JP4951856B2 - Manufacturing method of flat conductor - Google Patents

Manufacturing method of flat conductor Download PDF

Info

Publication number
JP4951856B2
JP4951856B2 JP2005001731A JP2005001731A JP4951856B2 JP 4951856 B2 JP4951856 B2 JP 4951856B2 JP 2005001731 A JP2005001731 A JP 2005001731A JP 2005001731 A JP2005001731 A JP 2005001731A JP 4951856 B2 JP4951856 B2 JP 4951856B2
Authority
JP
Japan
Prior art keywords
conductor
volume resistivity
low volume
flat plate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005001731A
Other languages
Japanese (ja)
Other versions
JP2006190575A (en
Inventor
隆之 辻
孝 根本
哲哉 徳光
宙 坂東
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005001731A priority Critical patent/JP4951856B2/en
Publication of JP2006190575A publication Critical patent/JP2006190575A/en
Application granted granted Critical
Publication of JP4951856B2 publication Critical patent/JP4951856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Description

本発明は、太陽電池のシリコン結晶を接続するリード線用導体に関し、特にはんだ接続時の熱応力が小さく、自身の反りなどの変形が少ない平角導体及びその製造方法に関するものである。   The present invention relates to a conductor for lead wires for connecting a silicon crystal of a solar cell, and more particularly to a flat conductor having a small thermal stress at the time of solder connection and less deformation such as its own warp and a method for manufacturing the same.

太陽電池には基板上にシリコン結晶を成長させた半導体チップが使用され、シリコン結晶ウェハの所定の領域に接続用リード線をはんだで接合し、これを通じて電力を供給する構成としている。公知例には、導体にタフピッチ銅や無酸素銅などの純銅の平角導体を用い、はんだにSn−Pb共晶はんだを適用した特許文献1等がある。   A semiconductor chip in which a silicon crystal is grown on a substrate is used for a solar cell, and a connection lead wire is joined to a predetermined region of a silicon crystal wafer with solder, and power is supplied through this. Known examples include Patent Document 1 in which a flat copper rectangular conductor such as tough pitch copper or oxygen-free copper is used as the conductor and Sn—Pb eutectic solder is applied as the solder.

また、近年環境への配慮からPbを含まないはんだを使用したものへの切り替えが検討されており、公知例として特許文献2等がある。   In recent years, switching to a solder that does not contain Pb has been studied in consideration of the environment. Patent Document 2 and the like are known examples.

特開平11−21660号公報Japanese Patent Laid-Open No. 11-21660 特開2002−263880号公報JP 2002-263880 A 特開2002−164560号公報JP 2002-164560 A

太陽電池を構成する部材のうち材料コストの大半をシリコン結晶ウェハが占める。そのため、シリコン結晶ウェハの薄板化が検討されており、従来は350μm以上であった厚みが250μm以下となっている。しかし、薄板化すると剛性が低下し、接続用リード線の接合時の加熱プロセスや使用時の温度変化においてシリコン結晶ウェハが破損するという不具合が生じやすくなる。これに対処するため、接続用リード線には、はんだ接続時の熱応力が小さいもののニーズが高まっている。   The silicon crystal wafer occupies most of the material cost among the members constituting the solar cell. Therefore, the thinning of the silicon crystal wafer has been studied, and the thickness that has been conventionally 350 μm or more is 250 μm or less. However, when the thickness is reduced, the rigidity is lowered, and a problem that the silicon crystal wafer is damaged due to a heating process at the time of joining the connecting lead wires or a temperature change at the time of use tends to occur. In order to cope with this, there is an increasing need for connecting lead wires that have low thermal stress during solder connection.

公知例として、銅−インバーの複合材など熱膨張が小さい材料をクラッドした条をリードフレームとして用いた特許文献3がある。しかし、リードフレームは回路形成時に打ち抜きを行うため、無駄になる材料が大量に生じるという問題がある。   As a known example, there is Patent Document 3 in which a strip clad with a material having low thermal expansion such as a copper-invar composite material is used as a lead frame. However, since the lead frame is punched at the time of circuit formation, there is a problem that a large amount of wasted material is generated.

