JP4780008B2 - Plating wire for solar cell and manufacturing method thereof - Google Patents

Plating wire for solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP4780008B2
JP4780008B2 JP2007071753A JP2007071753A JP4780008B2 JP 4780008 B2 JP4780008 B2 JP 4780008B2 JP 2007071753 A JP2007071753 A JP 2007071753A JP 2007071753 A JP2007071753 A JP 2007071753A JP 4780008 B2 JP4780008 B2 JP 4780008B2
Authority
JP
Japan
Prior art keywords
wire
conductor
plating
solar cell
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007071753A
Other languages
Japanese (ja)
Other versions
JP2008168339A (en
Inventor
甫 西
隆之 辻
裕寿 遠藤
正義 青山
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007071753A priority Critical patent/JP4780008B2/en
Publication of JP2008168339A publication Critical patent/JP2008168339A/en
Application granted granted Critical
Publication of JP4780008B2 publication Critical patent/JP4780008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池のSi結晶を接続する太陽電池用めっき線及びその製造方法に関するものである。   The present invention relates to a solar cell plating wire for connecting Si crystals of a solar cell and a method for manufacturing the same.

太陽電池には多結晶及び単結晶のSiウェハが用いられているが、図1に示すように、Siウェハ(太陽電池セル1)の所定の領域に接続用リード線2をはんだで接合し、これを通じて発電された電力を伝送する構成となっている。公知例には、図3に示すように、導体3にタフピッチCuや無酸素Cuなどの純Cuの平角導体を用い、めっき層4にSn−Pb共晶はんだを適用したものがある(特許文献1等)。   Polycrystalline and single-crystal Si wafers are used for solar cells. As shown in FIG. 1, the connecting lead wires 2 are joined to predetermined regions of the Si wafer (solar cell 1) with solder, Through this, the generated power is transmitted. As shown in FIG. 3, there is a known example in which a pure Cu flat conductor such as tough pitch Cu or oxygen-free Cu is used for the conductor 3 and Sn—Pb eutectic solder is applied to the plating layer 4 (Patent Document). 1).

また、近年環境への配慮からPbを含まないはんだを使用したものへの切り替えが検討されている(特許文献2等)。   In recent years, switching to a solder that does not contain Pb has been studied in consideration of the environment (Patent Document 2, etc.).

太陽電池を構成する部材のうち材料コストの大半をSi結晶ウェハが占める。そのため、Si結晶ウェハの薄板化が検討されているが、薄板化した際に、図2(a)に示す接続用リード線2と太陽電池セル1の接合時の加熱プロセスや、太陽電池使用時の温度変化により、図2(b)に示すように、太陽電池セル1が反ったり、破損したりするという不具合が生ずる。   The Si crystal wafer occupies most of the material cost among the members constituting the solar cell. Therefore, thinning of the Si crystal wafer has been studied. When the thinning is performed, the heating process at the time of joining the connection lead wire 2 and the solar battery cell 1 shown in FIG. Due to this temperature change, as shown in FIG. 2B, there arises a problem that the solar battery cell 1 is warped or damaged.

これに対処するため、接続用リード線として熱膨張が小さい材料のニーズが高まっている。例えば、表1に示すように、低熱膨張材であるインバー(Fe−36mass%Ni)を用い、図4に示すように、Cu5/インバー6/Cu5のクラッド材(CIC)で導体3を形成し、そのCICの導体3をめっき層4(はんだめっき)で被覆した接続用リード線2を用いることで、Siとの熱膨張整合が可能になる。表1は、Cu/インバー/Cuのクラッド材、Cu、Fe−36mass%Ni(インバー)、Siの材料特性を示したものである。   In order to cope with this, there is an increasing demand for a material having low thermal expansion as a connecting lead wire. For example, as shown in Table 1, invar (Fe-36 mass% Ni), which is a low thermal expansion material, is used, and as shown in FIG. 4, the conductor 3 is formed with a cladding material (CIC) of Cu5 / Invar6 / Cu5. By using the connecting lead wire 2 in which the CIC conductor 3 is coated with a plating layer 4 (solder plating), thermal expansion matching with Si becomes possible. Table 1 shows the material properties of Cu / Invar / Cu clad material, Cu, Fe-36 mass% Ni (Invar), and Si.

Figure 0004780008
Figure 0004780008

また、導電率の高い導体の0.2%耐力を低減することにより、Siとの熱膨張整合を可能とし、はんだ接続後の導体熱収縮によって発生する、セルを反らせる力を低減させた太陽電池用リード線がある(特許文献3)。   In addition, by reducing the 0.2% proof stress of conductors with high conductivity, it is possible to achieve thermal expansion matching with Si, and to reduce the cell warping force generated by conductor thermal contraction after solder connection. There is a lead wire (Patent Document 3).

特開平11−21660号公報Japanese Patent Laid-Open No. 11-21660 特開2002−263880号公報JP 2002-263880 A 特開2006−54355号公報JP 2006-54355 A

図4に示したCICを用いた接続用リード線は、インバー6の導電率が低い(体積抵抗率が高い)ことから、CIC全体の導電率も低下してしまい、太陽電池としての発電効率が下落してしまうという問題があった。   In the connection lead wire using the CIC shown in FIG. 4, the conductivity of the invar 6 is low (the volume resistivity is high), so that the conductivity of the entire CIC also decreases, and the power generation efficiency as a solar cell is reduced. There was a problem of falling.

