレが生じない範囲で前記巻取り手段による銅線の巻取り速度よりも早い送り速度で能動回転可能に構成し、前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取り速度と同等の送り速度で能動回転可能に構成したことを特徴とする。 The present invention comprises a plating pretreatment means for pre-plating a copper wire, a plating means for performing solder plating on the surface of the copper wire, and a winding means for winding up the copper wire plated on the surface. A solder plated wire manufacturing apparatus, wherein the copper wire is formed of a pure copper-based material, and the pre-plating processing means includes a soft annealing means for softening and annealing the copper wire to reduce the yield strength. The formed copper wire is wound by the winding means with a winding force lower than the proof strength of the copper wire, and the softening annealing means, the plating means, and the winding means are used for running the copper wire. A feed capstan that is arranged in this order from the upstream side of the direction and assists the winding of the copper wire by the winding means is provided on the upstream side in the copper wire traveling direction from the softening annealing means , and the plating means, Molten solder plating containing molten solder plating solution Comprising, inside the molten solder plating tank, a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank, the feed capstan, and The tank direction changing roller is composed of an active rotating roller that is actively rotated by a driving means, and the feed capstan is fed faster than the winding speed of the copper wire by the winding means within a range in which no blurring of the copper wire occurs. The tank direction changing roller is configured to be capable of active rotation at a speed, and is configured to be capable of active rotation at a feed speed equivalent to the winding speed of the copper wire by the winding means .

ここで、上述した銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とは、銅線を前記巻取り手段のみで巻取る構成に限定せず、例えば、該巻取り手段による巻取りを補助する送りキャプスタンを巻取り手段よりも上流側に配置し、前記巻取り手段と該送りキャプスタンとで銅線を巻取る構成も含むものとする。   Here, the configuration in which the winding means winds with the winding force lower than the proof strength of the copper wire described above is not limited to the configuration in which the copper wire is wound only with the winding means, for example, the winding means. A feed capstan for assisting winding by the above-described arrangement is disposed upstream of the winding means, and a configuration in which a copper wire is wound by the winding means and the feed capstan is also included.

また、前記一連配置したとは、走行方向の上流側から下流側に沿って連続的か断続的かに関わらず連なって、いわゆるタンデムで配置したことを示す。   The series of arrangements means that they are arranged in a so-called tandem, regardless of whether they are continuous or intermittent from the upstream side to the downstream side in the traveling direction.

記純銅系材料とは、例えば、無酸素銅(OFC)、タフピッチ銅、リン脱酸銅といった酸化物などの不純物を含まない純度が99.9%以上であるものを示すThe pre-Symbol pure copper material, if example embodiment, oxygen-free copper (OFC), tough pitch copper, the purity containing no impurities such as oxides such as phosphorus deoxidized copper exhibits what is 99.9%.

前記銅線は、形状、サイズは限定しないが、平角線であることが好ましい。前記銅線を、上述した純銅系導体材料により平角線で形成することにより、表面にメッキ処理を施すことで、シリコン結晶ウェハ(Siセル)の所定領域に接続する接続用リード線として、すなわち、太陽電池用はんだメッキ線として用いることができるためである。   The copper wire is not limited in shape and size, but is preferably a rectangular wire. By forming the copper wire as a rectangular wire with the above-described pure copper-based conductor material, by plating the surface, the lead wire for connection connected to a predetermined region of the silicon crystal wafer (Si cell), that is, It is because it can be used as a solder plating wire for solar cells.

前記銅線送り補助手段は、例えば、送りキャプスタンなど、モータなどの駆動手段による駆動力を、ローラー、ベルト、或いは、これら部材を組み合わせて構成した伝達手段により銅線へ伝達し、該銅線、すなわち、被メッキ線やメッキ線を送り補助することができる手段である。   The copper wire feed auxiliary means transmits, for example, a driving force by a drive means such as a motor such as a feed capstan to the copper wire by a transmission means constituted by a roller, a belt, or a combination of these members. That is, it is a means that can feed and assist the plated wire and the plated wire.

この発明の態様として、前記送りキャプスタンを、前記巻取り手段による銅線の巻き取り速度よりも1m/min速い送り速度で回転可能に構成することができる。 As an aspect of the present invention, the feed capstan can be configured to be rotatable at a feed speed that is 1 m / min faster than the winding speed of the copper wire by the winding means .

またこの発明の態様として前記メッキ前処理手段において、前記軟化焼鈍手段よりも銅線走行方向の上流側に、銅線を洗浄する洗浄手段を備え、前記送りキャプスタンを、銅線走行方向における前記洗浄手段よりも銅線走行方向の下流側に配置することができる Further, as an aspect of the present invention, the plating pretreatment means includes a cleaning means for cleaning the copper wire upstream of the softening annealing means in the copper wire traveling direction, and the feed capstan is arranged in the copper wire traveling direction. It can arrange | position in the downstream of a copper wire traveling direction rather than the washing | cleaning means .

この発明は、銅線に対してメッキ前処理を行うメッキ前処理工程と、銅線の表面に半田メッキを施すメッキ工程と、表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、前記銅線には、純銅系材料で形成したものを用い、前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、前記巻取り工程を、低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行い、前記軟化焼鈍工程の前に、送りキャプスタンにより前記巻取り工程における銅線の巻取りを補助し、前記メッキ工程では、溶融半田メッキ液が貯溜された溶融半田メッキ槽の内部に銅線を走行させるとともに、前記溶融半田メッキ槽の内部に備えた槽中方向転換ローラによって、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換し、前記軟化焼鈍工程の前において、前記送りキャプスタンを、銅線のブレが生じない範囲で前記巻取り工程における銅線の巻取り速度よりも早い送り速度で駆動手段により能動回転させるとともに、前記メッキ工程において、前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取り速度と同等の送り速度で駆動手段により能動回転させることを特徴とする。 The present invention includes a plating pretreatment process for performing plating pretreatment on a copper wire, a plating process for solder plating on the surface of the copper wire, and a winding process for winding the copper wire plated on the surface. A method of manufacturing a solder plated wire to be manufactured, wherein the copper wire is made of a pure copper-based material, and in the pre-plating process, the copper wire is softened and annealed to reduce the strength. The winding step is a step of winding with a lower winding strength than the proof strength of the copper wire, and the softening annealing step and the plating step are continuously performed during the winding step. Before the softening annealing step, the winding capstan assists the winding of the copper wire in the winding step, and in the plating step, the copper wire is placed inside the molten solder plating tank in which the molten solder plating solution is stored. And the molten half By the direction change roller in the tank provided inside the plating tank, the traveling direction of the copper wire is changed before and after passing through the molten solder plating tank, and before the softening annealing step, the feed capstan is causes actively rotated by the driving means at a faster feed rate than the take-up speed of the copper wire in the winding process to the extent that the shake of the copper wire does not occur, in the plating process, the bath deflecting rollers, the winding It is characterized in that it is actively rotated by the driving means at a feed rate equivalent to the winding speed of the copper wire by the means .

この発明の態様として前記送りキャプスタンを、前記巻取り工程における銅線の巻き取り速度よりも1m/min速い送り速度で能動回転させることができる。As an aspect of the present invention, the feed capstan can be actively rotated at a feed speed that is 1 m / min faster than the copper wire winding speed in the winding step.

この発明によれば、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置を提供することができる。   According to this invention, it is possible to obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and to improve the product yield by stably obtaining such a plated wire. In addition, it is possible to provide a method and an apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.

本実施形態の半田メッキ線の製造装置の概略図。Schematic of the manufacturing apparatus of the solder plating wire of this embodiment. 本実施形態の軟化焼鈍炉の説明図。Explanatory drawing of the softening annealing furnace of this embodiment. 本実施形態のボビントラバース方式巻取り機の説明図。Explanatory drawing of the bobbin traverse type winder of this embodiment. 送りキャプスタン、及び槽中方向転換ローラの設置態様に応じたメッキ線の0.2%耐力値との関係を示すグラフ。The graph which shows the relationship with the 0.2% yield strength value of the plating wire according to the installation aspect of a feed capstan and a tank direction change roller. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment.

この発明の一実施形態を、以下図面を用いて説明する。
本実施形態の半田メッキ線の製造装置10は、図1に示すように、被メッキ線1aに対してメッキ前処理を行うメッキ前処理手段2と、被メッキ線1aの表面に半田メッキを施すメッキ手段61と、表面にメッキを施したメッキ線1bを巻取る巻取り手段71とで構成している。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a solder plated wire manufacturing apparatus 10 according to the present embodiment performs a plating pretreatment means 2 for performing a pretreatment for plating on a wire to be plated 1a, and performs solder plating on the surface of the wire to be plated 1a. It comprises a plating means 61 and a winding means 71 for winding the plated wire 1b plated on the surface.

被メッキ線1aには、別途備えた平角線製造機(図示せず)により、無酸素銅(OFC)を厚みが0.05〜0.5mm、幅が0.8〜10mmに、より好ましくは、厚みが0.08〜0.24mm、幅が1〜2mm圧延した平角銅線を用いている。   The to-be-plated wire 1a is preferably made of oxygen-free copper (OFC) with a thickness of 0.05 to 0.5 mm and a width of 0.8 to 10 mm by a separately provided flat wire manufacturing machine (not shown). A rectangular copper wire rolled with a thickness of 0.08 to 0.24 mm and a width of 1 to 2 mm is used.