また、銅−インバー−銅をクラッドした平角導体を用いた材料の場合、インバーの両側に配置されている銅材料の結晶の配向または結晶粒の不均一によって、反りなどの変形が生ずることがある。これらは、太陽電池モジュールの生産性低下や、長期間使用した際の発電効率低下など信頼性を低下させる原因となっている。   Further, in the case of a material using a copper-invar-copper clad flat conductor, deformation such as warping may occur due to crystal orientation or crystal grain non-uniformity of the copper material arranged on both sides of the invar. . These are causes of lowering reliability such as lower productivity of solar cell modules and lowering of power generation efficiency when used for a long time.

また、太陽電池に配置される平角導体には曲げ部が存在するが、平角導体の物性によっては曲げ部で破断し、断線するという問題も起きている。   Moreover, although the bent part exists in the flat conductor arrange | positioned at a solar cell, the problem that it fractures | ruptures at a bent part and is disconnected depending on the physical property of a flat conductor has also arisen.

本発明の目的は、高導電性を維持したまま、はんだ接続の際の熱応力を小さくでき、セルの変形が生じにくい平角導体及びその製造方法を提供することが一つであり、また、引張り矯正による平坦化が容易である太陽電池の接続用リード線に用いる平角導体を提供することが2つ目の目的である。さらに曲げても破断しないように十分な伸びを有し、またコアとコア材料両面の材料との界面において脆性の高い金属間化合物のない太陽電池の接続用リード線に用いる平角導体を提供することが3つ目の目的である。   One object of the present invention is to provide a flat conductor that can reduce thermal stress during solder connection while maintaining high conductivity, and that is less prone to deformation of the cell, and a method of manufacturing the same, A second object is to provide a flat conductor used for a connecting lead wire of a solar cell that can be easily flattened by correction. Further, the present invention provides a flat conductor used for a solar cell connection lead wire that has sufficient elongation so that it does not break even when bent, and has no brittle intermetallic compound at the interface between the core and the material on both sides of the core material. Is the third purpose.

上記発明の目的を達成するため、請求項1の発明は、アルミニウム又は銀からなるコア平板の両面を、金、銀、銅のうち0.2%耐力が前記コア平板より大きいものからなる低体積抵抗率導体で挟み込んで平角導体を製造するに際し、前記コア平板の両面に前記低体積抵抗率導体を貼り合わせてクラッド材を製作した後、そのクラッド材に200〜280℃で1〜2時間熱処理を施すことを特徴とする平角導体の製造方法である。 In order to achieve the object of the present invention, the invention of claim 1 is characterized in that both sides of a core flat plate made of aluminum or silver have a low volume consisting of gold, silver and copper having a 0.2% proof stress larger than that of the core flat plate. upon manufacturing a rectangular conductor is sandwiched in resistivity conductor, said after preparing clad material wherein both surfaces of the core plate-bonding a low volume resistivity conductors, for 1-2 hours at 200 to 280 ° C. in the cladding heat treatment Is a method for producing a flat conductor.

請求項2の発明は、コア平板と低体積抵抗率導体の界面の金属間化合物厚さが3.0μm以下である請求項1に記載の平角導体の製造方法である。 The invention of claim 2 is a method for producing a rectangular conductor according to claim 1, wherein a thickness of the intermetallic compound at the interface between the core flat and low volume resistivity conductor is 3.0μm or less.

請求項3の発明は、熱処理後の平角導体の破断時の伸びが15%以上ある請求項1または2に記載の平角導体の製造方法である。 The invention of claim 3 is a method for producing a rectangular conductor according to claim 1 or 2 elongation at break of the flat conductor after heat treatment is 15% or more.

請求項4の発明は、コア平板の両面に配置する低体積抵抗率導体のビッカース硬度が1100以下である請求項1〜3いずれかに記載の平角導体の製造方法である。 Invention of Claim 4 is a manufacturing method of the flat conductor in any one of Claims 1-3 whose Vickers hardness of the low volume resistivity conductor arrange | positioned on both surfaces of a core flat plate is 1100 or less.

