JP4622375B2 - Flat rectangular conductor for solar cell and lead wire for solar cell - Google Patents

Flat rectangular conductor for solar cell and lead wire for solar cell Download PDF

Info

Publication number
JP4622375B2
JP4622375B2 JP2004230188A JP2004230188A JP4622375B2 JP 4622375 B2 JP4622375 B2 JP 4622375B2 JP 2004230188 A JP2004230188 A JP 2004230188A JP 2004230188 A JP2004230188 A JP 2004230188A JP 4622375 B2 JP4622375 B2 JP 4622375B2
Authority
JP
Japan
Prior art keywords
solar cell
conductor
copper
lead wire
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004230188A
Other languages
Japanese (ja)
Other versions
JP2006049666A (en
Inventor
寛 山野辺
洋光 黒田
孝 根本
裕寿 遠藤
正義 青山
修慈 川崎
敦志 大竹
宙 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004230188A priority Critical patent/JP4622375B2/en
Publication of JP2006049666A publication Critical patent/JP2006049666A/en
Application granted granted Critical
Publication of JP4622375B2 publication Critical patent/JP4622375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池用平角導体及び太陽電池用リード線に関し、特に、太陽電池のシリコン結晶に接続した際に、シリコン結晶ウェハの変形もしくは破損が生じにくい太陽電池用平角導体及び太陽電池用リード線に関するものである。   The present invention relates to a rectangular conductor for solar cell and a lead wire for solar cell, and particularly to a rectangular conductor for solar cell and a lead for solar cell, which is less likely to cause deformation or breakage of a silicon crystal wafer when connected to a silicon crystal of a solar cell. It is about the line.

基板上にシリコン結晶を成長させた太陽電池においては、通常、シリコン結晶ウェハの所定の領域に接続用リード線を接合し、これを通じて電力を伝送する構成としている。   In a solar cell in which a silicon crystal is grown on a substrate, a connection lead wire is usually joined to a predetermined region of a silicon crystal wafer, and power is transmitted through this.

上記接続用リード線は、導体の表面に、ウェハとの接続のためのはんだめっき膜が形成される。例えば、導体として、タフピッチ銅や無酸素銅などの純銅の平角導体を用い、はんだめっき膜として、Sn−Pb共晶はんだを用いたものがある(例えば、特許文献1参照)。また、近年、環境への配慮から、はんだめっき膜の構成材として、Pbを含まないはんだ(Pbフリーはんだ)への切り替えが検討されている(例えば、特許文献2参照)。   In the connection lead wire, a solder plating film for connection to the wafer is formed on the surface of the conductor. For example, there is a conductor using a pure copper flat conductor such as tough pitch copper or oxygen-free copper as a conductor, and Sn—Pb eutectic solder as a solder plating film (for example, see Patent Document 1). In recent years, switching to a solder containing no Pb (Pb-free solder) as a constituent material of a solder plating film has been studied in consideration of the environment (for example, see Patent Document 2).

ところで、太陽電池を構成する部材のうち、シリコン結晶ウェハが材料コストの大半を占めていることから、製造コストの低減を図るべくシリコン結晶ウェハの薄板化が検討されている。しかし、シリコン結晶ウェハを薄板化すると、接続用リード線の接合時における加熱プロセスや、太陽電池使用時における温度変化により、シリコン結晶ウェハに破損が生じるおそれがある。これに対処するため、接続用リード線として、熱膨張が小さい線材のニーズが高まっている。   By the way, since the silicon crystal wafer occupies most of the material cost among the members constituting the solar cell, the thinning of the silicon crystal wafer is being studied in order to reduce the manufacturing cost. However, when the silicon crystal wafer is thinned, the silicon crystal wafer may be damaged due to a heating process at the time of joining the connecting lead wires or a temperature change when using the solar cell. In order to cope with this, there is an increasing need for a wire material having a small thermal expansion as a connecting lead wire.

