JP4656100B2 - Solder-plated wire for solar cell and manufacturing method thereof - Google Patents

Solder-plated wire for solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP4656100B2
JP4656100B2 JP2007191104A JP2007191104A JP4656100B2 JP 4656100 B2 JP4656100 B2 JP 4656100B2 JP 2007191104 A JP2007191104 A JP 2007191104A JP 2007191104 A JP2007191104 A JP 2007191104A JP 4656100 B2 JP4656100 B2 JP 4656100B2
Authority
JP
Japan
Prior art keywords
conductor
solder
wire
crystal grain
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007191104A
Other languages
Japanese (ja)
Other versions
JP2009027096A (en
Inventor
裕寿 遠藤
正義 青山
隆之 辻
甫 西
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007191104A priority Critical patent/JP4656100B2/en
Publication of JP2009027096A publication Critical patent/JP2009027096A/en
Application granted granted Critical
Publication of JP4656100B2 publication Critical patent/JP4656100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Description

本発明は、太陽電池のSiセルを接続する太陽電池用はんだめっき線とその製造方法に関するものである。   The present invention relates to a solar cell solder plated wire for connecting Si cells of a solar cell and a method for manufacturing the same.

太陽電池には、多結晶或いは単結晶のSi結晶ウェハが用いられている。   For solar cells, polycrystalline or single crystal Si crystal wafers are used.

図2に示すように、太陽電池は、Si結晶ウェハ(Siセル)1の裏面の所定の領域に接続用リード線2をはんだで接合し、接続用リード線2を通じて発電された電力を伝送する構成となっている。   As shown in FIG. 2, the solar cell joins the connection lead wire 2 to a predetermined region on the back surface of the Si crystal wafer (Si cell) 1 with solder, and transmits the generated power through the connection lead wire 2. It has a configuration.

図3に示すように、接続用リード線2は、導体3とその導体3を被覆するはんだめっき4とからなるはんだめっき線であり、導体3にタフピッチCuや無酸素Cuなどの純Cuで構成された平角状の導体を用い、はんだめっき4としてSn−Pb共晶はんだを用いている(例えば、特許文献1参照)。   As shown in FIG. 3, the connecting lead wire 2 is a solder plating wire comprising a conductor 3 and a solder plating 4 covering the conductor 3, and the conductor 3 is made of pure Cu such as tough pitch Cu or oxygen-free Cu. Sn-Pb eutectic solder is used as the solder plating 4 (see, for example, Patent Document 1).

また、はんだめっき線は、環境への配慮からPbを含まないはんだを使用したものへの切り換えが検討されている(例えば、特許文献2参照)。   In addition, switching from solder plated wires to those using solder that does not contain Pb has been studied in consideration of the environment (see, for example, Patent Document 2).

特開平11−21660号公報Japanese Patent Laid-Open No. 11-21660 特開2002−263880号公報JP 2002-263880 A

ところで、太陽電池を構成する部材のうち、Siセルが材料コストの大半を占めている。そのため、Siセルの薄板化が検討されている。   By the way, Si cells occupy most of the material cost among the members constituting the solar cell. Therefore, thinning of the Si cell has been studied.

しかしながら、薄板化したSiセルは、はんだめっき線の接合時の加熱プロセスや使用時の温度変化により、Si結晶ウェハの反りや、その反りによる破損等の不具合が生じることがある。例えば、図4(a)に示すように、はんだ接続前は平板状であったSiセル1とはんだめっき線2とをはんだ接合することにより、図4(b)に示すように、はんだ接合時或いは接合後の熱収縮によりSiセル1に応力が発生し、反りが生じてしまう。   However, the thinned Si cell may suffer from problems such as warpage of the Si crystal wafer and damage due to the warpage due to a heating process at the time of joining the solder plating wires and a temperature change at the time of use. For example, as shown in FIG. 4A, by soldering the Si cell 1 and the solder plated wire 2 which were flat before solder connection, as shown in FIG. Alternatively, stress is generated in the Si cell 1 due to heat shrinkage after bonding, and warpage occurs.

このような熱収縮によるセルの反りを防止するため、はんだめっき線に用いる材料として、熱膨張係数が小さいもののニーズが高まっている。例えば、熱膨張係数が小さいはんだめっき線の一例として、図5に示すように、Cu5−インバー6−Cu5(以下、インバー:登録商標)をクラッドした平角導体7をはんだ膜8で被覆したはんだめっき線9がある。   In order to prevent the warpage of the cell due to such heat shrinkage, there is an increasing need for a material having a low thermal expansion coefficient as a material used for a solder plating wire. For example, as an example of a solder plating wire having a small thermal expansion coefficient, as shown in FIG. 5, solder plating in which a rectangular conductor 7 clad with Cu 5 -invar 6 -Cu 5 (hereinafter, Invar: registered trademark) is coated with a solder film 8 is coated. There is a line 9.

しかしながら、図4のはんだめっき線9は、インバー6が低熱膨張であるため、Siセルとの熱膨張整合が可能になるものの、導電率も低下してしまい太陽電池としての発電効率が下落してしまう。   However, since the invar 6 has a low thermal expansion, the solder plating wire 9 in FIG. 4 can be matched with the Si cell in thermal expansion, but the electrical conductivity is lowered and the power generation efficiency as a solar cell is reduced. End up.

そこで、本発明の目的は、上記課題を解決し、Siセルとはんだ接続後の熱収縮においてもセルの反りが少なく、かつ高導電率を有する太陽電池用はんだめっき線とその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a solar cell solder-plated wire having a low conductivity and high conductivity even in thermal contraction after the Si cell and solder connection, and a method for manufacturing the same. There is.

上記目的を達成するために、請求項1の発明は、太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線において、上記導体は、その体積抵抗率が30μΩ・mm以下で、かつ表層と内層とからなる2層構造を有し、上記表層の結晶粒径が上記内層の結晶粒径よりも大きい太陽電池用はんだめっき線である。   In order to achieve the above object, a first aspect of the present invention provides a solder plating wire for a solar battery in which the surface of a conductor whose cross-sectional shape is processed into a flat rectangular shape is coated with solder plating so as to be joined to a solar battery cell. The conductor has a two-layer structure having a volume resistivity of 30 μΩ · mm or less and a surface layer and an inner layer, and the crystal grain size of the surface layer is larger than the crystal grain size of the inner layer. It is.