前記メッキ前処理手段2は、主にサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51で構成している。   The plating pretreatment means 2 mainly comprises a supplier 11, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, and a softening annealing furnace 51.

サプライヤ11は、ドラムに巻き回された状態の被メッキ線1aをドラムが回転することで、順に解いていきながら製造ラインに供給している。サプライヤ11は、必要に応じてダンサー機能付きの構成であってもよく、また、通常の横繰り出しで繰り出す構成であってもよい。   The supplier 11 supplies the wire to be plated 1a that is wound around the drum to the production line while the drum rotates in order to be solved. The supplier 11 may be configured with a dancer function as necessary, or may be configured to be fed out in a normal lateral feed.

加熱処理炉22は、後述する軟化焼鈍炉51と略同様の構成であり、厚み方向に対して走行方向に長い直方体形状をした外観形状で構成している。加熱処理炉22は、走行方向に沿って走行方向の下流側端部が上流側端部よりも低位置になるよう傾斜配置している。加熱処理炉22の内部は、200℃の設定温度の蒸気雰囲気としている。   The heat treatment furnace 22 has substantially the same configuration as a soft annealing furnace 51 described later, and has an outer shape that is a rectangular parallelepiped shape that is long in the traveling direction with respect to the thickness direction. The heat treatment furnace 22 is inclined and arranged along the traveling direction so that the downstream end in the traveling direction is lower than the upstream end. The inside of the heat treatment furnace 22 is a steam atmosphere having a set temperature of 200 ° C.

また、加熱処理炉22に対して走行方向の下流側には、加熱処理炉22の内部を通過した被メッキ線1aを冷却する冷却水槽23を設置している。加熱処理炉22の下流側端部と冷却水槽23は、加熱処理炉22から導出した被メッキ線1aが空気に触れないよう冷却水槽23まで案内する連結管24で互いに連結されている。   A cooling water tank 23 for cooling the wire to be plated 1 a that has passed through the inside of the heat treatment furnace 22 is installed on the downstream side of the heat treatment furnace 22 in the traveling direction. The downstream end of the heat treatment furnace 22 and the cooling water tank 23 are connected to each other by a connecting pipe 24 that guides the plated wire 1a led out from the heat treatment furnace 22 to the cooling water tank 23 so as not to touch the air.

酸洗浄槽31は、被メッキ線1aの表面を酸洗浄するリン酸系洗浄液32を貯溜している。   The acid cleaning tank 31 stores a phosphoric acid cleaning liquid 32 for acid cleaning the surface of the wire 1a to be plated.

超音波水洗浄槽41では、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を、別途備えた超音波水洗浄機を用いて洗浄するための水43を貯留している。超音波水洗浄槽41の底面には、被メッキ線1aの走行方向に沿って超音波水洗浄機42の一部を構成する超音波振動板42aを配置している。なお、超音波水洗浄槽41の上方には、被メッキ線1aの走行する軌道上の側方から被メッキ線1aに向けてエアを吹き付けるエアワイパ45を設置している。   The ultrasonic water cleaning tank 41 stores water 43 for cleaning the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a using an ultrasonic water cleaning machine provided separately. On the bottom surface of the ultrasonic water cleaning tank 41, an ultrasonic vibration plate 42a constituting a part of the ultrasonic water cleaning machine 42 is disposed along the traveling direction of the wire to be plated 1a. Note that an air wiper 45 is provided above the ultrasonic water cleaning tank 41 to blow air from the side on the track on which the wire to be plated 1a travels toward the wire to be plated 1a.

前記軟化焼鈍炉51は、図2に示すように、走行方向の上流側端部よりも下流側端部が徐々に低位置になるよう傾斜配置している。前記軟化焼鈍炉51は、加熱処理炉22と同様に直方体形状で構成した軟化焼鈍炉本体52と、該軟化焼鈍炉本体52を貫通するように配置し、被メッキ線1aの挿入を許容する内径を有するパイプ状の鞘管53と、軟化焼鈍炉本体52の内部を加熱するヒータ54とで構成している。   As shown in FIG. 2, the softening annealing furnace 51 is inclined so that the downstream end is gradually lower than the upstream end in the traveling direction. The softening annealing furnace 51 is arranged so as to penetrate the softening annealing furnace main body 52 configured in a rectangular parallelepiped shape like the heat treatment furnace 22 and the softening annealing furnace main body 52, and allows the insertion of the wire to be plated 1a. And a heater 54 that heats the inside of the softening annealing furnace main body 52.

鞘管53は、軟化焼鈍炉本体52の内部空間を走行方向に沿って配置され、軟化焼鈍炉本体52の上端部、及び、下端部から軟化焼鈍炉本体52に対して突出している。鞘管53における軟化焼鈍炉本体52の上端部から突出した鞘管上側突出部分55の上端には、上端開口部55uを形成している。   The sheath tube 53 is disposed along the traveling direction in the internal space of the soft annealing furnace main body 52, and protrudes from the upper end portion and the lower end portion of the soft annealing furnace main body 52 with respect to the soft annealing furnace main body 52. An upper end opening 55u is formed at the upper end of the sheath tube upper projecting portion 55 projecting from the upper end of the softening annealing furnace main body 52 in the sheath tube 53.

上端開口部55uは、鞘管53の内部へ被メッキ線1aの導入を許容するとともに、後述するが、鞘管53の内部に充填された還元ガスGを排出する。鞘管53における軟化焼鈍炉本体52の下端部から突出した鞘管下側突出部分56の下端には、下端開口部55dを形成している。   The upper end opening 55u allows the introduction of the wire to be plated 1a into the sheath tube 53 and discharges the reducing gas G filled in the sheath tube 53 as will be described later. A lower end opening 55 d is formed at the lower end of the sheath pipe lower projecting portion 56 that projects from the lower end of the soft annealing furnace body 52 in the sheath pipe 53.

下端開口部55dは、被メッキ線の鞘管からの導出を許容する。鞘管下側突出部分56は、連結管58に直列に連結されている。さらに、鞘管下側突出部分56の途中部分には、分岐部分を構成し、該分岐部分を鞘管53の内部に還元ガスGを供給する還元ガス供給部57として構成している。 The lower end opening 55d allows the wire to be plated to be led out from the sheath tube. The casing tube lower protruding portion 56 is connected to the connecting tube 58 in series. Further, a branch portion is formed in the middle portion of the sheath tube lower projecting portion 56, and the branch portion is configured as a reducing gas supply portion 57 that supplies the reducing gas G to the inside of the sheath tube 53.

なお、還元ガス供給部57には、図示しないが、圧力調節バルブ、圧力計などを備え、前記軟化焼鈍炉51の内部の還元ガスGの濃度に応じて、還元ガス供給部57では、還元ガスGの流入量を調節可能としている。   Although not shown, the reducing gas supply unit 57 includes a pressure control valve, a pressure gauge, and the like, and the reducing gas supply unit 57 reduces the reducing gas according to the concentration of the reducing gas G inside the softening annealing furnace 51. The inflow amount of G can be adjusted.

鞘管53の内部は、還元ガス供給部57から還元ガスGを流入することで内部を還元ガス雰囲気としている。   The inside of the sheath tube 53 is made into a reducing gas atmosphere by flowing the reducing gas G from the reducing gas supply unit 57.

ヒータ54は、直線の棒状に構成したものを複数本備え、軟化焼鈍炉本体52の内部空間において鞘管53に対して上方側空間と下方側空間に配置している。ヒータ54は、被メッキ線1aの走行方向に対して直交方向、詳しくは、図2の紙面を正面視したとき図2の紙面に対して垂直な方向に相当する方向に設置し、複数本のヒータ54は、上方側空間と下方側空間とのそれぞれにおいて、互いに走行方向に沿って所定間隔ごとに並列配置している。   The heater 54 includes a plurality of heaters configured in a straight bar shape, and is arranged in an upper space and a lower space with respect to the sheath tube 53 in the internal space of the soft annealing furnace main body 52. The heater 54 is installed in a direction orthogonal to the traveling direction of the wire to be plated 1a, specifically, in a direction corresponding to a direction perpendicular to the paper surface of FIG. 2 when the paper surface of FIG. The heaters 54 are arranged in parallel at predetermined intervals along the traveling direction in each of the upper space and the lower space.

軟化焼鈍炉51内は、ヒータにより、800℃またはそれ以上の温度設定に設定している。   The temperature inside the softening annealing furnace 51 is set to 800 ° C. or higher by a heater.

鞘管下側突出部分を、連結管58に直列に連結することによって、軟化焼鈍炉51を通過した被メッキ線1aが、溶融半田メッキ液63中に浸入するまで空気に触れないようよう走行させることができる。 By connecting the lower protruding portion of the sheath pipe in series to the connecting pipe 58 , the wire 1a to be plated that has passed through the softening annealing furnace 51 is caused to travel so as not to come into contact with air until it enters the molten solder plating solution 63. be able to.

メッキ手段61は、溶融半田メッキ液63が貯溜された溶融半田メッキ槽62で構成し、溶融半田メッキ液63は、260℃の設定温度とし、溶融錫(Sn−3.0Ag−0.5Cu)を用いている。   The plating means 61 is composed of a molten solder plating tank 62 in which a molten solder plating solution 63 is stored. The molten solder plating solution 63 is set to a set temperature of 260 ° C. and molten tin (Sn-3.0Ag-0.5Cu). Is used.

