JP2014042065A - Lead wire for solar battery, and solar battery - Google Patents

Lead wire for solar battery, and solar battery Download PDF

Info

Publication number
JP2014042065A
JP2014042065A JP2013227870A JP2013227870A JP2014042065A JP 2014042065 A JP2014042065 A JP 2014042065A JP 2013227870 A JP2013227870 A JP 2013227870A JP 2013227870 A JP2013227870 A JP 2013227870A JP 2014042065 A JP2014042065 A JP 2014042065A
Authority
JP
Japan
Prior art keywords
solar cell
lead wire
plating layer
resin
cell lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013227870A
Other languages
Japanese (ja)
Inventor
Hajime Nishi
甫 西
Takumi Sato
佐藤  巧
Takeshi Takahashi
高橋  健
Hiromitsu Kuroda
洋光 黒田
Katsunori Sawahata
勝憲 沢畠
Yuji Takano
雄二 高野
Hiroyuki Akutsu
裕幸 阿久津
Iku Higashitani
育 東谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013227870A priority Critical patent/JP2014042065A/en
Publication of JP2014042065A publication Critical patent/JP2014042065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a lead wire for a solar battery which is low in cost, and superior in designability and bondability with a cell.SOLUTION: A lead wire for a solar battery comprises: a strip-like conductive material 2; a plating layer 4 on a surface of the strip-like conductive material 2; and a coating layer 5 located outside the plating layer 4. In the lead wire, the plating layer 4 includes a Sn-based solder or a Sn-based solder alloy which includes Sn as a first component, and as a second component, no less than 0.1 mass% of at least one element selected from a group consisting of Pb, In, Bi, Sb, Ag, Zn, Ni and Cu; the coating layer 5 includes a resin consisting of any one of a phenoxy resin, a polyvinyl butyral resin, a polyamide resin, an epoxy resin and a polyester resin; and the plating layer 4 has, on its surface, an oxide film having a thickness of 7 nm or less.

Description

本発明は、太陽電池用リード線及び太陽電池に係り、特に、低コストで、デザイン性に優れ、かつセルとの接合性に優れた太陽電池用リード線及び太陽電池に関するものである。   The present invention relates to a solar cell lead wire and a solar cell, and particularly relates to a solar cell lead wire and a solar cell that are low in cost, excellent in design properties, and excellent in bonding properties with cells.

太陽電池には、半導体基板として多結晶及び単結晶のSiセルが用いられる。   In solar cells, polycrystalline and single crystal Si cells are used as semiconductor substrates.

図4(a)、図4(b)に示されるように、太陽電池40は、半導体基板41の所定の領域、すなわち半導体基板41の表面に設けられた表面電極42と裏面に設けられた裏面電極43に、太陽電池用リード線44a,44bをはんだで接合して作製される。半導体基板41内で発電された電力を太陽電池用リード線44a,44bを通じて外部へ伝送する。   As shown in FIG. 4A and FIG. 4B, the solar cell 40 includes a predetermined region of the semiconductor substrate 41, that is, a surface electrode 42 provided on the surface of the semiconductor substrate 41 and a back surface provided on the back surface. The solar cell lead wires 44a and 44b are joined to the electrode 43 with solder. The electric power generated in the semiconductor substrate 41 is transmitted to the outside through the solar cell lead wires 44a and 44b.

図5に示されるように、従来の太陽電池用リード線44(44a,44b)は、帯板状導電材45とその帯板状導電材45の上下面46a,46bに形成されためっき層47とを備える。帯板状導電材45は、例えば、円形断面の導体を圧延加工して帯板状にしたものであり、平角導体、平角線とも呼ばれる。   As shown in FIG. 5, the conventional solar cell lead wire 44 (44 a, 44 b) includes a strip-shaped conductive material 45 and a plating layer 47 formed on the upper and lower surfaces 46 a, 46 b of the strip-shaped conductive material 45. With. The strip-shaped conductive material 45 is formed by rolling a conductor having a circular cross section into a strip shape, and is also called a flat conductor or a flat wire.

めっき層47は、帯板状導電材45の上下面46a,46bに、溶融めっき法により溶融はんだを供給して形成したものである。   The plating layer 47 is formed by supplying molten solder to the upper and lower surfaces 46a and 46b of the strip-like conductive material 45 by a hot dipping method.

溶融めっき法は、酸洗等により帯板状導電材45の上下面46a,46bを清浄化し、その帯板状導電材45を、溶融はんだ浴に通すことにより、帯板状導電材45の上下面46a,46bにはんだを積層していく方法である。めっき層47は、帯板状導電材45の上下面46a,46bに付着した溶融はんだが凝固する際に表面張力の作用によって、図5に示されるように、幅方向側部から中央部にかけて膨らんだ形状、いわゆる山形に形成される。   In the hot dipping method, the upper and lower surfaces 46a and 46b of the strip plate-like conductive material 45 are cleaned by pickling or the like, and the strip plate-like conductive material 45 is passed through a molten solder bath, thereby In this method, solder is laminated on the lower surfaces 46a and 46b. The plated layer 47 swells from the side in the width direction to the center as shown in FIG. 5 due to the action of surface tension when the molten solder adhering to the upper and lower surfaces 46a and 46b of the strip plate-like conductive material 45 solidifies. It is formed in a so-called mountain shape.

この太陽電池用リード線44を所定の長さに切断し、エアで吸着して半導体基板41の表面電極(グリッド)42の上に移動し、半導体基板41の表面電極42にはんだ付けする。表面電極42には、表面電極42と導通する図示しない電極帯(フィンガー)が、あらかじめ形成されている。この表面電極42に太陽電池用リード線44aのめっき層47を接触させ、その状態ではんだ付けを行う。太陽電池用リード線44bを半導体基板41の裏面電極43にはんだ付けする場合も同様である。   The solar cell lead wire 44 is cut to a predetermined length, adsorbed with air, moved onto the surface electrode (grid) 42 of the semiconductor substrate 41, and soldered to the surface electrode 42 of the semiconductor substrate 41. On the surface electrode 42, an electrode band (finger) (not shown) that is electrically connected to the surface electrode 42 is formed in advance. The plating layer 47 of the solar cell lead wire 44a is brought into contact with the surface electrode 42, and soldering is performed in this state. The same applies to the case where the solar cell lead wire 44b is soldered to the back electrode 43 of the semiconductor substrate 41.

従来は、半導体基板41の表面電極42と太陽電池用リード線44aとの良好なはんだ接合性を得るために、表面電極42に太陽電池用リード線44aのめっき層47と同質のはんだを含浸させていたが、近年、半導体基板41の薄型化が進んできているため、表面電極42へのはんだ含浸時の半導体基板41の破損問題が表面化した。そこで、半導体基板41の破損を回避するため、表面電極42へのはんだ含浸工程の省略が進められている。   Conventionally, in order to obtain good solderability between the surface electrode 42 of the semiconductor substrate 41 and the solar cell lead wire 44a, the surface electrode 42 is impregnated with the same quality solder as the plating layer 47 of the solar cell lead wire 44a. However, since the semiconductor substrate 41 has been made thinner in recent years, the problem of damage to the semiconductor substrate 41 when the surface electrode 42 is impregnated with solder has been surfaced. Therefore, in order to avoid damage to the semiconductor substrate 41, the solder impregnation step for the surface electrode 42 is being omitted.

半導体基板41の表面電極42と太陽電池用リード線44aとの良好なはんだ接合性を与えていたはんだ含浸工程の省略で、従来は接合性に問題の無かった太陽電池用リード線の中でも、十分な接合性の得られないケースが多く見られるようになった。半導体基板41と太陽電池用リード線44との接合は、表面電極42の電極材料(例えばAg)とめっき層47の接合材料(例えばSn)との間で金属間化合物(例えばAg3Sn)が形成されることでなされるが、このためには、フラックスの作用でめっき層47の表面と表面電極42の表面から酸化膜が除去されてはんだの金属原子(Sn)と電極の金属原子(Ag)とが直接衝突することと、加熱によりはんだ中のSn原子が他原子(Ag)の格子内に拡散しやすくなることが必要となる。すなわち、めっき層47の表面の酸化膜の厚みが厚い場合、フラックスによる酸化膜除去が不十分となり、はんだ付け不良が生じることとなる。 By omitting the solder impregnation step that provided good solderability between the surface electrode 42 of the semiconductor substrate 41 and the solar cell lead wire 44a, even among the solar cell lead wires that conventionally had no problem with the bondability, Many cases where a good bondability cannot be obtained have been seen. The semiconductor substrate 41 and the solar cell lead wire 44 are joined by an intermetallic compound (eg, Ag 3 Sn) between the electrode material (eg, Ag) of the surface electrode 42 and the joining material (eg, Sn) of the plating layer 47. For this purpose, the oxide film is removed from the surface of the plating layer 47 and the surface of the surface electrode 42 by the action of the flux, so that the metal atoms (Sn) of the solder and the metal atoms (Ag) of the electrode are removed. ) And the Sn atoms in the solder must be easily diffused into the lattice of other atoms (Ag) by heating. That is, when the thickness of the oxide film on the surface of the plating layer 47 is thick, the removal of the oxide film by the flux becomes insufficient, resulting in poor soldering.