請求項5の発明は、熱処理後の低体積抵抗率導体は、X線の回折線(111)の強度I(111)と回折線(200)の強度I(200)の強度比IR (=I(111)/{I(200)+I(111)})が、0.15以上の結晶配向を有する請求項1〜4いずれかに記載の平角導体の製造方法である。 In the invention of claim 5, the low volume resistivity conductor after the heat treatment has an intensity ratio I R (=) of the intensity I (111) of the X-ray diffraction line (111) and the intensity I (200) of the diffraction line (200). 5. The method for producing a rectangular conductor according to claim 1, wherein I (111) / {I (200) + I (111)}) has a crystal orientation of 0.15 or more.

請求項6の発明は、コア平板アルミニウムであり、低体積抵抗率導体が銅である請求項1〜5いずれかに記載の平角導体の製造方法である。
Invention of Claim 6 is a manufacturing method of the flat conductor in any one of Claims 1-5 whose core flat plate is aluminum and whose low volume resistivity conductor is copper .

このように本発明は、コアとなる低耐力材料の両側に低体積抵抗率金属材料を配置した構成になっており、更にコアの両側に配置した材料が、特定の配向とならないランダムな配向としたことにあり、このため、本発明は、平角導体に適切な熱処理を施し、界面の化合物層の成長を抑制しつつ、平角導体中の加工歪みを取り除くことにより、耐力を下げ、伸びを良くしたことにある。   As described above, the present invention has a configuration in which the low volume resistivity metal material is arranged on both sides of the low-strength material as the core, and the material arranged on both sides of the core has a random orientation that does not have a specific orientation. Therefore, the present invention performs an appropriate heat treatment on the rectangular conductor and suppresses the growth of the compound layer at the interface while removing the processing strain in the rectangular conductor, thereby reducing the yield strength and improving the elongation. It is to have done.

本発明によれば、導電性を保ちながら平角導体をセルにはんだ接続した際のセルの反りを少なくできる。また、張力付与による形状矯正後も導体の反りが少なく、組み立て性、長期信頼性のいずれも良好となる。   According to the present invention, it is possible to reduce cell warpage when a rectangular conductor is solder-connected to a cell while maintaining conductivity. In addition, there is little warping of the conductor even after shape correction by applying tension, and both assembly and long-term reliability are good.

以下本発明の実施形態を添付図面により説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1に本発明の第1の実施の形態の断面図を示す。   FIG. 1 shows a cross-sectional view of a first embodiment of the present invention.

本発明の平角導体5は、コア平板2が低体積抵抗率導体1によって両側から挟みこまれた構造である。   The flat conductor 5 of the present invention has a structure in which the core flat plate 2 is sandwiched from both sides by the low volume resistivity conductor 1.

コア平板2の材料には、比較的導電性が高く耐力を低く抑えることができるアルミニウムを、低体積抵抗率導体1の材料には、銅を用いたものを製作している。これらは機械式のスリット装置などによって所定の幅に裁断され、リード線用導体として用いられる。   The material of the core flat plate 2 is made of aluminum, which is relatively conductive and has a low proof stress, and the material of the low volume resistivity conductor 1 is made of copper. These are cut into a predetermined width by a mechanical slit device or the like and used as a lead wire conductor.

図2に、平角導体の第2の実施の形態の断面図を示す。   FIG. 2 shows a cross-sectional view of a second embodiment of a flat conductor.

図2は、コア平板2の両側を低体積抵抗率導体1によって挟み込み、その全体をはんだ3で覆って平角導体5を構成したものである。   FIG. 2 shows a rectangular conductor 5 in which both sides of a core flat plate 2 are sandwiched between low volume resistivity conductors 1 and the whole is covered with solder 3.

はんだ3は、Sn−Pb共晶はんだ、もしくは、Pbフリーはんだである。   The solder 3 is Sn—Pb eutectic solder or Pb-free solder.

太陽光発電用セルには、あらかじめ接合用のはんだが形成されており、上記平角導体5のはんだ3とセルのはんだによって接合される。   In the photovoltaic power generation cell, solder for joining is formed in advance, and the solder is joined to the solder 3 of the flat conductor 5 and the solder of the cell.

