JPS6324119Y2 - - Google Patents

Info

Publication number
JPS6324119Y2
JPS6324119Y2 JP738083U JP738083U JPS6324119Y2 JP S6324119 Y2 JPS6324119 Y2 JP S6324119Y2 JP 738083 U JP738083 U JP 738083U JP 738083 U JP738083 U JP 738083U JP S6324119 Y2 JPS6324119 Y2 JP S6324119Y2
Authority
JP
Japan
Prior art keywords
wire
roller
rollers
electrode
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP738083U
Other languages
Japanese (ja)
Other versions
JPS59114291U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP738083U priority Critical patent/JPS59114291U/en
Publication of JPS59114291U publication Critical patent/JPS59114291U/en
Application granted granted Critical
Publication of JPS6324119Y2 publication Critical patent/JPS6324119Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は溶接用ワイヤを通電加熱により焼鈍す
る装置に関し、詳細には走行溶接用ワイヤの振れ
等を防止することによつて通電用電極ローラ(以
下電極ローラという)と溶接用ワイヤ間における
スパークの発生を回避し得る様に構成した溶接用
ワイヤの通電焼鈍装置に関するものである。 伸線加工された線材は、用途に応じて好適な熱
処理を施すことが多いが、かかる熱処理の1つに
線材を軟化させる焼鈍があり、溶接用ワイヤの分
野でも広く行なわれている。溶接用ワイヤ(以下
単にワイヤという)の焼鈍法としては、これをコ
イル状に巻回して加熱炉に入れ、数〜十数時間加
熱した後、適当な速度で冷却するという所謂バツ
チ方式が主流を占めていたが、製品の均質性や生
産性を高めるという観点から連続通電加熱焼鈍方
式が注目を集めている。即ちこの方式はワイヤを
軸方向に走行させながら電極ローラと接触させて
通電加熱し、線材内部に発生するジユール熱によ
つて必要温度迄急上昇させるものであるから、加
熱時間は数秒でよく、生産性は極めて高い。 第1図は本考案者等において検討中の連続通電
焼鈍ラインを示す概念図で、例えば冷間伸線され
たワイヤを、酸洗・メツキ処理に付する前に連続
焼鈍する場合の例である。装置はワイヤ供給部
A、焼鈍部B、ワイヤ引取部Cから構成されてお
り、まず供給部Aにおいて、ペイオフボビン1か
ら引出されたワイヤW(例えば線径2.8mmφ)は補
助引取機6によつて引取られながら走行し、焼鈍
部Bへ供給される。焼鈍部Bは電極ローラa1
a2,a3(以下代表的に言うときはaと表わす);セ
ラミツクスローラb1,b2,b3,b4,b5及び線振れ
防止ローラ9等が夫々図の如く配置されて構成さ
れ、これらの間をワイヤWが通過する間に給電加
熱を受けて焼鈍され、空冷される。尚b4,b5は同
軸上に数枚のローラを遊嵌した空冷セラミツクス
ローラであり、その貯線長さは数十mに及ぶの
で、ここを焼鈍ワイヤWが通過する間に空冷され
る。そしてワイヤ引取部Cに至り、主引取機1
1、垂直ダンサローラ12を順次通過し、次工程
に供給される。 ところで、上記通電加熱焼鈍操業におけるワイ
ヤは、各ローラ間を高速で走行し、電極ローラa
との接触点から通電されるので、その接触点は固
定接点の場合と異なり、不安定にならざるを得な
い。その為電極ローラaとワイヤとの接触が瞬間
的に見れば不十分なこともあり、電極ローラaと
ワイヤの間でスパークが発生し、ワイヤの表面に
スパーク傷を作つたり、極端な場合には断線する
ことがあつた。又スパークの発生によつて電極ロ
ーラa表面にもスパーク傷が発生し、電極ローラ
aの交換頻度が高くなつた。そして断線した場合
には、焼鈍ライン全体が停止して生産性の低下を
招くと共にワイヤの停止にばらつきがあるので各
ローラ間でワイヤのからみや巻きつきが発生し、
これらの除去作業が極めて煩しいものとなつた。
又運転を再開するに当つては、ライン全体に正し
くワイヤを通さなければならないので、多大な労
力が必要であつた。 本考案はこうした事情に着目してなされたもの
であつて、電極ローラと走行ワイヤとの接触を安
定化させ、焼鈍部におけるスパークの発生を防止
できる様な通電焼鈍装置を提供することを目的と
するものである。 しかして上記目的を達成した本考案の構成と
は、ワイヤの走行ラインに沿つて複数のローラを
配置して行なうワイヤの通電焼鈍装置において、
焼鈍部に配設されるローラのうち少なくとも電極
ローラの周速度を、下記(1)式を満足する様に設定
して走行ワイヤに張力を付与しつつ焼鈍する様に
構成してなる点に要旨を有するものである。 Vn+1=Vn{1+α(Tn+1−Tn)}+β …(1) 〔Vn+1:n+1番目のローラの周速度(m/分) Vn:n番目のローラの周速度(m/分) Tn+1:n+1番目のローラにおけるワイヤ温
度(℃) Tn:n番目のローラにおけるワイヤ温度(℃) α:ワイヤの線膨張係数 β:正の補正速度(m/分)〕 以下本考案を研究の経緯に沿つて説明する。 まず本考案者等はスパークの発生状態をつぶさ
に観察した。その結果、ローラ間における走行ワ
イヤの振れが大きい場合にはスパークが頻繁に発
生することを見出した。即ち第2図はスパーク発
生手段を示す説明図で、電極ローラaから繰り出
されるワイヤWが線振れ現象を起こしている状態
を示している。図において、電極ローラaとワイ
ヤWの接触点E1はワイヤWがFの位置に振れた
場合にはE2点に、Gの位置に振れた場合にはE3
点に夫々移動する。そして通常線振れの周期は非
常に短く、線振れ時には上記の様な接触点が相互
に飛び合う様に移動している。即ちワイヤW上の
一点が電極ローラaの一点と断続的に離れたり接
触したりし、その結果、電極ローラaとワイヤW
の間でスパークが発生する。本考案者等は上記の
様な状況を考慮した結果、スパークの発生を防止
するには、走行ワイヤの振れをでき得る限り抑え
ることが是非とも必要であるという着想を得、こ
れを実現すべく鋭意研究の結果、前記構成をとる
ことによつて走行ワイヤの振れを解消し、スパー
クの発生を防止することに成功した。 即ち走行ワイヤの振れは、該ワイヤの走行状態
に対して十分なテンシヨンが与えられていないこ
とによる、ローラ間におけるワイヤのたるみその
ものの表われであり、又このテンシヨンはミクロ
的に見れば絶えず変化している。その為、ワイヤ
のたるみは周期的に生起乃至解消を繰り返し、且
つ生起した場合においてもその度合は1回毎に異
なる。この様にワイヤのテンシヨンが不十分であ
ることがワイヤの振れを招き、これがスパークの
発生原因となつている以上、スパークの防止には
テンシヨン不良を解消することがもつとも近道で
あり、且つ重要である。しかるにテンシヨン不良
の原因は十分に解明されておらず、現象的に下流
側における電極ローラの回転速度がワイヤの走行
速度に比べて相対的に遅くなつていることが原因
になつていると考えられた。即ちワイヤは十分な
引張勝手とならないままで走行していることにな
る。そこで引張りが不十分になる原因を解明しよ
うと研究を進めたところ、ワイヤのたるみは主に
電極ローラa1とa2の間及び電極ローラa2とa3の間
で生じており、それ以降のローラ間、殊に空冷ロ
ーラ部においては殆んど生じていないという知見
を得た。しかるに焼鈍部と空冷部における基本的
相違点は昇温中であるか降温中であるかという点
にある。 即ち焼鈍部においては、ワイヤは電極ローラ間
で通電加熱されて昇温し、続く空冷ローラ部で冷
却されて降温する。従つてワイヤは電極ローラ間
を通過しながら昇温になる熱膨張を受けて長くな
り、その後の冷却過程では逆に収縮するが、この
熱膨張に伴なうワイヤ長のプラス側への変化部位
においては、当然ながらワイヤにたるみが生じ線
振れ現象が発生する。この様な状況から焼鈍部に
おける各ローラの周速度は、ワイヤ長さが長くな
るのに対応させて増速させる必要があると考え
