JP4461268B2 - Semiconductor device component, manufacturing method thereof, and semiconductor device using the same - Google Patents

Semiconductor device component, manufacturing method thereof, and semiconductor device using the same Download PDF

Info

Publication number
JP4461268B2
JP4461268B2 JP2004101128A JP2004101128A JP4461268B2 JP 4461268 B2 JP4461268 B2 JP 4461268B2 JP 2004101128 A JP2004101128 A JP 2004101128A JP 2004101128 A JP2004101128 A JP 2004101128A JP 4461268 B2 JP4461268 B2 JP 4461268B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
thickness
copper
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101128A
Other languages
Japanese (ja)
Other versions
JP2005286240A (en
Inventor
秀樹 遠藤
裕一 金光
康雄 猪鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2004101128A priority Critical patent/JP4461268B2/en
Publication of JP2005286240A publication Critical patent/JP2005286240A/en
Application granted granted Critical
Publication of JP4461268B2 publication Critical patent/JP4461268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、放熱板などの半導体装置部品およびその製造方法ならびにこれを接合したパワー半導体モジュールなどの半導体装置に関するものである。   The present invention relates to a semiconductor device component such as a heat sink, a manufacturing method thereof, and a semiconductor device such as a power semiconductor module to which the semiconductor device component is bonded.

近年、半導体装置において、半導体素子から発生する熱を効率よく放散し、更には、一時的に熱を分散するために放熱板が広く使用される。例えば、パワー半導体モジュールにおいては、半導体素子から発生する熱は、銅又はアルミニウムなどのパターン、Al23又はAlNなどのセラミックおよび導体層で構成される回路基板を介して放熱板へ伝熱され、構造物全体の温度を低下させるために放熱板には高い熱伝導性が要求されている。 2. Description of the Related Art In recent years, heat sinks are widely used in semiconductor devices to efficiently dissipate heat generated from semiconductor elements and to disperse heat temporarily. For example, in a power semiconductor module, heat generated from a semiconductor element is transferred to a heat sink through a circuit board made of a pattern such as copper or aluminum, a ceramic such as Al 2 O 3 or AlN, and a conductor layer. In order to lower the temperature of the entire structure, the heat sink is required to have high thermal conductivity.

パワー半導体モジュールは半導体素子と回路基板、回路基板と放熱板をはんだ接合しており、半導体素子と回路基板ははんだ接合面積が小さいので問題にならないことが多いが、回路基板と放熱板ははんだ接合面積が大きいので、両者の熱膨張係数の差が大きい場合には、はんだ接合部に大きな応力が負荷されるために、アセンブリ時や使用環境によってクラックが発生して、半導体装置としての信頼性が得られない場合がある。
さらに近年、環境問題によって鉛を含有しないはんだ、すなわちPbフリーはんだの要求が高まっており、回路基板と放熱板の接合に、Sn-Cu系(SnとCuを主成分とするもの)、Sn-Ag系(SnとAgを主成分とするもの)、Sn-Ag-Cu系(SnとAgとCuを主成分とするもの)などのPbフリーはんだを使用すると、はんだ接合時に放熱板の反りが大きくなってしまう。放熱板は放熱用フィンに固定されるので、そりが大きいと接触面積が少なくなり、フィン側への放熱性が大きく低下してしまう。
そりが大きくなる理由として、はんだが凝固すると同時に回路基板と放熱板の熱膨張係数差による応力が加わり、負荷応力に応じて放熱板が変形する。Sn-Pb系(SnとPbを主成分とするもの)のはんだでは、変形後の負荷応力に対してクリープによる変形が起こり、放熱板のそり量は少なくなる。しかしPbフリーはんだは常温でクリープによる変形が少なく、放熱板は大きく反ったままである。
Power semiconductor modules have a semiconductor element and circuit board, and the circuit board and heat sink are soldered together. The semiconductor element and circuit board have a small solder joint area, so there is often no problem, but the circuit board and heat sink are soldered. Since the area is large, if the difference in thermal expansion coefficient between the two is large, a large stress is applied to the solder joints. It may not be obtained.
In recent years, there has been an increasing demand for solder containing no lead, that is, Pb-free solder, due to environmental problems. For bonding between a circuit board and a heat sink, Sn—Cu-based (having Sn and Cu as main components), Sn— When using Pb-free solder such as Ag-based (Sn and Ag as main components) and Sn-Ag-Cu-based (Sn, Ag and Cu as main components), the heat sink plate warps when soldering. It gets bigger. Since the heat radiating plate is fixed to the heat radiating fin, if the warp is large, the contact area is reduced, and the heat radiating property to the fin side is greatly deteriorated.
The reason why the warpage becomes large is that the solder is solidified, and at the same time, stress due to the difference in thermal expansion coefficient between the circuit board and the heat sink is applied, and the heat sink is deformed according to the load stress. In a Sn—Pb-based solder (having Sn and Pb as main components), deformation due to creep occurs with respect to the load stress after deformation, and the amount of warpage of the heat sink is reduced. However, Pb-free solder has little deformation due to creep at room temperature, and the heat sink remains largely warped.