表面電極42とめっき層47との間ではんだ付け不良が生じると、半導体基板41と太陽電池用リード線44との接合が不十分となるため、機械的な剥離や導通不良により、半導体基板41と太陽電池用リード線44との接合体である太陽電池40を組み込んだモジュールの出力低下を招く。   If a soldering failure occurs between the surface electrode 42 and the plating layer 47, the semiconductor substrate 41 and the solar cell lead wire 44 are not sufficiently bonded to each other. And the output of a module incorporating the solar cell 40, which is a joined body of the solar cell lead wire 44, is caused.

一方、太陽電池用リード線44の金属光沢が外観を害する問題があり、対応策として太陽電池用リード線44の受光面に樹脂などを被覆する方法が提案されている(例えば、特許文献1〜3)。   On the other hand, there is a problem that the metallic luster of the solar cell lead wire 44 impairs the appearance, and as a countermeasure, a method of covering the light receiving surface of the solar cell lead wire 44 with resin or the like has been proposed (for example, Patent Documents 1 to 4). 3).

特許文献1には、薄膜系太陽電池のセル間配線が目立たないように着色し、接合性の面からセルとの接合部は着色のための被覆を行わない方法が記載されている。また、特許文献2には、結晶系太陽電池の配線部材の表面を着色された樹脂層で被覆する方法、特許文献3には、結晶系太陽電池の配線部材の受光面のみを反射率の高い被覆材で着色する方法が記載されている。   Patent Document 1 describes a method in which an inter-cell wiring of a thin-film solar cell is colored so as not to be conspicuous, and a bonding portion with the cell is not coated for coloring in terms of bonding properties. Patent Document 2 discloses a method of coating the surface of a wiring member of a crystalline solar cell with a colored resin layer. Patent Document 3 discloses that only the light receiving surface of the wiring member of the crystalline solar cell has a high reflectance. A method of coloring with a coating is described.

特開平8−312089号公報JP-A-8-312089 特開2001−339089号公報JP 2001-339089 A 特開2005−243972号公報JP-A-2005-243972

前述のように、太陽電池用リード線44を半導体基板41に強固に接合するには、めっき層47の表面の酸化膜厚を薄くすればよく、太陽電池用リード線44の金属光沢を目立たないようにするためには、着色された樹脂などを被覆すればよい。しかし、被覆を施した部位ではんだ接合が行えないため、特許文献1〜3のように、はんだ接合部位以外のみの被覆となり、工程が非常に煩雑で製造コストが高くなる問題がある。そこで、製造コストの増大を防ぐべく、モジュール表面のガラス板に黒色のマスク部を設けて太陽電池用リード線44の金属光沢を目立たなくする方法が採られている。しかし、この方法では発電に寄与する半導体基板(シリコンセル)41の受光面も覆ってしまうため、シャドウロスが生じ、太陽電池用リード線44を被覆しない従来のモジュールに比べて、発電効率が低下する問題がある。さらに、モジュールを組み立てるまでの間に、太陽電池用リード線44のめっき層47の表面が酸化し、モジュール製造時に半導体基板41の表面の電極と接合できない場合や接合不良による接触抵抗増大で、モジュールの発電効率が低下する問題もあった。   As described above, in order to firmly join the solar cell lead wire 44 to the semiconductor substrate 41, the surface thickness of the plating layer 47 may be reduced, and the metallic luster of the solar cell lead wire 44 is inconspicuous. In order to achieve this, a colored resin or the like may be coated. However, since soldering cannot be performed at the coated part, as in Patent Documents 1 to 3, only the part other than the soldered part is coated, and there is a problem that the process is very complicated and the manufacturing cost is high. Therefore, in order to prevent an increase in manufacturing cost, a method has been adopted in which a black mask is provided on the glass plate on the module surface so that the metallic luster of the solar cell lead wire 44 is inconspicuous. However, this method also covers the light-receiving surface of the semiconductor substrate (silicon cell) 41 that contributes to power generation, causing shadow loss and lowering power generation efficiency compared to conventional modules that do not cover the solar cell lead wires 44. There is a problem to do. Further, the surface of the plating layer 47 of the solar cell lead wire 44 is oxidized before the module is assembled, and when the module cannot be joined to the electrode on the surface of the semiconductor substrate 41 or when the contact resistance increases due to poor bonding, the module There was also a problem that the power generation efficiency of the system decreased.

そこで、本発明の目的は、上記課題を解決し、低コストで、デザイン性に優れ、かつセルとの接合性に優れた太陽電池用リード線及び太陽電池を提供することにある。   Accordingly, an object of the present invention is to provide a solar cell lead wire and a solar cell that solve the above-described problems, are low in cost, excellent in design properties, and excellent in bonding properties with cells.

上記目的を達成するための請求項1の発明は、帯板状導電材表面にSn系はんだ、又は、第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むSn系はんだ合金からなるめっき層を有し、上記めっき層の外側にフェノキシ系樹脂、ポリビニルブチラール系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂のいずれかからなる樹脂を含む被覆層を有し、上記めっき層表面の酸化膜厚が7nm以下である太陽電池用リード線である。 In order to achieve the above object, the invention of claim 1 is the use of Sn-based solder on the surface of the strip-shaped conductive material, or Sn as the first component and Pb, In, Bi, Sb, Ag, Zn as the second component. , Having a plating layer made of a Sn-based solder alloy containing at least one element selected from Ni and Cu in an amount of 0.1 mass% or more, and having a phenoxy resin, a polyvinyl butyral resin, a polyamide resin on the outside of the plating layer, A solar cell lead wire having a coating layer containing a resin composed of either an epoxy resin or a polyester resin, and having an oxide film thickness of 7 nm or less on the surface of the plating layer.

本発明の太陽電池用リード線によれば、めっき層の表面の酸化膜成長を抑制し、セルとの接合性に優れた太陽電池用リード線を得ることができる。   According to the solar cell lead wire of the present invention, it is possible to obtain a solar cell lead wire that suppresses the growth of the oxide film on the surface of the plating layer and has excellent bonding properties with the cell.

請求項2の発明は、帯板状導電材表面にSn系はんだ、又は、第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むSn系はんだ合金からなるめっき層を有する太陽電池用リード線と、上記太陽電池用リード線と接合される半導体基板と、を備え、上記太陽電池用リード線は、上記めっき層のはんだによって上記半導体基板に設けられた電極に接合されており、上記太陽電池用リード線の側面に、フェノキシ系樹脂、ポリビニルブチラール系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂のいずれかからなる樹脂を含む被覆層を有する太陽電池である。   The invention of claim 2 uses Sn-based solder on the surface of the strip-shaped conductive material, or Sn as the first component, and is selected from Pb, In, Bi, Sb, Ag, Zn, Ni, Cu as the second component. A solar cell lead wire having a plating layer made of an Sn-based solder alloy containing 0.1 mass% or more of at least one element, and a semiconductor substrate joined to the solar cell lead wire. The lead wire is joined to the electrode provided on the semiconductor substrate by the solder of the plating layer, and on the side surface of the solar cell lead wire, a phenoxy resin, a polyvinyl butyral resin, a polyamide resin, an epoxy resin And a solar cell having a coating layer containing a resin made of any one of polyester resins.

本発明によれば、低コストで、デザイン性に優れ、かつセルとの接合性に優れた太陽電池用リード線を得ることができるという優れた効果を発揮するものである。   According to the present invention, it is possible to obtain an excellent effect of being able to obtain a solar cell lead wire that is low in cost, excellent in design properties, and excellent in bondability with a cell.

本発明の一実施の形態を示す図であり、(a)は太陽電池用リード線の横断面図、(b)は太陽電池用リード線の材料となる帯板状導電材の外観斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one embodiment of this invention, (a) is a cross-sectional view of the lead wire for solar cells, (b) is an external appearance perspective view of the strip-shaped electroconductive material used as the material of the lead wire for solar cells. is there. 本発明において、めっき層を形成する溶融めっき設備の概略図である。In this invention, it is the schematic of the hot dipping equipment which forms a plating layer. 本発明において、自己融着性材料を塗布する塗布設備の概略図である。In this invention, it is the schematic of the coating equipment which apply | coats a self-bonding material. 本発明の一実施の形態に係る太陽電池を示す図であり、(a)は横断面図、(b)は上面図である。It is a figure which shows the solar cell which concerns on one embodiment of this invention, (a) is a cross-sectional view, (b) is a top view. 従来の太陽電池用リード線を示す横断面図である。It is a cross-sectional view which shows the conventional lead wire for solar cells.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1(a)に示されるように、本発明に係る太陽電池用リード線1は、帯板状導電材2の上下面3a、3bに溶融はんだを供給し、はんだ浴出口でめっきしてめっき層4を形成し、めっき層4の外側に自己融着性材料を被覆したものである。   As shown in FIG. 1 (a), the solar cell lead wire 1 according to the present invention supplies molten solder to the upper and lower surfaces 3a, 3b of the strip-like conductive material 2, and plating by plating at the solder bath outlet. The layer 4 is formed, and a self-bonding material is coated on the outside of the plating layer 4.