本発明の第1実施の形態として、平角導体の寸法が幅2.0mm、厚み0.2mmの(銅/アルミニウム/銅)クラッド材(比率2:1:2)を製作し、厚み200μmのシリコンセルへはんだ接続した。導電率としては92%IACSと比較的高い値となり、またセルの反りも銅単体の平角線(幅2.0mm、厚み0.2mm)に比べて89%程度に低減できた。   As a first embodiment of the present invention, a (copper / aluminum / copper) clad material (ratio 2: 1: 2) having a flat conductor size of width 2.0 mm and thickness 0.2 mm is manufactured, and silicon having a thickness of 200 μm is manufactured. Solder connected to the cell. The conductivity was a relatively high value of 92% IACS, and the warpage of the cell could be reduced to about 89% compared to a flat copper wire (width 2.0 mm, thickness 0.2 mm).

本発明において、コア平板2の材料には、比較的抵抗率が小さくかつ、0.2%耐力が両面の低体積抵抗率導体1より小さい材料を選び、また両側で挟み込む材料に、低体積抵抗率導体1を選ぶ理由は次の通りである。   In the present invention, a material having a relatively low resistivity and a 0.2% proof stress smaller than that of the low volume resistivity conductor 1 on both sides is selected as the material of the core flat plate 2, and the material sandwiched on both sides is a low volume resistance. The reason for selecting the rate conductor 1 is as follows.

平角導体5は、はんだ接続によりセルに固定されるが、両者の熱膨張差のため接続後セルには反りが残留してしまう。このときの発生応力は熱膨張差とともに、平角導体の耐力(降伏応力)に依存し、その耐力が低い方がセルの反りは小さくなる。従って、コア平板2の材料に、その両面の低体積抵抗率導体1より0.2%耐力が小さい材料を選ぶことで、反りを小さくする。しかし、導体としての導電性も必要である。そのため、両面の低体積抵抗率導体1は、コア平板2の材料より低体積抵抗率のものを選ぶことが望ましい
The flat conductor 5 is fixed to the cell by solder connection, but warpage remains in the cell after connection due to the difference in thermal expansion between the two. The stress generated at this time depends on the proof stress (yield stress) of the rectangular conductor as well as the thermal expansion difference, and the lower the proof stress, the smaller the warpage of the cell. Therefore, the warpage is reduced by selecting a material having a 0.2% yield strength smaller than that of the low volume resistivity conductor 1 on both sides of the core flat plate 2. However, conductivity as a conductor is also necessary. Therefore, it is desirable to select a low volume resistivity conductor 1 on both sides having a lower volume resistivity than the material of the core flat plate 2.

よって、使用可能な材料は表1のように限定され、また組み合わせも表2の通りとなる。   Therefore, usable materials are limited as shown in Table 1, and combinations are as shown in Table 2.

Figure 0004951856
Figure 0004951856

Figure 0004951856
Figure 0004951856

ここで0.2%耐力は材料によって固有の値ではなく、表1に示す数値は各々の金属の軟化温度を上回る一定の熱処理を施したものである。   Here, the 0.2% proof stress is not an inherent value depending on the material, and the numerical values shown in Table 1 are obtained by performing a constant heat treatment exceeding the softening temperature of each metal.

具体的には200〜280℃で1〜2時間の熱処理を行ったものである。これらの材料の組合わせを用いればクラッド材としても120MPa以下の0.2%耐力を確保でき、かつ、体積抵抗率も比較的低く抑えることが可能である。   Specifically, heat treatment is performed at 200 to 280 ° C. for 1 to 2 hours. If a combination of these materials is used, a 0.2% proof stress of 120 MPa or less can be secured as a clad material, and the volume resistivity can be kept relatively low.

平角導体5の導電性とコストを考慮すると、外側の材料は体積抵抗率が低い銅が、またコア材料としては、0.2%耐力が銅よりも小さくでき、比較的体積抵抗率も小さいアルミニウムが望ましい。   Considering the conductivity and cost of the rectangular conductor 5, the outer material is copper having a low volume resistivity, and the core material is aluminum having a 0.2% proof stress smaller than copper and a relatively small volume resistivity. Is desirable.