この対策のひとつとして、はんだ接合前の放熱板にはんだ接合で発生する反りと逆方向に大きなそりを形成する方法があるが、一般的に放熱板のそり付けはプレスで行っており、そり量が大きくなるとその精度が低下してしまう。更にアセンブリ時においても、湾曲した放熱板に精度良く位置決めして回路基板や半導体素子をはんだ接合するのは困難である。
また、熱伝導率が高くかつ加熱時に軟化しにくい材料、つまり加熱時に耐力の劣化が少ない析出強化型の銅基合金などの材料を用いる手法もある(例えば、特許文献1参照。)が、Pbフリーはんだを変形させるには至らない。
そこで、これを本質的に解決するには熱膨張係数を低くした放熱板が必要となる。放熱板材料に使用される金属としては熱伝導率が高いCuやAlが広く用いられている。但しパワー半導体モジュールにおいては、特に高い熱伝導率が必要であるから、Cu系材料が用いられている。Cuは390W/m・Kの熱伝導率を有しているが、熱膨張係数が17×10-6/Kと高く、はんだ接合後のそり量が大きくなってしまう。そこで材料の熱膨張係数を下げるためにMo、W、Crといった低熱膨張係数元素やCu2O、SiCなど非金属化合物を第二相として分散させた材料が提案されている。しかし、熱伝導率が低下してしまう、更に製法上の制約からコストが高くなるといった問題が挙げられる。
特開2003−68949号公報
As one of the countermeasures, there is a method of forming a large warp in the opposite direction to the warp generated by soldering on the heat sink before soldering. Generally, the heat sink is warped by a press. As the value increases, the accuracy decreases. Further, even during assembly, it is difficult to position the circuit board and the semiconductor element by soldering accurately with respect to the curved heat sink.
In addition, there is a method using a material having high thermal conductivity and not easily softened during heating, that is, a material such as a precipitation-strengthened copper-based alloy with little deterioration in yield strength during heating (for example, see Patent Document 1), but Pb. It does not lead to deformation of free solder.
In order to solve this problem essentially, a heat sink having a low thermal expansion coefficient is required. Cu and Al, which have high thermal conductivity, are widely used as the metal used for the heat sink material. However, in the power semiconductor module, since a particularly high thermal conductivity is required, a Cu-based material is used. Cu has a thermal conductivity of 390 W / m · K, but its thermal expansion coefficient is as high as 17 × 10 −6 / K, and the amount of warpage after soldering becomes large. In order to reduce the thermal expansion coefficient of the material, a material in which a low thermal expansion coefficient element such as Mo, W, or Cr, or a nonmetallic compound such as Cu 2 O or SiC is dispersed as a second phase has been proposed. However, there are problems such as a decrease in thermal conductivity and an increase in cost due to restrictions on the manufacturing method.
JP 2003-68949 A

本発明は、放熱板などの半導体装置部品用材料において従来のような弊害の多い熱膨張係数低減用の第二相を金属内部に分散させて熱膨張係数を下げるのではなく、放熱板用の金属表面に処理膜を形成させて上記問題を解決する放熱板などの半導体装置部品およびその製造方法ならびにこれを接合したパワー半導体モジュールなどの半導体装置の提供を目的とするものである。   The present invention is not intended to reduce the thermal expansion coefficient by dispersing the second phase for reducing the thermal expansion coefficient, which is often harmful in the conventional materials for semiconductor device components such as the heat sink, inside the metal. An object of the present invention is to provide a semiconductor device component such as a heat sink that solves the above problems by forming a treatment film on a metal surface, a manufacturing method thereof, and a semiconductor device such as a power semiconductor module to which the semiconductor device component is bonded.

本発明は半導体装置における熱膨張係数が異なった回路基板と放熱板を接合する場合の、熱膨張係数差から生じる接合部の応力を低減し、且つ熱伝導率に優れ、コスト的に低廉である放熱板などの半導体装置部品およびその製造方法ならびにこれを接合したパワー半導体モジュールなどの半導体装置を提供するものであって、放熱板などの半導体装置部品に必要とされる、低熱膨張係数、高熱伝導率を達成するために、銅又は銅基合金の板状体を母材として、低熱膨張係数であるCu-Sn系などの金属間化合物を表面に形成して被覆するものであって、特にPbフリーはんだで接合した場合でもそりを低減させ、良好な半導体装置を得ることができるものである。   The present invention reduces the stress at the joint caused by the difference in thermal expansion coefficient when joining a circuit board and a heat sink with different thermal expansion coefficients in a semiconductor device, has excellent thermal conductivity, and is inexpensive. A semiconductor device component such as a heat sink, a manufacturing method thereof, and a semiconductor device such as a power semiconductor module to which the semiconductor device component is bonded, and a low thermal expansion coefficient and a high heat conduction required for the semiconductor device component such as a heat sink In order to achieve the rate, a copper or copper-based alloy plate-like body is used as a base material, and an intermetallic compound such as a Cu—Sn-based material having a low thermal expansion coefficient is formed on the surface and coated, Even when joined with free solder, warpage can be reduced and a good semiconductor device can be obtained.

すなわち、本発明は、第1に、銅又は銅基合金からなる板状体の表裏両面に金属間化合物の層が形成されてなる、半導体装置への接合用の半導体装置部品;第2に、前記半導体装置部品が、熱伝導率が200W/m・K以上、熱膨張係数が16×10-6/K以下の放熱板である、第1記載の半導体装置部品;第3に、前記金属間化合物の層がCu−Sn系金属間化合物(CuとSnを主成分とする金属間化合物)の層である、第1または2に記載の半導体装置部品;第4に、前記Cu−Sn系金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層である、第3記載の半導体装置部品;第5に、前記Cu3Snの層の厚さが1〜15μm、前記Cu6Sn5の層の厚さが15μm以下である、第4記載の半導体装置部品;第6に、前記Cu3Snの層の厚さと前記Cu6Sn5の層の厚さの1/2との和が2μm以上である、第4または5に記載の半導体装置部品;第7に、前記接合がSn−Cu系、Sn−Ag系又はSn−Ag−Cu系のPbフリーはんだによる接合である、第1〜6のいずれかに記載の半導体装置部品;第8に、前記半導体装置がパワー半導体モジュールである、第1〜7のいずれかに記載の半導体装置部品;第9に、銅又は銅基合金からなる板状体の表裏両面に金属間化合物の層が形成されてなり、該金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層であり、該Cu3Snの層の厚さが1〜15μm、該Cu6Sn5の層の厚さが15μm以下であり、かつ、該Cu3Snの層の厚さと該Cu6Sn5の層の厚さの1/2との和が2μm以上である、金属間化合物の層が形成された板状体;第10に、前記銅又は銅基合金からなる板状体の表裏両面に1〜15μmの厚さのSnメッキを施し、次いで180〜240℃で2時間以上熱処理する、第1〜8のいずれかに記載の前記半導体装置部品を製造する方法;第11に、前記熱処理に続いて240℃を超える温度で二次熱処理を行う、第10記載の製造方法;第12に、第1〜8のいずれかに記載の前記半導体装置部品が接合されてなる半導体装置である。 That is, the present invention provides, firstly, a semiconductor device component for bonding to a semiconductor device, in which layers of an intermetallic compound are formed on both front and back surfaces of a plate-like body made of copper or a copper-based alloy; The semiconductor device component according to the first aspect, wherein the semiconductor device component is a radiator plate having a thermal conductivity of 200 W / m · K or more and a thermal expansion coefficient of 16 × 10 −6 / K or less; 1. The semiconductor device component according to 1 or 2, wherein the compound layer is a layer of a Cu—Sn intermetallic compound (intermetallic compound containing Cu and Sn as main components); fourth, the Cu—Sn metal The semiconductor device component according to the third aspect , wherein the intermetallic compound layer is a Cu 3 Sn layer or a stack of a Cu 3 Sn layer and a Cu 6 Sn 5 layer; fifth, the thickness of the Cu 3 Sn layer but 1 to 15 m, the thickness of the layer of Cu 6 Sn 5 is 15μm or less, the semiconductor device of the fourth aspect Goods; Sixth, the sum of half the thickness of the layer of the layer thickness of the Cu 3 Sn and the Cu 6 Sn 5 is 2μm or more, the semiconductor device parts according to the fourth or fifth, first 7. The semiconductor device component according to any one of 1 to 6, wherein the bonding is bonding using Sn—Cu-based, Sn—Ag-based, or Sn—Ag—Cu-based Pb-free solder; The semiconductor device component according to any one of 1 to 7, wherein the semiconductor device is a power semiconductor module; ninth, an intermetallic compound layer is formed on both front and back surfaces of a plate-like body made of copper or a copper-based alloy. The intermetallic compound layer is a Cu 3 Sn layer or a stack of a Cu 3 Sn layer and a Cu 6 Sn 5 layer, and the Cu 3 Sn layer has a thickness of 1 to 15 μm, the Cu 6 the thickness of the layer of Sn 5 is at 15μm or less, and the thickness of the said layer of the Cu 3 Sn Cu 6 Sn 5 A plate-like body on which an intermetallic compound layer is formed, the sum of which is ½ of the thickness of the layer being 2 μm or more; 10th, 1 on both sides of the plate-like body made of copper or a copper-based alloy; A method for producing the semiconductor device component according to any one of 1 to 8, wherein Sn plating having a thickness of ˜15 μm is performed, and then heat treatment is performed at 180 to 240 ° C. for 2 hours or longer; 11th, following the heat treatment A manufacturing method according to the tenth aspect, wherein the secondary heat treatment is performed at a temperature exceeding 240 ° C .; twelfth, a semiconductor device formed by bonding the semiconductor device components according to any one of the first to eighth aspects.