また、特許文献3記載の太陽電池用リード線において、セルを反らせる力を低減させるためには、めっき層を備える太陽電池用リード線における導体の0.2%耐力を、ある基準値以下にする必要がある。しかしながら、導体の0.2%耐力をある基準値以下にするために一定の熱処理条件で製造しても、結晶方位は必ずしも一定にならず、製品の0.2%耐力にばらつきが生じることから、歩留り向上が困難であった。   Moreover, in the solar cell lead wire described in Patent Document 3, in order to reduce the force of warping the cell, the 0.2% proof stress of the conductor in the solar cell lead wire provided with the plating layer is set to a certain reference value or less. There is a need. However, even if the conductor is manufactured under certain heat treatment conditions to make the 0.2% proof stress below a certain reference value, the crystal orientation is not necessarily constant, and the 0.2% proof stress of the product varies. Yield improvement was difficult.

さらに、よく知られている0.2%耐力を低減させる方法として、熱処理で結晶粒を大きくする手法があるが、この方法をとる際は、一般に、結晶粒が容易に粗大化しやすい無酸素Cu(酸素濃度≦10ppm)や、高純度Cu(99.9999%)が太陽電池用リード線の導体材料として用いられるため、材料コストが高くなるという問題があった。   Furthermore, as a well-known method for reducing the 0.2% yield strength, there is a method of enlarging crystal grains by heat treatment. In general, when this method is employed, the oxygen-free Cu that tends to coarsen the crystal grains easily. Since (oxygen concentration ≦ 10 ppm) and high-purity Cu (99.9999%) are used as the conductor material of the solar cell lead wire, there is a problem that the material cost is increased.

本発明の目的は、Siセルとはんだ接続した後の熱収縮時においてもSiセルの反りが少なく、かつ高導電性を有する太陽電池用めっき線を提供することにある。また、本発明の他の目的は、Siセルの反りを少なくするために要求される0.2%耐力のばらつきが小さく、かつ、低コスト化が可能な太陽電池用めっき線の製造方法を提供することにある。   An object of the present invention is to provide a solar cell plating wire that has a low warpage of the Si cell and high conductivity even during thermal contraction after the solder connection with the Si cell. Another object of the present invention is to provide a method of manufacturing a plated wire for a solar cell that has a small variation in 0.2% proof stress required to reduce the warpage of the Si cell and that can be reduced in cost. There is to do.

上記の目的を達成するために、請求項1の発明は、太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線において、上記導体の中心部の結晶方位(めっき線の軸方位)が、(211)方位と(100)方位であり、(211)方位の配向割合が30%以上
であり、上記めっき線の引張り試験における0.2%耐力が90MPa以下であることを特徴とする太陽電池用めっき線である。
In order to achieve the above object, the invention of claim 1 is a solar battery plating in which a plating layer is coated on a part or all of the surface of a conductor formed in a flat cross-sectional shape so as to be joined to a solar battery cell. In the wire, the crystal orientation (axis direction of the plating wire) of the central portion of the conductor is (211) orientation and (100) orientation, and the orientation ratio of (211) orientation is 30% or more
A 0.2% proof stress in a tensile test of the plated wire is 90 MPa or less .

請求項2の発明は、上記導体の体積抵抗率が50μΩ・mm以下である請求項1記載の太陽電池用めっき線である。   The invention according to claim 2 is the solar cell plating wire according to claim 1, wherein the conductor has a volume resistivity of 50 μΩ · mm or less.

請求項3の発明は、上記導体が、純銅で構成される請求項1又は2記載の太陽電池用めっき線である。   The invention according to claim 3 is the solar cell plating wire according to claim 1 or 2, wherein the conductor is made of pure copper.

請求項4の発明は、上記導体材料がタフピッチCu、リン脱酸Cuのいずれかである請求項1から3いずれか記載の太陽電池用めっき線である。   A fourth aspect of the present invention is the solar cell plating wire according to any one of the first to third aspects, wherein the conductor material is one of tough pitch Cu and phosphorus deoxidized Cu.

請求項5の発明は、上記導体の引張り試験における0.2%耐力が70MPa以下である請求項1から4いずれか記載の太陽電池用めっき線である。 The invention according to claim 5 is the solar cell plated wire according to any one of claims 1 to 4 , wherein a 0.2% proof stress in a tensile test of the conductor is 70 MPa or less.

請求項6の発明は、上記めっき層が、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだの被覆層である請求項1から5いずれか記載の太陽電池用めっき線である。   According to a sixth aspect of the present invention, the plating layer contains 0.1 wt% of Sn-based solder or at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. 6. The solar cell plated wire according to claim 1, which is a coating layer of Sn-based alloy solder including the above.