溶融半田メッキ槽62の内部には、表面に溶融半田メッキ液63が付着したメッキ線1bの走行方向を鉛直上方へ方向転換する槽中方向転換ローラ64を配置している。   Inside the molten solder plating tank 62, a tank middle direction changing roller 64 is disposed that changes the traveling direction of the plated wire 1b having the molten solder plating solution 63 attached to the surface thereof vertically upward.

さらに、槽中方向転換ローラ64の鉛直上方には、メッキ線1bを鉛直上方への走行方向から巻取り手段71に向かう方向へ転換する槽上方向転換ローラ65を備えている。   Furthermore, a tank upper direction changing roller 65 for changing the plating wire 1b from a traveling direction vertically upward to a direction toward the winding means 71 is provided vertically above the tank direction changing roller 64.

槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、通常のφ20mm程度のローラよりも大径である例えば、φ100mm程度のローラで構成している。さらに、槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、それぞれに備えた図示しない駆動モータによって、巻取り手段71に備えた後述するダンサーローラ74やボビン76の回転速度と略同じ回転速度で自ら積極的に能動回転し、巻取り手段71による巻取り速度と同調するように、メッキ線1bをの方向転換を行う。   The tank middle direction changing roller 64 and the tank upper direction changing roller 65 are constituted by, for example, a roller having a diameter of about 100 mm, which is larger than a normal roller having a diameter of about 20 mm. Further, the tank middle direction changing roller 64 and the tank upper direction changing roller 65 are substantially the same as the rotational speeds of dancer rollers 74 and bobbins 76, which will be described later, provided in the winding means 71 by drive motors not shown. The direction of the plated wire 1b is changed so as to actively rotate by itself at the rotational speed and to synchronize with the winding speed by the winding means 71.

続いて巻取り手段71について説明する。
巻取り手段71は、巻取り張力調節機72、及び、ボビントラバース方式巻取り機75で構成している。
Next, the winding means 71 will be described.
The winding means 71 includes a winding tension adjusting machine 72 and a bobbin traverse type winding machine 75.

巻取り張力調節機72は、固定ローラ73に掛け渡したメッキ線1bに加わる張力に応じて上下方向に可動させて張力の具合を調節するダンサーローラ74を備えている。さらに図示しないが、掛け渡したメッキ線1bの張力を検出する張力検出センサと、該張力検出センサが検出した張力に応じて張力が安定するよう制御する制御部と、制御部の指令に基づいてダンサーローラ74を可動させるローラ可動機とで構成している。   The winding tension adjuster 72 includes a dancer roller 74 that is movable in the vertical direction in accordance with the tension applied to the plated wire 1b that spans the fixed roller 73 and adjusts the tension. Although not shown, based on a tension detection sensor that detects the tension of the plated wire 1b that has been passed, a control unit that controls the tension to be stabilized according to the tension detected by the tension detection sensor, and a command from the control unit It is comprised with the roller moving machine which moves the dancer roller 74. FIG.

ボビントラバース方式巻取り機75は、図3(a)に示すように、メッキ線1bの幅に対して幅広に構成したボビン76と、該ボビン76の軸方向に沿って該ボビン76を揺動させるモータ77、及び、モータ77の駆動を伝達するボールネジなどの伝達手段78で構成している。さらに、ボビントラバース方式巻取り機75は、ボビン76による巻取り力を検出する巻取り力検出センサ79と、該巻取り張力検出センサ79で検出した巻取り力に応じて該張力が安定するよう制御する制御部81と、制御部81の指令に基づいてボビン76を回転させるモータ82とで構成している。   As shown in FIG. 3A, the bobbin traverse type winder 75 swings the bobbin 76 along the axial direction of the bobbin 76 and the bobbin 76 configured to be wider than the width of the plating wire 1b. Motor 77 to be transmitted, and a transmission means 78 such as a ball screw for transmitting the drive of the motor 77. Further, the bobbin traverse type winding machine 75 has a winding force detection sensor 79 for detecting the winding force by the bobbin 76, and the tension is stabilized according to the winding force detected by the winding tension detection sensor 79. A control unit 81 to be controlled and a motor 82 for rotating the bobbin 76 based on a command from the control unit 81 are configured.

このように構成した半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71とのそれぞれを、被メッキ線1a、及び、メッキ線1bの走行方向の上流側からこの順にタンデムで一連配置している。   The solder plating wire manufacturing apparatus 10 configured in this manner includes a supplier 11 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a plating. Each of the molten solder plating tank 62 as the means 61 and the winding means 71 are arranged in tandem in this order from the upstream side in the traveling direction of the plated wire 1a and the plated wire 1b.

さらに、半田メッキ線の製造装置10は、メッキを施す前に被メッキ線1aの0.2%耐力値を低下させ、その後、この低耐力化した被メッキ線1aにメッキを施し、これら工程を行う間、該メッキ線1bの耐力よりも低い巻取り力で前記巻取り手段71により巻取る構成としている。   Further, the solder plated wire manufacturing apparatus 10 lowers the 0.2% proof stress value of the wire 1a to be plated before plating, and thereafter performs plating on the wire 1a having the reduced proof stress. While performing, it is set as the structure wound up by the said winding means 71 with the winding force lower than the yield strength of this plated wire 1b.

具体的には、巻取り手段71として上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75を採用するとともに、巻取り手段71の巻取りを補助する第1送りキャプスタン91と第2送りキャプスタン92とを設置している。第1送りキャプスタン91と第2送りキャプスタン92とは、いずれも低耐力化する前の被メッキ線1aの走行を送り補助するよう軟化焼鈍炉51の上流側に設置している。   Specifically, the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75 are adopted as the winding means 71, and the first feed capstan 91 assisting the winding of the winding means 71; A second feed capstan 92 is installed. Both the first feed capstan 91 and the second feed capstan 92 are installed on the upstream side of the soft annealing furnace 51 so as to feed and assist the traveling of the wire to be plated 1a before the reduction in yield strength.

詳しくは、第1送りキャプスタン91は、加熱処理炉22と酸洗浄槽31との間に備えるとともに、第2送りキャプスタン92は、酸洗浄槽31と軟化焼鈍炉51との間に備えている。   Specifically, the first feed capstan 91 is provided between the heat treatment furnace 22 and the acid cleaning tank 31, and the second feed capstan 92 is provided between the acid cleaning tank 31 and the softening annealing furnace 51. Yes.

なお、メッキ線1bの巻取り速度が遅すぎたり、速すぎたりするとメッキ線1bにかかる負荷が大きくなる。特に、巻取り速度が速すぎると、線ブレという問題も生じることになるため、第1送りキャプスタン91、及び、第2送りキャプスタン92では、巻取り手段71での巻き取り速度よりも僅かに速い速度、例えば、巻き取り速度に対して+1m/min程度速い送り速度で被メッキ線1a及びメッキ線1bを下流側に送り出している。   If the winding speed of the plated wire 1b is too slow or too fast, the load applied to the plated wire 1b increases. In particular, if the winding speed is too high, a problem of line blurring also occurs. Therefore, the first feed capstan 91 and the second feed capstan 92 are slightly lower than the winding speed of the winding means 71. The to-be-plated wire 1a and the plated wire 1b are sent to the downstream side at a very high speed, for example, at a feed speed that is about +1 m / min faster than the winding speed.

また、巻取り手段71には、上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75の近傍においてメッキ線1bを架け渡す複数の固定ローラ73を適宜、備えている。   In addition, the winding means 71 is appropriately provided with a plurality of fixed rollers 73 that bridge the plated wire 1b in the vicinity of the winding tension adjuster 72 and the bobbin traverse type winding machine 75 described above.

巻取り手段71に配置した複数の固定ローラ73のうち、最も走行方向上流側に設置した固定ローラ73を巻取り手段上流側配置ローラ73Aに設定する。巻取り手段上流側配置ローラ73Aは、槽上方向転換ローラ65により方向転換後に、巻取り手段71の側へ走行してきたメッキ線1bを巻取り手段71の側で最初に架け渡すローラである。
槽上方向転換ローラ65は、巻取り手段上流側配置ローラ73Aよりも高い位置に配置している。
Of the plurality of fixed rollers 73 arranged in the winding means 71, the fixed roller 73 installed on the most upstream side in the running direction is set as the winding means upstream arrangement roller 73A. The winding means upstream arrangement roller 73 </ b> A is a roller that first bridges the plated wire 1 b that has traveled to the winding means 71 side after the direction is changed by the tank upward direction changing roller 65 on the winding means 71 side.
The tank upper direction changing roller 65 is arranged at a position higher than the winding means upstream arrangement roller 73A.

続いて半田メッキ線の製造方法について説明する。
半田メッキ線の製造方法は、被メッキ線1aに対してメッキ前処理を行うメッキ前処理工程と、被メッキ線1aの表面に半田メッキを施すメッキ工程と、表面にメッキを施したメッキ線1bを巻取る巻取り工程とを経て製造される。
Then, the manufacturing method of a solder plating wire is demonstrated.
The solder plating wire manufacturing method includes a pre-plating process for performing plating pre-treatment on the plated wire 1a, a plating process for performing solder plating on the surface of the plated wire 1a, and a plated wire 1b having a plated surface. It is manufactured through a winding process.