本発明に係る半導体装置部品は接合されるべき半導体装置の絶縁基板等からなる回路基板などに近い低熱膨張係数を、さらには高熱伝導率を有し、低コストで生産性よく製造されるものであって、半導体装置への接合において、そりが低減されて放熱性の良好な半導体装置を低コストで提供できるという効果を奏する。   The semiconductor device component according to the present invention has a low thermal expansion coefficient close to that of a circuit board made of an insulating substrate or the like of a semiconductor device to be bonded, and further has a high thermal conductivity, and is manufactured at low cost with high productivity. Thus, in the bonding to the semiconductor device, there is an effect that a warp can be reduced and a semiconductor device with good heat dissipation can be provided at low cost.

以下に本発明の内容をさらに具体的に説明する。銅又は銅基合金は熱伝導性に優れているが熱膨張係数が接合される絶縁基板を含む回路基板と比較して大きい。そこで、銅又は銅基合金からなる板状体の表裏両面を金属間化合物で被覆して、熱伝導性を保ちつつ、熱膨張係数を下げる方法が良いことを見出し本発明に至った。Cu-Sn系金属間化合物は銅又は銅基合金からなる板状体を母材として、Snを電解又は無電解でめっきして熱処理によって形成させる。Snめっき厚さは1〜15μmが望ましい。1μm未満の場合には、熱処理後に目的とするCu-Sn系金属間化合物が形成されず、又、15μmを超える場合には、必要とするCu-Sn系金属間化合物を形成するのに非常に長い時間がかかり、コスト、生産性において不利になるためである。また、15μmを超える場合には、熱処理温度によって、Cu-Sn系金属間化合物が形成される前にめっきされたSnが溶融しやすく、液滴上になって平滑な平面が得られないためである。更に好ましいSnめっき厚さは1〜10μmである。   The contents of the present invention will be described more specifically below. Copper or copper-based alloy is excellent in thermal conductivity, but is larger than a circuit board including an insulating substrate to which a thermal expansion coefficient is bonded. Therefore, the present inventors have found that a method of lowering the thermal expansion coefficient while maintaining thermal conductivity by covering both front and back surfaces of a plate-like body made of copper or a copper-based alloy with an intermetallic compound has been achieved. The Cu—Sn intermetallic compound is formed by heat treatment by plating Sn with electrolysis or electroless using a plate-like body made of copper or a copper-based alloy as a base material. The Sn plating thickness is desirably 1 to 15 μm. If it is less than 1 μm, the target Cu—Sn intermetallic compound is not formed after heat treatment, and if it exceeds 15 μm, it is very difficult to form the required Cu—Sn intermetallic compound. This is because it takes a long time and is disadvantageous in terms of cost and productivity. On the other hand, when the thickness exceeds 15 μm, Sn plated before the Cu—Sn intermetallic compound is formed easily melts due to the heat treatment temperature, and a smooth flat surface cannot be obtained on the droplets. is there. Further preferable Sn plating thickness is 1 to 10 μm.

本発明に用いられる銅又は銅基合金の板状体の厚さは1〜5mmがよく、例えばコネクター等の他の電子材料に使用される銅又は銅基合金に比べて厚い場合が多い。このような比較的厚い板状体の熱膨張の制御が数μm〜30μmという比較的薄い金属間化合物の被覆によりできること、さらには熱伝導率の低下も小さく、両特性を放熱板として十分なレベルに保持できることが本発明の最大の特徴であり利点である。特にこのような比較的薄い金属間化合物層を被覆させることで、比較的厚い銅又は銅基合金の板状体の熱膨張を制御できることを見出し本発明に至ったのものである。
よって、特に銅又は銅基合金の板状体の厚さは好ましくは1〜5mm、さらに好ましくは2〜5mmとする。
The thickness of the copper or copper-based alloy plate used in the present invention is preferably 1 to 5 mm, and is often thicker than copper or copper-based alloys used for other electronic materials such as connectors. The thermal expansion of such a relatively thick plate can be controlled by a relatively thin intermetallic compound coating of several μm to 30 μm, and further, the decrease in thermal conductivity is small, and both characteristics are sufficient as a heat sink. This is the greatest feature and advantage of the present invention. In particular, the present inventors have found that by coating such a relatively thin intermetallic compound layer, the thermal expansion of a relatively thick copper or copper-based alloy plate-like body can be controlled, and the present invention has been achieved.
Therefore, the thickness of the copper or copper-based alloy plate is preferably 1 to 5 mm, more preferably 2 to 5 mm.