熱膨張が小さいリード線の一例として、インバー(Fe64%−Ni36%からなる合金)などの熱膨張が小さい材料を銅材でクラッドしてなる条(銅−インバー−銅)で、リードフレームを形成したものがある(例えば、特許文献3参照)。
特開平11−21660号公報 特開2002−263880号公報 特開2002−164560号公報
As an example of a lead wire having a small thermal expansion, a lead frame is formed by a strip (copper-invar-copper) formed by cladding a material having a low thermal expansion such as Invar (alloy made of Fe64% -Ni36%) with a copper material. (For example, refer to Patent Document 3).
Japanese Patent Laid-Open No. 11-21660 JP 2002-263880 A JP 2002-164560 A

しかしながら、上記の銅−インバー−銅の3層構造によるリードフレームでは、インバーの両側に配置されている銅材料の結晶の配向、または結晶粒の不均一によって、反りなどの変形が生ずることがあった。これらは、太陽電池モジュールの生産性低下や、長期間使用した際の発電効率低下など信頼性を低下させる原因となっていた。加えて、側面の銅−インバー−銅接合部が水分にさらされることにより、局部電池化し腐食する恐れもあった。   However, in the lead frame having the above three-layer structure of copper-invar-copper, deformation such as warping may occur due to the crystal orientation of the copper material arranged on both sides of the invar or nonuniform crystal grains. It was. These have been the cause of lowering reliability, such as lower productivity of solar cell modules and lowering of power generation efficiency when used for a long time. In addition, when the copper-invar-copper joint on the side surface is exposed to moisture, there is a risk that it becomes a local battery and corrodes.

また、上記のインバーを用いたリードフレームでは、インバーにニッケルが36%程度も含んでいるため高価であり、かつ導電率が低くなってしまうという課題があった。   Further, the lead frame using the above invar has a problem that the invar contains about 36% of nickel and is expensive and has a low electrical conductivity.

更に、上記のインバーを用いたリードフレームでは、回路形成時に打抜き加工を行うものであるため、無駄になる材料が大量に生じてしまい、製造コストの上昇を招くという課題もあった。   Furthermore, since the lead frame using the above-mentioned invar is punched at the time of circuit formation, a large amount of wasted material is generated, resulting in an increase in manufacturing cost.

従って、本発明の目的は、シリコン結晶ウェハを薄板化した場合でも接続用リード線の接合時にシリコン結晶ウェハの変形もしくは破損が生じにくい太陽電池用平角導体及び太陽電池用リード線を提供することにある。   Accordingly, an object of the present invention is to provide a rectangular solar cell conductor and a solar cell lead wire that are less likely to be deformed or damaged when the connecting lead wire is joined even when the silicon crystal wafer is thinned. is there.

また、本発明の他の目的は、安価でかつ導電率も良好な太陽電池用平角導体及び太陽電池用リード線を提供することにある。   Another object of the present invention is to provide a solar cell flat conductor and a solar cell lead wire that are inexpensive and have good electrical conductivity.

更に、本発明の他の目的は、製造コストの上昇を抑えることができる太陽電池用平角導体及び太陽電池用リード線を提供することにある。   Furthermore, the other object of this invention is to provide the rectangular conductor for solar cells and the lead wire for solar cells which can suppress the raise of manufacturing cost.

上記課題を解決するため、本発明の太陽電池用平角導体は、常温において引張強度が80MPa以下かつ0.2%耐力が40MPa以下であって、純度が99.0mass%以上のアルミニウム材または導電率が60%IACS以上のアルミニウム合金材からなる単層体を平角状に成形したことを特徴とする。 In order to solve the above problems, the flat conductor for solar cell of the present invention is an aluminum material or conductivity having a tensile strength of 80 MPa or less and a 0.2% proof stress of 40 MPa or less at room temperature and a purity of 99.0 mass% or more. There is characterized in that by molding the single-layer conductors composed of 60% IACS or more aluminum alloy material into rectangular shape.

前記平角状に成形した導体の表面に、銅めっきを施すこともできる Copper plating may be applied to the surface of the conductor formed into the flat rectangular shape .

更に、前記太陽電池用平角導体の表面の一部又は全部をはんだでめっきして太陽電池用リード線とすることができる。   Furthermore, a part or all of the surface of the solar cell flat conductor can be plated with solder to form a solar cell lead.