請求項7の発明は、太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線の製造方法において、上記導体の材料で、先ず、荒引き線を作製し、その荒引き線に伸線加工を施し、その伸線された荒引き線に圧延加工あるいはスリット加工を施して断面平角状に成形した後、通電方式もしくはバッチ式の設備で焼鈍熱処理を施し、上記導体の中心部の結晶方位(めっき線の軸方位)が(211)方位と(100)方位であり、(211)方位の配向割合30%以上であり、前記焼鈍熱処理が施された上記導体の表面にめっき層を被覆し、得られためっき線の引張り試験における0.2%耐力を90MPa以下とすることを特徴とする太陽電池用めっき線の製造方法である。 The invention according to claim 7 is a method for producing a plated wire for a solar battery in which a plating layer is coated on a part or all of the surface of a conductor formed in a rectangular cross section so as to be bonded to a solar battery cell. First of all, a rough drawing wire is prepared with a material, the rough drawing wire is drawn, and the drawn rough drawing wire is rolled or slitted to be formed into a rectangular cross section. Alternatively, annealing heat treatment is performed in a batch-type equipment, and the crystal orientation (axis direction of the plating wire) of the conductor is (211) orientation and (100) orientation, and the orientation ratio of (211) orientation is 30% or more A plated layer for a solar cell , wherein the surface of the conductor subjected to the annealing heat treatment is coated with a plating layer, and the 0.2% proof stress in a tensile test of the obtained plated wire is 90 MPa or less. It is a manufacturing method.

請求項8の発明は、上記伸線加工の工程の合間に、上記荒引き線に通電方式もしくはバッチ式の設備で熱処理を施す請求項7記載の太陽電池用めっき線の製造方法である。   The invention of claim 8 is the method for producing a plated wire for a solar cell according to claim 7, wherein the roughing wire is subjected to heat treatment with a current-carrying or batch-type equipment between the wire drawing steps.

本発明の太陽電池用めっき線によれば、Siセルとはんだ接続後の熱収縮時においてもSiセルの反りが少なく、かつ高い導電性が得られる。また、0.2%耐力のばらつきを抑制することができ、歩留り向上が可能である。   According to the plated wire for solar cell of the present invention, the Si cell is less warped and has high conductivity even during thermal contraction after the solder connection with the Si cell. Further, variation in 0.2% proof stress can be suppressed, and yield can be improved.

以下、本発明の実施の形態を添付図面に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

一般に熱膨張率の異なる異種金属を高温で接続した場合には、温度変化に熱膨張率、ヤング率を積算した値が反りを発生させる力となる。しかし、太陽電池のように接続する両部材(太陽電池用めっき線、Siセル)の剛性が著しく異なり、またはんだ接続温度も200℃以上と高温のものでは、断面積が小さい導体(太陽電池用めっき線)の方が降伏してしまい、上記熱膨張率、ヤング率による力がそのまま反り発生力とはならない。   In general, when dissimilar metals having different thermal expansion coefficients are connected at a high temperature, a value obtained by integrating the thermal expansion coefficient and Young's modulus with the temperature change is a force for generating warpage. However, both members (solar cell plating wire, Si cell) connected like a solar cell are remarkably different in rigidity, or a conductor having a small cross-sectional area (for solar cell) when the connecting temperature is as high as 200 ° C. or higher. (Plating wire) yields, and the force due to the thermal expansion coefficient and Young's modulus does not directly generate warpage.

導体の降伏応力が小さいと、小さい力で導体が塑性変形してしまい、それ以上の変形抵抗とならない。そのため、塑性変形の指標である0.2%耐力の小さい導体を用いた太陽電池用めっき線は、Siセルへはんだ接続した後のセル反り量を低減させる効果がある。   If the yield stress of the conductor is small, the conductor is plastically deformed with a small force, and no further deformation resistance is obtained. Therefore, the plating wire for solar cells using a conductor having a small 0.2% proof stress, which is an index of plastic deformation, has an effect of reducing the amount of cell warpage after solder connection to the Si cell.

ところが、従来、導体の0.2%耐力を精度良く低減するために、導体の結晶構造を制御することに関して規定したものはなかった。これについて、本発明者らが鋭意研究した結果、導体の中心部の結晶方位の内、ある結晶方位を所定の割合で成長させることで、0.2%耐力の低減、及びそのばらつきの抑制を達成できることを見出した。   However, there has been no provision for controlling the crystal structure of the conductor in order to accurately reduce the 0.2% yield strength of the conductor. As a result of intensive studies by the present inventors, by growing a certain crystal orientation at a predetermined ratio in the crystal orientation of the central portion of the conductor, it is possible to reduce 0.2% proof stress and to suppress variations thereof. I have found that I can achieve it.

本発明の好適一実施の形態に係る太陽電池用めっき線は、図3に示した一般的な太陽電池用めっき線2と同様の構造を有しており、導体3の表面の全部にめっき層4を被覆したものである。本実施の形態に係る太陽電池用めっき線の導体3は、その中心部の結晶方位(めっき線の軸方位)が、(211)方位と(100)方位であり、(211)方位の配向割合が30%以上であることに特徴がある。   The solar cell plating wire according to a preferred embodiment of the present invention has a structure similar to that of the general solar cell plating wire 2 shown in FIG. 3, and a plating layer is formed on the entire surface of the conductor 3. 4 is coated. The conductor 3 of the plating wire for solar cell according to the present embodiment has the (211) orientation and the (100) orientation as the crystal orientation (axial orientation of the plating wire) at the center, and the orientation ratio of the (211) orientation. Is characterized by 30% or more.

太陽電池用めっき線2における導体3の0.2%耐力は70MPa以下、特に40〜70MPaが望ましく、また、太陽電池用めっき線2全体の0.2%耐力は90MPa以下、特に60〜90MPaが望ましい。導体3の断面形状は、図1に示したSiセル1への接続が容易となるよう平角型のものが望ましい。   The 0.2% proof stress of the conductor 3 in the solar cell plated wire 2 is preferably 70 MPa or less, particularly preferably 40 to 70 MPa, and the 0.2% proof stress of the entire solar cell plated wire 2 is 90 MPa or less, particularly 60 to 90 MPa. desirable. The cross-sectional shape of the conductor 3 is preferably a rectangular type so that it can be easily connected to the Si cell 1 shown in FIG.