Snめっきを施した後に、180℃〜240℃で2時間以上、好ましくは2〜200時間熱処理を行うことによって、Sn中にCuが拡散して、目的とするCu-Sn系金属間化合物層を形成することができる。熱処理温度が200℃〜240℃であると更に良い。180℃未満又は2時間未満の場合には、Cuが十分に拡散しないために、目的とするCu-Sn系金属間化合物が形成されない。また、240℃を超える温度では、Cu-Sn系金属間化合物が形成される前に、Snが溶融してしまう。又、200時間を超える時間では拡散効果が飽和し、生産性、コストの面で効果がなく不利となる。
Snめっきを施した後に熱処理を行うことで、目的とするCu-Sn系金属間化合物が得られる。その金属間化合物はCu6Sn5、Cu3Snであり、それぞれの厚さが0〜15μm、1〜15μmで且つCu6Sn5の厚さの1/2とCu3Snの厚さの和が2μm以上であることが望ましい。和が2μm未満の場合には必要とする低い熱膨張係数が得られず、又、金属間化合物の各層の厚さが15μmを超えると、必要とする熱伝導率が得られないためである。
After Sn plating, Cu is diffused into Sn by heat treatment at 180 ° C. to 240 ° C. for 2 hours or more, preferably 2 to 200 hours, and the target Cu—Sn based intermetallic compound layer is formed. Can be formed. The heat treatment temperature is more preferably 200 ° C to 240 ° C. In the case of less than 180 ° C. or less than 2 hours, Cu does not sufficiently diffuse, so that the target Cu—Sn intermetallic compound is not formed. Further, at a temperature exceeding 240 ° C., Sn is melted before the Cu—Sn intermetallic compound is formed. In addition, when the time exceeds 200 hours, the diffusion effect is saturated, which is disadvantageous in terms of productivity and cost.
A target Cu—Sn intermetallic compound is obtained by performing a heat treatment after Sn plating. The intermetallic compounds are Cu 6 Sn 5 and Cu 3 Sn, each having a thickness of 0 to 15 μm and 1 to 15 μm, and the sum of 1/2 of the thickness of Cu 6 Sn 5 and the thickness of Cu 3 Sn. Is preferably 2 μm or more. This is because when the sum is less than 2 μm, the required low thermal expansion coefficient cannot be obtained, and when the thickness of each layer of the intermetallic compound exceeds 15 μm, the required thermal conductivity cannot be obtained.

Cu-Sn系金属間化合物を形成するために必要な熱処理は、180℃〜240℃と、240℃を超える温度の2段で行うとさらに良い。1段目は180℃以上で、Sn融点近傍である240℃以下で行うことで、Sn中にCuを拡散させる。その後、2段目に240℃を超える温度で二次熱処理することにより、必要なCu6Sn5、Cu3Snの厚さを得るのに短時間で済み、生産性、コスト面で優れているからである。
以上のように、銅又は銅基合金からなる板状体の表裏両面にCu-Sn系金属間化合物を形成して被覆した放熱板などの半導体装置部品は、熱伝導率が200W/m・K以上、熱膨張係数が16×10-6/K以下である。熱伝導率が200W/m・K未満の場合には半導体装置が必要とする放熱性が得られず、熱膨張係数が16×10-6/Kより大きいと半導体装置の接合部の信頼性が得られないためである。更に好ましくは熱伝導率が350W/m・K以上、熱膨張係数が15×10-6/K以下である。
The heat treatment necessary for forming the Cu—Sn-based intermetallic compound is more preferably performed in two stages of 180 ° C. to 240 ° C. and a temperature exceeding 240 ° C. The first stage is performed at 180 ° C. or higher and 240 ° C. or lower in the vicinity of the Sn melting point, thereby diffusing Cu into Sn. After that, by performing a secondary heat treatment at a temperature exceeding 240 ° C. in the second stage, it takes a short time to obtain the necessary Cu 6 Sn 5 , Cu 3 Sn thickness, which is excellent in productivity and cost. Because.
As described above, a semiconductor device component such as a heat sink coated with a Cu-Sn intermetallic compound formed on both front and back surfaces of a plate made of copper or a copper-based alloy has a thermal conductivity of 200 W / m · K. As described above, the thermal expansion coefficient is 16 × 10 −6 / K or less. When the thermal conductivity is less than 200 W / m · K, the heat dissipation required by the semiconductor device cannot be obtained, and when the thermal expansion coefficient is greater than 16 × 10 −6 / K, the reliability of the junction of the semiconductor device is increased. This is because it cannot be obtained. More preferably, the thermal conductivity is 350 W / m · K or more and the thermal expansion coefficient is 15 × 10 −6 / K or less.

また、以上の構成要件を備えた板状体として、銅又は銅基合金からなる板状体の表裏両面に金属間化合物の層が形成されており、該金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層であり、該Cu3Snの層の厚さが1〜15μm、該Cu6Sn5の層の厚さが15μm以下であり、かつ、該Cu3Snの層の厚さと該Cu6Sn5の層の厚さの1/2との和が2μm以上である、金属間化合物の層が形成された板状体は、熱伝導率が200W/m・K以上、熱膨張係数が16×10-6/K以下の上記特性を有するものであり、半導体装置部品のみならず、機械部品用などの広範な用途を有するものである。 In addition, as a plate-like body having the above-described structural requirements, an intermetallic compound layer is formed on both front and back surfaces of a plate-like body made of copper or a copper-based alloy, and the intermetallic compound layer is made of Cu 3 Sn. A layer or a stack of a Cu 3 Sn layer and a Cu 6 Sn 5 layer, the Cu 3 Sn layer having a thickness of 1 to 15 μm, and the Cu 6 Sn 5 layer having a thickness of 15 μm or less, In addition, the plate-like body on which the sum of the thickness of the Cu 3 Sn layer and 1/2 of the thickness of the Cu 6 Sn 5 layer is 2 μm or more is formed with an intermetallic compound layer. It has the above characteristics with a rate of 200 W / m · K or more and a thermal expansion coefficient of 16 × 10 −6 / K or less, and has a wide range of uses such as not only semiconductor device parts but also machine parts. .