た。この増速の度合はワイヤの線膨張の度合いに
比例するものでなくてはならず、これを一般式と
して表わすと、(2)式の通りとなる。尚(2)式の右辺
をV′と言うことがある。 Vn+1=Vn{1+α(Tn+1−Tn)} …(2) 〔Vn+1:n+1番目のローラの周速度(m/分) Vn:n番目のローラの周速度(m/分) Tn+1:n+1番目のローラにおけるワイヤ温
度(℃) Tn:n番目のローラにおけるワイヤ温度(℃) α:ワイヤの線膨張係数 β:正の補正数度(m/分)〕 そこで(2)式に合致する様に各ローラの周速度を
調整したところ(後述の第1表に示す比較例2参
照)、ローラ間のワイヤのたるみは殆んど解消さ
れスパーク発生も少なくなつたが、最終電極ロー
ラにおいて軽度ながらスパークが発生した。そし
てその原因について更に考察を加えたところ次の
結論を得た。即ち(2)式に合致する様にローラ周速
をV′に設定すると、ワイヤの走行速度とローラ
の周速度が同一となるのでワイヤのたるみは発生
せずスパークの発生が防止されるはずであるが、
この場合には、当該ローラは上流側ローラより供
給されてくるワイヤを下流側ローラへ送り渡すだ
けの(換言すれば送り渡しに逆らわない程度の)
周速で回転しているというに過ぎず上流側ローラ
との間のワイヤに積極的にテンシヨンを与え得る
様な周速では回転していない。そしてこの時のロ
ーラとワイヤの接圧は極めて小さく、前述の様に
テンシヨンの変動があると、ワイヤが容易にロー
ラから離れスパークを発生する。そこでローラと
ワイヤの接圧を高める必要があり、その為には当
該ローラと上流側ローラの間のワイヤにテンシヨ
ンを生じさせることが必要となる。即ち当該ロー
ラとその上流側ローラの間のワイヤにテンシヨン
を生じさせる為には、当該ローラの周速がその上
流側ローラから単位時間当りに送給されてくるワ
イヤ長を全て下流側ローラへ送給し、且つ余りあ
るものでなければならず、換言すると当該ローラ
の周速を、前記焼鈍熱による線膨張分だけの増速
に対して更に正の補正速度分を加えた周速とする
ことが必要となり、これを一般式として表わす
と、前記(1)式で示される通りとなる。実施例1
(第1表参照)は(1)式に合致する様に、焼鈍部ロ
ーラの周速を夫々調整したものであつて、スパー
クは全く発生していない。これは、ローラ間のワ
イヤに適度なテンシヨンが与えられ線振れが解消
されると共に、ローラとワイヤの接触部において
ワイヤが適度は接圧をもつてローラに接触しなが
ら送給されるからである。尚上記の正の補正速度
βには、ワイヤの線径、材質、表面性状、走行速
度等に応じて夫々適正な範囲がありその下限は前
記効果が確保される最も小さい値とするが、零で
ない限り一定の効果を発輝するので限定的に設定
する必要はない。一方補正速度が大きくなりすぎ
るとローラ周速とワイヤ走行速度の差が大きくな
つて、ローラとワイヤの接触面殊に電極ローラの
通電面の摩耗量が大きくなりローラ交換頻度が高
くなるので、上限はローラの摩耗度を考慮して設
定することが望ましい。 本考案は概略以上の様に構成されており、ロー
ラ間における走行ワイヤの振れを殆んど解消し得
ると共に、ローラとワイヤの接触殊に電極ローラ
とワイヤの接触を確実にすることができ、これに
よりスパークの発生を皆無とすることができる。 以下本考案の実施例等について説明する。 第3図は通電焼鈍装置の焼鈍部要部を示す説明
図で、電極ローラa1,a2,a3は紙面貫通方向の回
転軸を介してモータ(図示せず)に接続され、
夫々矢印方向に積極的に回転すると共に、これら
ローラ間を矢印D方向にワイヤWが走行する。尚
セラミツクスローラb1,b2は自由回転ローラであ
る。上記装置において、電極ローラa1,a2,a3
周速を第1表に示す様に夫々設定してスパーク発
生状態を調べたところ、同じく第1表に示す結果
が得られた。
The present invention relates to an apparatus for annealing welding wire by heating it with electricity, and more specifically, it prevents sparks between the current-carrying electrode roller (hereinafter referred to as electrode roller) and the welding wire by preventing the running welding wire from deflecting. The present invention relates to an electrical annealing device for welding wire configured to avoid such occurrence. Drawn wire rods are often subjected to suitable heat treatment depending on their use, and one such heat treatment is annealing, which softens the wire rod, and is widely used in the field of welding wire. The mainstream method of annealing welding wire (hereinafter simply referred to as wire) is the so-called batch method, in which the wire is wound into a coil, placed in a heating furnace, heated for several to several dozen hours, and then cooled at an appropriate rate. However, the continuous current heating annealing method is attracting attention from the viewpoint of improving product homogeneity and productivity. In other words, in this method, the wire is brought into contact with an electrode roller while running in the axial direction, and is heated by electricity, and the temperature is rapidly raised to the required temperature by the Joule heat generated inside the wire, so the heating time is only a few seconds, and the production speed is reduced. The quality is extremely high. Figure 1 is a conceptual diagram showing a continuous current annealing line under consideration by the present inventors, and is an example of a case in which cold drawn wire is continuously annealed before being subjected to pickling and plating treatment. . The device is composed of a wire supply section A, an annealing section B, and a wire take-off section C. First, in the supply section A, the wire W (for example, wire diameter 2.8 mmφ) pulled out from the payoff bobbin 1 is transferred to the auxiliary take-off machine 6. It travels while being picked up and supplied to the annealing section B. The annealing part B has electrode rollers a 1 ,