導体3の構成材としては、体積抵抗率が比較的小さい材料が好ましく、例えば、表2に示すように、Cuの他にAu、Ag、Alなどがあり、0.2%耐力も低減できる可能性がある。この中で体積抵抗率が最も低いのはAgであり、発電効率を最大限にすることが可能である。また、低コスト化を優先するときにはCuが良く、軽量化を図りたいときにはAlを選択するのが望ましい。   The material of the conductor 3 is preferably a material having a relatively small volume resistivity. For example, as shown in Table 2, there are Au, Ag, Al, etc. in addition to Cu, and the 0.2% proof stress can be reduced. There is sex. Among these, Ag has the lowest volume resistivity and can maximize power generation efficiency. Further, Cu is preferable when cost reduction is prioritized, and Al is preferably selected when weight reduction is desired.

Figure 0004780008
Figure 0004780008

Cuの種類としてはタフピッチCu、無酸素Cu、リン脱酸Cu、高純度Cu(純度99.9999%以上)のいずれを用いることも可能である。0.2%耐力を最も小さくするためには純度が高いCuが有利であり、すなわち高純度Cuを選択する。一方、低コスト化を図りたい時には、不純物を含むため0.2%耐力はやや大きいものの、タフピッチCuもしくはリン脱酸Cuを選択する。   As the kind of Cu, any of tough pitch Cu, oxygen-free Cu, phosphorus deoxidized Cu, and high-purity Cu (purity 99.9999% or more) can be used. In order to minimize the 0.2% yield strength, Cu having high purity is advantageous, that is, high purity Cu is selected. On the other hand, when it is desired to reduce the cost, tough pitch Cu or phosphorous deoxidized Cu is selected although the 0.2% proof stress is somewhat large because it contains impurities.

めっき層4の被覆材として、例えば、はんだめっきや、銅線のめっき材として一般的に用いられる慣用のめっきが挙げられる。また、めっき層4の被覆は、導体3の一部、例えば、導体の上下面のみであってもよい。   Examples of the coating material for the plating layer 4 include solder plating and conventional plating generally used as a copper wire plating material. Further, the coating of the plating layer 4 may be a part of the conductor 3, for example, only the upper and lower surfaces of the conductor.

はんだめっきのはんだとしては、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだが挙げられ、これらのはんだは、第3成分として1000ppm以下の微量元素を含んでいてもよい。   As solder for solder plating, Sn-based solder or Sn-based alloy containing 0.1 wt% or more of at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, Cu as the second component A solder is mentioned, These solders may contain 1000 ppm or less of trace elements as the 3rd ingredient.

また、慣用のめっきとしては、Ni、Ag、Sn、Zn、Cr、Au、Pd、Ru、Ptから選択される少なくとも1種の元素を含む金属材料が挙げられる。この慣用のめっきをめっき層4として用いる場合、例えば、導電性接着剤を用いてSiセル1との接合がなされる。   Further, examples of conventional plating include metal materials containing at least one element selected from Ni, Ag, Sn, Zn, Cr, Au, Pd, Ru, and Pt. When this conventional plating is used as the plating layer 4, for example, bonding to the Si cell 1 is performed using a conductive adhesive.

導体3の0.2%耐力を70MPa以下、太陽電池用めっき線2全体の0.2%耐力を90MPa以下としたのは、この範囲であれば、図4に示したCu/インバー/Cuのクラッド材(CIC)を用いた従来の太陽電池用めっき線よりも、Si反りを低減することが可能であり、大きな効果が得られるためである。   If the 0.2% proof stress of the conductor 3 is 70 MPa or less and the 0.2% proof stress of the entire solar cell plated wire 2 is 90 MPa or less, the Cu / Invar / Cu shown in FIG. This is because Si warpage can be reduced and a great effect can be obtained as compared with a conventional solar cell plating wire using a clad material (CIC).

この太陽電池用めっき線2を、図1に示したSiセル1の所定の接点領域(例えば、Agメッキ領域)に接続することで、太陽電池アセンブリが得られる。   The solar cell assembly is obtained by connecting the solar cell plating wire 2 to a predetermined contact region (for example, an Ag plating region) of the Si cell 1 shown in FIG.

次に、本実施の形態に係る太陽電池用めっき線2の製造方法の一例を説明する。   Next, an example of the manufacturing method of the plating wire 2 for solar cells which concerns on this Embodiment is demonstrated.

先ず、導体の構成材として純銅を溶解する。この純銅としては、タフピッチ銅、リン脱酸Cu、無酸素Cu、高純度Cu(純度99.9999%以上)が挙げられる。   First, pure copper is dissolved as a conductor constituent material. Examples of the pure copper include tough pitch copper, phosphorus deoxidized Cu, oxygen-free Cu, and high-purity Cu (purity 99.9999% or more).