前記はんだは、鉛フリーはんだとすることが好ましい。   The solder is preferably lead-free solder.

本発明によれば、導体に常温引張強度80MPa以下でかつ0.2%耐力40MPa以下のアルミニウム材又はアルミニウム合金材を採用しているので、シリコン結晶ウェハの変形もしくは破損を抑制することが可能となる。また、導体として純度99.0mass%以上のアルミニウム材もしくは導電率が60%IACS以上のアルミニウム合金材を用いているので、安価でかつ高導電性を確保することができる。 According to the present invention, since the aluminum material or aluminum alloy material having a normal temperature tensile strength of 80 MPa or less and a 0.2% proof stress of 40 MPa or less is adopted as the conductor, it is possible to suppress deformation or breakage of the silicon crystal wafer. Become. Further, since an aluminum material having a purity of 99.0 mass% or more or an aluminum alloy material having a conductivity of 60% IACS or more is used as the conductor, it can be inexpensive and ensure high conductivity.

以下、本発明の実施形態について添付図面を参照しつつ説明する。
(太陽電池用平角導体)
図1に、本発明の太陽電池用平角導体の一実施形態を示す。
この太陽電池用平角導体10は、純アルミニウムもしくはアルミニウム合金からなる軟質材の導体1を平角状に成形したものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Flat rectangular conductor for solar cells)
In FIG. 1, one Embodiment of the flat conductor for solar cells of this invention is shown.
This flat conductor 10 for solar cells is formed by forming a soft conductor 1 made of pure aluminum or aluminum alloy into a flat rectangular shape.

導体1は、高導電率なほど太陽電池の発電ロスを軽減できる。そこで、導体1の材料には純度99.0mass%以上、特に、99.5mass%以上のアルミニウム材が好適である。また、JISで規格された1050から1100までの合金材であっても構わない。更に、低強度および低耐力であるほど、接合時のシリコン結晶ウェハへの負荷が軽減する。このため、上記の導体1は、常温において引張強度が80MPa以下、特に、70MPa以下が好ましく、0.2%耐力が40MPa以下、特に、30MPaが好ましい。このような軟質のアルミニウム材又はアルミニウム合金材を選択することにより、シリコン結晶ウェハヘ導体接合の際の熱応力を低減することができる。   The conductor 1 can reduce the power generation loss of the solar cell as the conductivity becomes higher. Therefore, an aluminum material having a purity of 99.0 mass% or more, particularly 99.5 mass% or more is suitable for the material of the conductor 1. Further, it may be an alloy material of 1050 to 1100 standardized by JIS. Furthermore, the lower the strength and the lower yield strength, the less the load on the silicon crystal wafer during bonding. For this reason, the conductor 1 has a tensile strength of 80 MPa or less, particularly 70 MPa or less, and a 0.2% proof stress of 40 MPa or less, particularly 30 MPa at normal temperature. By selecting such a soft aluminum material or aluminum alloy material, it is possible to reduce the thermal stress during conductor bonding to the silicon crystal wafer.

この太陽電池用平角導体10は、導体1をダイス伸線もしくはロール圧延、あるいはそれらの複合工程により成形することで得られる。   The flat conductor 10 for solar cells can be obtained by forming the conductor 1 by die drawing, roll rolling, or a composite process thereof.

図2は、図1に示す導体1の表面に銅めっき2を施して太陽電池用平角導体20としたものである。   FIG. 2 shows a flat conductor 20 for a solar cell by applying copper plating 2 to the surface of the conductor 1 shown in FIG.