以下に本発明の実施例を記載するが、本発明の技術的範囲はこれらの記載に限定されるものではないことはいうまでもない。   Examples of the present invention will be described below, but it goes without saying that the technical scope of the present invention is not limited to these descriptions.

[実施例A] 銅を高周波誘導溶解炉を用いて溶製し、180mmの厚さでインゴットを鋳造した。その後、900℃で均質化処理を行い、10mmの厚さまで熱間圧延を行った。しかる後に冷間圧延、焼鈍、冷間圧延を繰り返して、板厚3.0mmの板状体の試片を試作した。
放熱板の平面図および側面図について図1に示したように、上記試片を90mm×50mmの形状にプレス加工し、浸漬、電解脱脂、純水洗といった前処理を行った後に全外周面に1、3、5、10μmの厚さの電気Snめっきを施した。そのめっき厚を表1に示す。そのときのベース(試片)のそり量は接合後に発生するそり方向と反対方向へ長手方向70μm、短手方向0μmのそりとした。しかる後に150℃〜350℃の範囲の所定温度で熱処理を行い、断面を切断して、Cu-Sn系金属化合物の厚さを測定した。詳しくは断面を切断後、断面研磨し、レーザー顕微鏡にて色の異なる層の厚さを測定した。それぞれの色の異なる層はX線回折装置及びEPMAで、それぞれSn、Cu3Sn、Cu6Sn5等の金属や金属間化合物であることを同定、確認した。レーザー顕微鏡により、各層の厚さを10点測定して、その平均を代表値とした。その結果を表1に示す。
[Example A] Copper was melted using a high-frequency induction melting furnace, and an ingot was cast with a thickness of 180 mm. Then, the homogenization process was performed at 900 degreeC and it hot-rolled to the thickness of 10 mm. Thereafter, cold rolling, annealing, and cold rolling were repeated to produce a specimen of a plate having a thickness of 3.0 mm.
As shown in FIG. 1 for the plan view and side view of the heat sink, the specimen is pressed into a shape of 90 mm × 50 mm, pretreated such as dipping, electrolytic degreasing, and pure water washing, and then applied to the entire outer peripheral surface. Electric Sn plating with a thickness of 3, 5, 10 μm was applied. The plating thickness is shown in Table 1. The warp amount of the base (specimen) at that time was a warp of 70 μm in the longitudinal direction and 0 μm in the short direction in the direction opposite to the warp direction generated after joining. Thereafter, heat treatment was performed at a predetermined temperature in the range of 150 ° C. to 350 ° C., the cross section was cut, and the thickness of the Cu—Sn based metal compound was measured. Specifically, after cutting the cross section, the cross section was polished, and the thicknesses of layers having different colors were measured with a laser microscope. The layers having different colors were identified and confirmed by an X-ray diffractometer and EPMA, respectively, such as Sn, Cu 3 Sn, Cu 6 Sn 5 and other metals and intermetallic compounds. The thickness of each layer was measured at 10 points with a laser microscope, and the average was taken as the representative value. The results are shown in Table 1.

Figure 0004461268
Figure 0004461268

しかる後に、上記のとおり得られた放熱板1に回路基板の平面図および側面図について図2に示した外形が60mm×35mmのAl23からなる絶縁基板5と銅パターン4(厚さ0.3mm)および銅板の導体層6(厚さ0.3mm)で構成された回路基板3をはんだ付けにより接合した。はんだ接合はSn-3.0Ag-0.5Cu(すなわち、Sn 96.5質量%、Ag 3.0質量%、Cu 0.5質量%)のPbフリーはんだ2で、300℃で1分間加熱して接合した。パワー半導体モジュール用放熱板として、銅の板状体を用いる場合は、銅の酸化によるはんだ濡れ性低下、はんだ接合部健全性を保つために、通常Niめっきを施す。そこで、基準用として前記試片に電気Niめっきを3μm厚さ施し、上記のPbフリーはんだ2で接合した後のそり量を測定した。Niめっき後の試片の接合前のそり量は前記同様に接合後に発生するそり方向と反対方向へ長手方向70μm、短手方向0μmとし、この場合のはんだ接合後のそり量に対比して、上記実施例1〜23及び比較例1〜4、6〜8についてそり量を測定して、放熱板1と回路基板3との接合時の断面図の図3に示したように、Niめっきを施した放熱板1のそり量に対する各実施例、比較例のそり低減量を測定して評価した。その結果を上記表1に示す。
なお、図3の放熱板1について破線で示した部分は接合前の放熱板(の形状、位置)であり、実線で示した部分は接合後のそりが発生した放熱板(の形状、位置)であって、上記の両者のそり量の差(そり低減量dx)を求めて、上記そり低減量とした。
Thereafter, a plan view and a side view profile shown in FIG. 2 is made of Al 2 O 3 of 60 mm × 35 mm for the insulating substrate 5 and the copper pattern 4 (the thickness of the circuit board to the heat dissipating plate 1 obtained as described above 0 .3 mm) and a circuit board 3 composed of a copper plate conductor layer 6 (thickness 0.3 mm) were joined by soldering. Solder joining was Pb-free solder 2 of Sn-3.0Ag-0.5Cu (that is, Sn 96.5% by mass, Ag 3.0% by mass, Cu 0.5% by mass), and joined by heating at 300 ° C. for 1 minute. When a copper plate-like body is used as the power semiconductor module heat dissipation plate, Ni plating is usually applied in order to maintain solder wettability reduction and solder joint soundness due to copper oxidation. Therefore, the electric Ni plating was applied to the specimen to a thickness of 3 μm as a reference, and the warpage amount after joining with the Pb-free solder 2 was measured. The amount of warpage before joining of the specimen after Ni plating was 70 μm in the longitudinal direction and 0 μm in the short direction in the opposite direction to the warping direction generated after joining, as compared with the warping amount after solder joining in this case, The amount of warpage was measured for Examples 1 to 23 and Comparative Examples 1 to 4 and 6 to 8, and Ni plating was performed as shown in FIG. The amount of warpage reduction of each example and comparative example with respect to the amount of warpage of the applied heat sink 1 was measured and evaluated. The results are shown in Table 1 above.
In addition, the part shown with the broken line about the heat sink 1 of FIG. 3 is the heat sink (the shape and position) before joining, and the part shown with the solid line is the heat sink (the shape and position) where the warp after joining occurred. Thus, the difference between the above-described warpage amounts (warpage reduction amount dx) was obtained and used as the warpage reduction amount.