メッキ前処理工程は、加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程をこの順で行う工程である。   The plating pretreatment process is a process in which a heat treatment process, an acid washing process, a water washing process, and a softening annealing process are performed in this order.

加熱処理工程では、蒸気雰囲気とした加熱処理炉22の内部において被メッキ線1aを走行させることで、被メッキ線1aの表面を蒸気洗浄する工程である。この蒸気洗浄により、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去し易いよう表面から分離させることができる。   In the heat treatment step, the surface of the wire to be plated 1a is steam cleaned by running the wire to be plated 1a inside the heat treatment furnace 22 in a steam atmosphere. By this steam cleaning, the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a can be separated from the surface so that it can be easily removed.

加熱処理工程では、加熱処理炉22内での焼鈍温度を、一般の650℃程度の焼鈍温度よりも低い200℃に設定し、この低い温度に設定した加熱処理炉22内を蒸気雰囲気とし、被メッキ線1aを走行させて、被メッキ線1aに対して水蒸気洗浄を行う。   In the heat treatment step, the annealing temperature in the heat treatment furnace 22 is set to 200 ° C., which is lower than the general annealing temperature of about 650 ° C., the inside of the heat treatment furnace 22 set at this low temperature is made a steam atmosphere, The plating wire 1a is made to travel, and water vapor cleaning is performed on the wire to be plated 1a.

このように、本工程では、被メッキ線1aに対して水蒸気洗浄を行うことに加えて、被メッキ線1aを焼鈍することにより低耐力化させることも行っている。但し、本工程では、焼鈍温度を200℃に設定することで、被メッキ線1aを低耐力化する度合いを抑制している。また、加熱処理炉22を通過後の被メッキ線1aを冷却水槽23により所定の温度まで冷却する。   Thus, in this step, in addition to performing steam cleaning on the wire to be plated 1a, the yield strength is also reduced by annealing the wire to be plated 1a. However, in this process, the annealing temperature is set to 200 ° C., thereby suppressing the degree of lowering the yield strength of the wire to be plated 1a. Further, the wire 1a to be plated after passing through the heat treatment furnace 22 is cooled to a predetermined temperature by the cooling water tank 23.

酸洗浄工程では、酸洗浄槽31に貯留したリン酸系の洗浄液32中を走行させることでこの中を走行した被メッキ線1aの表面の酸洗浄を行う。   In the acid cleaning step, the surface of the to-be-plated wire 1a that has traveled through the phosphoric acid-based cleaning liquid 32 stored in the acid cleaning tank 31 is cleaned.

水洗浄工程では、超音波水洗浄槽41において被メッキ線1aの表面を超音波水洗浄し、該被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去する。
軟化焼鈍工程では、内部を還元ガス雰囲気とした軟化焼鈍炉51の内部に被メッキ線1aを走行させることで該被メッキ線1aを軟化焼鈍して低耐力化するとともに、被メッキ線1aの表面の酸化層を還元する工程である。
In the water washing step, the surface of the wire to be plated 1a is ultrasonically washed in the ultrasonic water washing tank 41 to remove the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a.
In the softening annealing step, the wire to be plated 1a is run inside the softening annealing furnace 51 in which the inside is a reducing gas atmosphere, thereby softening and annealing the wire 1a to be plated and reducing the strength, and the surface of the wire 1a to be plated. This is a step of reducing the oxide layer.

詳しくは、図2に示すように、軟化焼鈍工程では、走行方向の上流側よりも下流側が低位置になるよう傾斜配置した軟化焼鈍炉51の鞘管53の内部に、鞘管下側突出部分56に設けた還元ガス供給部57から還元ガスGとして例えば、窒素ガスに水素ガスを混合した混合ガスを供給し、鞘管53の内部を還元性ガス雰囲気としておく(図2中の矢印d参照)。さらに、ヒータ54によって、軟化焼鈍炉本体52の内部空間を約800℃にまで加熱している。   Specifically, as shown in FIG. 2, in the softening annealing step, the sheath tube lower protruding portion is disposed inside the sheath tube 53 of the softening annealing furnace 51 that is inclined so that the downstream side is lower than the upstream side in the traveling direction. As a reducing gas G, for example, a mixed gas obtained by mixing hydrogen gas with nitrogen gas is supplied from a reducing gas supply unit 57 provided in 56, and the inside of the sheath tube 53 is set as a reducing gas atmosphere (see arrow d in FIG. 2). ). Further, the internal space of the soft annealing furnace main body 52 is heated to about 800 ° C. by the heater 54.

このような還元ガス雰囲気とした鞘管53の内部において、上端開口部55uから導入した被メッキ線1aを、還元ガスGが上昇してくる方向dと逆方向である下方向Dへ向けて走行させている。   In the inside of the sheath tube 53 having such a reducing gas atmosphere, the wire to be plated 1a introduced from the upper end opening 55u travels in a downward direction D that is opposite to the direction d in which the reducing gas G rises. I am letting.

続くメッキ工程では、被メッキ線1aが、溶融半田メッキ槽62に貯溜された溶融半田メッキ液63中を走行することで、被メッキ線1aの表面に溶融錫を付着させる。   In the subsequent plating step, the wire to be plated 1a travels in the molten solder plating solution 63 stored in the molten solder plating tank 62, thereby attaching molten tin to the surface of the wire to be plated 1a.

軟化焼鈍炉51の下端開口部55dから導出された被メッキ線1aは、連結管58の内部を走行することで空気に接触することがなく溶融半田メッキ液63中に浸入するまで案内される。 The to-be-plated wire 1a led out from the lower end opening 55d of the softening annealing furnace 51 is guided until it penetrates into the molten solder plating solution 63 without contacting the air by running inside the connecting pipe 58 .

溶融半田メッキ液63に浸入した被メッキ線1aは、表面に溶融半田メッキ液63が付着し、表面全体が溶融半田メッキ液63で被覆されたメッキ線1bとなる。メッキ線1bは、溶融半田メッキ槽62の内部を走行する過程で溶融半田メッキ槽62中に備えた槽中方向転換ローラ64により、溶融半田メッキ槽62を走行する過程で鉛直上方に方向転換され、溶融半田メッキ槽62から鉛直上方に向けて導出される。   The to-be-plated wire 1a that has entered the molten solder plating solution 63 becomes a plated wire 1b in which the molten solder plating solution 63 adheres to the surface and the entire surface is coated with the molten solder plating solution 63. The plating wire 1b is redirected vertically upward in the process of running through the molten solder plating tank 62 by the tank direction changing roller 64 provided in the molten solder plating tank 62 in the process of running inside the molten solder plating tank 62. Then, it is led out vertically from the molten solder plating tank 62.

メッキ線1bは、溶融半田メッキ槽62から導出された後、槽上方向転換ローラ65により方向転換され、巻取り手段71側へ走行する。   After the plating wire 1b is led out from the molten solder plating tank 62, the direction of the plating wire 1b is changed by the tank upper direction changing roller 65 and travels to the winding means 71 side.

巻取り工程では、被メッキ線1aに対して上述したメッキ前工程及びメッキ工程を行っている間、これら工程を経たメッキ線1bを、巻取り張力調節機72のダンサーローラ74の制御によりメッキ線1bの張力の調節を行いながらボビントラバース方式巻取り機75に備えたボビン76に整列巻きしていく。   In the winding process, while the pre-plating process and the plating process described above are performed on the wire to be plated 1 a, the plated wire 1 b that has undergone these processes is plated by controlling the dancer roller 74 of the winding tension adjuster 72. While adjusting the tension of 1b, the bobbin traverse type winder 75 is aligned and wound around the bobbin 76.

詳しくは、図3(a),(b)に示すように、ボビントラバース方式巻取り機75のボビン76を回転させながら該ボビン76の軸方向へ揺動させることでメッキ線1bを、ボビン76の軸方向に沿って並列巻きすることができ、複数層に重なり合うようにして巻取ることができる。   Specifically, as shown in FIGS. 3A and 3B, the bobbin 76 of the bobbin traverse type winding machine 75 is rotated in the axial direction of the bobbin 76 by rotating the bobbin 76, thereby causing the bobbin 76 to move the plating wire 1 b. Can be wound in parallel along the axial direction, and can be wound so as to overlap a plurality of layers.

この並列巻きは、図3(b)中の一部拡大断面図に示すように、重なり合う層間でメッキ線1bの並列ピッチを例えば、半ピッチずらして並列されるようメッキ線1bを巻き取る巻き取り方式である。   As shown in a partially enlarged cross-sectional view in FIG. 3B, this parallel winding is a winding for winding the plated wire 1b so that the parallel pitch of the plated wire 1b is shifted by, for example, a half pitch between the overlapping layers. It is a method.

上述した半田メッキ線の製造装置10および製造方法は、以下のように様々な作用、効果を得ることができる。
半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71を、それぞれメッキ線1bの走行方向の上流側から下流側へこの順に一連配置している。
The solder plated wire manufacturing apparatus 10 and the manufacturing method described above can obtain various actions and effects as follows.
The solder plating wire manufacturing apparatus 10 includes a supplier 11 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a melting as a plating means 61. The solder plating tank 62 and the winding means 71 are sequentially arranged in this order from the upstream side to the downstream side in the traveling direction of the plated wire 1b.