(太陽電池用リード線)
に、本発明の太陽電池用リード線の一実施形態を示す。
この太陽電池用リード線50は、図1に示す導体1の表面全体に、はんだめっき12を施したものである。また、図2に示すような外層に銅めっき2を形成した導体1の表面全体に、はんだめっき12を施すこともできる。はんだめっき12は、環境面から鉛フリー品とし、外周全体について実施する。その組成は溶解温度面から図1に示す導体1単独の場合にはSn−Zn系が好ましく、図2に示す外層に銅めっき2を施す場合にはSn−Ag−Cu系が好ましい。
(Solar cell lead wire)
In FIG. 3 , one Embodiment of the lead wire for solar cells of this invention is shown.
This solar cell lead wire 50 is obtained by applying solder plating 12 to the entire surface of the conductor 1 shown in FIG. Moreover, the solder plating 12 can also be given to the whole surface of the conductor 1 which formed the copper plating 2 in the outer layer as shown in FIG. The solder plating 12 is a lead-free product from the environmental aspect, and is performed on the entire outer periphery. The composition is preferably Sn—Zn-based when the conductor 1 alone shown in FIG. 1 is used, and Sn—Ag—Cu-based when the copper plating 2 is applied to the outer layer shown in FIG.

上記はんだめっき12によるめっき被覆は、太陽電池用平角導体の外周の一部(例えば、平角導体の上面及び下面)だけであってもよい。   The plating coating by the solder plating 12 may be only a part of the outer periphery of the flat conductor for solar cells (for example, the upper surface and the lower surface of the flat conductor).

また、太陽電池用リード線について、所望の機械的特性が得られる様、はんだめっき前もしくは後に加熱処理を施すことが好ましい。   Moreover, about the lead wire for solar cells, it is preferable to heat-process before or after solder plating so that a desired mechanical characteristic may be acquired.

これらの太陽電池用リード線を、シリコン結晶ウェハ(太陽電池モジュール(図示せず))におけるセル面の所定の接点領域(例えば、Agメッキ領域))に接続することで、太陽電池アセンブリが得られる。   A solar cell assembly is obtained by connecting these solar cell leads to a predetermined contact region (for example, an Ag plating region) on the cell surface of a silicon crystal wafer (solar cell module (not shown)). .

(本太陽電池用平角導体及び太陽電池用リード線の効果)
以上説明したように、実施形態の太陽電池用平角導体及び太陽電池用リード線は、
導体1に常温引張強度80MPa以下でかつ0.2%耐力40MPa以下のアルミニウム材を採用しているので、小さな外力で塑性変形してシリコン結晶ウェハヘ与える負荷が小さくなる。
(Effects of the flat conductor for the solar cell and the lead wire for the solar cell)
As explained above, the flat conductor for solar cell and the lead wire for solar cell of the embodiment are
Since the aluminum material having a normal temperature tensile strength of 80 MPa or less and a 0.2% proof stress of 40 MPa or less is adopted for the conductor 1, the load applied to the silicon crystal wafer by plastic deformation with a small external force is reduced.

また、導体1をシリコン結晶ウェハヘ接合する際に、導体1がボビンから引き出されるが、その時、導体1はテンションの影響により少なからず加工硬化し、強度や0.2%耐力が上昇してしまう。しかし、導体1を高純度のアルミニウムにすることで、接合時の加熱により軟化させつつ接合することが可能である。また、接合温度(高温)における強度や0.2%耐力値も、銅単体や銅−インバー−銅クラッド材に比べて低く良好である。   Further, when the conductor 1 is bonded to the silicon crystal wafer, the conductor 1 is pulled out from the bobbin. At that time, the conductor 1 is not less than work hardened by the influence of the tension, and the strength and the 0.2% proof stress are increased. However, the conductor 1 is made of high-purity aluminum, so that it can be joined while being softened by heating at the time of joining. Further, the strength at the joining temperature (high temperature) and the 0.2% proof stress value are low and good as compared with the copper simple substance and the copper-invar-copper clad material.

また、導体として純度99.0mass%以上のアルミニウム材もしくは導電率が60%IACS以上のアルミニウム合金材を用いているので、安価でかつ純銅と同等の高導電性を確保することができる。   Further, since an aluminum material having a purity of 99.0 mass% or more or an aluminum alloy material having a conductivity of 60% IACS or more is used as the conductor, it is possible to secure high conductivity equivalent to that of pure copper at a low price.