請求項2の発明は、太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線において、
上記導体は、その体積抵抗率が30μΩ・mm以下で、かつ表層と内層とからなる2層構造を有し、上記表層の結晶粒径が上記内層の結晶粒径よりも大きく、上記内層の厚さの半分r1と上記表層の厚さr2の合計に対する表層の厚さの比r2/(r1+r2)が0.1〜0.3である太陽電池用はんだめっき線である。
The invention according to claim 2 is a solder plating wire for solar battery in which the surface of a conductor whose cross-sectional shape is processed into a flat rectangular shape is coated with solder plating so as to be bonded to a solar battery cell.
The conductor has a two-layer structure having a volume resistivity of 30 μΩ · mm or less and a surface layer and an inner layer, the crystal grain size of the surface layer being larger than the crystal grain size of the inner layer, and the thickness of the inner layer. This is a solder-plated wire for solar cells in which the ratio r2 / (r1 + r2) of the thickness of the surface layer to the sum of the half thickness r1 and the thickness r2 of the surface layer is 0.1 to 0.3.

請求項3の発明は、引張試験における上記導体の0.2%耐力が16〜70MPaである請求項1または2記載の太陽電池用はんだめっき線である。   The invention according to claim 3 is the solder plated wire for solar cells according to claim 1 or 2, wherein the 0.2% proof stress of the conductor in a tensile test is 16 to 70 MPa.

請求項4の発明は、引張試験における0.2%耐力が37〜100MPaである請求項1〜3のいずれかに記載の太陽電池用はんだめっき線である。   Invention of Claim 4 is a solder plating wire for solar cells in any one of Claims 1-3 whose 0.2% yield strength in a tension test is 37-100 Mpa.

請求項5の発明は、太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線の製造方法において、体積抵抗率が30μΩ・mm以下の金属材料を鋳造した後、圧延加工あるいはスリット加工を施して導体を形成し、その導体に熱処理を施し、上記導体の表面付近のみをスキンパス加工し、再度熱処理を施すことにより、上記導体を表層の結晶粒径が内層の結晶粒径よりも大きい2層構造に形成する太陽電池用はんだめっき線の製造方法である。   According to a fifth aspect of the present invention, there is provided a method for producing a solder-plated wire for a solar battery in which the surface of a conductor whose cross-sectional shape is processed into a flat rectangular shape to be bonded to a solar battery cell is coated with a solder plating wire for a solar battery. After casting a metal material of mm or less, a conductor is formed by rolling or slitting, heat-treating the conductor, skin-passing only the vicinity of the surface of the conductor, and heat-treating again to thereby form the conductor. Is formed into a two-layer structure in which the crystal grain size of the surface layer is larger than the crystal grain size of the inner layer.

請求項6の発明は、上記スキンパス加工による導体の加工率を0.5〜5%とする請求項5記載の太陽電池用はんだめっき線の製造方法である。   The invention according to claim 6 is the method for producing a solder plated wire for a solar cell according to claim 5, wherein a processing rate of the conductor by the skin pass processing is 0.5 to 5%.

請求項7の発明は、上記熱処理を650〜750℃で40〜60分行い、再熱処理を850〜900℃で40〜60分行う請求項5または6記載の太陽電池用はんだめっき線の製造方法である。   Invention of Claim 7 performs the said heat processing for 40 to 60 minutes at 650-750 degreeC, and performs the reheat processing for 40 to 60 minutes at 850-900 degreeC, The manufacturing method of the solder plating wire for solar cells of Claim 5 or 6 It is.

本発明によれば、Siセルとはんだ接続後の熱収縮においてもセルの反りが少なく、かつ高導電率を有するという優れた効果を発揮する。   According to the present invention, there is an excellent effect that there is little warping of the cell and high conductivity even in thermal contraction after the solder connection with the Si cell.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る太陽電池セル用はんだめっき線の好適な実施の形態を示した横断面図である。   FIG. 1 is a cross-sectional view showing a preferred embodiment of a solar cell solder plating wire according to the present invention.

図1に示すように、本実施形態の太陽電池セル用はんだめっき線(以下、はんだめっき線)は、Siウェハから作製される太陽電池セル(Siセル)と接合するはんだめっき線であり、導体10とその導体10を被覆するはんだめっき(図示せず)とからなる。   As shown in FIG. 1, the solder plating wire for solar battery cells (hereinafter referred to as solder plating wire) of this embodiment is a solder plating wire that joins a solar battery cell (Si cell) produced from a Si wafer, and is a conductor. 10 and solder plating (not shown) covering the conductor 10.

導体10は、Siセルへのはんだ接続が容易となるよう断面形状が平角状に形成され、体積抵抗率が30μΩ・mm以下の導体材料で構成される。体積抵抗率30μΩ・mm以下の導体材料としてはCuが用いられる。   The conductor 10 is formed of a conductor material having a rectangular cross section so that solder connection to the Si cell is easy, and a volume resistivity of 30 μΩ · mm or less. Cu is used as a conductor material having a volume resistivity of 30 μΩ · mm or less.

さらに、導体10は、表層11と、結晶粒径が表層(外層部)11の結晶粒径よりも大きい内層(内層部)12とからなる2層構造に形成されている。導体10の2層構造は、後述する熱処理とスキンパス加工を導体に施すことにより形成されるものであり、スキンパス加工の及ぶ導体表面付近を表層11とし、スキンパス加工の影響の及ばない導体内部を内層12とする。本実施形態では、平角状の導体10の両面に表層11を形成した表層−内層−表層の3層となっている。   Further, the conductor 10 is formed in a two-layer structure including a surface layer 11 and an inner layer (inner layer portion) 12 having a crystal grain size larger than that of the surface layer (outer layer portion) 11. The two-layer structure of the conductor 10 is formed by subjecting the conductor to heat treatment and skin pass processing, which will be described later. 12 In the present embodiment, there are three layers of surface layer-inner layer-surface layer in which the surface layer 11 is formed on both surfaces of the flat conductor 10.

本実施形態のはんだめっき線は、表層11の厚さの半分r1と内層12の厚さr2の合計に対する内層12の厚さr2の比(厚さ比という)r2/(r1+r2)を0.1〜0.3とした。   In the solder plated wire of the present embodiment, the ratio of the thickness r2 of the inner layer 12 to the total of the thickness r2 of the surface layer 11 and the thickness r2 of the inner layer 12 (referred to as the thickness ratio) r2 / (r1 + r2) is 0.1. It was set to -0.3.