表1の結果から、本発明である実施例1〜23はいずれも、Cu3Snの層の厚さが1〜15μmの範囲内にあり、Cu3Snの層の厚さとCu6Sn5の層の厚さの1/2との和が2μm以上のため、そり低減量が20μm以上で優れている。Cu3Sn厚さとCu6Sn5厚さの1/2との和が2μm以上になるためには、熱処理前Snめっき厚が1〜15μmで、熱処理温度が180℃〜240℃で、且つ熱処理時間が2時間以上であることが必要である。
比較例1、2、6、7は熱処理温度が低く、Sn中へのCuの拡散が不十分のため、目的とするCu-Sn系金属間化合物の層の厚さが得られないために、そり低減量が小さく効果が得られない。比較例3、4、8は熱処理時間が1時間と短く、Sn中へのCuの拡散が不十分のため、目的とするCu-Sn系金属間化合物の層の厚さが得られないために、そり低減量が小さく効果が得られない。比較例5、9は熱処理温度が高いため、CuがSn中へ拡散する前にSnが溶融してしまい、放熱板1表面にSnの液滴が発生して凹凸になってしまい、その高さは数十μmと高くなり、回路基板3とのはんだ接合部健全性が得られない。
From the results of Table 1, in each of Examples 1 to 23 according to the present invention, the thickness of the Cu 3 Sn layer is in the range of 1 to 15 μm, the thickness of the Cu 3 Sn layer and the thickness of Cu 6 Sn 5 Since the sum of 1/2 of the layer thickness is 2 μm or more, the amount of warpage reduction is excellent at 20 μm or more. In order for the sum of Cu 3 Sn thickness and Cu 6 Sn 5 thickness to be 2 μm or more, Sn plating thickness before heat treatment is 1 to 15 μm, heat treatment temperature is 180 ° C. to 240 ° C., and heat treatment is performed. The time needs to be 2 hours or more.
In Comparative Examples 1, 2, 6, and 7, the heat treatment temperature is low, and since the diffusion of Cu into Sn is insufficient, the target Cu—Sn intermetallic compound layer thickness cannot be obtained. The amount of warpage reduction is small and the effect cannot be obtained. In Comparative Examples 3, 4, and 8, the heat treatment time is as short as 1 hour, and the diffusion of Cu into Sn is insufficient, so that the target Cu—Sn intermetallic compound layer thickness cannot be obtained. The amount of warpage reduction is small and the effect cannot be obtained. In Comparative Examples 5 and 9, since the heat treatment temperature is high, Sn melts before Cu diffuses into Sn, and Sn droplets are generated on the surface of the heat radiating plate 1 to form irregularities. Becomes as high as several tens of μm, and the soundness of the solder joint with the circuit board 3 cannot be obtained.

[実施例B] 前記表1に示した本発明品である実施例13、15、めっき熱処理を施していないCuの板状体のみの比較例10及び前述のCuの板状体に電気Niめっきを施した比較例11(前述の基準用放熱板)について熱膨張係数及び熱伝導率を測定した。熱膨張係数の測定は20〜300℃において実施し、それぞれ20℃の放熱板長手方向の長さに対する300℃における伸び量を測定して計測した。また、熱伝導率はレーザーフラッシュ法により20℃における値を測定した。その結果を表2に示す。   [Example B] Examples 13 and 15 which are the products of the present invention shown in Table 1 above, Comparative Example 10 with only a Cu plate not subjected to plating heat treatment, and electric Ni plating on the aforementioned Cu plate The thermal expansion coefficient and the thermal conductivity of the comparative example 11 (the above-described reference heat radiating plate) subjected to the above were measured. The thermal expansion coefficient was measured at 20 to 300 ° C., and the elongation at 300 ° C. was measured with respect to the length in the longitudinal direction of the heat sink of 20 ° C., respectively. The thermal conductivity was measured at 20 ° C. by the laser flash method. The results are shown in Table 2.

Figure 0004461268
Figure 0004461268

表2の結果から、本発明である実施例13及び15は熱膨張係数が16×10-6/K以下、さらには14×10-6/K以下と低いものであって優れており、更に熱伝導性も200W/m・K以上、さらには350W/m・K以上であって高い値を示しており、銅基合金で同等の熱膨張係数を有するCu-CrやCu-Cu2Oと比べて100W/m・K以上の高い熱伝導率を示し優れている。比較例10、11は熱膨張係数が17×10-6/K以上と高いために、絶縁基板を含む回路基板3とのはんだ接合後のそり量が大きくなる。 From the results of Table 2, Examples 13 and 15 according to the present invention are excellent in that the thermal expansion coefficient is as low as 16 × 10 −6 / K or less, and further as low as 14 × 10 −6 / K or less. The thermal conductivity is 200 W / m · K or more, further 350 W / m · K or more, indicating a high value, and Cu—Cr or Cu—Cu 2 O having a similar thermal expansion coefficient with a copper-based alloy. In comparison, it has a high thermal conductivity of 100 W / m · K or more and is excellent. Since Comparative Examples 10 and 11 have a high thermal expansion coefficient of 17 × 10 −6 / K or more, the warpage amount after soldering with the circuit board 3 including the insulating substrate is large.

図4は、本発明に係るパワー半導体モジュールの断面を示す概念図であって、Al23からなる絶縁基板5と銅パターン4および銅板などの導体層6で構成された回路基板3において、銅パターン4にSiチップ7をはんだ2で接合しこれをAlリード線8で配線して回路を形成するとともに、導体層6に放熱板1をはんだ2で接合したものである。 FIG. 4 is a conceptual diagram showing a cross section of a power semiconductor module according to the present invention. In a circuit board 3 composed of an insulating substrate 5 made of Al 2 O 3 , a copper pattern 4 and a conductor layer 6 such as a copper plate, A Si chip 7 is joined to the copper pattern 4 with solder 2 and this is wired with Al lead wires 8 to form a circuit, and the heat sink 1 is joined to the conductor layer 6 with solder 2.