以上より、導体にアルミニウム材又はアルミニウム合金材を採用することにより、純銅と同等の高導電性を確保しつつ、シリコン結晶ウェハの反りが低減でき、シリコン結晶ウェハの変形もしくは破損を生じにくくすることが可能となる。   As described above, by adopting an aluminum material or an aluminum alloy material for the conductor, it is possible to reduce warpage of the silicon crystal wafer while ensuring high conductivity equivalent to that of pure copper, and to prevent deformation or breakage of the silicon crystal wafer. Is possible.

また、導体を従来の純銅線と同等の抵抗に設計した場合でも,導体接合時のシリコン結晶ウェハの変形もしくは破壊を銅−インバー−銅クラッド線と同等レベルもしくはそれ以下に軽減することができる。加えて、導体をアルミニウム化することにより、太陽電池モジュールの軽量化にも貢献することができ、導体の電気抵抗値を同一にしても,約1/2に軽量化できる。   Even when the conductor is designed to have a resistance equivalent to that of a conventional pure copper wire, deformation or destruction of the silicon crystal wafer at the time of conductor bonding can be reduced to a level equivalent to or lower than that of the copper-invar-copper clad wire. In addition, by making the conductor aluminum, it is possible to contribute to weight reduction of the solar cell module, and even if the electric resistance value of the conductor is the same, the weight can be reduced to about ½.

本発明の効果を確認するため、機械的特性の異なる導体を複数試作し検証した。また、比較例として、常温引張強さ及び0.2%耐力が本発明に規定した範囲外のものを作製した。更に、従来技術として、はんだめっき平角軟銅線およびはんだめっき銅−インバー−銅クラッド軟質平角線(2:1:2)も併せて試作した。更に、実施例の導体の評価に当り、寸法を幅2.0mm×厚み0.15mmのタイプ、および銅単一の同抵抗タイプも試作した。実施例、比較例、及び従来技術の導体には、共にSn−Ag−Cuめっきを施した。尚、実施例ではアルミニウム導体の上に1μmの純銅めっきを施した。   In order to confirm the effect of the present invention, a plurality of conductors having different mechanical characteristics were prototyped and verified. Further, as a comparative example, a material having a normal temperature tensile strength and a 0.2% proof stress outside the ranges specified in the present invention was produced. Furthermore, as a prior art, a solder-plated rectangular soft copper wire and a solder-plated copper-invar-copper-clad soft rectangular wire (2: 1: 2) were also prototyped. Furthermore, in the evaluation of the conductors of the examples, a type having a size of width 2.0 mm × thickness 0.15 mm and a copper single resistance type were also manufactured. Sn, Ag-Cu plating was applied to the conductors of Examples, Comparative Examples, and the prior art. In the examples, 1 μm pure copper plating was applied on the aluminum conductor.

評価はシリコン結晶ウェハの反りを観察することで実施した。長さ100mm×幅100mm×厚み2mmのシリコン結晶ウェハの中央に平角線を1本はんだ接合し、シリコン結晶ウェハの反りが従来の銅−インバー−銅クラッド軟質平角線と同等レベルなら○、それより少ないならば◎、それより劣るなら×とした。表1に実施例(本発明)を示し、表2に比較例および従来技術の評価結果を示す。   The evaluation was performed by observing the warp of the silicon crystal wafer. If a flat wire is soldered to the center of a silicon crystal wafer of length 100mm x width 100mm x thickness 2mm, the warp of the silicon crystal wafer is equivalent to that of a conventional copper-invar-copper-clad soft flat wire. ◎ if less, x if inferior. Table 1 shows examples (present invention), and Table 2 shows comparative examples and evaluation results of conventional techniques.