厚さ比は、導体10の断面を観察することにより、結晶粒径が小さい領域と結晶粒径が大きい領域とを見極めて両層の境界13を決定し、粒径が小さい領域(内層12)の厚さと粒径の大きい領域(表層11)の厚さr2とをそれぞれ計測し、計測したr1、r2から求めたものである。   The thickness ratio is determined by observing the cross section of the conductor 10 to determine a region 13 having a small crystal grain size and a region having a large crystal grain size to determine the boundary 13 between the two layers. And the thickness r2 of the region (surface layer 11) having a large particle diameter are respectively measured and obtained from the measured r1 and r2.

また、本実施形態のはんだめっき線は、導体10の引張試験における0.2%耐力が16〜70MPaである。また、はんだめっき線の引張試験における0.2%耐力が37〜100MPaである。ここで、引張試験による0.2%耐力を求める際に、導体の0.2%耐力については、導体10の断面積を用いて求めており、はんだめっき線の0.2%耐力については、導体10のみの断面積を用い、引張試験における荷重を除算して求めている。   Moreover, the 0.2% yield strength in the tensile test of the conductor 10 is 16-70 Mpa in the solder plating wire of this embodiment. Moreover, the 0.2% yield strength in the tensile test of a solder plating wire is 37-100 Mpa. Here, when the 0.2% yield strength by the tensile test is obtained, the 0.2% yield strength of the conductor is obtained by using the cross-sectional area of the conductor 10, and the 0.2% yield strength of the solder plated wire is The cross-sectional area of only the conductor 10 is used to divide the load in the tensile test.

本実施形態のはんだめっき線の製造方法について説明する。   A method for manufacturing the solder plated wire of this embodiment will be described.

まず、導体10を構成する体積抵抗率30μΩ・mm以下の導体材料(本実施形態ではCu)を長尺に鋳造した後、鋳造した導体材料に圧延加工或いはスリット加工を施して平角状の導体10を形成する。   First, a conductor material (Cu in this embodiment) having a volume resistivity of 30 μΩ · mm or less constituting the conductor 10 is cast into a long length, and then the cast conductor material is subjected to rolling or slitting to obtain a flat conductor 10. Form.

次に、その導体10を熱処理する。この熱処理は、圧延加工或いはスリット加工した導体のひずみの回復(補正)と結晶粒径の成長を図るために行われる。熱処理の方法は、導体10に直接電流を流して加熱する通電加熱方式の方法、或いは、高温炉内で導体10を加熱するバッチ加熱式の方法でもよい。熱処理条件は、650〜750℃で40〜60分とするのがよい。   Next, the conductor 10 is heat-treated. This heat treatment is performed in order to recover (correct) strain and grow the crystal grain size of the rolled or slit conductor. The heat treatment method may be an electric heating method in which current is directly applied to the conductor 10 to heat it, or a batch heating method in which the conductor 10 is heated in a high temperature furnace. The heat treatment conditions are preferably 650 to 750 ° C. and 40 to 60 minutes.

次に、熱処理した導体10をスキンパス加工する。ここでいうスキンパス加工は、導体10の表層11のみを軽度に圧延加工する工程である。導体10のスキンパス加工法としては、圧延加工或いはプレス加工のいずれでもよい。スキンパス加工の加工率は、0.5〜5%とするのがよい。   Next, the heat-treated conductor 10 is subjected to skin pass processing. Skin pass processing here is a process of rolling only the surface layer 11 of the conductor 10 lightly. The skin pass processing method for the conductor 10 may be either rolling or pressing. The processing rate of skin pass processing is preferably 0.5 to 5%.

スキンパス加工した後、導体10を再び熱処理する(再熱処理)。この再加熱処理は、スキンパス加工後に導体10に再結晶を発生させるために行われる。再熱処理の方法は、スキンパス加工前に施した熱処理と同様に通電加熱方式或いはバッチ加熱式のいずれの方法を用いてもよい。再熱処理条件は、850〜900℃で40〜60分とするのがよい。   After the skin pass processing, the conductor 10 is heat treated again (reheat treatment). This reheating treatment is performed in order to generate recrystallization in the conductor 10 after the skin pass processing. As the re-heat treatment method, any one of an electric heating method and a batch heating method may be used in the same manner as the heat treatment performed before the skin pass processing. The reheating condition is preferably 850 to 900 ° C. and 40 to 60 minutes.

圧延加工或いはスリット加工したした導体10に熱処理、スキンパス加工及び再熱処理を行うことにより、表層11の結晶粒径が内層12の結晶粒径よりも大きい2層構造の導体を形成することができる。   By performing heat treatment, skin pass processing, and reheat treatment on the rolled or slit conductor 10, a conductor having a two-layer structure in which the crystal grain size of the surface layer 11 is larger than the crystal grain size of the inner layer 12 can be formed.

再加熱処理後、導体にはんだめっき被覆を施し、はんだめっき線が得られる。   After the reheating treatment, the conductor is coated with a solder plating to obtain a solder plated wire.

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

はんだめっき線はSiセルと高温下ではんだ接続(接合)される。一般に、Siセルとはんだめっき線のように、熱膨張係数の異なる異種金属を高温で接続した場合には、温度変化分と熱膨張率とヤング率とを積算した値が、図4(b)に示したような反りを発生させる力となる。互いに接続される部材(Siセルとはんだめっき線)の剛性が著しく異なり、はんだ接続温度が200℃以上と高温の場合、Siセルに比べて断面積が小さい導体の方が降伏してしまう。   The solder plated wire is soldered (joined) to the Si cell at a high temperature. In general, when dissimilar metals having different thermal expansion coefficients, such as Si cells and solder plated wires, are connected at a high temperature, a value obtained by integrating the temperature change, the thermal expansion coefficient, and the Young's modulus is shown in FIG. It becomes the force that generates the warp as shown in. The members (Si cell and solder plating wire) connected to each other have significantly different rigidity, and when the solder connection temperature is as high as 200 ° C. or higher, the conductor having a smaller cross-sectional area than the Si cell yields.