a 2 , a 3 (hereinafter representatively referred to as a); ceramic rollers b 1 , b 2 , b 3 , b 4 , b 5 and line runout prevention roller 9, etc. are arranged as shown in the figure. While the wire W passes between them, the wire W is heated by electric power, annealed, and air-cooled. Note that b 4 and b 5 are air-cooled ceramic rollers in which several rollers are loosely fitted on the same axis, and since the wire storage length is several tens of meters, the annealing wire W is air-cooled while passing through these rollers. . Then, it reaches the wire pulling section C, and the main pulling machine 1
1. It sequentially passes through the vertical dancer rollers 12 and is supplied to the next process. By the way, the wire in the above-mentioned current heating annealing operation runs between each roller at high speed, and the wire runs between the electrode rollers a.
Since the current is applied from the point of contact with the contact point, the point of contact must be unstable, unlike in the case of a fixed contact. Therefore, the contact between the electrode roller a and the wire may be insufficient momentarily, and sparks may occur between the electrode roller a and the wire, causing spark scratches on the surface of the wire, or in extreme cases. There were times when the wire broke. Furthermore, the generation of sparks also caused spark scratches on the surface of the electrode roller a, resulting in an increased frequency of replacement of the electrode roller a. If the wire breaks, the entire annealing line will stop, causing a drop in productivity, and since the wire stops unevenly, the wire will become tangled or wrapped between the rollers.
The task of removing these has become extremely troublesome.
Furthermore, when restarting operation, the wires had to be routed correctly throughout the line, which required a great deal of effort. The present invention has been developed in view of these circumstances, and its purpose is to provide an electrical annealing device that can stabilize the contact between the electrode roller and the running wire and prevent the generation of sparks in the annealed part. It is something to do. The configuration of the present invention that achieves the above object is, in an electrical annealing apparatus for a wire, in which a plurality of rollers are arranged along the running line of the wire,
The gist is that the circumferential speed of at least the electrode roller among the rollers disposed in the annealing section is set so as to satisfy the following formula (1), and annealing is performed while applying tension to the running wire. It has the following. Vn +1 = Vn {1+α(Tn +1 −Tn)} + β …(1) [Vn +1 : Circumferential speed of n+1st roller (m/min) Vn: Circumferential speed of nth roller (m/min) ) Tn +1 : Wire temperature at the n+1st roller (°C) Tn: Wire temperature at the nth roller (°C) α: Coefficient of linear expansion of the wire β: Positive correction speed (m/min)] Hereinafter, the present invention will be described. I will explain the history of the research. First, the present inventors closely observed the state of spark generation. As a result, it was found that sparks occur frequently when the running wire between the rollers has a large deflection. That is, FIG. 2 is an explanatory diagram showing the spark generating means, and shows a state in which the wire W let out from the electrode roller a is causing a line runout phenomenon. In the figure, the contact point E1 between electrode roller a and wire W becomes point E2 when wire W swings to position F, and point E3 when wire W swings to position G.
Move to each point. Normally, the cycle of line runout is very short, and when line runout occurs, the contact points mentioned above move as if jumping into each other. That is, one point on the wire W intermittently separates from or comes into contact with one point on the electrode roller a, and as a result, the electrode roller a and the wire W