さらに、図5は、本発明に係るパワー半導体モジュールの実例において一部を破断して内部を示した斜視図であって、エポキシケース9、シリコーンゲル充填剤10、端子11、半導体チップ12、接着剤13、放熱板14、回路基板15、Alリード線16から構成されるものであって、放熱板14に穿設されたねじ孔を介して(図外の)放熱用フィンに固定されるものである。   Further, FIG. 5 is a perspective view showing the inside of the power semiconductor module according to the present invention, with a part thereof broken, showing an epoxy case 9, a silicone gel filler 10, a terminal 11, a semiconductor chip 12, and an adhesive. Composed of the agent 13, the heat radiating plate 14, the circuit board 15, and the Al lead wire 16, and fixed to the heat radiating fins (not shown) through the screw holes formed in the heat radiating plate 14. It is.

低熱膨張係数と高熱伝導率を備え、Pbフリーはんだを用いた場合であっても接合後のそりが低減される放熱板などの半導体装置部品に適する。   It is suitable for semiconductor device parts such as a heat sink that has a low coefficient of thermal expansion and high thermal conductivity and reduces warping after bonding even when Pb-free solder is used.

放熱板の平面図および側面図である。It is the top view and side view of a heat sink. 回路基板の平面図および側面図である。It is the top view and side view of a circuit board. 放熱板と回路基板の接合時の断面図であり、左側の図は各実施例および比較例1〜10の接合を示す図であり、右側の図は電気Niめっきを施した放熱板を用いて接合した基準用の比較例11の場合を示す図である。It is sectional drawing at the time of joining of a heat sink and a circuit board, the figure on the left is a figure which shows joining of each Example and Comparative Examples 1-10, and the figure on the right uses the heat sink which gave electric Ni plating It is a figure which shows the case of the comparative example 11 for the references | standards joined. パワー半導体モジュールの断面を示す概念図である。It is a conceptual diagram which shows the cross section of a power semiconductor module. パワー半導体モジュールの実例において一部を破断して内部を示した斜視図である。It is the perspective view which fractured | ruptured one part and showed the inside in the example of a power semiconductor module.

符号の説明Explanation of symbols

1 放熱板
2 Pbフリーはんだ
3 回路基板
4 銅パターン
5 絶縁基板
6 導体層
dx そり低減量
7 Siチップ
8 Alリード線
9 エポキシケース
10 シリコーンゲル充填剤
11 端子
12 半導体チップ
13 接着剤
14 放熱板
15 回路基板
16 Alリード線
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Pb free solder 3 Circuit board 4 Copper pattern 5 Insulation board 6 Conductor layer dx Warpage reduction 7 Si chip 8 Al lead wire 9 Epoxy case 10 Silicone gel filler 11 Terminal 12 Semiconductor chip 13 Adhesive 14 Heat sink 15 Circuit board 16 Al lead wire

Claims (13)