この銅溶湯を用いて、銅の荒引き線を連続的に製造する。また、この荒引き線に、伸線加工を施す。この伸線加工の工程の合間に、荒引き線に通電方式もしくはバッチ式の設備で熱処理(再結晶処理)を施す。伸線加工と再結晶熱処理は、適宜、繰り返し行ってもよい。   Using this molten copper, a rough wire for copper is continuously produced. Moreover, a wire drawing process is given to this rough drawing line. Between these wire drawing processes, heat treatment (recrystallization treatment) is performed on the roughing wire using a current-carrying method or batch-type equipment. The wire drawing and recrystallization heat treatment may be repeated as appropriate.

伸線された荒引き線に、圧延加工(あるいはスリット加工)を施して断面平角状の導体3を作製する。その後、平角状の導体3に通電方式もしくはバッチ式の設備で熱処理(焼鈍処理)を施す。この加工と熱処理によって、導体3の中心部の結晶方位(めっき線の軸方位)が、(211)方位に30%以上の割合で配向され、かつ、導体3の0.2%耐力が70MPa以下に調整される。   The drawn rough wire is subjected to rolling (or slitting) to produce a conductor 3 having a rectangular cross section. Thereafter, the flat conductor 3 is subjected to heat treatment (annealing treatment) using an energization method or batch-type equipment. By this processing and heat treatment, the crystal orientation of the central portion of the conductor 3 (axis direction of the plating wire) is oriented at a ratio of 30% or more in the (211) orientation, and the 0.2% proof stress of the conductor 3 is 70 MPa or less. Adjusted to

熱処理後、導体3の表面にめっき層4を被覆し、本実施の形態に係る太陽電池用めっき線2が得られる。めっき層4は、太陽電池用めっき線2の0.2%耐力が90MPa以下となるように、めっき種類及びめっき厚さが調整される。   After the heat treatment, the plating layer 4 is coated on the surface of the conductor 3 to obtain the solar cell plating wire 2 according to the present embodiment. The plating type and the plating thickness of the plating layer 4 are adjusted so that the 0.2% proof stress of the solar cell plating wire 2 is 90 MPa or less.

導体3の中心部における結晶方位(211)の配向割合は、例えば、再結晶熱処理の熱処理温度、熱処理時間や圧延加工の加工条件を調整することで、調整可能である。   The orientation ratio of the crystal orientation (211) in the central portion of the conductor 3 can be adjusted by adjusting, for example, the heat treatment temperature of the recrystallization heat treatment, the heat treatment time, and the processing conditions of the rolling process.

導体3の加工法としては圧延加工、スリット加工のいずれも適用可能である。丸線から圧延して平角化する方式は長尺で均一なものが製造できる。スリット方式では種々の幅の材料に対応できるメリットがある。   As the processing method of the conductor 3, both rolling processing and slit processing are applicable. The method of rolling from a round wire and flattening can produce a long and uniform product. The slit method has the merit that it can cope with materials of various widths.

また、本発明に係る太陽電池セル接続用配線導体およびはんだめっき線は、セルとの接続がなされた複数箇所に変形しやすい加工部を含んでいても良く、加工方法としてエッチング、プレス、曲げ成形のうちのいずれか、あるいは、複数を併用してもよい。さらに、その加工は素材線材、素材線材を圧延成形した圧延線材、板状素材にスリットをいれた箔状線材のいずれに施してもよい。   Moreover, the wiring conductor for connecting solar cells and the solder plating wire according to the present invention may include a deformed portion that is easily deformed at a plurality of locations connected to the cell, and etching, pressing, and bending as processing methods. Any one or a plurality of them may be used in combination. Further, the processing may be applied to any of a material wire, a rolled wire obtained by rolling the material wire, and a foil-like wire obtained by slitting a plate material.

0.2%耐力を低減するための熱処理方式としては、通電加熱方式でもバッチ式加熱方式でも適用可能である。連続で長尺にわたって処理する場合には通電加熱方式が向いており、安定した熱処理が必要な場合にはバッチ式加熱方式が望ましい。また、導体3の酸化を防止する観点から、水素還元雰囲気の炉を用いて熱処理を行ってもよい。   As a heat treatment method for reducing the 0.2% proof stress, either an electric heating method or a batch heating method can be applied. The energization heating method is suitable for continuous and long processing, and the batch heating method is desirable when stable heat treatment is required. Further, from the viewpoint of preventing the conductor 3 from being oxidized, heat treatment may be performed using a furnace in a hydrogen reducing atmosphere.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係る太陽電池用めっき線2によれば、導体3の中心部の結晶方位(めっき線の軸方位)が、(211)方位に30%以上の割合で配向されることで、導体3自体の0.2%耐力のばらつきが小さくなり、歩留まりが向上する。また、このように、(211)方位に30%以上の割合で配向させることで、導体3自体の0.2%耐力も低くなることから、セル反り抑制効果も得られる。すなわち、太陽電池用めっき線2は、導体3の結晶構造を精密に制御することにより、0.2%耐力の低減および特性のばらつきを抑制でき、それによって、はんだ接続後の導体熱収縮によって発生する、セルを反らせる力を低減させることができると共に、製品の歩留り向上が可能となる。   According to the solar cell plating wire 2 according to the present embodiment, the crystal orientation (the axial orientation of the plating wire) of the central portion of the conductor 3 is oriented at a ratio of 30% or more in the (211) orientation. The variation in 0.2% proof stress of the conductor 3 itself is reduced, and the yield is improved. Moreover, since the 0.2% proof stress of the conductor 3 itself is lowered by orienting at a ratio of 30% or more in the (211) direction as described above, a cell warpage suppressing effect can also be obtained. In other words, the solar cell plated wire 2 can be controlled by precise control of the crystal structure of the conductor 3 to suppress a 0.2% reduction in yield strength and variations in characteristics, thereby generating heat shrinkage of the conductor after solder connection. In addition, the force for warping the cell can be reduced, and the yield of the product can be improved.