導体は、降伏応力が小さいと、少ない力(上記の反りを発生させる力)で塑性変形してしまい、それ以上力を加えても変形抵抗の増加は少ない。この塑性変形を生じさせる応力を示す指標に0.2%耐力があり、導体の0.2%耐力が小さい程、Siセルへはんだ接続した後の反り量を低減させることができる。   When the yield stress is small, the conductor is plastically deformed with a small force (the force that generates the above-described warpage), and even if a force beyond that is applied, the increase in deformation resistance is small. The index indicating the stress that causes the plastic deformation is 0.2% proof stress, and the smaller the 0.2% proof stress of the conductor, the lower the warpage amount after solder connection to the Si cell.

そして、0.2%耐力は、導体の結晶粒径との相関が大きいことが知られており、粒界が小さい程、つまり結晶粒径が大きい程、導体の変形抵抗が小さい。すなわち、導体の結晶粒径が大きくなると導体の耐力は低減し、はんだめっき線をSiセルに接続した後、Siセルに発生する熱応力(セルを反らせる力)を低減することができる。   The 0.2% proof stress is known to have a large correlation with the crystal grain size of the conductor, and the smaller the grain boundary, that is, the larger the crystal grain size, the smaller the deformation resistance of the conductor. That is, when the crystal grain size of the conductor is increased, the yield strength of the conductor is reduced, and the thermal stress (force to warp the cell) generated in the Si cell after connecting the solder plating wire to the Si cell can be reduced.

一方、導体の結晶粒径が大きくなりすぎると導体の伸びは低下すると共に、クラックが発生しやすくなり、導体が脆化する。   On the other hand, if the crystal grain size of the conductor becomes too large, the elongation of the conductor decreases, cracks are likely to occur, and the conductor becomes brittle.

従って、結晶粒径は、一定条件範囲内に入っている必要がある。この結晶粒径を上記の一定条件範囲内にする要因としては、導体の圧延加工或いはスリット加工条件、熱処理条件(温度、時間など)、スキンパス加工条件(加工率)、再熱処理条件(温度、時間など)があり、それらの組み合わせで結晶粒径が決定される。   Therefore, the crystal grain size needs to be within a certain range of conditions. Factors that cause the crystal grain size to fall within the above-mentioned range of conditions include conductor rolling or slit processing conditions, heat treatment conditions (temperature, time, etc.), skin pass processing conditions (processing rate), and reheat treatment conditions (temperature, time). Etc.), and the crystal grain size is determined by a combination thereof.

本実施形態のはんだめっき線は、銅等の30μΩ・mm以下の導体材料を用いることで高導電率を実現すると共に、導体10を結晶粒径の大きい表層11と表層11より結晶粒径の小さい内層12とからなる2層構造に形成することにより、結晶粒径の大きい表層11において、導体の耐力を低減してセルの反りを防止し、かつ内層12を従来と同程度の結晶粒径とすることで、導体10の脆化を防止することができる。   The solder plated wire of the present embodiment achieves high conductivity by using a conductor material of 30 μΩ · mm or less such as copper, and the conductor 10 has a crystal grain size smaller than that of the surface layer 11 having a large crystal grain size and the surface layer 11. By forming the inner layer 12 in a two-layer structure, in the surface layer 11 having a large crystal grain size, the yield strength of the conductor is reduced to prevent cell warpage, and the inner layer 12 has a crystal grain size comparable to that of the prior art. By doing so, embrittlement of the conductor 10 can be prevented.

また、選択された(上記の一定条件範囲内)結晶粒径を有する導体10は、その伸び量が十分に得られるため、導体10の成型加工性及び長期にわたる信頼性に優れたものとなる。   Moreover, since the conductor 10 having the selected crystal grain size (within the above-described certain condition range) can obtain a sufficient elongation, the conductor 10 has excellent molding processability and long-term reliability.

本実施形態のはんだめっき線では、内層12の厚さの半分r1と表層11の厚さr2との合計に対する表層11の厚さの比(厚さ比)r2/(r1+r2)が0.1〜0.3としている。   In the solder plated wire of the present embodiment, the ratio (thickness ratio) r2 / (r1 + r2) of the thickness of the surface layer 11 to the sum of the half r1 of the thickness of the inner layer 12 and the thickness r2 of the surface layer 11 is 0.1 to 0.3.

厚さ比が0.1より小さいと、表層11の結晶粒径が大きい領域が少なすぎて、セルの反りを低減する効果が得られない。一方、厚さ比が0.3より大きいと、表層11の結晶粒径が大きい領域が広すぎるため、クラックが発生してしまう。よって、厚さ比は0.1〜0.3が好ましい。   If the thickness ratio is less than 0.1, there are too few regions where the crystal grain size of the surface layer 11 is large, and the effect of reducing cell warpage cannot be obtained. On the other hand, if the thickness ratio is greater than 0.3, the region where the crystal grain size of the surface layer 11 is large is too wide, and cracks are generated. Therefore, the thickness ratio is preferably 0.1 to 0.3.

本実施形態のはんだめっき線は、導体10の0.2%耐力を16〜70MPa、或いははんだめっき線の0.2%耐力を37〜100MPaとすることで、太陽電池に接合後、熱収縮によるSiセルの反りとクラックの発生の両方を確実に抑制することができる。   The solder plated wire of the present embodiment has a 0.2% yield strength of the conductor 10 of 16 to 70 MPa, or a 0.2% yield strength of the solder plated wire of 37 to 100 MPa. Both warpage of the Si cell and generation of cracks can be reliably suppressed.

導体10を被覆するはんだは、Siセルとの熱膨張整合を考慮して低温接続が可能な組成のものが求められていたが、図1に示した2層構造の導体10とすることにより、接続温度が高いSn−Ag−Cu系の組成のものを選択することもできる。   The solder covering the conductor 10 has been required to have a composition capable of low-temperature connection in consideration of thermal expansion matching with the Si cell. By using the two-layer structure conductor 10 shown in FIG. A Sn-Ag-Cu composition having a high connection temperature can also be selected.