A spark occurs between. After considering the above situation, the inventors of the present invention came up with the idea that it is absolutely necessary to suppress the swing of the running wire as much as possible in order to prevent the generation of sparks, and in order to realize this. As a result of intensive research, we succeeded in eliminating the deflection of the running wire and preventing the generation of sparks by adopting the above configuration. In other words, the runout of the running wire is an expression of slack in the wire between the rollers due to insufficient tension being applied to the running state of the wire, and this tension is constantly changing from a microscopic perspective. are doing. Therefore, slack in the wire repeatedly occurs and disappears periodically, and even when slack occurs, the degree of slack differs each time. In this way, insufficient tension in the wire causes wire deflection, which is the cause of spark generation, so it is a shortcut and important to eliminate tension defects in order to prevent sparks. be. However, the cause of tension failure is not fully understood, and it is thought that the cause is that the rotational speed of the electrode roller on the downstream side is relatively slow compared to the running speed of the wire. Ta. In other words, the wire runs without sufficient tensile strength. When we conducted research to find out the cause of insufficient tension, we found that the slack in the wire mainly occurred between electrode rollers a 1 and a 2 and between electrode rollers a 2 and a 3 . It was found that this phenomenon hardly occurs between the rollers, especially in the air-cooled roller section. However, the basic difference between the annealing section and the air cooling section is whether the temperature is being increased or decreased. That is, in the annealing section, the wire is heated between electrode rollers to raise its temperature, and then cooled and lowered in the air-cooled roller section. Therefore, the wire becomes longer as it undergoes thermal expansion as the temperature rises as it passes between the electrode rollers, and conversely contracts during the subsequent cooling process, but the wire length changes to the positive side due to this thermal expansion. Naturally, slack occurs in the wire and a wire runout phenomenon occurs. Under these circumstances, it was considered necessary to increase the circumferential speed of each roller in the annealing section to correspond to the longer wire length. The degree of this speed increase must be proportional to the degree of linear expansion of the wire, and this can be expressed as a general equation as shown in equation (2). Note that the right-hand side of equation (2) is sometimes referred to as V′. Vn +1 = Vn {1+α(Tn +1 −Tn)} …(2) [Vn +1 : Circumferential speed of n+1st roller (m/min) Vn: Circumferential speed of nth roller (m/min) Tn +1 : Wire temperature at the n+1st roller (°C) Tn: Wire temperature at the nth roller (°C) α: Linear expansion coefficient of the wire β: Positive correction several degrees (m/min)] Therefore, (2) When the circumferential speed of each roller was adjusted to match the formula (see Comparative Example 2 shown in Table 1 below), the slack in the wire between the rollers was almost eliminated and spark generation was reduced, but the final A slight spark occurred at the electrode roller. After further consideration of the cause, we came to the following conclusion. In other words, if the roller circumferential speed is set to V' to match equation (2), the wire running speed and roller circumferential speed will be the same, so the wire will not slack and sparks should be prevented. Yes, but