このように各手段を一連配置することで、製造中に低耐力化したメッキ線1bを無駄な距離を走行させることを防ぐことができ、走行中にメッキ線1bにかかる負荷を低減させることができる。   By arranging each means in this way, it is possible to prevent the plated wire 1b, which has been reduced in strength during manufacturing, from traveling a useless distance, and to reduce the load applied to the plated wire 1b during traveling. it can.

従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。   Therefore, it is possible to obtain a desired quality plated wire 1b with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire 1b, the product yield can be improved, Moreover, manufacturing efficiency can be improved.

さらにまた、半田メッキ線の製造方法では、メッキ前処理工程としての加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程と、メッキ処理工程と、巻取り工程との各工程を連続して行う。   Furthermore, in the method for producing a solder plated wire, the heat treatment process, the acid washing process, the water washing process, the softening annealing process, the plating process, and the winding process as the plating pretreatment process are continuously performed. And do it.

このように各工程を連続して行うことで例えば、所定の工程を経る度にメッキ線1b(被メッキ線1a)の走行を中断し、次の工程を行うために別の走行ラインにメッキ線1b(被メッキ線1a)を移行するといった手間を要しないため、メッキ線1bにかかる負荷を大幅に緩和でき、所望の品質のメッキ線1bを安定して得ることができる。   Thus, by continuously performing each process, for example, the traveling of the plated wire 1b (the plated wire 1a) is interrupted every time a predetermined process is performed, and the plated wire is placed on another traveling line to perform the next process. Since there is no need to move 1b (wire to be plated 1a), the load applied to the plated wire 1b can be greatly reduced, and a plated wire 1b having a desired quality can be stably obtained.

さらに、半田メッキ線の製造装置10によれば、巻取り手段71による被メッキ線1aの巻取りを補助する第1送りキャプスタン91、及び、第2送りキャプスタン92(以下「送りキャプスタン91,92」という。)を、巻取り手段71よりも被メッキ線1aの走行方向の上流側に備えることを特徴とする。   Furthermore, according to the solder plated wire manufacturing apparatus 10, the first feed capstan 91 and the second feed capstan 92 (hereinafter referred to as “feed capstan 91”) assisting the winding of the wire 1 a to be plated by the winding means 71. , 92 ")) is provided upstream of the winding means 71 in the traveling direction of the wire to be plated 1a.

また、半田メッキ線の製造方法によれば、巻取り工程を行う間、該巻取り工程で行う被メッキ線1a(メッキ線1b)の巻取りを補助する被メッキ線送り補助工程を行うことを特徴とする。   In addition, according to the method of manufacturing a solder plated wire, a wire-feeding auxiliary process for assisting winding of the wire to be plated 1a (plated wire 1b) performed in the winding process is performed during the winding process. Features.

上述した半田メッキ線の製造装置10、及び、半田メッキ線の製造方法によれば、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。   According to the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, it is possible to obtain a plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value. By stably obtaining the plated wire 1b, the product yield can be improved and the manufacturing efficiency can be improved.

さらに、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを、効率よく製造できるため、太陽電池用のリード線として好適な低耐力化したメッキ線1bを大量生産することも実現することができる。   Furthermore, since the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.

詳しくは、送りキャプスタン91,92によって、巻取り手段71による巻き取りを、走行方向の上流側で送り補助することにより、巻取り手段71によって被メッキ線1aに加わる巻き取り力を、送りキャプスタン91,92に対して走行方向の上流側と下流側とで分散することができ、巻取り手段71による巻き取りによって被メッキ線1aに加わる負荷を軽減することができる。   More specifically, the feeding capstans 91 and 92 assist the winding by the winding means 71 on the upstream side in the traveling direction, so that the winding force applied to the wire 1a to be plated by the winding means 71 can be increased. The stuns 91 and 92 can be dispersed on the upstream side and the downstream side in the traveling direction, and the load applied to the plated wire 1a by the winding by the winding means 71 can be reduced.

これにより、メッキ線1bの0.2%耐力値を十分に低下させることができるとともに、伸び率を抑えることができ、所望の品質のメッキ線を得ることができる。   As a result, the 0.2% proof stress value of the plated wire 1b can be sufficiently reduced, the elongation rate can be suppressed, and a plated wire of a desired quality can be obtained.

また、上述した半田メッキ線の製造装置10によれば、送りキャプスタン91,92を、軟化焼鈍炉51よりも走行方向の上流側に配置したことにより、
軟化焼鈍炉51で低耐力化する前の被メッキ線1aを送り補助することができる。
In addition, according to the solder plated wire manufacturing apparatus 10 described above, the feed capstans 91 and 92 are disposed upstream of the softening annealing furnace 51 in the traveling direction.
The to-be-plated wire 1a before reducing the yield strength in the softening annealing furnace 51 can be fed and assisted.

このため、例えば、能動的に回転する送りキャプシタンによって、被メッキ線1aを送り補助する際に、低耐力化した被メッキ線1aに対して引張り張力などの負荷が加わることがなく、低耐力化した被メッキ線1aに負荷が加わることがなく、メッキ線1bの品質を確保した上で、確実に送り補助することができる。   For this reason, for example, when assisting the feeding of the wire to be plated 1a by a feed captan that is actively rotated, a load such as a tensile tension is not applied to the wire to be plated 1a having a reduced strength, so that the strength is reduced. A load is not applied to the plated wire 1a, and the feeding can be surely supported while ensuring the quality of the plated wire 1b.

特に、第2送りキャプスタン92のように、洗浄手段30よりも走行方向の下流側であって、軟化焼鈍炉51よりも上流側に備えることにより、軟化焼鈍炉51よりも上流側において低耐力化する直前の被メッキ線1aを送り補助することで、被メッキ線1aに負担をかけずに、しかも、軟化焼鈍炉51を通過し、低耐力化された被メッキ線1a(メッキ線1b)の走行を効率的に送り補助することができる。   In particular, as in the second feed capstan 92, a low yield strength is provided on the downstream side of the cleaning unit 30 in the traveling direction and on the upstream side of the softening annealing furnace 51. The wire to be plated 1a (plated wire 1b) which has passed through the soft annealing furnace 51 and reduced the yield strength without applying a burden to the wire to be plated 1a by assisting the feeding of the wire to be plated 1a immediately before the conversion. It is possible to efficiently feed and assist the traveling.

また、メッキ線1bの走行方向を転換する方向転換ローラのうち、溶融半田メッキ槽62の内部に備えた槽中方向転換ローラ64を、送りキャプスタン91,92と同様に、モータ駆動によってローラが能動的に回転し、メッキ線1bの送り補助を行う送りキャプスタンとして構成してもよい。   Also, among the direction changing rollers for changing the traveling direction of the plated wire 1b, the middle direction changing roller 64 provided inside the molten solder plating vessel 62 is driven by a motor as in the case of the feed capstans 91 and 92. You may comprise as a feed capstan which rotates actively and assists the feeding of the plating wire 1b.

槽中方向転換ローラ64を送りキャプスタンとして構成することにより、溶融半田メッキ槽62を通過前と通過後とでメッキ線1bの走行方向を転換する際に、槽中方向転換ローラ64は、メッキ線1bの走行速度と略一致する回転速度で能動的に回転するため、メッキ線1bの走行方向を転換することに加えて、メッキ線1bの走行を補助することができる。   By configuring the tank direction changing roller 64 as a feed capstan, when changing the traveling direction of the plating wire 1b before and after passing through the molten solder plating tank 62, the tank direction changing roller 64 is plated. Since it actively rotates at a rotational speed that approximately matches the traveling speed of the wire 1b, in addition to changing the traveling direction of the plated wire 1b, the traveling of the plated wire 1b can be assisted.

よって、メッキ線1bが槽中方向転換ローラ64に接触することにより、回転方向の摩擦抵抗による負荷がメッキ線1bに加わることがなく、メッキ線1bをスムーズに送り出すことができる。   Therefore, when the plated wire 1b comes into contact with the in-tank direction changing roller 64, the load due to the frictional resistance in the rotation direction is not applied to the plated wire 1b, and the plated wire 1b can be smoothly sent out.

詳しくは、メッキ線1bは、その走行方向を転換する際に特に、負荷が加わるため、メッキ線1bの走行方向の転換は、該メッキ線1bの0.2%耐力値が増加してしまう要因となる。そして、メッキ線1bを溶融半田メッキ液63に漬かった状態から取り出す際に、溶融半田メッキ槽62中おいて、このような走行方向の転換を必然的に行う必要がある。   Specifically, since the load is applied particularly to the plated wire 1b when changing its running direction, the change of the running direction of the plated wire 1b causes the 0.2% proof stress value of the plated wire 1b to increase. It becomes. And when taking out the plated wire 1b from the state immersed in the molten solder plating solution 63, it is necessary to carry out such a change in the traveling direction in the molten solder plating tank 62.

このため、メッキ線1bは、溶融半田メッキ液63に漬かった状態で走行するとともに、方向転換すると、溶融半田メッキ液63からの粘性抵抗を受けることになるため、走行方向の転換の際に加わる負荷がより一層増大し、0.2%耐力値の増加量が顕著になってしまう。   For this reason, the plated wire 1b travels in a state immersed in the molten solder plating solution 63. When the direction is changed, the plated wire 1b receives a viscous resistance from the molten solder plating solution 63. The load further increases, and the amount of increase in the 0.2% proof stress value becomes significant.