また、本実施形態のはんだめっき線の製造方法において、導体10を熱処理後、導体10に表層11のみを軽度に圧延するスキンパス加工を施すと、内層12はあまり硬化せず表層のみが硬化する。一般に、硬化した導体材料を熱処理すると結晶が成長し結晶粒径が大きくなるが、本実施形態の製造方法のように、表層11のみを硬化させた導体10を再熱処理すると、その表層11のみで結晶成長が促進され、スキンパス加工前に比べて表層11の結晶粒径を大きくすることができる。一方、内層12ではスキンパス加工による硬化がないため、再熱処理による結晶成長が少ない状態となる。したがって、導体10の平均的な0.2%耐力をスキンパス加工前に比べて小さくすることができ、かつ、内層12では結晶粒が極端には成長していないため、クラックの発生を抑制することができる。   Further, in the method of manufacturing a solder plated wire according to this embodiment, when the conductor 10 is heat-treated and then subjected to a skin pass process in which only the surface layer 11 is lightly rolled, the inner layer 12 is not hardened and only the surface layer is hardened. In general, when the cured conductor material is heat-treated, crystals grow and the crystal grain size increases. However, when the conductor 10 having only the surface layer 11 cured is reheated as in the manufacturing method of the present embodiment, only the surface layer 11 is treated. Crystal growth is promoted, and the crystal grain size of the surface layer 11 can be made larger than before the skin pass processing. On the other hand, since the inner layer 12 is not hardened by the skin pass process, the crystal growth by the reheat treatment is reduced. Therefore, the average 0.2% proof stress of the conductor 10 can be reduced as compared with that before the skin pass processing, and the crystal grains in the inner layer 12 are not grown extremely, so that the generation of cracks is suppressed. Can do.

すなわち、本実施形態のはんだめっき線の製造方法によれば、Siセルとはんだ接続後の熱収縮においてもセルの反りを防止することができると共に、クラックの発生による導体の脆化を防ぐことができ、かつ高い導電性を有するはんだめっき線を得ることができる。   That is, according to the method of manufacturing a solder plated wire of the present embodiment, it is possible to prevent the warpage of the cell even in the thermal contraction after the solder connection with the Si cell, and to prevent the conductor from becoming brittle due to the occurrence of a crack. And a solder plated wire having high conductivity can be obtained.

導体10のスキンパス加工度は、0.5〜5%が適切であり、より好ましくは3〜5%とするのがよい。加工度が0.5%よりも小さいとSiセルの反りを低減する効果が得られず、5%よりも大きいと表層11の加工度の高い領域が大きくなりすぎ、クラックが発生しやすくなる。加工度を0.5〜5%の範囲内にすることにより、従来よりも大幅に耐力を下げながら、導体のクラックを防止でき、長期における信頼性の低下を防止することができる。   The skin pass processing degree of the conductor 10 is suitably 0.5 to 5%, more preferably 3 to 5%. When the degree of work is less than 0.5%, the effect of reducing the warpage of the Si cell cannot be obtained. By setting the workability within the range of 0.5 to 5%, it is possible to prevent cracks in the conductor while significantly reducing the proof stress than before, and to prevent deterioration in reliability over a long period of time.

また、熱処理条件に関して、本実施形態の製造方法では、圧延加工或いはスリット加工後650〜750℃で40〜60分熱処理し、その後にスキンパス加工し、スキンパス加工後に850〜900℃で40〜60分再熱処理している。圧延加工或いはスリット加工後の熱処理条件の適正範囲を650℃〜750℃としたのは、熱処理温度が650℃より低いと中心(内層12)の結晶粒が200μm以下と小さくなってしまい、750℃を超えるとクラックが発生しやすくなるためである。スキンパス後の熱処理温度の適正範囲を850〜900℃としたのは、850℃よりも低いと表層11の結晶粒が大きくならず、900℃を超えるとクラックが発生しやすくなるためである。   Moreover, regarding the heat treatment conditions, in the manufacturing method of this embodiment, after rolling or slitting, heat treatment is performed at 650 to 750 ° C. for 40 to 60 minutes, then skin pass processing is performed, and after skin pass processing, 850 to 900 ° C. is performed for 40 to 60 minutes. Re-heat treatment. The reason why the appropriate range of heat treatment conditions after rolling or slitting is set to 650 ° C. to 750 ° C. is that when the heat treatment temperature is lower than 650 ° C., the crystal grains in the center (inner layer 12) become as small as 200 μm or less, and 750 ° C. This is because cracks are likely to occur when the value exceeds. The reason why the appropriate range of the heat treatment temperature after the skin pass is 850 to 900 ° C. is that if the temperature is lower than 850 ° C., the crystal grains of the surface layer 11 do not increase, and if it exceeds 900 ° C., cracks are likely to occur.

以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定される。   As described above, the embodiment of the present invention is not limited to the above-described embodiment, and various other embodiments are assumed.

体積抵抗率が30μΩ・mm以下の導体材料としてCuを用いたが、他に、Au、Ag、Al或いはこれらの元素を含む合金が挙げられる。   Although Cu was used as a conductor material having a volume resistivity of 30 μΩ · mm or less, Au, Ag, Al, or an alloy containing these elements can also be used.

特に、体積抵抗率が最も低い導体材料はAgであり、太陽電池の発電効率を最大限にすることができる。また、低コスト化を優先する場合には導体材料としてCuを用いるのがよい。軽量化を図る場合には導体材料としてAlを用いるのが望ましい。   In particular, the conductor material having the lowest volume resistivity is Ag, which can maximize the power generation efficiency of the solar cell. Moreover, when priority is given to cost reduction, it is good to use Cu as a conductor material. In order to reduce the weight, it is desirable to use Al as the conductor material.

Cuの種類としては、タフピッチCu,無酸素Cu,リン脱酸Cu,Cu(純度99.9999%以上)のいずれを用いてもよい。0.2%耐力を最も小さくするためには純度が高いCuを用いるのがよく、純度99.9999%以上のCuを選択する。一方、不純物が入ると0.2%耐力は大きくなるが低コスト化を図る際には、タフピッチCuもしくはリン脱酸Cuを選択する。   As the kind of Cu, any of tough pitch Cu, oxygen-free Cu, phosphorus deoxidized Cu, and Cu (purity 99.9999% or more) may be used. In order to minimize the 0.2% proof stress, Cu having a high purity is preferably used, and Cu having a purity of 99.9999% or more is selected. On the other hand, when impurities are added, the 0.2% proof stress increases, but to reduce costs, tough pitch Cu or phosphorus deoxidized Cu is selected.