図1(b)は、帯板状導電材2の斜視図を示したものである。帯板状導電材2は、例えば上面3aと下面3bとが平坦面にされ、側面3cが凸状に膨らんで形成され、端面3dが適時の長さにカットされて形成される。   FIG. 1B shows a perspective view of the strip-shaped conductive material 2. The strip-shaped conductive material 2 is formed by, for example, forming an upper surface 3a and a lower surface 3b as flat surfaces, a side surface 3c bulging in a convex shape, and an end surface 3d cut to a suitable length.

本発明に用いる帯板状導電材2の材料の物性を表1に示す。   Table 1 shows the physical properties of the material of the strip-shaped conductive material 2 used in the present invention.

Figure 2014042065
Figure 2014042065

帯板状導電材2は、体積抵抗率が比較的低い材料からなることが好ましい。体積抵抗率が低い材料としてはCu、Al、Ag、Auなどがある。   The strip-shaped conductive material 2 is preferably made of a material having a relatively low volume resistivity. Examples of the material having a low volume resistivity include Cu, Al, Ag, and Au.

Cu、Al、Ag、Auのうち体積抵抗率が最も低いのはAgである。したがって、帯板状導電材2の材料としてAgを用いると、太陽電池用リード線1を用いた太陽電池の発電効率を最大限にすることができる。また、帯板状導電材2としてAlを用いると、太陽電池用リード線1の軽量化を図ることができる。また、帯板状導電材2の材料としてCuを用いると、太陽電池用リード線1を低コストにすることができる。帯板状導電材2の材料としてCuを用いる場合、そのCuには、タフピッチCu、低酸素Cu、無酸素Cu、リン脱酸Cu、純度99.9999%以上の高純度のCuのいずれを用いてもよい。帯板状導電材2の0.2%耐力を最も小さくするためには、純度が高いCuを用いるのが有利である。よって、純度99.9999%以上の高純度Cuを用いると、帯板状導電材2の0.2%耐力を小さくすることができる。タフピッチCu又はリン脱酸Cuを用いると、太陽電池用リード線1を低コストにすることができる。   Among Cu, Al, Ag, and Au, Ag has the lowest volume resistivity. Therefore, when Ag is used as the material of the strip-like conductive material 2, the power generation efficiency of the solar cell using the solar cell lead wire 1 can be maximized. Moreover, when Al is used as the strip-like conductive material 2, the weight of the solar cell lead wire 1 can be reduced. In addition, when Cu is used as the material of the strip-shaped conductive material 2, the solar cell lead wire 1 can be reduced in cost. When Cu is used as the material of the strip-shaped conductive material 2, any of tough pitch Cu, low oxygen Cu, oxygen free Cu, phosphorus deoxidized Cu, and high purity Cu having a purity of 99.9999% or more is used as the Cu. May be. In order to minimize the 0.2% proof stress of the strip-like conductive material 2, it is advantageous to use Cu having a high purity. Therefore, when high-purity Cu having a purity of 99.9999% or more is used, the 0.2% proof stress of the strip-like conductive material 2 can be reduced. When tough pitch Cu or phosphorus deoxidized Cu is used, the solar cell lead wire 1 can be reduced in cost.

以上より、帯板状導電材2は、Cu、Al、Ag、Auのいずれか、あるいは、タフピッチCu、低酸素Cu、無酸素Cu、リン脱酸Cu、純度99.9999%以上の高純度のCuのいずれかからなるとよい。   From the above, the strip-like conductive material 2 is either Cu, Al, Ag, or Au, or a tough pitch Cu, low oxygen Cu, oxygen free Cu, phosphorus deoxidized Cu, high purity of 99.9999% or more. It may be made of any one of Cu.

帯板状導電材2には、例えば、体積抵抗率が50μΩ・mm以下の平角線を用いる。この平角線を圧延加工することによって、図1(a)、図1(b)のような横断面形状の帯板状導電材2を得ることができる。半導体基板41の表面電極42及び裏面電極43とめっき層4との接触面積を大きくし、半導体基板41からめっき層4への熱伝導を十分にするためには、めっき層4の形状を平角状にするのが好ましい。   For the strip-shaped conductive material 2, for example, a rectangular wire having a volume resistivity of 50 μΩ · mm or less is used. By rolling this flat wire, a strip-like conductive material 2 having a cross-sectional shape as shown in FIGS. 1A and 1B can be obtained. In order to increase the contact area between the front surface electrode 42 and the rear surface electrode 43 of the semiconductor substrate 41 and the plating layer 4 and to ensure sufficient heat conduction from the semiconductor substrate 41 to the plating layer 4, the shape of the plating layer 4 is a rectangular shape. Is preferable.

めっき層4は、帯板状導電材2の上下面3a、3bに付着した溶融はんだが凝固する際に表面張力の作用によって、幅方向側部から中央部にかけて膨らんだ形状、いわゆる山形に形成されるものでも、略平坦状に形成されるものでも、いずれであってもよい。   The plating layer 4 is formed in a so-called mountain shape that swells from the side in the width direction to the center due to the action of surface tension when the molten solder adhering to the upper and lower surfaces 3a, 3b of the strip-like conductive material 2 solidifies. Any of them may be used, or may be formed in a substantially flat shape.

めっき層4は、Sn系はんだ(Sn系はんだ合金)で形成される。Sn系はんだは、成分重量が最も重い第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むものである。これらのはんだは、1000ppm以下の微量元素をさらに含んでいてもよい。   The plating layer 4 is formed of Sn-based solder (Sn-based solder alloy). Sn-based solder uses Sn as the first component having the heaviest component weight, and 0.1 mass% of at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. Including the above. These solders may further contain a trace element of 1000 ppm or less.

めっき層4の表面の酸化膜厚は7nm以下であるとよい。めっき層4の表面の酸化膜厚が厚くなると、図4に示した半導体基板41の表面電極42及び裏面電極43とのはんだ接合時にフラックスによる酸化膜除去が不十分となり、はんだ付け不良が生じ、結果的に、機械的な剥離が起こる、導通不良で十分な出力が得られないなどの問題が生じるためである。   The oxide film thickness on the surface of the plating layer 4 is preferably 7 nm or less. When the oxide film thickness on the surface of the plating layer 4 is increased, the removal of the oxide film by flux becomes insufficient at the time of solder joining with the front surface electrode 42 and the back surface electrode 43 of the semiconductor substrate 41 shown in FIG. As a result, there are problems such as mechanical peeling and insufficient output due to poor conduction.

ここに、「自己融着性」とは、別途はんだなどの接合材を用いずに、樹脂が熱又は溶剤などで溶融し、太陽電池セルに接着させることを意味しており、このような性質を有する樹脂としては、例えばポリビニルブチラール系、ポリアミド系、エポキシ系及びポリエステル系などの熱融着性を有する樹脂や、アルコール可溶に変性されたポリアミド系などのアルコール融着性を有する樹脂が挙げられる。他にも、自己融着性を有する塗料としては、ポリヒドロキシポリエーテル樹脂などのフェノキシ樹脂にカーボンブラックやチタニアなどの着色剤を含有したものを用いることができる。フェノキシ樹脂にはスルホン基を含有して耐熱性を改善したものも使用可能である。また、はんだ接合性を向上させるべく、自己融着性材料の中にロジンのようなフラックス成分を含有させることも可能である。   Here, “self-bonding” means that the resin is melted by heat or a solvent without using a bonding material such as solder, and is adhered to the solar cell. Examples of the resin having a heat-bonding property include, for example, resins having a heat-fusible property such as polyvinyl butyral, polyamide-based, epoxy-based, and polyester-based resins, and resins having an alcohol-welding property, such as a polyamide-based modified to be soluble in alcohol. It is done. In addition, as the paint having self-bonding property, a phenoxy resin such as polyhydroxy polyether resin and a colorant such as carbon black or titania can be used. As the phenoxy resin, one having a sulfone group and improved heat resistance can be used. Further, in order to improve solderability, a flux component such as rosin can be contained in the self-bonding material.

被覆層5は、セルとの接合が可能である限りにおいては、自己融着性材料に他の添加物を所定量含有する材料を主成分とするものでもよい。   The covering layer 5 may be composed mainly of a material containing a predetermined amount of other additives in the self-bonding material as long as it can be joined to the cell.