導電性を重視する場合にはコア材料として銀を使うことも可能である。また、この他の組み合わせとしては表2のように、銀/アルミニウム/銀、金/アルミニウム/金なども可能である。   Silver can be used as the core material when emphasizing conductivity. As other combinations, as shown in Table 2, silver / aluminum / silver, gold / aluminum / gold, and the like are also possible.

本発明において、コア材料にコア両面に用いる材料を貼り合わせた後に200〜280℃で1〜2時間熱処理を施す理由は次の通りである。   In the present invention, the reason why heat treatment is performed at 200 to 280 ° C. for 1 to 2 hours after bonding the materials used on both sides of the core to the core material is as follows.

平角線の寸法が幅2.0mm、厚み0.2mmの(銅/アルミニウム/銅)クラッド材(比率2:1:2)を製作し、熱処理無しのときと、熱処理時間を1時間・熱処理温度を200〜300℃まで振ったときのそれぞれの0.2%耐力と伸び、界面の金属間化合物の厚さを評価した数値を表3に示す。   A (copper / aluminum / copper) clad material (ratio 2 :: 1: 2) with a flat wire dimension of width 2.0 mm and thickness 0.2 mm is manufactured, with no heat treatment and heat treatment time of 1 hour, heat treatment temperature Table 3 shows the numerical values obtained by evaluating the 0.2% proof stress and elongation when the film was shaken up to 200 to 300 ° C. and the thickness of the intermetallic compound at the interface.

Figure 0004951856
Figure 0004951856

このように200℃以上の熱処理で平角導体を軟化させることができ、0.2%耐力120MPa以下、伸びが15%以上となる。また熱処理温度が高くなるにつれ界面に金属間化合物が成長し、伸びが小さくなっている。これは金属間化合物は脆性が高く、その割合が増えると全体の伸びが小さくなるためと推察される。   Thus, the rectangular conductor can be softened by heat treatment at 200 ° C. or higher, and the 0.2% proof stress is 120 MPa or less and the elongation is 15% or more. Further, as the heat treatment temperature increases, an intermetallic compound grows at the interface and the elongation decreases. This is presumably because intermetallic compounds are highly brittle and the overall elongation decreases as the proportion increases.

また、界面金属化合物層の厚さを3.0μmよりも厚くすると、その界面金属化合物層の部分が平角導体を太陽電池に接続する際の曲げに追従できないため破断してしまい、平角導体全体の導電率が落ちてしまう。界面金属化合物層の厚さを3.0μm以下にするためには、表3に示すように、熱処理温度を280℃以下にする必要がある。   Further, if the thickness of the interface metal compound layer is thicker than 3.0 μm, the interface metal compound layer portion breaks because it cannot follow the bending when the flat conductor is connected to the solar cell, and the entire flat conductor is broken. Conductivity falls. In order to make the thickness of the interfacial metal compound layer 3.0 μm or less, as shown in Table 3, the heat treatment temperature needs to be 280 ° C. or less.

本発明において、低体積抵抗率材料のビッカース硬度を100以下と規定する理由は以下の通りである。   In the present invention, the reason why the Vickers hardness of the low volume resistivity material is defined as 100 or less is as follows.

これらは導体に柔軟性を付与して取り扱い性を向上させるためであり、各々規定値以上の硬度では、導体剛性が高くなりすぎ、好ましくない。   These are for imparting flexibility to the conductor to improve the handleability. When the hardness is not less than a specified value, the conductor rigidity becomes too high, which is not preferable.

また、複合材の低体積抵抗率材料の結晶配向性を、X線の回折線(111)の強度I(111)と回折線(200)の強度I(200)の強度比IR (=I(111)/{I(200)+I(111)})が、0.15以上の結晶配向を有するように規定する理由は次の通りである。 In addition, the crystal orientation of the low volume resistivity material of the composite material is expressed by an intensity ratio I R (= I) of the intensity I (111) of the X-ray diffraction line (111) and the intensity I (200) of the diffraction line (200). The reason for defining (111) / {I (200) + I (111)}) to have a crystal orientation of 0.15 or more is as follows.