このため、上述したように、槽中方向転換ローラ64を送りキャプスタンとして構成することにより、溶融半田メッキ液63に漬かった状態でのメッキ線1bの方向転換であっても、メッキ線1bに加わる負荷を極力、抑制することができ、0.2%耐力値の低いメッキ線1bを製造することができる。   For this reason, as described above, by configuring the tank direction changing roller 64 as a feed capstan, even if the direction of the plated wire 1b is changed in the state of being immersed in the molten solder plating solution 63, the plating wire 1b The applied load can be suppressed as much as possible, and the plated wire 1b having a low 0.2% proof stress value can be manufactured.

以下、効果確認実験としてメッキ線1bを巻き取る直前に加わる張力を検証する張力検証実験について説明する。   Hereinafter, a tension verification experiment for verifying the tension applied immediately before winding the plated wire 1b will be described as an effect confirmation experiment.

(張力検証実験)
張力検証実験では、メッキ線1bが巻取り張力調節機72に達するまでにおいてメッキ線1bに対して加わる張力の加わり具合、すなわちメッキ線1bの弛状態に応じて0.2%耐力値の影響について検証を行った。
(Tension verification experiment)
In the tension verification experiment, the influence of the 0.2% proof stress value depends on the tension applied to the plated wire 1b until the plated wire 1b reaches the winding tension adjuster 72, that is, the loose state of the plated wire 1b. Verification was performed.

巻取り張力調節機72に達するまでにおいてメッキ線1bに加わる張力の加わり具合を数値化することは困難であるため、張力の加わり具合は、該張力の加わり具合に影響を及ぼす送りキャプスタン91,92の設置数と溶融半田メッキ槽62の内部のシャフト(槽中方向転換ローラ64)を能動回転とするか受動回転とするかをパラメータとし、これらパラメータの設定に応じて0.2%耐力特性を検証した。   Since it is difficult to quantify the tension applied to the plated wire 1b before reaching the winding tension adjusting machine 72, the tension applied is determined by the feed capstan 91 that affects the tension applied. The parameters are whether the number of 92 and the shaft inside the molten solder plating tank 62 (in-tank direction changing roller 64) are active rotation or passive rotation, and 0.2% proof stress characteristic according to the setting of these parameters. Verified.

詳しくは、表1に示すとおり、巻取り張力調節機72に達するまでにおけるメッキ線1bに対しての張力の加わり具合を、第1張力設定から第4張力設定までの4段階で設定した。   Specifically, as shown in Table 1, the degree of tension applied to the plated wire 1b until reaching the winding tension adjuster 72 was set in four stages from the first tension setting to the fourth tension setting.

Figure 0005255668
第1張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91のみの1つであり、槽中方向転換ローラ64を、従動回転ローラで構成した場合の設定である。なお、従動回転ローラとは、ローラを駆動するモータなどを備えず、能動的に回転しないフリー回転自在なローラである。第1張力設定は、張力が4段階のうち最も強く、メッキ線1bがぴんと張った状態となる。
Figure 0005255668
In the first tension setting, the number of installed feed capstans is only one of the first feed capstans 91, and the tank direction changing roller 64 is configured by a driven rotation roller. The driven rotating roller is a free-rotating roller that does not include a motor that drives the roller and does not actively rotate. In the first tension setting, the tension is the strongest among the four stages, and the plated wire 1b is tightly tensioned.

第2張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91のみの1つであり、槽中方向転換ローラ64を駆動回転ローラで構成した場合の設定である。
なお、駆動回転ローラとは、モータなどの駆動によって能動的に回転するローラである。第2張力設定は、張力が第1張力設定に対してやや弱い状態となる。
In the second tension setting, the number of feed capstans installed is only one of the first feed capstans 91, and the tank direction changing roller 64 is a drive rotation roller.
The drive rotation roller is a roller that actively rotates by driving a motor or the like. In the second tension setting, the tension is slightly weaker than the first tension setting.

第3張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91と第2送りキャプスタン92との2つであり、槽中方向転換ローラ64を従動回転ローラで構成した場合の設定であり、張力が第2張力設定に対してやや弱い状態となる。   In the third tension setting, the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a driven rotary roller. Yes, the tension is slightly weaker than the second tension setting.

第4張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91と第2送りキャプスタン92との2つであり、槽中方向転換ローラ64を駆動回転ローラで構成した場合の設定であり、張力が第3張力設定に対してやや弱く、4段階のうち最も弱く、メッキ線1bが最も弛んだ状態となる。   In the fourth tension setting, the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a drive rotating roller. Yes, the tension is slightly weaker than the third tension setting, the weakest of the four stages, and the plated wire 1b is in the most loose state.

メッキ線1bの0.2%耐力特性などを含めたメッキ線1bの荷重特性は、上述した第1張力設定から第4張力設定の各場合において、表2、及び、図4に示すような結果となった。   The load characteristics of the plated wire 1b including the 0.2% proof stress characteristic of the plated wire 1b are the results shown in Table 2 and FIG. 4 in each case of the first tension setting to the fourth tension setting described above. It became.

Figure 0005255668
なお、被メッキ線1aは、いずれもOFCであり、0.16mm×2.0mm、0.2mm×1.0mmのサイズの2種類の平角線のそれぞれについて行った。
Figure 0005255668
In addition, all the to-be-plated wires 1a are OFC, and it performed about each of two types of rectangular wires of a size of 0.16 mm x 2.0 mm and 0.2 mm x 1.0 mm.

表2、及び、図4の結果より、2種類のサイズの被メッキ線1aのいずれの場合にも、送りキャプスタンの設置数が1つよりも2つである方が、0.2%耐力値をより低く設定できた。これにより、送りキャプスタンの設置数が1つの場合よりも2つである場合の有効性を確認できた。   From the results shown in Table 2 and FIG. 4, 0.2% proof stress is obtained when the number of feed capstans is two rather than one in either case of the two types of wire to be plated 1a. The value could be set lower. Thereby, the effectiveness in the case where the number of installed feed capstans is two than the case of one was confirmed.

また、被メッキ線1aが0.2mm×1.0mmのサイズの平角線の場合であって、送りキャプスタンの設置数が2つである場合には、槽中方向転換ローラ64が駆動回転ローラであるか従動回転ローラであるかに関わらず、0.2%耐力値が同じ値となった。一方、それ以外の全ての設定では、槽中方向転換ローラ64を駆動回転ローラで構成した場合の方が、従動回転ローラで構成した場合と比較して、0.2%耐力値が低い値となった。   Further, when the wire 1a to be plated is a rectangular wire having a size of 0.2 mm × 1.0 mm and the number of feed capstans is two, the tank direction changing roller 64 is a driving rotating roller. The 0.2% proof stress value was the same regardless of whether it was a driven rotating roller. On the other hand, in all other settings, the 0.2% proof stress value is lower when the in-tank direction changing roller 64 is configured by a driving rotating roller than when it is configured by a driven rotating roller. became.

このことから槽中方向転換ローラ64を駆動回転ローラで構成した場合の方が、従動回転ローラで構成した場合と比較して、0.2%耐力値が低くなる傾向を示すことが明らかとなり、槽中方向転換ローラ64を駆動回転ローラで構成する有効性を確認できた。   From this, it is clear that the case where the tank direction changing roller 64 is constituted by a driving rotary roller shows a tendency that the 0.2% proof stress tends to be lower than the case where it is constituted by a driven rotary roller, It was confirmed that the tank direction changing roller 64 is composed of a driving rotary roller.

特に、表2、及び、図4の結果より、第1張力設定から第4張力設定のうち、第4張力設定の場合、すなわち、巻取り張力調節機72に達するまでにおいてメッキ線1bを最も線を弛ませた状態で巻き取る場合がメッキ線1bへの負荷を低減でき、0.2%耐力値を特に低下することを確認できた。   In particular, from the results shown in Table 2 and FIG. 4, the plating wire 1 b is the most wire line in the case of the fourth tension setting among the first tension setting to the fourth tension setting, that is, until reaching the winding tension adjuster 72. It was confirmed that when the wire was wound in a loosened state, the load on the plated wire 1b could be reduced and the 0.2% proof stress value was particularly lowered.

さらに、送りキャプスタンを2つ設置した構成、及び、槽中方向転換ローラ64を駆動回転ローラで構成した構成のうち、少なくともいずれかの構成とし、被メッキ線1a(メッキ線1b)の巻き取りを送り補助することは、巻取り張力調節機72に達するまでにおいてメッキ線1bを弛ませた状態とすることができ、0.2%耐力値が所定の値まで低下した優れた品質のメッキ線1bを得る上で有効であることが確認できた。   Further, at least one of a configuration in which two feed capstans are installed and a configuration in which the tank direction changing roller 64 is configured by a driving rotary roller is used to wind the wire to be plated 1a (plating wire 1b). , The plated wire 1b can be loosened before reaching the winding tension adjusting machine 72, and the 0.2% proof stress is reduced to a predetermined value. It was confirmed to be effective in obtaining 1b.