導体材料は、連続鋳造圧延装置の溶湯貯溜手段(例えば銅溶湯貯留手段)に貯溜され、酸素含有量が5ppm以上の銅溶湯に、Ti,Zr,V,Ta,Fe,Ca,Mg又はNiから選択される少なくとも1種又は2種の金属(硫黄親和性金属)を含有し、銅溶湯中に含まれる金属の割合を0.0007〜0.05重量%に調整し、その銅溶湯を用いて荒引き材を製造し、その荒引き材に減面率30%以上の冷間伸線加工を施し、熱処理を施したものを用いてもよい。   The conductor material is stored in a molten metal storage means (for example, a molten copper storage means) of a continuous casting and rolling apparatus, and from a Ti, Zr, V, Ta, Fe, Ca, Mg or Ni into a molten copper having an oxygen content of 5 ppm or more. Contains at least one or two selected metals (sulfur affinity metal), adjusts the ratio of the metal contained in the molten copper to 0.0007 to 0.05% by weight, and uses the molten copper A roughened material may be manufactured, and the roughened material may be subjected to a cold wire drawing process with a surface reduction rate of 30% or more and a heat treatment.

この硫黄親和性金属(例えば、Ti)が酸素含有量5ppm以上の銅溶湯に固溶しているSと反応することで、Sが硫化物(例えば、TiS)として析出し、Sの固溶量が減少する。このため、酸素含有量が比較的多いタフピッチ銅(TPC)などを導体材料にしたとしても、銅のマトリクスからSを析出させることができ、軟化特性の点において、高純度の銅(例えば、OFC)とほぼ同等の特性が得られるようになるためである。これによれば、高価なOFCでなくても廉価なTPCを用いて、0.2%耐力をより低減することができる。   This sulfur-affinity metal (for example, Ti) reacts with S dissolved in a copper melt having an oxygen content of 5 ppm or more, so that S precipitates as a sulfide (for example, TiS), and the solid solution amount of S Decrease. Therefore, even if tough pitch copper (TPC) having a relatively high oxygen content is used as the conductor material, S can be precipitated from the copper matrix, and high purity copper (for example, OFC) can be used in terms of softening characteristics. This is because the characteristics almost equivalent to those of (1) can be obtained. According to this, even if it is not expensive OFC, 0.2% yield strength can be further reduced using inexpensive TPC.

導体材料としてタフピッチ銅に200ppm程度のPを添加し、最終的にPの含有量が100ppm以下となるように銅合金を用いてもよい。この場合、添加したPがOと結びつき、不純物が低下する。そのため、高価なOFCを用いなくても安価に耐力が低い材料を得ることができる。   As a conductor material, about 200 ppm of P may be added to tough pitch copper, and a copper alloy may be used so that the P content finally becomes 100 ppm or less. In this case, the added P is combined with O, and impurities are reduced. Therefore, a material with low yield strength can be obtained inexpensively without using an expensive OFC.

また、導体10は鋳造して得られた丸線を圧延して平角化する方式でも、スリットする方式のどちらでもよい。圧延方式では長尺で均一なものが製造できる。スリット方式では種々の幅の材料に対応できるメリットがある。   The conductor 10 may be either a method of rolling a round wire obtained by casting to make it flat or a method of slitting. The rolling method can produce a long and uniform product. The slit method has the merit that it can cope with materials of various widths.

0.2%耐力を低減するための熱処理方式としては、通電加熱方式でもバッチ式加熱方式でも適用可能である。連続で長尺にわたって処理する場合には、通電加熱が向いており、安定した熱処理が必要な場合には、バッチ式加熱方式が望ましい。他に、酸化を防止する観点から水素還元雰囲気の炉を用いてもよい。   As a heat treatment method for reducing the 0.2% proof stress, either an electric heating method or a batch heating method can be applied. When processing continuously over a long length, current heating is suitable. When stable heat treatment is required, a batch-type heating method is desirable. In addition, a furnace in a hydrogen reducing atmosphere may be used from the viewpoint of preventing oxidation.

熱処理及び再熱処理は、加熱温度と加熱時間の組み合わせで、結晶粒径を制御することができる。熱処理条件及び再熱処理条件は、Cu以外のAu,Ag,Alを用いた導体についても同様である。   In the heat treatment and reheat treatment, the crystal grain size can be controlled by a combination of the heating temperature and the heating time. The heat treatment conditions and reheat treatment conditions are the same for conductors using Au, Ag, and Al other than Cu.

導体10の被覆に用いるはんだは、Sn系はんだ(第1成分)、或いは第2成分としてPb,In,Bi,Sb,Ag,Zn,Ni,Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだであるが、さらに第3成分として1000ppm以下の微量元素を含んでいるものを用いてもよい。   The solder used for covering the conductor 10 is Sn-based solder (first component) or at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. Although it is Sn type alloy solder containing 1 wt% or more, you may use what contains 1000 ppm or less of trace elements as a 3rd component further.

また、本発明に係る太陽電池セル接続用配線導体及びはんだめっき線は、セルとの接合がなされた複数箇所に変形し易い加工部を含んでいてもよく、加工法としてはエッチング、プレス、曲げ成形のうちのいずれか、或いは複数を併用してもよい。   Further, the wiring conductor for connecting solar cells and the solder plating wire according to the present invention may include a deformed portion which is easily deformed at a plurality of locations where the cell is joined. Etching, pressing, bending as a processing method. Any one or a plurality of moldings may be used in combination.

次に、本発明の実施形態について、実施例に基づいて説明する。
(実施例)
実施例1−14は、まず幅2.0mm、厚さ0.16mmのCu材料を平角線状に圧延成形し、熱処理によって歪みの回復と結晶粒径の成長を図った(熱処理工程)。次に、導体の表層のみを軽度に圧延加工(スキンパス加工工程)し、更にその後に熱処理を行って再結晶を発生させ(再熱処理工程)、最後にその周囲をSn−3%Ag−0.5%Cu系の鉛フリーはんだで被覆したものを製作した。ただし、各実施例及び比較例の熱処理条件、スキンパス条件及び再熱処理条件はそれぞれ異なるものとした。
(比較例)
比較例は、スキンパス加工及び再熱処理を行なわず、それ以外については実施例と同様にして作製した。
Next, embodiments of the present invention will be described based on examples.
(Example)
In Example 1-14, a Cu material having a width of 2.0 mm and a thickness of 0.16 mm was first rolled into a rectangular wire shape, and the strain was recovered and the crystal grain size was grown by heat treatment (heat treatment step). Next, only the surface layer of the conductor is lightly rolled (skin pass processing step), followed by heat treatment to generate recrystallization (reheat treatment step), and finally the periphery is Sn-3% Ag-0. What was coated with 5% Cu-based lead-free solder was produced. However, the heat treatment conditions, skin pass conditions, and reheat treatment conditions of the examples and comparative examples were different from each other.
(Comparative example)
The comparative example was manufactured in the same manner as the example except that skin pass processing and re-heat treatment were not performed.