Figure 0004622375
Figure 0004622375

Figure 0004622375
Figure 0004622375

表1のNo.1からNo.7は、純銅線(No.19、20)と同寸法のものである。これらは、電気抵抗が銅線に比較して約1.7倍高い。しかし、導体が常温において引張強度80MPa以下でかつ0.2%耐力40MPa以下となっており、シリコン結晶ウェハの反りが従来の銅−インバー−銅クラッド軟質平角線(No.19)と同等レベルもしくはそれより小さくなることが確認できた。さらに、その常温引張強さを70MPa以下、かつ0.2%耐力30MPaにすることによって(No.1〜No.3)、シリコン結晶ウェハの反りを著しく低減されることが分かった。   No. in Table 1 1 to No. 7 has the same dimensions as the pure copper wire (No. 19, 20). These have an electrical resistance of about 1.7 times higher than that of copper wire. However, the conductor has a tensile strength of 80 MPa or less at room temperature and a 0.2% proof stress of 40 MPa or less, and the warp of the silicon crystal wafer is equivalent to the conventional copper-invar-copper clad soft rectangular wire (No. 19) or It was confirmed that it was smaller than that. Furthermore, it was found that the warpage of the silicon crystal wafer was remarkably reduced by setting the normal temperature tensile strength to 70 MPa or less and the 0.2% proof stress to 30 MPa (No. 1 to No. 3).

No.8からNo.10は、純銅線(No.19、20)と同電気抵抗とするため、No.1からNo.7に示す導体の厚みを1.7倍厚くしたものである。これらのものについても、導体厚みを1.7倍大きくしたのにも関わらず、シリコン結晶ウェハの反りが従来の銅−インバー−銅クラッド軟質平角線(No.18)と同程度まで低減できることが確認出来た。   No. 8 to No. No. 10 has the same electrical resistance as that of pure copper wires (No. 19 and 20). 1 to No. The thickness of the conductor shown in Fig. 7 is 1.7 times thicker. In these cases, the warp of the silicon crystal wafer can be reduced to the same level as that of the conventional copper-invar-copper-clad soft rectangular wire (No. 18), although the conductor thickness is increased by 1.7 times. I was able to confirm.

一方、第2表のNo.11からNo.17のめっき線では、常温において引張強度および同0.2%耐力が各々80、40MPa以上であるので、シリコン結晶ウェハの反りが従来の銅−インバー−銅クラッド軟質平角線(No.18)以上に大きくなった。   On the other hand, no. 11 to No. In the plated wire No. 17, the tensile strength and the 0.2% proof stress are 80 and 40 MPa or more at room temperature, respectively, so that the warp of the silicon crystal wafer is not less than the conventional copper-invar-copper clad soft rectangular wire (No. 18). Became bigger.

本発明の太陽電池用平角導体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the flat conductor for solar cells of this invention. 本発明の太陽電池用平角導体の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the flat conductor for solar cells of this invention. 本発明の太陽電池用リード線の一実施形態を示す断面図である It is sectional drawing which shows one Embodiment of the lead wire for solar cells of this invention .

1 導体
2 銅めっき
3 銅外被
5 銅薄板材
7 迎合部
12 はんだめっき
10,20,30,40 太陽電池用平角導体
50,60,70 太陽電池用リード線
DESCRIPTION OF SYMBOLS 1 Conductor 2 Copper plating 3 Copper sheath 5 Copper thin plate material 7 Coupling part 12 Solder plating 10, 20, 30, 40 Solar cell rectangular conductor 50, 60, 70 Lead wire for solar cell

Claims (4)

常温において引張強度が80MPa以下かつ0.2%耐力が40MPa以下であって、純度が99.0mass%以上のアルミニウム材または導電率が60%IACS以上のアルミニウム合金材からなる単層体を平角状に成形したことを特徴とする太陽電池用平角導体。 Tensile strength at room temperature is less and 0.2% proof stress 80MPa equal to or less than 40 MPa, a single-layer conductors having a purity 99.0Mass% more aluminum material or conductivity consists 60% IACS or more aluminum alloy material flat A rectangular conductor for solar cells, characterized in that it is shaped into a shape. 前記平角状に成形した導体の表面に、銅めっきを施したことを特徴とする請求項1記載の太陽電池用平角導体。   The flat conductor for a solar cell according to claim 1, wherein a copper plating is applied to a surface of the conductor formed into the flat rectangular shape. 請求項1乃至のいずれか1項記載の太陽電池用平角導体の表面の一部又は全部をはんだでめっきしたことを特徴とする太陽電池用リード線。 Claim 1 for a solar cell lead wire, wherein a part or the whole of the surface of any one solar cell flat conductor according plated with solder 2. 前記はんだは、鉛フリーはんだであることを特徴とする請求項記載の太陽電池用リード線。 4. The solar cell lead wire according to claim 3 , wherein the solder is lead-free solder.
JP2004230188A 2004-08-06 2004-08-06 Flat rectangular conductor for solar cell and lead wire for solar cell Active JP4622375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230188A JP4622375B2 (en) 2004-08-06 2004-08-06 Flat rectangular conductor for solar cell and lead wire for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230188A JP4622375B2 (en) 2004-08-06 2004-08-06 Flat rectangular conductor for solar cell and lead wire for solar cell