自己融着性材料を被覆することで保管条件下においてめっき層4の表面の酸化膜成長を遅らせることができ、酸化膜厚を7nm以下に抑制することができる。つまり、めっき層4の外層に自己融着性材料を被覆することで、めっき層4の表面の酸化膜成長を抑制し、モジュール組み立て前の長期保存にも、接合性を損なうことなく品質を維持することができる。   By coating the self-bonding material, the growth of the oxide film on the surface of the plating layer 4 can be delayed under storage conditions, and the oxide film thickness can be suppressed to 7 nm or less. In other words, by coating the outer layer of the plating layer 4 with a self-bonding material, the growth of the oxide film on the surface of the plating layer 4 is suppressed, and the quality is maintained without sacrificing the bondability even during long-term storage before module assembly. can do.

また、本発明の太陽電池用リード線は、セルとの接合が可能である限りにおいては、必ずしも被覆層5とめっき層4とが直接に接している必要はなく、被覆層5とめっき層4との間にフラックス等の他に介在層を有する構造であってもよい。   In addition, as long as the solar cell lead wire of the present invention can be joined to the cell, the coating layer 5 and the plating layer 4 do not necessarily have to be in direct contact with each other. A structure having an intervening layer in addition to a flux or the like may be used.

次に、本発明の太陽電池用リード線1の製造方法を説明する。   Next, the manufacturing method of the lead wire 1 for solar cells of this invention is demonstrated.

先ず、原料の断面円形状の線材を圧延加工、又は平板をスリット加工して帯板状導電材2を形成し、これを熱処理する。   First, a strip-like conductive material 2 is formed by rolling a wire having a circular cross-section as a raw material or slitting a flat plate, and heat-treating it.

このように、原料を帯板状導電材2に加工する加工方法としては、圧延加工、スリット加工のいずれも適用可能である。圧延加工とは、丸線を圧延して平角化する方式である。圧延加工により帯板状導電材2を形成すると、長尺で長手方向に幅が均一なものが形成できる。スリット加工は、種々の幅の材料に対応できる。つまり、原料の導電材の幅が長手方向に均一でなくても、幅が異なる多様な原料の導電材を使用する場合でも、スリット加工によって長尺で長手方向に幅が均一なものが形成できる。   Thus, as a processing method for processing the raw material into the strip-shaped conductive material 2, both rolling and slit processing are applicable. Rolling is a method of flattening by rolling a round wire. When the strip-like conductive material 2 is formed by rolling, a long and uniform width in the longitudinal direction can be formed. Slit processing can be applied to materials of various widths. That is, even if the width of the conductive material of the raw material is not uniform in the longitudinal direction, even when using various raw material conductive materials having different widths, a long and uniform width in the longitudinal direction can be formed by slit processing. .

帯板状導電材2を熱処理することにより、帯板状導電材2の軟化特性を向上させることができる。帯板状導電材2の軟化特性を向上させることは、0.2%耐力を低減させるのに有効である。熱処理方法としては、連続通電加熱、連続式加熱、バッチ式加熱がある。連続して長尺にわたって熱処理するには、連続通電加熱、連続式加熱が好ましい。安定した熱処理が必要な場合には、バッチ式加熱が好ましい。酸化を防止する観点から、窒素などの不活性ガス雰囲気あるいは水素還元雰囲気の炉を用いるのが好ましい。不活性ガス雰囲気あるいは水素還元雰囲気の炉は、連続通電加熱炉又は連続式加熱炉又はバッチ式加熱設備により提供される。   By heat-treating the strip-shaped conductive material 2, the softening characteristics of the strip-shaped conductive material 2 can be improved. Improving the softening characteristics of the strip-shaped conductive material 2 is effective in reducing the 0.2% proof stress. Examples of the heat treatment method include continuous energization heating, continuous heating, and batch heating. For continuous heat treatment over a long length, continuous energization heating and continuous heating are preferred. Batch heating is preferred when stable heat treatment is required. From the viewpoint of preventing oxidation, it is preferable to use a furnace having an inert gas atmosphere such as nitrogen or a hydrogen reducing atmosphere. A furnace having an inert gas atmosphere or a hydrogen reduction atmosphere is provided by a continuous energizing heating furnace, a continuous heating furnace, or a batch heating facility.

次いで、図2に示される溶融はんだめっき設備を用いて、帯板状導電材2の上下面3a、3bにめっき層4を形成する。ここで、はんだ浴20の温度は、使用はんだの融点よりも高めに設定する必要があるが、溶融状態でははんだ中のSnが容易に拡散して空気中の酸素と結びつき、酸化膜生成が顕著に進む。また、作業雰囲気の温度や湿度の高さも酸化膜生成促進に寄与する。よって、はんだ浴20の温度は、使用はんだの液相線温度+120℃以下(下限値は液相線温度+50℃以上)、めっき作業雰囲気の温度を30℃以下(下限値は10℃以上)、めっき作業雰囲気の相対湿度60%以下(下限値は10%以上)とすることが望ましい。ただし、はんだ浴20の温度は接触式温度計により帯板状導電材2のはんだ浴20への入口あるいは出口から5cm以内、めっき作業雰囲気の温度と相対湿度はめっき作業ラインより5cmの位置の測定値を示す。   Next, the plating layer 4 is formed on the upper and lower surfaces 3a and 3b of the strip-like conductive material 2 using the molten solder plating facility shown in FIG. Here, it is necessary to set the temperature of the solder bath 20 higher than the melting point of the solder used. However, in the molten state, Sn in the solder is easily diffused and combined with oxygen in the air, so that oxide film formation is remarkable. Proceed to In addition, the temperature of the working atmosphere and the high humidity contribute to the promotion of oxide film generation. Therefore, the temperature of the solder bath 20 is the liquidus temperature of the solder used + 120 ° C. or lower (the lower limit is the liquidus temperature + 50 ° C. or higher), the temperature of the plating work atmosphere is 30 ° C. or lower (the lower limit is 10 ° C. or higher), The relative humidity in the plating work atmosphere is desirably 60% or less (the lower limit is 10% or more). However, the temperature of the solder bath 20 is measured within 5 cm from the entrance or exit of the strip-like conductive material 2 to the solder bath 20 by a contact thermometer, and the temperature and relative humidity of the plating work atmosphere are measured at a position 5 cm from the plating work line. Indicates the value.

上記の製法により、めっき層4の表面の酸化膜厚を3.0nm以下(下限値は0.5nm以上)とすることができる。ここで示す酸化膜厚は、めっき層4の表面(上面あるいは下面)の5ヶ所についてオージェ分析を行い、得られたデプスプロファイルにおいて、酸素ピーク値が半減する時間で定義することができる。すなわち、酸化膜厚は、オージェ分析により得られたデータを平均した値である。また、ここで示す酸化膜の成分は、SERA(Sequential Electrochemical Reduction Analysis:連続電気化学還元法)により、Snの酸化物(SnO:酸化錫(II)、SnO2:酸化錫(IV))であることを確認することができ、SERA分析により得られるSnOの膜厚とSnO2の膜厚とを加えた酸化膜厚が、オージェ分析で得られる酸化膜厚にほぼ対応している。 By the above manufacturing method, the oxide film thickness on the surface of the plating layer 4 can be set to 3.0 nm or less (the lower limit is 0.5 nm or more). The oxide film thickness shown here can be defined as the time during which the oxygen peak value is halved in the depth profile obtained by performing Auger analysis on the surface (upper surface or lower surface) of the plating layer 4. That is, the oxide film thickness is a value obtained by averaging data obtained by Auger analysis. The components of the oxide film shown here are Sn oxides (SnO: tin (II) oxide, SnO 2 : tin oxide (IV)) by SERA (Sequential Electrochemical Analysis: continuous electrochemical reduction method). It can be confirmed that the oxide film thickness obtained by adding the SnO film thickness and the SnO 2 film thickness obtained by the SERA analysis substantially corresponds to the oxide film thickness obtained by the Auger analysis.

溶融はんだめっき後、図3のような設備で、めっき層4の表面に自己融着性材料を塗布し、ダイスなどにより被覆厚さを調整した後に、焼き付けする。このとき、自己融着性材料の焼き付け温度をはんだの液相線以下に抑えるとめっき層4の表面の酸化膜厚の成長を7nm以下(下限値は0.5nm以上)に抑制することができる。なお、ライン一貫化により、前述の溶融はんだめっき設備と組み合わせることで製造コストの低減が可能である。以上の工程により、本発明の太陽電池用リード線1が得られる。   After the molten solder plating, a self-fusing material is applied to the surface of the plating layer 4 with the equipment as shown in FIG. 3, and the coating thickness is adjusted with a die or the like, followed by baking. At this time, if the baking temperature of the self-bonding material is suppressed below the liquidus line of the solder, the growth of the oxide film thickness on the surface of the plating layer 4 can be suppressed to 7 nm or less (lower limit is 0.5 nm or more). . In addition, it is possible to reduce the manufacturing cost by combining with the above-described molten solder plating equipment by making the line consistent. Through the above steps, the solar cell lead wire 1 of the present invention is obtained.