また、導体3の構成材に、低コストのタフピッチCuやリン脱酸Cuを用いても、無酸素Cuや高純度Cuと同等の効果が得られるため、製品(太陽電池用めっき線2)の低コスト化が可能となる。さらに、導体3の構成材は純銅であるため、図4に示したCICを導体として用いた場合と比較して、導電率は良好である。   Moreover, even if low-cost tough pitch Cu or phosphorus deoxidized Cu is used as the constituent material of the conductor 3, the same effect as that of oxygen-free Cu or high-purity Cu can be obtained, so that the product (plating wire 2 for solar cells) Cost reduction is possible. Furthermore, since the constituent material of the conductor 3 is pure copper, the electrical conductivity is better than when the CIC shown in FIG. 4 is used as a conductor.

また、太陽電池用めっき線2におけるはんだめっきのはんだ組成は、これまで、Siセル1との熱膨張整合を考慮して低温接続が可能なものが求められていたが、本構造の導体3を用いることで、接続温度の高いSn−Ag−Cu系の組成のはんだを用いることも可能である。また、はんだ接続の代わりに導電性接着剤を用いてもよい。   Further, the solder composition of the solder plating in the solar cell plating wire 2 has so far been required to be able to be connected at a low temperature in consideration of thermal expansion matching with the Si cell 1. By using it, it is also possible to use a Sn—Ag—Cu-based solder having a high connection temperature. Moreover, you may use a conductive adhesive instead of a solder connection.

本発明の一実施例を以下に示す。   An embodiment of the present invention is shown below.

Cu導体(荒引き線)に伸線加工を施すと共に、その伸線加工の工程の合間に通電方式もしくはバッチ式の設備で荒引線に熱処理を行った。その後、伸線後の荒引き線に、さらに、幅2.0mm、厚さ0.16mmの平角線状に圧延成形加工を施し、所定の条件で焼鈍した後、その周囲をSn−3%Ag−0.5%Cu系の鉛フリーはんだで被覆し、表3に示すように、導体材料の中心部の結晶方位(リード線中心部の軸方位)が異なる種々のはんだめっき被覆平角線を製作した(試料1〜13)。   The Cu conductor (rough drawing wire) was drawn, and heat treatment was performed on the rough drawing wire with a current-carrying system or batch-type equipment between the drawing processes. Thereafter, the rough drawn wire after wire drawing is further rolled and formed into a flat wire shape having a width of 2.0 mm and a thickness of 0.16 mm, annealed under predetermined conditions, and then the periphery thereof is Sn-3% Ag -Coated with 0.5% Cu-based lead-free solder, and as shown in Table 3, produces various types of solder-plated rectangular wires with different crystal orientations in the center of the conductor material (axial orientation of the lead wire center) (Samples 1 to 13).

結晶方位は、各はんだめっき被覆平角線断面の中心部におけるX線回折プロファイルの回折ピーク強度比から求めた。また、0.2%耐力は、引張速度20mm/minの引張試験で得られたS−S曲線から0.2%耐力点荷重を求め、導体の断面積で除して算出した。   The crystal orientation was determined from the diffraction peak intensity ratio of the X-ray diffraction profile at the center of each solder plating coated rectangular wire cross section. The 0.2% yield strength was calculated by obtaining a 0.2% yield strength load from an SS curve obtained by a tensile test at a tensile rate of 20 mm / min, and dividing by the cross-sectional area of the conductor.

Figure 0004780008
Figure 0004780008

表3に示すように、結晶方位を制御して作製したはんだめっき被覆平角線(試料1〜11)の0.2%耐力は、最大値と最小値の差(ばらつき)が小さく10MPa以下だったが、結晶方位を制御しない従来の製法で作製したはんだめっき被覆平角線(試料12,13)の0.2%耐力は、ばらつきが大きく20MPa以上であった。   As shown in Table 3, the 0.2% proof stress of the solder plating coated rectangular wires (samples 1 to 11) produced by controlling the crystal orientation was 10 MPa or less with a small difference (variation) between the maximum value and the minimum value. However, the 0.2% proof stress of the solder-plated rectangular wires (samples 12 and 13) produced by a conventional manufacturing method in which the crystal orientation is not controlled varies widely and is 20 MPa or more.

また、導体中心部の結晶方位(リード線中心部の軸方位)が、(211)方位に30%以上の割合で配向しているはんだめっき被覆平角線(試料1〜8)は、導体の0.2%耐力が低く、70MPa以下であるのに対して、それ以外のはんだめっき被覆平角線(試料9〜12)は0.2%耐力が大きい。   Also, the solder-plated rectangular wires (samples 1 to 8) in which the crystal orientation of the conductor center portion (axial orientation of the lead wire center portion) is oriented at a ratio of 30% or more in the (211) orientation are 0% of the conductor. .2% proof stress is low and 70 MPa or less, while other solder-plated rectangular wires (samples 9 to 12) have a 0.2% proof stress.