上述した半田メッキ線の製造装置10および半田メッキ線の製造方法は、上述した構成、及び、製造方法に限定せず、様々な構成、及び、製造方法で構成することができる。
例えば、第1送りキャプスタン91、第2送りキャプスタン92は、上述した配置位置に配置するに限らず、走行方向におけるいずれの位置に配置しもよい。また、送りキャプスタンは、第1送りキャプスタン91、第2送りキャプスタン92のうち、いずれか一方のみを備えた構成であってもよい。
具体的には、例えば、図5に示すように、第2送りキャプスタン92を設置せずに構成してもよい。
The solder-plated wire manufacturing apparatus 10 and the solder-plated wire manufacturing method described above are not limited to the above-described configuration and manufacturing method, and can be configured in various configurations and manufacturing methods.
For example, the first feed capstan 91 and the second feed capstan 92 are not limited to being arranged at the above-described arrangement positions, and may be arranged at any position in the traveling direction. Further, the feed capstan may be configured to include only one of the first feed capstan 91 and the second feed capstan 92.
Specifically, for example, as shown in FIG. 5, the second feed capstan 92 may not be installed.

さらに、送りキャプスタンは、第1送りキャプスタン91、第2送りキャプスタン92以外に複数備え、適宜の箇所に設置してもよい。   Further, a plurality of feed capstans may be provided in addition to the first feed capstan 91 and the second feed capstan 92, and may be installed at appropriate locations.

さらにまた、槽中方向転換ローラ64を、上述したように、駆動回転ローラとして構成し、能動回転するよう構成するに限らず、槽上方向転換ローラ65を、駆動回転ローラとして構成し、能動回転するよう構成してもよい。   Furthermore, as described above, the tank direction changing roller 64 is configured as a driving rotation roller, and is not limited to the active rotation, but the tank upper direction changing roller 65 is configured as a driving rotation roller and is actively rotated. You may comprise.

この発明の構成と、上述した実施形態との対応において、銅線は、被メッキ線1a、及び、メッキ線1bに対応し、以下、同様に、
銅線送り補助工程は、被メッキ線送り補助工程に対応し、
銅線送り補助手段は、第1送りキャプスタン91、第2送りキャプスタン92、及び、能動回転する槽中方向転換ローラ64に対応するものとし、本発明は、上述した実施形態に限定せず、様々な実施形態で構成することができる。
In the correspondence between the configuration of the present invention and the above-described embodiment, the copper wire corresponds to the to-be-plated wire 1a and the plated wire 1b.
The copper wire feed auxiliary process corresponds to the plated wire feed auxiliary process,
The copper wire feed assisting means corresponds to the first feed capstan 91, the second feed capstan 92, and the in-tank direction changing roller 64, and the present invention is not limited to the above-described embodiment. It can be configured in various embodiments.

1a…被メッキ線
1b…メッキ線
2…メッキ前処理手段
10…メッキ線の製造装置
12…サプライヤ
22…加熱処理炉
31…酸洗浄槽
41…超音波水洗浄槽
51…軟化焼鈍炉
57…還元ガス供給部
61…メッキ手段
62…溶融半田メッキ槽
63…溶融半田メッキ液
71…巻取り手段
72…巻取り張力調節機
75…ボビントラバース方式巻取り機
91…第1送りキャプスタン
92…第2送りキャプスタン
G…還元ガス
DESCRIPTION OF SYMBOLS 1a ... Wire to be plated 1b ... Plating wire 2 ... Pre-plating means 10 ... Plating wire manufacturing device 12 ... Supplier 22 ... Heat treatment furnace 31 ... Acid cleaning tank 41 ... Ultrasonic water cleaning tank 51 ... Soft annealing furnace 57 ... Reduction Gas supply unit 61 ... plating means 62 ... molten solder plating tank 63 ... molten solder plating solution 71 ... winding means 72 ... winding tension adjusting machine 75 ... bobbin traverse type winding machine 91 ... first feed capstan 92 ... second Feed capstan G ... Reducing gas

Claims (5)

銅線に対してメッキ前処理を行うメッキ前処理手段と、
銅線の表面に半田メッキを施すメッキ手段と、
表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、
前記銅線を、純銅系材料で形成し、
前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、
低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、
前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置し、
前記巻取り手段による銅線の巻取りを補助する送りキャプスタンを、
前記軟化焼鈍手段よりも銅線走行方向の上流側に備え
前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、
前記溶融半田メッキ槽の内部に、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラを備え、
前記送りキャプスタン、及び、前記槽中方向転換ローラを、駆動手段により能動回転する能動回転ローラにより構成し、
前記送りキャプスタンを、銅線のブレが生じない範囲で前記巻取り手段による銅線の巻取り速度よりも早い送り速度で能動回転可能に構成し、
前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取り速度と同等の送り速度で能動回転可能に構成した
半田メッキ線の製造装置。
Plating pretreatment means for performing plating pretreatment on copper wire;
Plating means for performing solder plating on the surface of the copper wire;
A solder plated wire manufacturing apparatus comprising winding means for winding a copper wire plated on the surface,
Forming the copper wire with a pure copper-based material;
The plating pretreatment means includes a softening annealing means for softening and annealing the copper wire to reduce the strength.
The copper wire having a reduced yield strength is configured to be wound by the winding means with a winding force lower than the yield strength of the copper wire,
The softening annealing means, the plating means, and the winding means are arranged in this order from the upstream side in the traveling direction of the copper wire,
A feed capstan for assisting the winding of the copper wire by the winding means;
Provided on the upstream side of the copper wire running direction than the softening annealing means ,
The plating means comprises a molten solder plating tank in which a molten solder plating solution is stored,
Inside the molten solder plating tank, a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank,
The feed capstan and the tank direction changing roller are constituted by an active rotating roller that actively rotates by a driving means,
The feed capstan is configured to be capable of active rotation at a feed speed faster than the winding speed of the copper wire by the winding means within a range in which the copper wire does not shake.
The solder plated wire manufacturing apparatus, wherein the tank direction changing roller is configured to be capable of active rotation at a feeding speed equivalent to a copper wire winding speed by the winding means .
前記送りキャプスタンを、前記巻取り手段による銅線の巻き取り速度よりも1m/min速い送り速度で回転可能に構成した
請求項1に記載の半田メッキ線の製造装置。
The apparatus for manufacturing a solder plated wire according to claim 1, wherein the feed capstan is configured to be rotatable at a feed speed that is 1 m / min faster than a winding speed of the copper wire by the winding means .
前記メッキ前処理手段において、前記軟化焼鈍手段よりも銅線走行方向の上流側に、銅線を洗浄する洗浄手段を備え、
前記送りキャプスタンを、
銅線走行方向における前記洗浄手段よりも銅線走行方向の下流側に配置した
請求項1、又は2に記載の半田メッキ線の製造装置。
In the plating pretreatment means, the cleaning means for cleaning the copper wire is provided upstream of the softening annealing means in the copper wire traveling direction,
The feed capstan,
The apparatus for manufacturing a solder plated wire according to claim 1, wherein the solder plating wire is disposed downstream of the cleaning means in the copper wire traveling direction in the copper wire traveling direction.
銅線に対してメッキ前処理を行うメッキ前処理工程と、
銅線の表面に半田メッキを施すメッキ工程と、
表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、
前記銅線には、純銅系材料で形成したものを用い、
前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、
前記巻取り工程を、
低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、
前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行い、
前記軟化焼鈍工程の前に、送りキャプスタンにより前記巻取り工程における銅線の巻取りを補助し、
前記メッキ工程では、溶融半田メッキ液が貯溜された溶融半田メッキ槽の内部に銅線を走行させるとともに、前記溶融半田メッキ槽の内部に備えた槽中方向転換ローラによって、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換し、
前記軟化焼鈍工程の前において、前記送りキャプスタンを、銅線のブレが生じない範囲で前記巻取り工程における銅線の巻取り速度よりも早い送り速度で駆動手段により能動回転させるとともに、
前記メッキ工程において、前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取り速度と同等の送り速度で駆動手段により能動回転させる
半田メッキ線の製造方法。
A pre-plating process for pre-plating copper wires;
A plating process for solder plating on the surface of the copper wire;
A method of manufacturing a solder plated wire manufactured through a winding step of winding a copper wire plated on the surface,
For the copper wire, one made of a pure copper-based material is used,
In the plating pretreatment process, a softening annealing process is performed in which the copper wire is softened and annealed to reduce strength.
The winding step,
As a process of winding with a lower winding strength than the strength of the copper wire having reduced strength,
During the winding process, the softening annealing process and the plating process are continuously performed,
Before the softening annealing step, assist the winding of the copper wire in the winding step by a feed capstan ,
In the plating step, a copper wire is run inside a molten solder plating tank in which a molten solder plating solution is stored, and the molten solder plating tank is formed by a tank middle direction changing roller provided in the molten solder plating tank. Change the traveling direction of the copper wire before and after passing,
Prior to the softening annealing step, the feed capstan is actively rotated by the driving means at a feeding speed higher than the winding speed of the copper wire in the winding process in a range where the blurring of the copper wire does not occur.
The method for producing a solder plated wire, wherein, in the plating step, the tank direction changing roller is actively rotated by a driving unit at a feeding speed equal to a winding speed of the copper wire by the winding unit .
前記送りキャプスタンを、前記巻取り工程における銅線の巻き取り速度よりも1m/min速い送り速度で能動回転させる  The feed capstan is actively rotated at a feed speed that is 1 m / min faster than the winding speed of the copper wire in the winding process.
請求項4に記載の半田メッキ線の製造方法。The manufacturing method of the solder plating wire of Claim 4.
JP2011078951A 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus Active JP5255668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078951A JP5255668B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010133533 2010-06-11
JP2010133533 2010-06-11
JP2011078951A JP5255668B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012017517A JP2012017517A (en) 2012-01-26
JP5255668B2 true JP5255668B2 (en) 2013-08-07