低体積抵抗率材の結晶粒の面内配向(クラッド材表面の法線方向配向)は、主として(111)面、(200)面が支配的となる。   The in-plane orientation (normal direction orientation of the clad material surface) of the crystal grains of the low volume resistivity material is predominantly the (111) plane and the (200) plane.

クラッド材の製造工程において、冷間加工を経て得られる低体積抵抗率材の再結晶の配向(集合組織)が(200)面が支配的になると、再結晶粒が粗大化してしまい、クラッド材からなるリード線をセル面と良好にはんだ付けしやすいように引っ張り応力を付加して直線状に矯正しようとすると、反りが生じやすい。   In the manufacturing process of the clad material, when the recrystallization orientation (texture) of the low volume resistivity material obtained through cold working becomes dominant (200) plane, the recrystallized grains become coarse, and the clad material When a tensile stress is applied so as to easily solder the lead wire made of the above to the cell surface and straighten, the warp tends to occur.

表4にX線の測定例を示す。   Table 4 shows an example of X-ray measurement.

Figure 0004951856
Figure 0004951856

はんだ付けを行う製造ラインにおいて、(111)の回折強度と(200)の回折強度の比(IR )(=I(111)/{I(200)+I(111)})が、従来品のように0.15以下であると反りが生じ、セルとの半田付けが良好にできず、好ましくない。 In the production line for soldering, the ratio (I R ) (= I (111) / {I (200) + I (111)}) of the diffraction intensity of (111) and the diffraction intensity of (200) is Thus, if it is 0.15 or less, warpage occurs, and soldering with the cell cannot be performed satisfactorily.

一方、本発明品のように、熱処理を行うことで、回折強度の比(IR )が0.15よりも大きくなり、結晶の配向がランダムで等方的な材料となり、反りが生じないものとすることができる。 On the other hand, when the heat treatment is performed as in the present invention product, the diffraction intensity ratio (I R ) becomes larger than 0.15, the crystal orientation becomes a random and isotropic material, and no warpage occurs. It can be.

この熱処理(200〜280℃)は、クラッド材に加工時の冷間加工直後に行っても、クラッド材を裁断して平角導体とした後に行ってもよい。   This heat treatment (200 to 280 ° C.) may be performed immediately after the cold working at the time of processing the clad material or after the clad material is cut into a flat conductor.

本発明の第1の実施形態を示す横断面図である。1 is a cross-sectional view showing a first embodiment of the present invention. 本発明において、はんだで全面が覆われた第2の実施形態を示す横断面図である。In this invention, it is a cross-sectional view which shows 2nd Embodiment with which the whole surface was covered with the solder.

符号の説明Explanation of symbols

1 低体積抵抗導体
2 コア平板
3 はんだ
5 平角導体
1 Low Volume Resistance Conductor 2 Core Flat Plate 3 Solder 5 Flat Rectangular Conductor

Claims (6)