Publications (2)

Publication Number Publication Date
JP2006049666A JP2006049666A (en) 2006-02-16
JP4622375B2 true JP4622375B2 (en) 2011-02-02

Family

ID=36027858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230188A Active JP4622375B2 (en) 2004-08-06 2004-08-06 Flat rectangular conductor for solar cell and lead wire for solar cell

Country Status (1)

Country Link
JP (1) JP4622375B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818644B2 (en) * 2005-05-27 2011-11-16 シャープ株式会社 SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MODULE MANUFACTURING METHOD
US20080072951A1 (en) * 2006-09-01 2008-03-27 Evergreen Solar, Inc. Interconnected solar cells
JP2008098607A (en) 2006-09-13 2008-04-24 Hitachi Cable Ltd Connection lead wire for solar cell, its production process and solar cell
DE102006049603A1 (en) 2006-10-20 2008-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cell connector for electrical contacting of flat power sources and use
JP5221231B2 (en) 2008-07-18 2013-06-26 日立電線株式会社 Method for producing solar cell lead wire
JP2010205792A (en) * 2009-02-27 2010-09-16 Hitachi Cable Ltd Solar cell lead, method of manufacturing same, and solar cell using same
JP2010283138A (en) * 2009-06-04 2010-12-16 Hitachi Cable Ltd Solar cell lead wire and method of manufacturing the same, and solar cell using the same
WO2012063396A1 (en) * 2010-11-08 2012-05-18 三菱電線工業株式会社 Plated wire material, production method for same, and production device
JP4855534B1 (en) * 2010-11-08 2012-01-18 三菱電線工業株式会社 Method for producing plated wire
JP5858698B2 (en) 2011-09-16 2016-02-10 東洋鋼鈑株式会社 Interconnector material for solar cell, interconnector for solar cell, and solar cell with interconnector
JP5516566B2 (en) * 2011-12-19 2014-06-11 三洋電機株式会社 Solar cell module and manufacturing method thereof
JP5892851B2 (en) * 2012-05-11 2016-03-23 東洋鋼鈑株式会社 Interconnector material for solar cell, interconnector for solar cell, and solar cell with interconnector
JP2014041940A (en) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp Solar cell module
EP3171412B1 (en) * 2015-11-17 2019-06-12 LG Electronics Inc. Apparatus and method for attaching interconnector of solar cell panel
CN113937177A (en) * 2021-10-15 2022-01-14 苏州元昱新能源有限公司 Manufacturing method of aluminum base material photovoltaic welding strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Also Published As

Publication number Publication date
JP2006049666A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP4622375B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
US7154044B2 (en) Flat cable conductor, method of making the same and flat cable using the same
TW535271B (en) Semiconductor device and method of manufacturing the same
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP3879666B2 (en) Lead wire for solar cell connection
JP2007059860A (en) Semiconductor package and semiconductor module
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP4458028B2 (en) Semiconductor device
JP2008294390A (en) Module structure
JP2003168770A (en) Silicon nitride circuit board
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP2006140039A (en) Lead wire and solar cell using the same
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP5565519B1 (en) Solar cell module
JP4951856B2 (en) Manufacturing method of flat conductor
EP2362431B1 (en) Solar cell assembly
JP6952552B2 (en) Connection materials and thermoelectric conversion modules and electronics
JP2004204257A (en) Solder-plated composite rectangular conductor
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JPH0290663A (en) Lead frame
JP4978235B2 (en) HEAT CONDUCTIVE BOARD FOR HYBRID MOUNTING, ITS MANUFACTURING METHOD, AND CIRCUIT MODULE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4622375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350