次に、本発明の太陽電池用リード線1の作用を説明する。   Next, the effect | action of the lead wire 1 for solar cells of this invention is demonstrated.

本発明の太陽電池用リード線1を、図4に示した半導体基板41の表面電極42及び裏面電極43にはんだ付けするに際し、太陽電池用リード線1や半導体基板41の加熱温度は、めっき層4のはんだの融点付近の温度に制御される。その理由は、太陽電池用リード線1の帯板状導電材2(例えば銅)の熱膨張率と半導体基板41(Si)の熱膨張率が大きく相違するためである。熱膨張率の相違によって半導体基板41にクラックを発生させる原因となる熱応力が生じる。この熱応力を小さくするには、低温接合を行うのがよい。このような理由から、太陽電池用リード線1や半導体基板41の加熱温度は、めっき層4のはんだの融点付近の温度に制御される。また、ここでは、めっき層4は、略平坦状に形成されるものを使用している。   When the solar cell lead wire 1 of the present invention is soldered to the front surface electrode 42 and the back surface electrode 43 of the semiconductor substrate 41 shown in FIG. 4, the heating temperature of the solar cell lead wire 1 and the semiconductor substrate 41 depends on the plating layer. 4 is controlled to a temperature near the melting point of the solder. The reason is that the thermal expansion coefficient of the strip-like conductive material 2 (for example, copper) of the solar cell lead wire 1 is greatly different from the thermal expansion coefficient of the semiconductor substrate 41 (Si). Due to the difference in thermal expansion coefficient, thermal stress that causes cracks in the semiconductor substrate 41 is generated. In order to reduce this thermal stress, it is preferable to perform low-temperature bonding. For these reasons, the heating temperature of the solar cell lead wire 1 and the semiconductor substrate 41 is controlled to a temperature near the melting point of the solder of the plating layer 4. Here, the plating layer 4 is formed in a substantially flat shape.

上記接合時の加熱方法は、半導体基板41をホットプレート上に設置し、このホットプレートからの加熱と半導体基板41に設置された太陽電池用リード線1の上方からの加熱とを併用する方法である。   The heating method at the time of bonding is a method in which the semiconductor substrate 41 is placed on a hot plate, and heating from the hot plate and heating from above the solar cell lead wire 1 placed on the semiconductor substrate 41 are combined. is there.

この加熱によって自己融着性材料を含む被覆層5とめっき層4が溶融され、太陽電池用リード線1が半導体基板41の表面電極42及び裏面電極43にはんだ付けされる。   By this heating, the coating layer 5 containing the self-bonding material and the plating layer 4 are melted, and the solar cell lead wire 1 is soldered to the front electrode 42 and the rear electrode 43 of the semiconductor substrate 41.

本発明の太陽電池用リード線は、被覆層が自己融着性樹脂を主成分とするものであることから、熱による溶融をした後にめっきが半導体基板の表面電極又は裏面電極に接続するとともに、樹脂が流動して太陽電池用リード線と半導体基板の表面電極又は裏面電極の付近で接着する。つまり、樹脂が必要以上に漏れ広がらずに受光面積を確保できるという利点がある。   In the solar cell lead of the present invention, since the coating layer is mainly composed of a self-bonding resin, the plating is connected to the surface electrode or the back electrode of the semiconductor substrate after melting by heat, The resin flows and adheres to the solar cell lead wire in the vicinity of the front or back electrode of the semiconductor substrate. That is, there is an advantage that the light receiving area can be secured without the resin leaking more than necessary.

尚、自己融着性材料を含む被覆層5が先に溶融され、また、めっき層4は山形に形成されていれば、自己融着性材料を含む被覆層5は、太陽電池用リード線1の側面側に流動して接着、その後溶融されるめっき層4と表面電極42及び裏面電極43とのはんだ付けがより確実なものとなる。   If the coating layer 5 containing the self-bonding material is melted first and the plating layer 4 is formed in a mountain shape, the coating layer 5 containing the self-bonding material is used as the solar cell lead wire 1. The plating layer 4 that flows and adheres to the side surface of the substrate and is then melted is soldered to the front electrode 42 and the back electrode 43 more reliably.

これに対して、従来の太陽電池用リード線44は、モジュールを組み立てるまでの保存時にめっき層47の表面の酸化膜厚が厚くなるため、表面電極42とのはんだ接続時にフラックスによる酸化膜除去が不十分となり、はんだ付け不良が生じ、結果的に、機械的な剥離が起こる、導通不良で十分な出力が得られないなどの問題が生じる。   On the other hand, the conventional solar cell lead wire 44 has a thick oxide film on the surface of the plating layer 47 during storage until the module is assembled. Therefore, the oxide film can be removed by flux when soldering to the surface electrode 42. Insufficient soldering occurs, resulting in problems such as mechanical peeling and insufficient output due to poor conduction.

本発明の太陽電池用リード線1では、めっき層4の表面の酸化膜厚を7nm以下とし、さらにその外層に自己融着性材料を被覆することでモジュール組み立て前の保存時にめっき層4の表面の酸化膜成長を抑制したので、接合時のフラックスによる酸化膜除去が容易になり、はんだ付け性が良好となるため、上記従来の問題は解決される。   In the solar cell lead wire 1 of the present invention, the surface of the plating layer 4 is stored at the time of storage before assembling the module by setting the oxide film thickness of the surface of the plating layer 4 to 7 nm or less and coating the outer layer with a self-bonding material. Since the growth of the oxide film is suppressed, the oxide film can be easily removed by the flux at the time of bonding, and the solderability is improved, so that the conventional problem is solved.

このように本発明に係る太陽電池用リード線1は、半導体基板41の表面電極42及び裏面電極43への接合が強固となるようにめっき層4の表面の酸化膜厚を7nm以下とすることが好ましい。これにより、はんだ接合時の酸化膜除去が容易になり、表面電極42及び裏面電極43に対する太陽電池用リード線1の強固なはんだ付けが可能になる。すなわち、機械的な剥離や導通不良によるモジュール出力低下を防ぐことができる。また、着色剤を含んだ自己融着性材料の被覆ではんだの金属光沢を遮ることができ、まためっき層4の表面の酸化膜成長を遅らせることができる。さらに、被覆材が自己融着性材料のため、セルとはんだ接合する部分も含めためっき線長手方向全体の被覆が可能であり、優れたはんだ接合性を維持しつつ、製造工程の煩雑化を抑制する効果も有する。   Thus, in the solar cell lead wire 1 according to the present invention, the oxide film thickness on the surface of the plating layer 4 is set to 7 nm or less so that the bonding of the semiconductor substrate 41 to the front surface electrode 42 and the back surface electrode 43 becomes strong. Is preferred. As a result, the oxide film can be easily removed at the time of soldering, and the solar cell lead wire 1 can be firmly soldered to the front electrode 42 and the back electrode 43. That is, it is possible to prevent a decrease in module output due to mechanical peeling or poor conduction. In addition, the metallic luster of the solder can be blocked by the coating of the self-bonding material containing the colorant, and the oxide film growth on the surface of the plating layer 4 can be delayed. Furthermore, since the coating material is a self-bonding material, it is possible to cover the entire longitudinal direction of the plating wire, including the part where the cells are soldered together, and the manufacturing process is complicated while maintaining excellent solderability. It also has a suppressing effect.

次に、本発明の太陽電池について詳しく説明する。   Next, the solar cell of the present invention will be described in detail.

本発明の太陽電池は、これまで説明してきた太陽電池用リード線1を、めっき表面の酸化膜厚が7nm以下のめっき層4のはんだによって半導体基板41の表面電極42及び裏面電極43にはんだ付けしたものである。本発明の太陽電池は、めっき表面の酸化膜厚が7nm以下のめっき層4を有する太陽電池用リード線1を使用しているため、半導体基板41の表面電極42及び裏面電極43へのはんだ含浸は不要である。よって薄型化した半導体基板の電極へのはんだ含浸による半導体基板の破損を回避できる。ただし、本発明の太陽電池用リード線1は、電極へのはんだ含浸したタイプの半導体基板へも適用可能であり、その用途は電極にはんだを含浸しないタイプの半導体基板に限らない。また、モジュールのタイプも結晶系に限らず、薄膜系など、様々なモジュールの太陽電池用リード線を着色する場合に適用できる。   In the solar cell of the present invention, the solar cell lead wire 1 described so far is soldered to the front surface electrode 42 and the back surface electrode 43 of the semiconductor substrate 41 with the solder of the plating layer 4 having an oxide film thickness of 7 nm or less on the plating surface. It is a thing. Since the solar cell of the present invention uses the solar cell lead wire 1 having the plating layer 4 with an oxide film thickness of 7 nm or less on the plating surface, the surface electrode 42 and the back electrode 43 of the semiconductor substrate 41 are impregnated with solder. Is unnecessary. Therefore, damage to the semiconductor substrate due to solder impregnation of the thinned semiconductor substrate electrode can be avoided. However, the solar cell lead wire 1 of the present invention can also be applied to a type of semiconductor substrate in which electrodes are impregnated with solder, and its use is not limited to a type of semiconductor substrate in which electrodes are not impregnated with solder. Further, the module type is not limited to the crystal system, and can be applied to the case where the solar cell lead wires of various modules such as a thin film system are colored.