実施例1−14及び比較例1の結果を表1及び表2に示す。表中、結晶粒径は、はんだめっき線の断面において結晶粒の大きいものから10個選び、10個の結晶粒径を平均化したものである。   The results of Example 1-14 and Comparative Example 1 are shown in Tables 1 and 2. In the table, 10 crystal grain sizes are selected from those having large crystal grains in the cross section of the solder plating wire, and 10 crystal grain sizes are averaged.

Figure 0004656100
Figure 0004656100

Figure 0004656100
Figure 0004656100

表1及び表2に示すように、種々の熱処理条件、スキンパス条件及び再熱処理条件で試料を作製したところ、0.2%耐力を低減しながら導体のクラック発生を防止できる条件が存在することが確認できた。実施例1−14は、導体が結晶粒径450μmの表層(外層部)と結晶粒径250μmの内層(内層部)との2層構造に形成されていることにより、高導電性を維持すると共に、従来のはんだめっき線よりもセルの反りを低減でき、太陽電池接続用はんだめっき線に用いる導体として信頼性の高いものとすることが可能であることが確認できた。   As shown in Table 1 and Table 2, when samples were prepared under various heat treatment conditions, skin pass conditions, and reheat treatment conditions, there were conditions that could prevent cracking of the conductor while reducing 0.2% proof stress. It could be confirmed. In Example 1-14, the conductor is formed in a two-layer structure of a surface layer (outer layer portion) having a crystal grain size of 450 μm and an inner layer (inner layer portion) having a crystal grain size of 250 μm, thereby maintaining high conductivity. It has been confirmed that the warpage of the cell can be reduced as compared with the conventional solder-plated wire, and that the conductor used for the solder-plated wire for connecting solar cells can be made highly reliable.

特に、実施例2−4、7、8、10、11、13及び14は、内層部と外層部との厚さ比を0.1−0.3の範囲内とすることにより、耐クラックとセルの反りの両方において、特に高い信頼性を有するものであった。   In particular, in Examples 2-4, 7, 8, 10, 11, 13, and 14, the thickness ratio between the inner layer portion and the outer layer portion is set within a range of 0.1 to 0.3, thereby preventing cracks. It was particularly reliable in both cell warpage.

これに対し、表1に示すように、導体を2層構造に形成していない比較例では、クラックが発生している。
(従来例)
従来例は、幅2.0mm、厚さ0.16mmのCu材料を平角線状に圧延成形して導体を形成し、導体の周囲をSn−3%Ag−0.5%Cuの鉛フリーはんだで被覆したものであって、表3に示す種々の0.2%耐力のものを作製した。作製した各はんだめっき線を、それぞれ縦150mm×横150mm、厚さ200μmのSiセルにはんだ接続したものの反りを調べた。
On the other hand, as shown in Table 1, in the comparative example in which the conductor is not formed in the two-layer structure, a crack is generated.
(Conventional example)
In the conventional example, a conductor is formed by rolling and molding a Cu material having a width of 2.0 mm and a thickness of 0.16 mm into a rectangular wire, and the lead-free solder of Sn-3% Ag-0.5% Cu is formed around the conductor. The various 0.2% proof stress shown in Table 3 was produced. The warpage of each solder plated wire produced by solder connection to a Si cell having a length of 150 mm × width of 150 mm and a thickness of 200 μm was examined.

Figure 0004656100
Figure 0004656100

表3に示すように、0.2%耐力の低下と共に反りも低減し、はんだめっき被覆Cu平角線で70MPaのものは、160MPaのものに対して1/2程度に反りが低減できている。   As shown in Table 3, the warpage is reduced as the 0.2% proof stress is reduced, and the warpage of the solder plating coated Cu rectangular wire of 70 MPa can be reduced to about 1/2 of that of 160 MPa.

本発明に係る好適な一実施形態の太陽電池用はんだめっき線の導体を示す横断面図である。It is a cross-sectional view which shows the conductor of the solder plating wire for solar cells of suitable one Embodiment which concerns on this invention. Siセルとはんだめっき線の接合状態を示す斜視図である。It is a perspective view which shows the joining state of Si cell and a solder plating wire. 従来のはんだめっき線を示す横断面図である。It is a cross-sectional view which shows the conventional solder plating wire. 図4(a)は、Siセルとはんだめっき線の接合前の状態を示す断面図であり、図4(b)は、Siセルとはんだめっき線の接合後、反りが生じた状態を示す断面図である。4A is a cross-sectional view showing a state before joining the Si cell and the solder plating wire, and FIG. 4B is a cross-sectional view showing a state where warpage occurs after joining the Si cell and the solder plating wire. FIG. Cu−インバー−Cu構造のはんだめっき線を示す横断面図である。It is a cross-sectional view showing a solder plating wire having a Cu-Invar-Cu structure.

符号の説明Explanation of symbols

10 導体
11 表層
12 内層
10 conductor 11 surface layer 12 inner layer

Claims (7)