銅又は銅基合金からなる板状体の表裏両面にSnをメッキし次いで熱処理して金属間化合物の層が形成されてなり、該金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層であり、該Cu3Snの層の厚さが1〜15μm、該Cu6Sn5の層の厚さが15μm以下である、半導体装置への接合用の半導体装置部品。 Sn is plated on both front and back surfaces of a plate-like body made of copper or a copper-based alloy, and then heat-treated to form an intermetallic compound layer. The intermetallic compound layer is a Cu 3 Sn layer or a Cu 3 Sn layer. a lamination of the layers of the layer and Cu 6 Sn 5, the thickness of the layer of the Cu 3 Sn is 1 to 15 m, the thickness of the layer of the Cu 6 Sn 5 is 15μm or less, for bonding to the semiconductor device Semiconductor device parts. 銅又は銅基合金からなる板状体の表裏両面にSnをメッキし次いで熱処理して金属間化合物の層が形成されてなり、該金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層であり、該Cu3Snの層の厚さが1〜15μm、該Cu6Sn5の層の厚さが15μm以下であり、かつ、該Cu3Snの層の厚さと該Cu6Sn5の層の厚さの1/2との和が2μm以上である、半導体装置への接合用の半導体装置部品。 Sn is plated on both front and back surfaces of a plate-like body made of copper or a copper-based alloy, and then heat-treated to form an intermetallic compound layer. The intermetallic compound layer is a Cu 3 Sn layer or a Cu 3 Sn layer. And a layer of Cu 6 Sn 5, the thickness of the Cu 3 Sn layer is 1 to 15 μm, the thickness of the Cu 6 Sn 5 layer is 15 μm or less, and the Cu 3 Sn A semiconductor device component for bonding to a semiconductor device, wherein the sum of the thickness of the layer and 1/2 of the thickness of the Cu 6 Sn 5 layer is 2 μm or more. 前記Snをメッキし次いで熱処理する工程が、1〜15μmの厚さのSnメッキを施し次いで180〜240℃で2時間以上熱処理する工程である、請求項1または2に記載の半導体装置部品。 The semiconductor device component according to claim 1 , wherein the step of plating and then heat-treating Sn is a step of performing Sn plating with a thickness of 1 to 15 μm and then heat-treating at 180 to 240 ° C. for 2 hours or more. 前記の180〜240℃で2時間以上の熱処理に続いて240℃を超える温度で二次熱処理されてなる、請求項3に記載の半導体装置部品。 The semiconductor device component according to claim 3, wherein a secondary heat treatment is performed at a temperature exceeding 240 ° C. following the heat treatment at 180 to 240 ° C. for 2 hours or more. 前記半導体装置部品が、熱伝導率が200W/m・K以上、熱膨張係数が16×10-6/K以下の放熱板である、請求項1〜4のいずれかに記載の半導体装置部品。 The semiconductor device component, the thermal conductivity of 200 W / m · K or more, the thermal expansion coefficient of less of the heat sink 16 × 10 -6 / K, a semiconductor device component according to any of claims 1 to 4. 前記接合がSn−Cu系、Sn−Ag系又はSn−Ag−Cu系のPbフリーはんだによる接合である、請求項1〜5のいずれかに記載の半導体装置部品。 The semiconductor device component according to claim 1 , wherein the bonding is a Sn—Cu based, Sn—Ag based, or Sn—Ag—Cu based Pb-free solder. 前記半導体装置がパワー半導体モジュールである、請求項1〜6のいずれかに記載の半導体装置部品。 The semiconductor device component according to claim 1 , wherein the semiconductor device is a power semiconductor module. 銅又は銅基合金からなる板状体の表裏両面にSnをメッキし次いで熱処理して金属間化合物の層が形成されてなり、該金属間化合物の層がCu3Snの層又はCu3Snの層とCu6Sn5の層との積層であり、該Cu3Snの層の厚さが1〜15μm、該Cu6Sn5の層の厚さが15μm以下であり、かつ、該Cu3Snの層の厚さと該Cu6Sn5の層の厚さの1/2との和が2μm以上である、金属間化合物の層が形成された板状体。 Sn is plated on both front and back surfaces of a plate-like body made of copper or a copper-based alloy, and then heat-treated to form an intermetallic compound layer. The intermetallic compound layer is a Cu 3 Sn layer or a Cu 3 Sn layer. And a layer of Cu 6 Sn 5, the thickness of the Cu 3 Sn layer is 1 to 15 μm, the thickness of the Cu 6 Sn 5 layer is 15 μm or less, and the Cu 3 Sn A plate-like body on which an intermetallic compound layer is formed, in which the sum of the thickness of the layer and 1/2 of the thickness of the Cu 6 Sn 5 layer is 2 μm or more. 前記Snをメッキし次いで熱処理する工程が、1〜15μmの厚さのSnメッキを施し次いで180〜240℃で2時間以上熱処理する工程である、請求項8に記載の板状体。 The plate-like body according to claim 8, wherein the step of plating and then heat-treating Sn is a step of performing Sn plating with a thickness of 1 to 15 μm and then heat-treating at 180 to 240 ° C. for 2 hours or more. 前記の180〜240℃で2時間以上の熱処理に続いて240℃を超える温度で二次熱処理されてなる、請求項9に記載の板状体。 The plate-like body according to claim 9 , which is subjected to a secondary heat treatment at a temperature exceeding 240 ° C. following the heat treatment at 180 to 240 ° C. for 2 hours or more. 前記銅又は銅基合金からなる板状体の表裏両面に1〜15μmの厚さのSnメッキを施し、次いで180〜240℃で2時間以上熱処理する、請求項1〜7のいずれかに記載の前記半導体装置部品を製造する方法。 Plated with Sn with a thickness of 1~15μm on both sides of the plate of the copper or copper-base alloy, then heat-treated for 2 hours or more at 180 to 240 ° C., according to claim 1 A method of manufacturing the semiconductor device component. 前記熱処理に続いて240℃を超える温度で二次熱処理を行う、請求項11に記載の製造方法。 The manufacturing method of Claim 11 which performs secondary heat processing at the temperature over 240 degreeC following the said heat processing. 請求項1〜7のいずれかに記載の前記半導体装置部品が接合されてなる半導体装置。 A semiconductor device formed by bonding the semiconductor device component according to claim 1 .
JP2004101128A 2004-03-30 2004-03-30 Semiconductor device component, manufacturing method thereof, and semiconductor device using the same Expired - Lifetime JP4461268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101128A JP4461268B2 (en) 2004-03-30 2004-03-30 Semiconductor device component, manufacturing method thereof, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101128A JP4461268B2 (en) 2004-03-30 2004-03-30 Semiconductor device component, manufacturing method thereof, and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2005286240A JP2005286240A (en) 2005-10-13
JP4461268B2 true JP4461268B2 (en) 2010-05-12

Family

ID=35184241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101128A Expired - Lifetime JP4461268B2 (en) 2004-03-30 2004-03-30 Semiconductor device component, manufacturing method thereof, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4461268B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917375B2 (en) * 2006-07-25 2012-04-18 株式会社豊田中央研究所 Power semiconductor module manufacturing method
JP6608675B2 (en) * 2015-11-02 2019-11-20 Dowaメタルテック株式会社 Heat sink and manufacturing method thereof
CN110592515B (en) * 2019-09-30 2022-06-17 凯美龙精密铜板带(河南)有限公司 Hot-dip tinned copper material and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378717B2 (en) * 1995-01-19 2003-02-17 古河電気工業株式会社 Method for manufacturing reflow plated member
DE19752797A1 (en) * 1997-11-28 1999-06-10 Bosch Gmbh Robert Cooling device for a heat-generating component arranged on a printed circuit board
US6404065B1 (en) * 1998-07-31 2002-06-11 I-Xys Corporation Electrically isolated power semiconductor package
JP2000054189A (en) * 1998-08-10 2000-02-22 Furukawa Electric Co Ltd:The MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP2001230357A (en) * 2000-02-14 2001-08-24 Furukawa Electric Co Ltd:The Heat sink
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts
JP4090302B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive material plate for forming connecting parts
JP2003086024A (en) * 2001-09-13 2003-03-20 Hitachi Cable Ltd Sn PLATING FLAT CONDUCTOR AND FLAT CABLE USING THE SAME
JP2004296493A (en) * 2003-03-25 2004-10-21 Mitsubishi Materials Corp Heat sink, method of manufacturing the same, power module, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2005286240A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
EP3057125B1 (en) Substrate for heat sink-equipped power module, and production method for same
CN104919585B (en) Power module substrate, the power module substrate for carrying radiator, the power model for carrying radiator
EP3136431B1 (en) Substrate for power modules, substrate with heat sink for power modules and power module with heat sink
JP6696215B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
KR102027615B1 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
EP2978019B1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
JP5186719B2 (en) Ceramic wiring board, manufacturing method thereof, and semiconductor module
EP2980843B1 (en) Power module
WO2003046981A1 (en) Module structure and module comprising it
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
JP4683043B2 (en) Manufacturing method of semiconductor device
JP6011552B2 (en) Power module substrate with heat sink and manufacturing method thereof
CN110383469B (en) Substrate with radiating fin for power module
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
JP4104429B2 (en) Module structure and module using it
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JP2008147309A (en) Ceramic substrate and semiconductor module using the same
JP2006140039A (en) Lead wire and solar cell using the same
WO2017126653A1 (en) Bonded body, power module substrate, power module, bonded body manufacturing method, and power module substrate manufacturing method
JP2009158715A (en) Heat dissipator and power module
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
JP5392901B2 (en) Silicon nitride wiring board
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250