本発明の太陽電池では、太陽電池用リード線1と表面電極42及び裏面電極43との接合面となるめっき層4の表面の酸化膜厚が7nm以下と極めて薄いため、半導体基板41の表面電極42及び裏面電極43とはんだ接合する際に、フラックスの作用で容易に酸化膜が破られ、良好なはんだ濡れ性が得られるため、めっき層4と表面電極42及び裏面電極43のはんだ接合が強固になる。すなわち、太陽電池用リード線1と半導体基板41との間で接合強度の高い接合が得られる。   In the solar cell of the present invention, the surface oxide of the semiconductor substrate 41 is very thin because the oxide film thickness of the surface of the plating layer 4 serving as the joint surface between the solar cell lead wire 1 and the surface electrode 42 and the back electrode 43 is as thin as 7 nm or less. When soldering to 42 and the back electrode 43, the oxide film is easily broken by the action of the flux, and good solder wettability is obtained. Therefore, the solder joint between the plating layer 4, the front electrode 42 and the back electrode 43 is strong. become. That is, a high bonding strength can be obtained between the solar cell lead wire 1 and the semiconductor substrate 41.

本発明の太陽電池によれば、太陽電池用リード線1と半導体基板41との接合強度が高いので、太陽電池モジュール製造時の歩留まり向上及びモジュール出力向上が図れる。また、太陽電池用リード線1を連続工程で製造でき、半導体基板41との接合も従来設備で可能なため、製造コストを上げることなく、デザイン性に優れるモジュールを提供できる。用途としては、人の目に触れることの多い車載用や住宅用に適用できるが、もちろん用途はこれに限定されるものではない。   According to the solar cell of the present invention, since the bonding strength between the solar cell lead wire 1 and the semiconductor substrate 41 is high, it is possible to improve the yield and the module output when manufacturing the solar cell module. Moreover, since the solar cell lead wire 1 can be manufactured in a continuous process and can be joined to the semiconductor substrate 41 with conventional equipment, a module with excellent design can be provided without increasing the manufacturing cost. As a use, it can be applied to in-vehicle use and residential use, which are often touched by human eyes, but the use is not limited to this.

(実施例)
原料の導電材であるCu材料を圧延加工して幅2.0mm、厚さ0.16mmの平角線状の帯板状導電材2を形成した。この帯板状導電材2をバッチ式加熱設備で熱処理し、さらに、この帯板状導電材2の周囲に図2に示した溶融めっき設備(はんだ浴温度340℃、作業現場の温度30℃、作業現場の湿度65RH%)でSn−3%Ag−0.5%Cuはんだ(液相線温度220℃)のめっきを施し、帯板状導電材2の上下面3a、3bにめっき層4(中央部のめっき厚が20μmの山形構造)を形成した(導体は熱処理Cu)。さらに、このはんだめっき線の周囲に図3に示した塗装設備でカーボンブラックを分散させたポリヒドロキシポリエーテル樹脂を含む自己融着性材料を溶剤が残らないような加熱条件で焼き付け被覆した。以上により、図1(a)の太陽電池用リード線1を得た。その後、太陽電池用リード線作製直後および60℃×95RH%の環境で1週間保管後に、酸化膜測定(オージェ分析)、接合力測定、モジュール効率測定を実施した。酸化膜厚測定は被覆した樹脂を剥離して実施した。
(Example)
A Cu material, which is a raw material conductive material, was rolled to form a rectangular strip-shaped conductive material 2 having a width of 2.0 mm and a thickness of 0.16 mm. This strip-like conductive material 2 is heat-treated with a batch-type heating equipment, and further, the hot-dip plating equipment shown in FIG. 2 (solder bath temperature 340 ° C., work site temperature 30 ° C., Sn-3% Ag-0.5% Cu solder (liquidus temperature 220 ° C.) is plated at a working site humidity of 65 RH%, and the plating layer 4 ( (A chevron structure with a central plating thickness of 20 μm) was formed (the conductor was heat-treated Cu). Further, a self-bonding material containing a polyhydroxy polyether resin in which carbon black was dispersed was baked and coated around the solder plated wire under a heating condition such that no solvent remained in the coating equipment shown in FIG. Thus, the solar cell lead wire 1 of FIG. 1A was obtained. Thereafter, immediately after the production of the solar cell lead wire and after storage for 1 week in an environment of 60 ° C. × 95 RH%, oxide film measurement (Auger analysis), bonding force measurement, and module efficiency measurement were performed. The oxide film thickness was measured by peeling the coated resin.

(比較例1)
実施例の太陽電池用リード線1と同様に帯板状導電材を形成し、バッチ式加熱設備で熱処理し、さらに、この帯板状導電材の周囲に図2に示した溶融めっき設備(はんだ浴温度340℃、作業現場の温度30℃、作業現場の湿度65RH%)でSn−3%Ag−0.5%Cuはんだ(液相線温度220℃)のめっきを施し、帯板状導電材の上下面にめっき層(中央部のめっき厚20μm)を形成した(導体は熱処理Cu)。その後、太陽電池用リード線作製直後および60℃×95RH%の環境で1週間保管後に、酸化膜測定(オージェ分析)、接合力測定、モジュール効率測定を実施した。酸化膜厚測定は被覆した樹脂を剥離して実施した。
(Comparative Example 1)
A strip-like conductive material is formed in the same manner as in the solar cell lead wire 1 of the example, heat-treated with a batch-type heating equipment, and the hot-dip plating equipment (solder) shown in FIG. Sn-3% Ag-0.5% Cu solder (liquidus temperature 220 ° C) is plated at a bath temperature of 340 ° C, a worksite temperature of 30 ° C, and a worksite humidity of 65RH%. A plating layer (plating thickness of 20 μm at the center) was formed on the upper and lower surfaces (conductor was heat-treated Cu). Thereafter, immediately after the production of the solar cell lead wire and after storage for 1 week in an environment of 60 ° C. × 95 RH%, oxide film measurement (Auger analysis), bonding force measurement, and module efficiency measurement were performed. The oxide film thickness was measured by peeling the coated resin.

(比較例2、3)
実施例の太陽電池用リード線1と同様に帯板状導電材を形成し、バッチ式加熱設備で熱処理し、さらに、この帯板状導電材の周囲に図2に示した溶融めっき設備(はんだ浴温度340℃、作業現場の温度30℃、作業現場の湿度65RH%)でSn−3%Ag−0.5%Cuはんだ(液相線温度220℃)のめっきを施し、帯板状導電材の上下面にめっき層(中央部のめっき厚20μm)を形成した(導体は熱処理Cu)。その後、太陽電池用リード線作製直後および60℃×95RH%の環境で1週間保管後に、酸化膜測定(オージェ分析)、接合力測定、モジュール効率測定を実施した。酸化膜厚測定は被覆した樹脂を剥離して実施した。
(Comparative Examples 2 and 3)
A strip-like conductive material is formed in the same manner as in the solar cell lead wire 1 of the example, heat-treated with a batch-type heating equipment, and the hot-dip plating equipment (solder) shown in FIG. Sn-3% Ag-0.5% Cu solder (liquidus temperature 220 ° C) is plated at a bath temperature of 340 ° C, a worksite temperature of 30 ° C, and a worksite humidity of 65RH%. A plating layer (plating thickness of 20 μm at the center) was formed on the upper and lower surfaces (conductor was heat-treated Cu). Thereafter, immediately after the production of the solar cell lead wire and after storage for 1 week in an environment of 60 ° C. × 95 RH%, oxide film measurement (Auger analysis), bonding force measurement, and module efficiency measurement were performed. The oxide film thickness was measured by peeling the coated resin.

比較例2は作製した太陽電池用リード線を半導体基板に接合した後に、太陽電池用リード線の接合面と反対側の面(モジュール表面)のみに黒色充填剤を含有するポリエステル樹脂を被覆しモジュールを作製した。   Comparative Example 2 is a module in which the produced solar cell lead wire is joined to a semiconductor substrate, and then a surface of the solar cell lead wire opposite to the joint surface (module surface) is covered with a polyester resin containing a black filler. Was made.