In this case, the roller in question is only capable of feeding the wire supplied from the upstream roller to the downstream roller (in other words, the roller is only capable of passing the wire supplied from the upstream roller to the downstream roller).
It merely rotates at a circumferential speed, but not at a circumferential speed that can positively apply tension to the wire between it and the upstream roller. The contact pressure between the roller and the wire at this time is extremely small, and if the tension fluctuates as described above, the wire easily separates from the roller and generates sparks. Therefore, it is necessary to increase the contact pressure between the roller and the wire, and for this purpose, it is necessary to generate tension in the wire between the roller and the upstream roller. In other words, in order to generate tension in the wire between the roller and its upstream roller, the circumferential speed of the roller must be such that the entire length of the wire fed from the upstream roller per unit time is sent to the downstream roller. In other words, the circumferential speed of the roller must be the same as the speed increase due to the linear expansion caused by the annealing heat, plus a positive correction speed. is required, and when expressed as a general formula, it becomes as shown in the above formula (1). Example 1
(See Table 1), the circumferential speeds of the rollers in the annealing section were adjusted to match equation (1), and no sparks were generated. This is because appropriate tension is applied to the wire between the rollers, eliminating wire runout, and at the contact point between the roller and the wire, the wire is fed while contacting the roller with an appropriate amount of contact pressure. . Note that the positive correction speed β mentioned above has an appropriate range depending on the wire diameter, material, surface quality, running speed, etc., and the lower limit is the smallest value that ensures the above effect, but zero Unless otherwise specified, a certain effect will be emitted, so there is no need to set it in a limited manner. On the other hand, if the correction speed becomes too large, the difference between the roller circumferential speed and the wire running speed becomes large, which increases the amount of wear on the contact surface between the roller and the wire, especially the current-carrying surface of the electrode roller, and increases the frequency of roller replacement. It is desirable to set this by considering the degree of wear of the roller. The present invention is roughly constructed as described above, and can almost eliminate the runout of the running wire between the rollers, as well as ensure the contact between the roller and the wire, especially the contact between the electrode roller and the wire. Thereby, the generation of sparks can be completely eliminated. Examples of the present invention will be described below. FIG. 3 is an explanatory diagram showing the main parts of the annealing part of the current annealing device, in which electrode rollers a 1 , a 2 , and a 3 are connected to a motor (not shown) via a rotating shaft extending through the plane of the paper.
Each of the rollers actively rotates in the direction of the arrow, and the wire W runs between these rollers in the direction of arrow D. Note that the ceramic rollers b 1 and b 2 are freely rotating rollers. In the above device, the circumferential speeds of the electrode rollers a 1 , a 2 , and a 3 were set as shown in Table 1, and the spark generation state was investigated, and the results shown in Table 1 were also obtained.