太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線において、
上記導体は、その体積抵抗率が30μΩ・mm以下で、かつ表層と内層とからなる2層構造を有し、上記表層の結晶粒径が上記内層の結晶粒径よりも大きいことを特徴とする太陽電池用はんだめっき線。
In the solder plating wire for solar battery in which the surface of the conductor whose cross-sectional shape is processed into a flat rectangular shape to coat the solar battery cell is coated with solder plating,
The conductor has a volume resistivity of 30 μΩ · mm or less and a two-layer structure including a surface layer and an inner layer, and the crystal grain size of the surface layer is larger than the crystal grain size of the inner layer. Solder plating wire for solar cells.
太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線において、
上記導体は、その体積抵抗率が30μΩ・mm以下で、かつ表層と内層とからなる2層構造を有し、上記表層の結晶粒径が上記内層の結晶粒径よりも大きく、上記内層の厚さの半分r1と上記表層の厚さr2の合計に対する表層の厚さの比r2/(r1+r2)が0.1〜0.3であることを特徴とする太陽電池用はんだめっき線。
In the solder plating wire for solar battery in which the surface of the conductor whose cross-sectional shape is processed into a flat rectangular shape to coat the solar battery cell is coated with solder plating,
The conductor has a two-layer structure having a volume resistivity of 30 μΩ · mm or less and a surface layer and an inner layer, the crystal grain size of the surface layer being larger than the crystal grain size of the inner layer, and the thickness of the inner layer. A solder plated wire for a solar cell, wherein a ratio r2 / (r1 + r2) of the thickness of the surface layer to the sum of the half of the thickness r1 and the thickness r2 of the surface layer is 0.1 to 0.3.
引張試験における上記導体の0.2%耐力が16〜70MPaである請求項1または2記載の太陽電池用はんだめっき線。   The solder plated wire for a solar cell according to claim 1 or 2, wherein the 0.2% proof stress of the conductor in a tensile test is 16 to 70 MPa. 引張試験における0.2%耐力が37〜100MPaである請求項1〜3のいずれかに記載の太陽電池用はんだめっき線。   The 0.2% yield strength in a tensile test is 37-100 Mpa, The solder plating wire for solar cells in any one of Claims 1-3. 太陽電池セルに接合すべく、断面形状が平角状に加工された導体の表面にはんだめっきを被覆した太陽電池用はんだめっき線の製造方法において、
体積抵抗率が30μΩ・mm以下の金属材料を鋳造した後、圧延加工あるいはスリット加工を施して導体を形成し、その導体に熱処理を施し、上記導体の表面付近のみをスキンパス加工し、再度熱処理を施すことにより、上記導体を表層の結晶粒径が内層の結晶粒径よりも大きい2層構造に形成することを特徴とする太陽電池用はんだめっき線の製造方法。
In the method for producing a solder-plated wire for a solar battery in which the surface of a conductor whose cross-sectional shape is processed into a flat rectangular shape is coated with solder plating in order to join the solar battery cell,
After casting a metal material having a volume resistivity of 30 μΩ · mm or less, a conductor is formed by rolling or slitting, heat-treating the conductor, skin-passing only near the surface of the conductor, and heat-treating again. A method for producing a solder plated wire for a solar cell, wherein the conductor is formed into a two-layer structure in which the crystal grain size of the surface layer is larger than the crystal grain size of the inner layer.
上記スキンパス加工による導体の加工率を0.5〜5%とする請求項5記載の太陽電池用はんだめっき線の製造方法。   The manufacturing method of the solder plating wire for solar cells of Claim 5 which makes the processing rate of the conductor by the said skin pass process 0.5 to 5%. 上記熱処理を、650〜750℃で40〜60分行い、上記再熱処理を、850〜900℃で40〜60分行う請求項5または6記載の太陽電池用はんだめっき線の製造方法。   The manufacturing method of the solder plating wire for solar cells of Claim 5 or 6 which performs the said heat processing for 40 to 60 minutes at 650-750 degreeC, and performs the said reheat processing for 40 to 60 minutes at 850-900 degreeC.
JP2007191104A 2007-07-23 2007-07-23 Solder-plated wire for solar cell and manufacturing method thereof Active JP4656100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191104A JP4656100B2 (en) 2007-07-23 2007-07-23 Solder-plated wire for solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191104A JP4656100B2 (en) 2007-07-23 2007-07-23 Solder-plated wire for solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009027096A JP2009027096A (en) 2009-02-05
JP4656100B2 true JP4656100B2 (en) 2011-03-23

Family

ID=40398593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191104A Active JP4656100B2 (en) 2007-07-23 2007-07-23 Solder-plated wire for solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4656100B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981087B2 (en) * 2010-05-14 2016-08-31 古河電気工業株式会社 Flat rectangular copper wire and manufacturing method thereof, flat rectangular copper wire for solar cell and manufacturing method thereof
JP5041455B2 (en) * 2010-08-30 2012-10-03 古河電気工業株式会社 Solar cell lead wire and manufacturing method thereof
JP4855534B1 (en) * 2010-11-08 2012-01-18 三菱電線工業株式会社 Method for producing plated wire
JP6048783B2 (en) 2011-09-29 2016-12-21 高周波熱錬株式会社 Manufacturing method and equipment for solar cell lead wire
JP6032455B2 (en) 2011-09-29 2016-11-30 高周波熱錬株式会社 Method of annealing copper wire for interconnectors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103850A (en) * 1975-03-10 1976-09-14 Hitachi Cable HIRAKAKUSEN NOSEIZOHOHO
JPH04323835A (en) * 1991-04-23 1992-11-13 Hitachi Cable Ltd Manufacture of copper bonding wire
JPH1056190A (en) * 1996-08-08 1998-02-24 Canon Inc Photovoltaic element and its manufacture
JPH1060532A (en) * 1996-08-19 1998-03-03 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2003064459A (en) * 2001-05-31 2003-03-05 Nippon Mining & Metals Co Ltd Copper, copper alloy, and method and equipment for heat treatment thereof
JP2007141930A (en) * 2005-11-15 2007-06-07 Neomax Material:Kk Electrode wire for solar battery and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103850A (en) * 1975-03-10 1976-09-14 Hitachi Cable HIRAKAKUSEN NOSEIZOHOHO
JPH04323835A (en) * 1991-04-23 1992-11-13 Hitachi Cable Ltd Manufacture of copper bonding wire
JPH1056190A (en) * 1996-08-08 1998-02-24 Canon Inc Photovoltaic element and its manufacture
JPH1060532A (en) * 1996-08-19 1998-03-03 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2003064459A (en) * 2001-05-31 2003-03-05 Nippon Mining & Metals Co Ltd Copper, copper alloy, and method and equipment for heat treatment thereof
JP2007141930A (en) * 2005-11-15 2007-06-07 Neomax Material:Kk Electrode wire for solar battery and its manufacturing method

Also Published As

Publication number Publication date
JP2009027096A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP2008182171A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
CN100447268C (en) Copper alloy material and method of making same
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP5616853B2 (en) Solar cell electrode wire
JP5589756B2 (en) Flexible flat cable and manufacturing method thereof
JP5038765B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP5073386B2 (en) ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP2008182170A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP5446188B2 (en) Interconnector for semiconductor wire mounting and interconnector for solar cell
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH11293367A (en) Copper alloy excellent in property of proof stress relaxation, and its production
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
CN102543249A (en) Plating coating copper wire and method for making the same
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP5565519B1 (en) Solar cell module
JP2016169414A (en) Metal wire for solar cell wire and solar cell module
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350