さらに、0.2%耐力が60、70、100、160MPaの各はんだ被覆平角線を、縦150mm×横150mm×厚み200μmのSiセルにはんだ接続した際の、セルの反りを調べた。セル反りの評価結果を表4に示す。   Furthermore, the warpage of the cell was investigated when each solder-coated rectangular wire having a 0.2% proof stress of 60, 70, 100, and 160 MPa was soldered to a Si cell having a length of 150 mm, a width of 150 mm, and a thickness of 200 μm. Table 4 shows the evaluation results of the cell warpage.

Figure 0004780008
Figure 0004780008

表4に示すように、0.2%耐力の低下とともにセルの反り量も低減しており、はんだめっき被覆Cu平角線で0.2%耐力が70MPaのものは、タフピッチCuを導体として用いた従来のはんだめっき被覆Cu平角線(試料12、0.2%耐力は160MPa)と比べて、セルの反り量を1/2程度に低減できた。   As shown in Table 4, the amount of warpage of the cell is reduced as the 0.2% proof stress is decreased, and the tough pitch Cu is used as the conductor when the solder plating coated Cu flat wire has a 0.2% proof stress of 70 MPa. Compared with the conventional solder-plated Cu rectangular wire (sample 12, 0.2% proof stress is 160 MPa), the amount of warpage of the cell could be reduced to about ½.

比較として、Cu/インバー/Cu(比率2:1:2)を導体として用いたはんだめっき被覆Cu平角線(0.2%耐力は100MPa)と、0.2%耐力が60MPaのはんだめっき被覆Cu平角線を、それぞれSiセルとはんだ接続した際のセルの反りを調べた。前者の反り量は3.0mm程度であったが、後者の反り量は1.5mm程度であり、セルの反りが半分になることを確認できた。   For comparison, a solder plating coated Cu rectangular wire (0.2% proof stress is 100 MPa) using Cu / Invar / Cu (ratio 2: 1: 2) as a conductor and a solder plating coated Cu having a 0.2% proof stress of 60 MPa. The warp of the cell when the flat wire was soldered to the Si cell was examined. Although the amount of warping of the former was about 3.0 mm, the amount of warping of the latter was about 1.5 mm, and it was confirmed that the cell warping was halved.

反り量がこの範囲(3.0mm程度)以下のものであれば、太陽電池接続用リード線として使用可能である。   If the amount of warpage is within this range (about 3.0 mm), it can be used as a lead wire for connecting solar cells.

太陽電池セルへのはんだめっき平角線の接続状態を示す図である。It is a figure which shows the connection state of the solder plating rectangular wire to a photovoltaic cell. Siセルと太陽電池用はんだめっき線の接続状態を示す図であり、図2(a)ははんだ接続前の状態、図2(b)ははんだ接続後に反りが発生した状態を示している。It is a figure which shows the connection state of the Si cell and the solder plating wire for solar cells, Fig.2 (a) has shown the state before solder connection, FIG.2 (b) has shown the state which the curvature generate | occur | produced after solder connection. 一般的な太陽電池用めっき線の横断面図である。It is a cross-sectional view of a general solar cell plating wire. CICを用いた太陽電池用めっき線の横断面図である。It is a cross-sectional view of the plating wire for solar cells using CIC.

1 太陽電池セル(Siセル)
2 太陽電池用めっき線(はんだめっき平角線)
3 導体
4 めっき層
5 Cu
6 インバー
1 Solar cell (Si cell)
2 Plating wire for solar cell (Solder-plated flat wire)
3 Conductor 4 Plating layer 5 Cu
6 Invar

Claims (8)