【表】 比較例1はワイヤ速度に対し、各電極ローラの
周速を同一とした例で、電極ローラa1においては
スパークの発生はないが、電極ローラa2,a3でス
パークが発生した。ワイヤWは電極ローラa1とa2
の間及び電極ローラa2とa3の間で振れている状態
にあつた。比較例2はワイヤWの加熱による伸び
分だけ、下流側ローラの周速を上流側ローラより
早く、即ち電極ローラa1の周速を40m/分とする
のに対し、電極ローラa2の周速を40.28m/分、
電極ローラa3を40.45m/分に夫々設定している。
電極ローラa1,a2においてはスパークの発生は認
められなかつたが、電極ローラa3においてスパー
クが発生した。尚ワイヤWの振れは殆んどなかつ
た。比較例3は電極ローラa1に対して、a2,a3
周速を遅くした例で、スパークは電極ローラa1
a3において頻繁に発生している。実施例1は、電
極ローラa1の周速をワイヤ速度と同一とすると共
に、電極ローラa2,a3の周速をワイヤ速度より加
熱による伸び分以上に早くした例で、電極ローラ
a1,a2,a3の全てにおいてスパークの発生は皆無
であつた。又ローラ間のワイヤの振れも認められ
なかつた。実施例2は実施例1と同様に電極ロー
ラa2,a3の周速を増速させているが、その増速量
が遥に大きい例で、スパークの発生は全く認めら
れなかつた。しかしながら電極ローラの摩耗が大
きく交換頻度が上昇した。
[Table] Comparative Example 1 is an example in which the circumferential speed of each electrode roller is the same with respect to the wire speed, and no spark was generated at electrode roller a 1 , but sparks were generated at electrode rollers a 2 and a 3 . . Wire W connects electrode rollers a 1 and a 2
It was in a state of swinging between electrode rollers a2 and a3 . In Comparative Example 2, the peripheral speed of the downstream roller is higher than that of the upstream roller by the amount of elongation due to heating of the wire W, that is, the peripheral speed of electrode roller a 1 is set to 40 m/min, while the peripheral speed of electrode roller a 2 is set to 40 m/min. Speed 40.28m/min,
Electrode roller A3 is set at 40.45 m/min.
Although no sparks were observed on electrode rollers a 1 and a 2 , sparks were generated on electrode rollers a 3 . Furthermore, there was almost no deflection of the wire W. Comparative example 3 is an example in which the circumferential speed of a 2 and a 3 is lower than that of electrode roller a 1 , and the spark is caused by electrode roller a 1 ,
This occurs frequently in a 3 . Embodiment 1 is an example in which the circumferential speed of electrode roller a 1 is the same as the wire speed, and the circumferential speed of electrode rollers a 2 and a 3 is faster than the wire speed by more than the elongation due to heating.
No sparks were generated at all a 1 , a 2 , and a 3 . Also, no wobbling of the wire between the rollers was observed. In Example 2, the circumferential speeds of the electrode rollers a 2 and a 3 were increased as in Example 1, but the amount of speed increase was much greater, and no sparks were observed at all. However, the wear of the electrode rollers was large and the frequency of replacement increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はワイヤの通電焼鈍装置の概略を示す模
式図、第2図はスパーク発生状況を示す説明図、
第3図は本考案の通電焼鈍装置に係る焼鈍部の要
部説明図である。 a1,a2,a3……電極ローラ、b1〜b5……セラミ
ツクスローラ、B……焼鈍部、W……ワイヤ。
Fig. 1 is a schematic diagram showing the outline of the wire annealing device, Fig. 2 is an explanatory diagram showing the spark generation situation,
FIG. 3 is an explanatory view of the main part of the annealing part according to the current annealing apparatus of the present invention. a 1 , a 2 , a 3 ... electrode roller, b 1 to b 5 ... ceramic roller, B ... annealing section, W ... wire.