比較例3は太陽電池用リード線の配線部をマスクすべく、配線部上に該当する部分を黒色に着色したガラス板を用いてモジュールを作製した。   In Comparative Example 3, a module was manufactured using a glass plate in which the corresponding portion on the wiring portion was colored black so as to mask the wiring portion of the solar cell lead wire.

これら実施例および比較例1〜3の太陽電池用リード線(製造直後および60℃×95RH%×1週間保管後)のめっき層の表面の酸化膜厚をオージェ分析した結果、製造直後はいずれも酸化膜厚が2.5nmと薄く、60℃×95RH%×1週間保管後では、実施例は酸化膜厚が3.0nmと薄いのに対し、比較例1〜3はいずれも酸化膜厚が7.2nmと厚くなっていることが分かった。ここで、酸化膜厚は、オージェ分析によって得られるデプスプロファイル(スパッタ時間vs.組成比)において、酸素ピーク値が半減する時間で定義しており、次式で算出した。
酸化膜厚(nm)=SiO2換算スパッタレート(nm/min)×酸素ピーク値が
半減する時間(min)
As a result of Auger analysis of the oxide film thickness of the plating layer of the solar cell lead wires of these Examples and Comparative Examples 1 to 3 (immediately after production and after storage at 60 ° C. × 95 RH% × 1 week), all were immediately after production. The oxide film thickness is as thin as 2.5 nm, and after storage at 60 ° C. × 95 RH% × 1 week, the oxide film thickness is as thin as 3.0 nm in the example, whereas the comparative examples 1 to 3 all have the oxide film thickness. It was found to be as thick as 7.2 nm. Here, the oxide film thickness is defined by the time during which the oxygen peak value is halved in the depth profile (sputtering time vs. composition ratio) obtained by Auger analysis, and was calculated by the following equation.
Oxide film thickness (nm) = SiO 2 conversion sputter rate (nm / min) × Time during which oxygen peak value is halved (min)

これら実施例および比較例1〜3の太陽電池用リード線にロジン系フラックスを適量塗布し、それぞれの太陽電池用リード線をバスバ電極を2本有する155mm×155mm×160μmの半導体基板(予め電極にはんだ含浸なし)の上に設置し、ホットプレート加熱(260℃で30秒間保持)し、図4と同じように、太陽電池用リード線を半導体基板にはんだ付けした。さらに、これら半導体基板にはんだ付けした太陽電池用リード線の半導体基板に対する接合力を評価するために、90°剥離試験(試験速度:10mm/min、剥離長さ:15mm)を行った。また、作製した太陽電池用リード線と半導体基板の接合体をモジュールに組み込み、モジュール効率を従来の方法で作製したモジュール(比較例1)と比較した。   An appropriate amount of rosin-based flux is applied to the solar cell lead wires of these examples and comparative examples 1 to 3, and each solar cell lead wire has a 155 mm × 155 mm × 160 μm semiconductor substrate (previously applied to the electrode). It was placed on a solder-free impregnated plate, heated on a hot plate (held at 260 ° C. for 30 seconds), and the solar cell lead wire was soldered to the semiconductor substrate as in FIG. Further, a 90 ° peel test (test speed: 10 mm / min, peel length: 15 mm) was performed in order to evaluate the bonding strength of the solar cell lead wires soldered to these semiconductor substrates to the semiconductor substrate. Moreover, the produced solar cell lead wire and semiconductor substrate assembly was incorporated into a module, and the module efficiency was compared with a module produced by a conventional method (Comparative Example 1).

実施例および比較例1〜3の評価結果を表2に示す。   The evaluation results of Examples and Comparative Examples 1 to 3 are shown in Table 2.

Figure 2014042065
Figure 2014042065

表2の「デザイン性」の欄は、太陽電池用リード線の金属光沢の遮断によるデザイン性の考慮の有無を示す。「製造コスト」の欄は、デザイン性を考慮しない従来の製法(比較例1)を基準とした場合の太陽電池用リード線およびモジュールの製造コストを示す。「製造直後のリード線使用」の欄において、「酸化膜厚」の欄は、オージェ分析によるデプスプロファイル(スパッタ時間vs.組成比)より求めた、めっき層の表面の酸化膜の厚み(サンプル数n=5の平均値)を示す。「接合力」の欄は、90°剥離試験により銅板と太陽電池用リード線を引っ張り、どのくらいの引張力で引っ張ったときに接合が剥がれるか試験を行った結果を示し、○は引張力10N以上、×は引張力10N未満を示す。「モジュール効率」の欄は、デザイン性を考慮しない従来の製法(比較例1)で得られたモジュール効率を基準とし、○はモジュール効率低下のないこと、×はモジュール効率が低下することを示す。また、「60℃×95RH%保管後のリード線使用」の欄は、それぞれの太陽電池用リード線を60℃×95RH%で保管後の「酸化膜厚」、「接合力」、「モジュール効率」の評価結果を示す。   The column of “Designability” in Table 2 indicates whether or not the designability is taken into account by blocking the metallic luster of the solar cell lead wire. The column “Manufacturing cost” indicates the manufacturing cost of the solar cell lead wire and the module based on the conventional manufacturing method (Comparative Example 1) that does not consider design. In the column of “Use of lead wire immediately after manufacture”, the column of “Oxide film thickness” indicates the thickness of the oxide film on the surface of the plating layer (number of samples) obtained from the depth profile (sputter time vs. composition ratio) by Auger analysis. average value of n = 5). The column of “Joint strength” shows the result of testing whether the copper plate and the solar cell lead wire are pulled by a 90 ° peel test, and the tensile strength of the joint is peeled off. , X indicates a tensile force of less than 10N. The column of “module efficiency” is based on the module efficiency obtained by the conventional manufacturing method (Comparative Example 1) that does not take into consideration the design, ○ indicates that the module efficiency does not decrease, and × indicates that the module efficiency decreases. . Also, the column “Use lead after storage at 60 ° C. × 95RH%” shows “Oxide film thickness”, “Joint strength”, “Module efficiency” after storing each lead wire for solar cell at 60 ° C. × 95RH%. The evaluation results are shown.

「デザイン性」評価の結果、デザイン性を考慮しない従来の製法(比較例1)以外は、モジュール外観において太陽電池用リード線の金属光沢が遮断されており、デザイン性に優れることが確認された。「製造コスト」評価の結果、製造工程が煩雑な比較例2は、従来の製法(比較例1)に比べて、製造コストが著しく増大するのに対し、実施例は連続的に太陽電池用リード線を製造することができ、しかも太陽電池用リード線を直接半導体基板であるシリコンセル上の電極にはんだ接合できるため、製造コストが従来(比較例1、3)と大きく変わらないことが分かった。「製造直後のリード線使用」の場合は、いずれの太陽電池用リード線もめっき層の表面の酸化膜厚が薄いため、接合力に優れるものの、比較例3の場合は、太陽電池用リード線の金属光沢を遮断するためにモジュールの表面のガラス板に黒い線を焼きつけ塗装しており、遮光性テープを施しており、シャドウロスが生じる分、従来に比べてモジュール効率が低下する。「60℃×95RH%保管後のリード線使用」の場合は、実施例以外は太陽電池用リード線の表面のめっき層の酸化膜成長が著しく、はんだ濡れ性が低下したため、半導体基板上の電極との接触抵抗が増大し、モジュール効率が低下することが分かった。   As a result of the “designability” evaluation, it was confirmed that the metallic luster of the solar cell lead wire was cut off in the module appearance except for the conventional manufacturing method (Comparative Example 1) that did not consider the designability, and the design was excellent. . As a result of the “manufacturing cost” evaluation, Comparative Example 2 in which the manufacturing process is complicated increases remarkably the manufacturing cost as compared with the conventional manufacturing method (Comparative Example 1). It was found that the manufacturing cost is not significantly different from the conventional (Comparative Examples 1 and 3) because the lead wire for solar cell can be directly soldered to the electrode on the silicon cell that is the semiconductor substrate. . In the case of “use of lead wire immediately after manufacture”, since any of the solar cell lead wires has a thin oxide film thickness on the surface of the plating layer, the bonding strength is excellent. In order to block the metallic luster of the module, black lines are baked and painted on the glass plate on the surface of the module, and a light-shielding tape is applied. As a result of shadow loss, module efficiency is reduced compared to the conventional case. In the case of “use of lead wire after storage at 60 ° C. × 95 RH%”, since the oxide film growth of the plating layer on the surface of the lead wire for solar cell is remarkably reduced except for the examples, the solder wettability is lowered. It has been found that the contact resistance increases with module efficiency.