Family

ID=45098082

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2011078949A Active JP5367752B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078950A Active JP5367753B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078951A Active JP5255668B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078952A Active JP5367754B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011127089A Active JP5255673B2 (en) 2010-06-11 2011-06-07 Solder plated wire manufacturing method and manufacturing apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2011078949A Active JP5367752B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078950A Active JP5367753B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011078952A Active JP5367754B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011127089A Active JP5255673B2 (en) 2010-06-11 2011-06-07 Solder plated wire manufacturing method and manufacturing apparatus

Country Status (5)

Country Link
JP (5) JP5367752B2 (en)
KR (2) KR101541790B1 (en)
CN (1) CN102939402B (en)
TW (1) TWI558847B (en)
WO (1) WO2011155477A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017518A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
JP7409580B1 (en) 2022-07-25 2024-01-09 Jfeスチール株式会社 Furnace temperature control device, furnace temperature control method, and coke manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889644B2 (en) * 2012-01-23 2016-03-22 三菱電線工業株式会社 Method for producing solar cell lead wire
WO2016157357A1 (en) 2015-03-30 2016-10-06 千住金属工業株式会社 Flux coating device and solder
WO2017154915A1 (en) * 2016-03-11 2017-09-14 日新製鋼株式会社 Production method for molten-aluminum-plated copper wire
JP6750263B2 (en) * 2016-03-18 2020-09-02 富士電機株式会社 Power semiconductor module
JP6476227B2 (en) * 2017-03-31 2019-02-27 Jx金属株式会社 Copper or copper alloy strip, traverse coil and manufacturing method thereof
CN107904367A (en) * 2017-11-29 2018-04-13 苏州金钜松机电有限公司 A kind of filament annealing component
WO2022085207A1 (en) * 2020-10-24 2022-04-28 アートビーム有限会社 Solder coating device and solder coating method
CN113930592A (en) * 2021-09-22 2022-01-14 江西腾江铜业有限公司 Annealing device is used in tinned wire processing
CN114807585A (en) * 2022-06-28 2022-07-29 常州九天新能源科技有限公司 Ultra-thin welding strip annealing equipment for laminated tile assembly

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138891Y2 (en) * 1972-10-03 1976-09-24
JPS5114138A (en) * 1974-07-25 1976-02-04 Chugai Ro Kogyo Kaisha Ltd RENZOKUAENMETSUKISETSUBINIOKERU AENJOKINO JOKYOHOHOOYOBISONO SOCHI
FR2280920A1 (en) * 1974-08-03 1976-02-27 Philips Nv RADIOSCOPIC FILM CASSETTE
JPS5187436A (en) * 1975-01-30 1976-07-31 Nippon Steel Corp NETSUSEKI KINZOKUMETSUKIHO
JPS6164862A (en) * 1984-09-04 1986-04-03 Hitachi Cable Ltd Continuous wire drawing, annealing and plating method and device therefor
JPH0615709B2 (en) * 1984-11-15 1994-03-02 日立電線株式会社 Thickening method for metal materials
JPS6267124A (en) * 1985-09-18 1987-03-26 Hitachi Cable Ltd Annealing apparatus for wire rod
JPH02129355A (en) * 1988-11-08 1990-05-17 Furukawa Electric Co Ltd:The Hot dipping method for wire
JPH02185958A (en) * 1989-01-13 1990-07-20 Furukawa Electric Co Ltd:The Production of wire plated with metal by hot dipping
JPH07106412B2 (en) * 1990-03-20 1995-11-15 株式会社フジクラ High conductivity copper coated steel trolley wire manufacturing method
JPH0397841A (en) * 1989-09-11 1991-04-23 Mitsubishi Electric Corp Soldered product for copper alloy
JPH055169A (en) * 1990-09-20 1993-01-14 Totoku Electric Co Ltd Production of hot-dip coated wire
US5472739A (en) * 1990-09-20 1995-12-05 Totoku Electric Co., Ltd. Process of producing a hot dipped wire from a base wire, with the absence of iron-based, iron oxide-based and iron hydroxide-based minute particles on surfaces of the base wire
JPH04293757A (en) * 1991-03-23 1992-10-19 Totoku Electric Co Ltd Production of flat square coated wire
JPH0533109A (en) * 1991-07-30 1993-02-09 Furukawa Electric Co Ltd:The Production of hot-dipped material
JPH05115902A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for cold rolling shutter material for disk cassette
JPH05315502A (en) * 1992-05-07 1993-11-26 Hitachi Cable Ltd Method and device for plating slender rod of irregular shape
JP2973350B2 (en) * 1994-06-14 1999-11-08 東京特殊電線株式会社 Manufacturing method of hot-dip wire
JP3005742B2 (en) * 1995-01-27 2000-02-07 東京特殊電線株式会社 Method for manufacturing tin-covered rectangular copper wire
JPH11179422A (en) * 1997-12-22 1999-07-06 Nkk Corp Method for controlling shape of thin steel strip
JPH11302811A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp In-furnace atmosphere gas controller for continuous galvanizing equipment
JP2000080460A (en) 1998-06-29 2000-03-21 Totoku Electric Co Ltd Soldered wire
JP2953660B1 (en) * 1998-10-16 1999-09-27 川崎重工業株式会社 Drive structure of sink roll for hot-dip plating
JP2000282206A (en) * 1999-03-30 2000-10-10 Hitachi Cable Ltd Production of metal-plated wire rod and apparatus therefor
JP2004313881A (en) * 2003-04-14 2004-11-11 Toyobo Co Ltd Winding method for hollow fiber membrane and hollow fiber membrane
US7754973B2 (en) * 2004-05-21 2010-07-13 Neomax Materials Co., Ltd. Electrode wire for solar cell
JP5491682B2 (en) * 2004-08-13 2014-05-14 日立金属株式会社 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2006144104A (en) * 2004-11-24 2006-06-08 Nippon Steel Corp Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP4780008B2 (en) * 2006-12-14 2011-09-28 日立電線株式会社 Plating wire for solar cell and manufacturing method thereof
JP5038765B2 (en) * 2006-12-14 2012-10-03 日立電線株式会社 Solder-plated wire for solar cell and manufacturing method thereof
JP5073386B2 (en) * 2007-07-05 2012-11-14 株式会社Neomaxマテリアル ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
KR100924317B1 (en) * 2009-03-09 2009-11-02 주식회사 월드비씨 Wire making apparatus for pv module and making method
JP5367752B2 (en) * 2010-06-11 2013-12-11 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017518A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
JP2012017516A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
JP2012017515A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
JP7409580B1 (en) 2022-07-25 2024-01-09 Jfeスチール株式会社 Furnace temperature control device, furnace temperature control method, and coke manufacturing method

Also Published As

Publication number Publication date
JP2012017518A (en) 2012-01-26
JP2012017517A (en) 2012-01-26
KR20150055098A (en) 2015-05-20
TWI558847B (en) 2016-11-21
KR101541790B1 (en) 2015-08-05
JP5367753B2 (en) 2013-12-11
JP2012017516A (en) 2012-01-26
JP5367752B2 (en) 2013-12-11
JP5367754B2 (en) 2013-12-11
WO2011155477A1 (en) 2011-12-15
JP2012017523A (en) 2012-01-26
CN102939402B (en) 2014-12-10
KR101630309B1 (en) 2016-06-14
JP2012017515A (en) 2012-01-26
JP5255673B2 (en) 2013-08-07
TW201211309A (en) 2012-03-16
KR20130040899A (en) 2013-04-24
CN102939402A (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5255668B2 (en) Solder plated wire manufacturing method and manufacturing apparatus
TWI498271B (en) Wire winding packaged bobbin, method and device of manufacturing wire
CN101820000B (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JP6048783B2 (en) Manufacturing method and equipment for solar cell lead wire
KR101365044B1 (en) Annealing apparatus for ribbon of photovoltaic module
JP5218702B2 (en) Photoelectric conversion device manufacturing equipment
JP2019049077A (en) Method of producing carbon nanotube wire
JP5831104B2 (en) Apparatus and method for removing surface deposits on roll in molten metal plating bath
KR101367712B1 (en) Snout Apparatus For Zinc Coatingline
JP6811671B2 (en) Web feeding method and web feeding device used for it
CN113201708A (en) Heat treatment furnace, heating device, wire electrode manufacturing method, and thermal diffusion treatment method
JP2012092398A (en) Surface treating apparatus for wire rod, and electroplating apparatus using the same
JPH07252540A (en) Manufacture of bonding wire and manufacturing device therefor
JP5889644B2 (en) Method for producing solar cell lead wire
JPS6324119Y2 (en)
KR100759300B1 (en) Electric cord bending prevention apparatus and method thereby
KR20140115811A (en) Catenary Continuous Galvanizing of Coil Winding device
JP2013000835A (en) Wire for wire saw
JPS63123525A (en) Method and apparatus for continuously producing line conductor for electric wire and cable
JP2012087346A (en) Reflow apparatus of tin-electroplated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R151 Written notification of patent or utility model registration

Ref document number: 5255668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250