太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線において、上記導体の中心部の結晶方位(めっき線の軸方位)が、(211)方位と(100)方位であり、(211)方位の配向割合が30%以上であり、前記めっき線引張り試験における0.2%耐力が90MPa以下であることを特徴とする太陽電池用めっき線。 In a solar cell plating wire in which a plating layer is coated on a part or all of the surface of a conductor formed in a rectangular cross section so as to be bonded to a solar battery cell, the crystal orientation (the axis of the plating wire) of the conductor Azimuth) is (211) azimuth and (100) azimuth, the orientation ratio of (211) azimuth is 30% or more , and 0.2% proof stress in the plated wire tensile test is 90 MPa or less. Plating wire for solar cells. 上記導体の体積抵抗率が50μΩ・mm以下である請求項1記載の太陽電池用めっき線。   The plated wire for a solar cell according to claim 1, wherein the conductor has a volume resistivity of 50 μΩ · mm or less. 上記導体が、純銅で構成される請求項1又は2記載の太陽電池用めっき線。   The solar cell plating wire according to claim 1, wherein the conductor is made of pure copper. 上記導体材料がタフピッチCu、リン脱酸Cuのいずれかである請求項1から3いずれか記載の太陽電池用めっき線。   4. The solar cell plating wire according to claim 1, wherein the conductor material is one of tough pitch Cu and phosphorus deoxidized Cu. 上記導体の引張り試験における0.2%耐力が70MPa以下である請求項1から4いずれか記載の太陽電池用めっき線。 The plated wire for a solar cell according to any one of claims 1 to 4 , wherein a 0.2% yield strength in a tensile test of the conductor is 70 MPa or less. 上記めっき層が、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだの被覆層である請求項1から5いずれか記載の太陽電池用めっき線。   The plating layer is Sn-based solder or Sn-based alloy solder containing 0.1 wt% or more of at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. It is a coating layer, The plating wire for solar cells in any one of Claim 1 to 5. 太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にめっき層が被覆された太陽電池用めっき線の製造方法において、上記導体の材料で、先ず、荒引き線を作製し、その荒引き線に伸線加工を施し、その伸線された荒引き線に圧延加工あるいはスリット加工を施して断面平角状に成形した後、通電方式もしくはバッチ式の設備で焼鈍熱処理を施し、上記導体の中心部の結晶方位(めっき線の軸方位)が(211)方位と(100)方位であって、(211)方位の配向割合30%以上であり、前記焼鈍熱処理が施された上記導体の表面にめっき層を被覆し、得られためっき線の引張り試験における0.2%耐力を90MPa以下とすることを特徴とする太陽電池用めっき線の製造方法。 In the method of manufacturing a solar cell plating wire in which a plating layer is coated on a part or all of the surface of a conductor formed in a rectangular cross section so as to be bonded to a solar battery cell, first, roughing is performed using the conductor material. A wire is prepared, the rough drawn wire is drawn, and the drawn rough drawn wire is rolled or slitted to form a rectangular cross section, and then annealed with a current-carrying or batch-type equipment. heat treatment, I crystal orientation (axial direction of plated wire) is (211) orientation and (100) orientation der the central portion of the conductor, (at 211) orientation ratio of the orientation of 30% or more, the annealing A method for producing a plated wire for a solar cell, wherein the surface of the conductor subjected to heat treatment is coated with a plating layer, and the 0.2% proof stress in a tensile test of the obtained plated wire is 90 MPa or less . 上記伸線加工の工程の合間に、上記荒引き線に通電方式もしくはバッチ式の設備で熱処理を施す請求項7記載の太陽電池用めっき線の製造方法。   The manufacturing method of the plating wire for solar cells of Claim 7 which heat-processes to the said rough drawing wire with an electricity supply system or a batch type installation between the processes of the said wire drawing process.
JP2007071753A 2006-12-14 2007-03-20 Plating wire for solar cell and manufacturing method thereof Active JP4780008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071753A JP4780008B2 (en) 2006-12-14 2007-03-20 Plating wire for solar cell and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006337093 2006-12-14
JP2006337093 2006-12-14
JP2007071753A JP4780008B2 (en) 2006-12-14 2007-03-20 Plating wire for solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008168339A JP2008168339A (en) 2008-07-24
JP4780008B2 true JP4780008B2 (en) 2011-09-28

Family

ID=39696922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071753A Active JP4780008B2 (en) 2006-12-14 2007-03-20 Plating wire for solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4780008B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073386B2 (en) * 2007-07-05 2012-11-14 株式会社Neomaxマテリアル ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
JP5446188B2 (en) * 2008-09-17 2014-03-19 新日鐵住金株式会社 Interconnector for semiconductor wire mounting and interconnector for solar cell
JP5418189B2 (en) * 2009-12-04 2014-02-19 日立金属株式会社 Solar cell lead wire and solar cell using the same
WO2011114983A1 (en) * 2010-03-17 2011-09-22 株式会社アルバック Solar cell module and process for production thereof
TWI499067B (en) 2010-03-17 2015-09-01 Nippon Steel & Sumitomo Metal Corp Interconnects for metal tape and solar collectors
JP5981087B2 (en) * 2010-05-14 2016-08-31 古河電気工業株式会社 Flat rectangular copper wire and manufacturing method thereof, flat rectangular copper wire for solar cell and manufacturing method thereof
JP5255668B2 (en) * 2010-06-11 2013-08-07 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus
WO2012165348A1 (en) * 2011-05-27 2012-12-06 新日鐵住金株式会社 Interconnector for solar cells, and solar cell module
JP2014042065A (en) * 2013-11-01 2014-03-06 Hitachi Metals Ltd Lead wire for solar battery, and solar battery
WO2015147213A1 (en) * 2014-03-26 2015-10-01 新日鉄住金マテリアルズ株式会社 Conductor, and solar-cell interconnector
CN105382443B (en) * 2015-12-18 2018-07-03 黄河水电光伏产业技术有限公司 A kind of preparation method of solder
WO2018055863A1 (en) * 2016-09-20 2018-03-29 株式会社カネカ Wiring line material for solar cells and solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121660A (en) * 1997-07-03 1999-01-26 Hitachi Cable Ltd Connecting wire for solar battery
JP5491682B2 (en) * 2004-08-13 2014-05-14 日立金属株式会社 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell

Also Published As

Publication number Publication date
JP2008168339A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP2008182171A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
KR101223697B1 (en) Metal tape material, and interconnector for solar cell collector
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP5073386B2 (en) ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
JP5038765B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP5446188B2 (en) Interconnector for semiconductor wire mounting and interconnector for solar cell
JP2008182170A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
KR101110915B1 (en) Ribbon wire for solar cell module
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP5565519B1 (en) Solar cell module
JP4951856B2 (en) Manufacturing method of flat conductor
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module
JP2011210868A (en) Composite flat wire for connecting solar cell and method for manufacturing the same
JP2016169414A (en) Metal wire for solar cell wire and solar cell module
JP5261579B2 (en) Solar cell interconnector material, manufacturing method thereof, and solar cell interconnector
JP2012146730A (en) Lead wire for solar cell and solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350