1 太陽電池用リード線
2 帯板状導電材
4 めっき層
5 被覆層
DESCRIPTION OF SYMBOLS 1 Solar cell lead wire 2 Strip | plate-like electroconductive material 4 Plating layer 5 Covering layer

Claims (2)

帯板状導電材表面にSn系はんだ、又は、第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むSn系はんだ合金からなるめっき層を有し、上記めっき層の外側にフェノキシ系樹脂、ポリビニルブチラール系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂のいずれかからなる樹脂を含む被覆層を有し、上記めっき層表面の酸化膜厚が7nm以下であることを特徴とする太陽電池用リード線。   Sn-based solder is used on the surface of the strip-shaped conductive material, or Sn is used as the first component, and at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, Cu is used as the second component. A plating layer made of Sn solder alloy containing 0.1 mass% or more, and a resin made of any of phenoxy resin, polyvinyl butyral resin, polyamide resin, epoxy resin, and polyester resin on the outside of the plating layer A lead wire for a solar cell, comprising: a coating layer including: an oxide film thickness on the surface of the plating layer being 7 nm or less. 帯板状導電材表面にSn系はんだ、又は、第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むSn系はんだ合金からなるめっき層を有する太陽電池用リード線と、
上記太陽電池用リード線と接合される半導体基板と、を備え、
上記太陽電池用リード線は、上記めっき層のはんだによって上記半導体基板に設けられた電極に接合されており、
上記太陽電池用リード線の側面に、フェノキシ系樹脂、ポリビニルブチラール系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂のいずれかからなる樹脂を含む被覆層を有することを特徴とする太陽電池。
Sn-based solder is used on the surface of the strip-shaped conductive material, or Sn is used as the first component, and at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, Cu is used as the second component. A solar cell lead wire having a plating layer made of a Sn-based solder alloy containing 0.1 mass% or more;
A semiconductor substrate bonded to the solar cell lead wire,
The solar cell lead wire is bonded to the electrode provided on the semiconductor substrate by the solder of the plating layer,
A solar cell comprising a coating layer containing a resin composed of any one of a phenoxy resin, a polyvinyl butyral resin, a polyamide resin, an epoxy resin, and a polyester resin on a side surface of the solar cell lead wire.
JP2013227870A 2013-11-01 2013-11-01 Lead wire for solar battery, and solar battery Pending JP2014042065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227870A JP2014042065A (en) 2013-11-01 2013-11-01 Lead wire for solar battery, and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227870A JP2014042065A (en) 2013-11-01 2013-11-01 Lead wire for solar battery, and solar battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009276742A Division JP5418189B2 (en) 2009-12-04 2009-12-04 Solar cell lead wire and solar cell using the same

Publications (1)

Publication Number Publication Date
JP2014042065A true JP2014042065A (en) 2014-03-06

Family

ID=50394020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227870A Pending JP2014042065A (en) 2013-11-01 2013-11-01 Lead wire for solar battery, and solar battery

Country Status (1)

Country Link
JP (1) JP2014042065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116899A1 (en) * 2016-12-22 2018-06-28 パナソニックIpマネジメント株式会社 Solar battery module
JP2020072252A (en) * 2018-10-31 2020-05-07 フレックス,リミテッド Method of forming colored conductive ribbon for incorporation into solar cell module

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148953U (en) * 1982-03-31 1983-10-06 株式会社ほくさん Output wire for solar panel
JPH09232742A (en) * 1996-02-28 1997-09-05 Hitachi Ltd Manufacture of electronic circuit device
JP2000000685A (en) * 1991-08-28 2000-01-07 Hitachi Ltd Electronic circuit joining method and electronic circuit device
JP2002042548A (en) * 2000-07-19 2002-02-08 Furukawa Electric Co Ltd:The Lead wire for electronic parts and manufacturing process thereof, and electronic parts using this wire
JP2003086820A (en) * 2001-06-29 2003-03-20 Sharp Corp Solar battery module and method for manufacturing the same
JP2004209494A (en) * 2002-12-27 2004-07-29 Mitsui Mining & Smelting Co Ltd Solder powder for soldering paste
JP2004297105A (en) * 1997-10-30 2004-10-21 Fuji Electric Holdings Co Ltd External lead connecting method of solar cell module
JP2005243935A (en) * 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
JP2005243972A (en) * 2004-02-26 2005-09-08 Kyocera Corp Solar cell module
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
JP2008168339A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Plated wire for solar cell, and its manufacturing method
JP2008288333A (en) * 2007-05-16 2008-11-27 Sanyo Electric Co Ltd Solar battery module and its manufacturing method
JP2009088145A (en) * 2007-09-28 2009-04-23 Sharp Corp Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
JP2009193949A (en) * 2007-08-09 2009-08-27 Sumitomo Electric Ind Ltd Foma for superconducting cable, its manufacturing method and superconducting cable
JP2009206493A (en) * 2008-01-31 2009-09-10 Sanyo Electric Co Ltd Solar cell module and method of manufacturing solar cell module
JP2010238927A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Solar battery cell, solar battery module, and solar battery system

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148953U (en) * 1982-03-31 1983-10-06 株式会社ほくさん Output wire for solar panel
JP2000000685A (en) * 1991-08-28 2000-01-07 Hitachi Ltd Electronic circuit joining method and electronic circuit device
JPH09232742A (en) * 1996-02-28 1997-09-05 Hitachi Ltd Manufacture of electronic circuit device
JP2004297105A (en) * 1997-10-30 2004-10-21 Fuji Electric Holdings Co Ltd External lead connecting method of solar cell module
JP2002042548A (en) * 2000-07-19 2002-02-08 Furukawa Electric Co Ltd:The Lead wire for electronic parts and manufacturing process thereof, and electronic parts using this wire
JP2003086820A (en) * 2001-06-29 2003-03-20 Sharp Corp Solar battery module and method for manufacturing the same
JP2004209494A (en) * 2002-12-27 2004-07-29 Mitsui Mining & Smelting Co Ltd Solder powder for soldering paste
JP2005243972A (en) * 2004-02-26 2005-09-08 Kyocera Corp Solar cell module
JP2005243935A (en) * 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
JP2008168339A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Plated wire for solar cell, and its manufacturing method
JP2008288333A (en) * 2007-05-16 2008-11-27 Sanyo Electric Co Ltd Solar battery module and its manufacturing method
JP2009193949A (en) * 2007-08-09 2009-08-27 Sumitomo Electric Ind Ltd Foma for superconducting cable, its manufacturing method and superconducting cable
JP2009088145A (en) * 2007-09-28 2009-04-23 Sharp Corp Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
JP2009206493A (en) * 2008-01-31 2009-09-10 Sanyo Electric Co Ltd Solar cell module and method of manufacturing solar cell module
JP2010238927A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Solar battery cell, solar battery module, and solar battery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
辻隆之ら: ""接続信頼性を高めたPbフリーはんだの開発"", 工学技術研究誌 日立電線, JPN7013003615, 2007, JP, pages 19 - 22, ISSN: 0003033788 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116899A1 (en) * 2016-12-22 2018-06-28 パナソニックIpマネジメント株式会社 Solar battery module
JPWO2018116899A1 (en) * 2016-12-22 2019-10-24 パナソニックIpマネジメント株式会社 Solar cell module
JP2020072252A (en) * 2018-10-31 2020-05-07 フレックス,リミテッド Method of forming colored conductive ribbon for incorporation into solar cell module

Similar Documents

Publication Publication Date Title
JP6039628B2 (en) Solar cell lead wire and solar cell manufacturing method
US7754973B2 (en) Electrode wire for solar cell
JP4367149B2 (en) Flat cable conductor, method of manufacturing the same, and flat cable
KR101609036B1 (en) Interconnector for solar cells, and solar cell module
JP2010205792A (en) Solar cell lead, method of manufacturing same, and solar cell using same
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP6065646B2 (en) Tape-like conductive material, solar cell interconnector and solar cell module
JP2010016320A (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JP5161734B2 (en) Solar cell lead wire, manufacturing method thereof, and solar cell
JP5418189B2 (en) Solar cell lead wire and solar cell using the same
EP1484801A2 (en) Solar battery module and manufacturing method thereof
JP2014042065A (en) Lead wire for solar battery, and solar battery
WO2015147213A1 (en) Conductor, and solar-cell interconnector
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP2010283138A (en) Solar cell lead wire and method of manufacturing the same, and solar cell using the same
JP5397809B2 (en) Solar cell
JP2005129660A (en) Solar cell element and forming method thereof
EP3167992B1 (en) Lead solder joint structure and manufacturing method thereof
JP2005191319A (en) Solar cell module
CN103943703A (en) Interconnector for solar battery and corresponding solar module
CN218069872U (en) Black round wire welding strip
JP2017045888A (en) Connection body, element and solar cell module
JP2016072096A (en) Metal wire, interconnector for solar battery power collection, and solar battery module
KR20230060130A (en) Wire for solar cell and manufacturing method thereof
JP2012146730A (en) Lead wire for solar cell and solar cell using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150820