Claims (1)

【実用新案登録請求の範囲】 溶接用ワイヤの走行ラインに沿つて複数のロー
ラを配置して行なう溶接用ワイヤの通電焼鈍装置
において、焼鈍部に配設されるローラのうち少な
くとも通電用電極ローラの周速度を、下記(1)式を
満足する様に設定して走行ワイヤに張力を付与し
つつ焼鈍する様に構成してなることを特徴とする
溶接用ワイヤの通電焼鈍装置。 Vn+1=Vn{1+α(Tn+1−Tn)}+β …(1) 〔Vn+1:n+1番目のローラの周速度(m/分) Vn:n番目のローラの周速度(m/分) Tn+1:n+1番目のローラにおけるワイヤ温度 Tn:n番目のローラにおけるワイヤ温度 α:ワイヤの線膨張係数 β:正の補正速度(m/分)〕
[Scope of Claim for Utility Model Registration] In a welding wire current annealing device in which a plurality of rollers are arranged along the traveling line of the welding wire, at least one of the current-carrying electrode rollers among the rollers disposed in the annealing section is provided. An electrical annealing device for a welding wire, characterized in that the circumferential speed is set to satisfy the following formula (1), and the running wire is annealed while applying tension. Vn +1 = Vn {1 + α (Tn +1 − Tn)} + β …(1) [Vn +1 : n + 1st roller circumferential speed (m/min) Vn: nth roller circumferential speed (m /min) Tn +1 : Wire temperature at the n + 1st roller Tn: Wire temperature at the nth roller α: Coefficient of linear expansion of the wire β: Positive correction speed (m/min)]
JP738083U 1983-01-21 1983-01-21 Electrical annealing equipment for welding wire Granted JPS59114291U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP738083U JPS59114291U (en) 1983-01-21 1983-01-21 Electrical annealing equipment for welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP738083U JPS59114291U (en) 1983-01-21 1983-01-21 Electrical annealing equipment for welding wire

Publications (2)

Publication Number Publication Date
JPS59114291U JPS59114291U (en) 1984-08-02
JPS6324119Y2 true JPS6324119Y2 (en) 1988-07-01

Family

ID=30138912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP738083U Granted JPS59114291U (en) 1983-01-21 1983-01-21 Electrical annealing equipment for welding wire

Country Status (1)

Country Link
JP (1) JPS59114291U (en)

Also Published As

Publication number Publication date
JPS59114291U (en) 1984-08-02

Similar Documents

Publication Publication Date Title
JP5255668B2 (en) Solder plated wire manufacturing method and manufacturing apparatus
US2448835A (en) Apparatus for continuously processing strips
JPS6324119Y2 (en)
JPS635192B2 (en)
JP2019019395A (en) Restarting method of continuous annealing line for steel sheet after temporary stop
JPH023679B2 (en)
JPH1017942A (en) Annealing equipment for copper wire rod
JP2006104654A (en) Yarn heater and method for using yarn heater
JP3426329B2 (en) Method and apparatus for manufacturing bonding wire
JP2006130568A (en) Method for adjusting roll gap during winding of strip
JP6579143B2 (en) Method for stopping operation of continuous annealing line and method for producing cold-rolled steel sheet
BE847707A (en) CONTINUOUS GLOWING OF METAL WIRES,
JPH08323440A (en) Straightening method for bends of metal wire
JPS5852009B2 (en) Continuous annealing method for magnetic metal wire
JPH08192273A (en) Non-consumable electrode type arc welding equipment
JP4391001B2 (en) Heating device for drawing false twisting machine
KR101259289B1 (en) Apparatus and Method for Cooling Wire-rod Coil
JPH0770653A (en) Wire rod continuous annealing apparatus
US9522439B2 (en) Apparatus and method for electrical roller seam welding using a wire electrode
JP2005272909A (en) Method for controlling tension of steel strip in looper of continuous annealing line
JPH06182440A (en) Method and device for coiling metallic strip
JPH10194594A (en) Tension control device of wire rolling equipment
JPS63153222A (en) Treatment line for decreasing iron loss of grain oriented electrical steel sheet
JPS58179598A (en) Production of flux cored wire for stainless steel
JP2004141885A (en) Method for controlling sheet width in cold rolling process