アルミニウム又は銀からなるコア平板の両面を、金、銀、銅のうち0.2%耐力が前記コア平板の材料よりも大きいものからなる低体積抵抗率導体で挟み込んで平角導体を製造するに際し、前記コア平板の両面に前記低体積抵抗率導体を貼り合わせてクラッド材を製作した後、そのクラッド材に200〜280℃で1〜2時間熱処理を施すことを特徴とする平角導体の製造方法。 When manufacturing a rectangular conductor by sandwiching both sides of a core flat plate made of aluminum or silver with a low volume resistivity conductor made of a material having a 0.2% proof stress greater than that of the core flat plate of gold, silver and copper , A method for producing a rectangular conductor, comprising: producing a clad material by bonding the low volume resistivity conductor to both surfaces of the core flat plate, and then subjecting the clad material to heat treatment at 200 to 280 ° C. for 1 to 2 hours. コア平板と低体積抵抗率導体との界面の金属間化合物厚さが3.0μm以下である請求項1に記載の平角導体の製造方法。 2. The method for producing a rectangular conductor according to claim 1, wherein the thickness of the intermetallic compound at the interface between the core flat plate and the low volume resistivity conductor is 3.0 μm or less. 熱処理後の平角導体の破断時の伸びが15%以上ある請求項1または2に記載の平角導体の製造方法。 Method for manufacturing a rectangular conductor according to claim 1 or 2 elongation at break of the flat conductor after heat treatment is 15% or more. コア平板の両面に配置する低体積抵抗率導体のビッカース硬度が100以下である請求項1〜3のいずれかに記載の平角導体の製造方法。 The method for producing a rectangular conductor according to any one of claims 1 to 3, wherein the low volume resistivity conductor disposed on both surfaces of the core flat plate has a Vickers hardness of 100 or less. 熱処理後の低体積抵抗率導体は、X線の回折線(111)の強度I(111)と回折線
(200)の強度I(200)の強度比IR(=I(111)/{I(200)+I
(111)})が、0.15以上の結晶配向を有する請求項1〜4いずれかに記載の平角導体の製造方法。
The low volume resistivity conductor after the heat treatment has an intensity ratio I R (= I (111) / {I) of the intensity I (111) of the X-ray diffraction line (111) and the intensity I (200) of the diffraction line (200). (200) + I
(111)}) has a crystal orientation of 0.15 or more. The method for producing a rectangular conductor according to any one of claims 1 to 4.
コア平板アルミニウムであり、低体積抵抗率導体が銅である請求項1〜5いずれかに記載の平角導体の製造方法。 The method for producing a rectangular conductor according to any one of claims 1 to 5 , wherein the core flat plate is aluminum and the low volume resistivity conductor is copper .
JP2005001731A 2005-01-06 2005-01-06 Manufacturing method of flat conductor Expired - Fee Related JP4951856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001731A JP4951856B2 (en) 2005-01-06 2005-01-06 Manufacturing method of flat conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001731A JP4951856B2 (en) 2005-01-06 2005-01-06 Manufacturing method of flat conductor

Publications (2)

Publication Number Publication Date
JP2006190575A JP2006190575A (en) 2006-07-20
JP4951856B2 true JP4951856B2 (en) 2012-06-13

Family

ID=36797575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001731A Expired - Fee Related JP4951856B2 (en) 2005-01-06 2005-01-06 Manufacturing method of flat conductor

Country Status (1)

Country Link
JP (1) JP4951856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118054A1 (en) * 2010-03-23 2011-09-29 株式会社フジクラ High-frequency electric wire and high-frequency coil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230905A (en) * 1990-08-31 1992-08-19 Sumitomo Electric Ind Ltd Copper-clad aluminum composite wire and manufacture thereof
JP3879666B2 (en) * 2002-12-24 2007-02-14 日立電線株式会社 Lead wire for solar cell connection
JP2005248318A (en) * 2004-02-06 2005-09-15 Kansai Engineering:Kk Wire rod for acoustic purpose, ic, keyless entry system, miniature motor winding, speaker voice coil, transmission line, and electrical machinery component

Also Published As

Publication number Publication date
JP2006190575A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP4329532B2 (en) Flat conductor, method for manufacturing the same, and lead wire
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP4986615B2 (en) Solar cell electrode wire
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
TWI499067B (en) Interconnects for metal tape and solar collectors
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP4622375B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP6440903B2 (en) Semiconductor device and manufacturing method thereof
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP4951856B2 (en) Manufacturing method of flat conductor
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP2016127197A (en) Heat dissipation substrate
JP2006140039A (en) Lead wire and solar cell using the same
WO2016002770A1 (en) Metal wire, interconnector for solar cell collector, solar cell module, and method for manufacturing metal wire
KR101110915B1 (en) Ribbon wire for solar cell module
JP2005353549A (en) Lead wire, its manufacturing method, and solar cell assembly
JP5152091B2 (en) Lead
JP5565519B1 (en) Solar cell module
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module
JPS6293325A (en) Cu alloy lead material for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees